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Abstract—This study presents an indoor vision-based fire 

detection system that integrates a YOLOv8n object detection 

model with a Reinforcement Learning-based Optimization 

Algorithm (ROA) for hyperparameter tuning. The research 

investigates three key aspects: 1) the effectiveness of ROA in 

improving model performance, 2) the optimal smart camera 

resolution and placement for indoor fire detection, and 3) the 

implementation of a real-time dual-channel user notification 

system. The BantaySunog model iteratively adjusted a few 

hyperparameters using the Reinforcement Learning-based 

Optimization Algorithm (ROA) [Talaat & Gamel, 2023]. An 

episodic framework was used for training, with 15 episodes of 20 

epochs each, for a maximum of 300 epochs. Each episode's top 

weights were carried over to the following one. To balance 

exploration and exploitation, ROA employed an epsilon-greedy 

policy with an epsilon value that decreased from 0.9 to 0.2. 

Experimental results show that while ROA reduced training time 

and yielded a more conservative prediction strategy, it did not 

consistently outperform the baseline YOLOv8n in terms of 

detection metrics such as recall and mAP50-95. Camera 

deployment tests identified that positioning cameras away from 

direct light sources significantly improved detection success, with 

both elevation and resolution contributing to overall system 

performance. Finally, a dual-channel alert mechanism combining 

Firebase Cloud Messaging (FCM) and Telerivet SMS API 

enabled the timely delivery of fire alerts, aligning with real-world 

standards. The findings contribute to the development of reliable 

and accessible fire detection systems, especially for densely 

populated residential areas with limited infrastructure. 
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I. INTRODUCTION 

Fires cause significant harm globally due to their 
destructive potential in residential, commercial, and natural 
environments [1]. Early detection is essential; for instance, in 
Seoul, property damage and casualties increase significantly if 
fires are not reported within five minutes [2]. In the 
Philippines, over 3,000 incidents occurred in the first two 
months of 2024 alone, with a majority in residential zones and 
caused by lighted cigarettes, cooking, and faulty electrical 
wiring [3]. Davao City has seen a 300% increase in fire 
damage this year [4-6]. 

Traditional fire detection systems—based on heat, smoke, 
or flame sensors—remain dominant due to building code 
requirements [7], but they suffer delayed activation and high 

false-alarm rates indoors [8-10]. In contrast, vision-based fire 
detectors (VFDs) use real-time video analysis and CNNs such 
as YOLO for faster detection [11, 12], although most current 
work focuses on outdoor or large-scale fires [7, 13]. 

This study proposes BantaySunog, an indoor fire detection 
and alert system combining a YOLOv8n model with 
hyperparameter tuning via Reinforcement Learning-based 
Optimization Algorithm (ROA) [14]. It also integrates Firebase 
Cloud Messaging and the Telerivet SMS API for real-time, 
dual-channel notifications. The research is guided by three 
objectives: 1) evaluate the effect of ROA on fire detection 
performance, 2) identify optimal camera resolution and 
positioning, and 3) assess the system’s ability to deliver real-
time alerts under various conditions. 

II. RELATED WORKS 

This section reviews prior studies that informed the design 
and evaluation of BantaySunog. It focuses on six domains: 
1) fire incident trends, 2) traditional vs. vision-based fire 
detection, 3) reinforcement learning-based optimization of 
CNNs, 4) image dataset augmentation, 5) camera deployment 
factors, and 6) multi-channel user notification systems. 

Fire outbreaks remain a major threat worldwide due to 
human error, electrical faults, and inadequate infrastructure [1]. 
In South Korea, architectural fires account for over 80% of 
casualties and 88% of fire-related property damage, 
emphasizing the vulnerability of indoor environments [2]. In 
the Philippines, smoking and open flames were leading causes 
of fire in early 2024 [3], with Davao City alone reporting a 
300% increase in fire damage [4-6]. Traditional detectors rely 
on sensors for heat, smoke, or UV radiation [15, 16], but they 
are susceptible to delayed activation and false positives, 
particularly in ventilated indoor environments [8-10, 17]. In 
contrast, VFDs use computer vision and CNNs to detect fire 
visually in real-time [11, 12], allowing earlier intervention. 
However, these systems demand high computation and 
visibility, and can still produce false detections if affected by 
lighting conditions or obstructions [13, 18, 19]. 

YOLO-based models have become increasingly favored 
due to their balance of speed and accuracy [20, 21]. Several 
studies highlight their adaptability to indoor and smart city 
scenarios [7, 11, 19]. ROA is a recent reinforcement learning-
based method designed to optimize CNN hyperparameters 
through Q-learning [14]. It uses an agent that iteratively refines 
network-trained hyperparameters (NTHs) such as learning rate 
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and loss weights to improve training outcomes. ROA operates 
by updating a Q-table that guides hyperparameter selection 
based on prior training rewards. While promising for image 
classification tasks, its effect on object detection remains 
underexplored. Data augmentation is essential in training 
robust models under limited data conditions [22, 23]. 
Techniques such as flipping, rotation, and color distortion 
increase dataset variety and reduce overfitting [24-26]. Larger 
datasets have been created through systematic augmentation 
[11, 27], often using specialized tools such as Albumentations 
[28]. 

Camera resolution, orientation, and elevation play a vital 
role in real-world deployment. Higher resolution enhances 
detail detection but increases computational load [29-32]. 
Camera orientation significantly affects detection accuracy; 
glare or reflections from windows can lead to false positives 
[33-37]. Studies suggest that facing cameras away from bright 
sources improves reliability [38, 39]. 

Elevation also influences the field of view and detection 
success. Ceiling-mounted cameras offer wider coverage [40, 
41], while lower placements may capture finer details for 
specific tasks [42]. For timely alerts, fire detection systems 
must notify users through redundant channels. Firebase Cloud 
Messaging (FCM) supports rich, image-based mobile 
notifications [43], while Telerivet’s REST API ensures SMS 
delivery even without internet [44]. Prior research supports 
combining both for higher reliability in emergencies [45-47]. 
Such dual-channel systems align with best practices in crisis 
response and are particularly useful in areas with unstable 
connectivity. 

III. MATERIALS AND METHODS 

This study employed a quantitative research design 
structured around three objectives: 1) to evaluate the impact of 
ROA on training a YOLOv8n model, 2) to determine optimal 
smart camera configurations for fire detection, and 3) to 
implement a dual-channel alert system for real-time 
notifications. The conceptual framework in Fig. 1 illustrates the 
overall workflow of the study. 

 
Fig. 1. Conceptual framework. 

A. Dataset Augmentation 

The "Indoor Fire Detection Dataset" in roboflow [48] was 
used, comprising 920 labeled images split into training, 
validation, and test sets. To improve generalization and 
simulate visual variability, the dataset was expanded to 3,680 
images using the Albumentations library [28]. Augmentation 
steps included horizontal flipping (50% chance), random 
rotation (±15°, 30% chance), and fixed-angle rotations of 90°, 
180°, and 270°. A comparison of the original and augmented 
versions is shown in Fig. 2. 

 
Fig. 2. Sample indoor fire image before and after augmentation. 

B. Model Training 

Model training was based on YOLOv8n [20] using 
Ultralytics’s YOLO module in Python, executed in Google 
Colab Pro with NVIDIA T4 GPUs. 

The BantaySunog model employed the Reinforcement 
Learning-based Optimization Algorithm (ROA) [Talaat & 
Gamel, 2023] to iteratively tune selected hyperparameters. 
Training followed an episodic structure: 15 episodes of 20 
epochs each, totaling 300 maximum epochs. The best weights 
from each episode were carried over to the next. ROA used an 
epsilon-greedy policy with the epsilon value decaying from 0.9 
to 0.2 to balance exploration and exploitation. Fig. 3 visualizes 
the episodic training process of the BantaySunog model. 

 
Fig. 3. The BantaySunog model training process. 

The hyperparameter search space included four network-
trained hyperparameters (NTHs) and three augmentation 
parameters, as shown in Table I, along with the candidate value 
ranges for each. 

To provide a baseline for comparison with the 
BantaySunog model, YOLOv8n was trained continuously for 
up to 300 epochs using default hyperparameters. Early 
stopping was enabled with a patience of 75 epochs. 
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TABLE I.  HYPERPARAMETER SEARCH SPACE AND VALUE RANGES 

Hyperparameter 
Default 

values 
Range of values 

Final learning rate 0.01 [0.001, 0.005, 0.01, 0.05, 0.1] 

Box loss weight 7.5 [7, 7.25, 7.5, 7.75, 8] 

Classification loss weight 0.5 [0.38, 0.44, 0.5, 0.56, 0.63] 

Distribution focal loss 

weight 
1.5 [1, 1.25, 1.5, 1.75, 2] 

Degrees of rotation 0 [0, 45, 90, 135, 180] 

Shear factor 0 [0, 3.75, 7.5, 11.25, 15] 

Perspective transformation 0 [0, 0.00025, 0.0005, 0.00075, 0.001] 

C. ROA Evaluation 

This study employed a systematic evaluation comparing the 
BantaySunog model’s training and testing results against those 
of the baseline YOLOv8n model trained with default values to 
determine the effectiveness of ROA as a hyperparameter 
optimization strategy. The following key metrics were 
considered in the training and testing results comparisons: 1) 
precision, which measures the proportion of correctly 
identified fire instances among all detections made, 2) recall, 
which captures the model’s ability to detect actual fire 
instances present in the scene, 3) mAP50, which represents the 
average precision across all classes using a single Intersection 
over Union (IoU) threshold of 0.50, and 4) mAP50-95, a more 
comprehensive metric that evaluates the model’s fine-grained 
localization accuracy and consistency. 

 
Fig. 4. Camera placements for testing. 

D. Camera Resolution and Placement 

Three TP-Link Tapo cameras were tested: C200 (1080p), 
C211 (2K 3MP), and C220 (2K QHD). Each camera was 
deployed in four positions: 1) ceiling-mounted facing a 
window, 2) table-level facing a window, 3) ceiling-mounted 
facing away from a window, and 4) table-level facing away. 
Each position is illustrated in Fig. 4. This experiment evaluated 
how resolution, glare exposure, and elevation influence fire 
detection accuracy [29, 38, 40]. 

E. Notification System 

To ensure prompt alerts under various connectivity 
conditions, a dual-channel system was developed. Firebase 
Cloud Messaging (FCM) [43] was used for push notifications 
via a Flutter mobile app. For offline scenarios, Telerivet’s 
REST API [44] was integrated into the model to trigger SMS 
alerts through a dedicated Android gateway. 

F. Expert Consultation on Real-world Standards 

The detection-to-notification delay was benchmarked based 
on guidance from Fire Officer 1 Jesardnel S. Vargas, FDAS 
Specialist at BFP Davao. He specified a maximum 30-second 
detection window from the fire’s incipient stage. During 
camera tests, a stopwatch mechanism was used to measure 
detection and alert times relative to this benchmark. 

IV. RESULTS AND DISCUSSION 

On the original training set, the baseline model completed 
training in 117 epochs (0.378 hours), whereas the ROA-
optimized BantaySunog model converged slightly faster in 106 
epochs (0.362 hours). This trend persisted on the augmented 
training set, where the baseline required 176 epochs (2.265 
hours) compared to BantaySunog’s 149 epochs (2.045 hours). 
These results indicate that ROA reduced both the number of 
epochs and the amount of time needed for training. 

 

Fig. 5. Training metrics on the original dataset. 

However, on the original training set, the baseline model 
outperformed BantaySunog in training stability and 
performance, as seen in Fig. 5. Precision and mAP50 curves 
were higher and more stable for the baseline, while 
BantaySunog showed greater volatility—especially in mAP50–
95, signaling weaker localization quality. Recall was similarly 
less consistent, with the baseline maintaining centered, stable 
performance across epochs while BantaySunog showed 
frequent dips and underperformance. 

The performance gap widened on the augmented training 
set. The baseline model consistently led across all metrics—
precision, recall, mAP50, and mAP50–95—while 
BantaySunog’s curves remained flatter and lower in amplitude, 
as seen in Fig. 6. This suggested minimal learning progress per 
epoch and an inability to scale with the increased dataset 
complexity. Although BantaySunog occasionally peaked in 
precision during early epochs, this was not sustained and came 
at the cost of reduced recall and poor localization. 
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While ROA improved convergence speed, it failed to 
enhance—and in some cases undermined—training quality. 
The training metrics indicate that ROA guided the model 
toward more conservative but less effective learning behavior, 
especially on complex datasets. These results raise concerns 
about ROA’s generalizability and its adaptability to broader 
training conditions beyond fast convergence. 

On the original testing set, the baseline model outperformed 
the BantaySunog model in nearly all key metrics. Most 
notably, it achieved higher recall (0.9227 vs. 0.7879) and 
mAP50–95 (0.5548 vs. 0.3646), indicating better detection 
coverage and localization accuracy. Although BantaySunog 
reported higher precision (0.9217 vs. 0.8354), this came at the 
expense of missing more true positives, consistent with a more 
conservative detection strategy. This behavior likely stems 
from ROA's tuning bias toward reducing false positives. Fig. 7 
compares the testing result metrics from both models on each 
dataset, while Fig. 8 and Fig. 9 visually illustrate this 
conservativeness, showing sparser bounding box predictions 
compared to the baseline's more liberal detection. 

 
Fig. 6. Training metrics on the augmented dataset 

On the augmented testing set, performance between the two 
models became more comparable, though the baseline still led 
in key areas. It slightly surpassed BantaySunog in precision 
(0.8896 vs. 0.8841) and mAP50–95 (0.5564 vs. 0.5153), while 
BantaySunog exhibited minor gains in recall (0.8664 vs. 
0.8546) and mAP50 (0.9179 vs. 0.8898). These results suggest 
that ROA may provide some benefit in detecting more fire 
instances and improving bounding box coverage under data-
rich conditions, but not enough to yield consistently superior 
overall performance. 

ROA appears to promote cautious predictions but falls 
short in enhancing generalization. The occasional metric gains 
under augmentation are outweighed by consistent 
underperformance in stricter quality measures such as mAP50–
95. This reinforces concerns about ROA’s limited scalability 
and its tendency to prioritize false-positive minimization over 
comprehensive detection quality. 

The ROA-optimized BantaySunog model consistently 
trained faster than the baseline YOLOv8n, converging in fewer 
epochs and with reduced wall time. However, this efficiency 
came at the cost of performance. Training curves were flatter, 

especially on the augmented dataset, indicating limited 
learning progress. Testing results echoed this trend: 
BantaySunog had lower recall and mAP50–95 on the original 
dataset and only marginal improvements under augmentation. 
Its higher precision reflected a conservative prediction style, 
but this also meant missing more true positives and weaker 
localization. Overall, while ROA reduced training duration, it 
did not enhance—and sometimes degraded—detection quality, 
suggesting that further refinement is needed before ROA can 
reliably optimize CNN-based object detectors for safety-critical 
applications. 

 
Fig. 7. Comparison of testing results. 

 
Fig. 8. Original testing set predictions from each model. 

 
Fig. 9. Augmented testing set predictions from each model. 

A. Optimal Camera Resolution and Placement 

To determine optimal camera deployment for indoor fire 
detection, three smart cameras—TP-Link Tapo C200 (1080p), 
C211 (2K 3MP), and C220 (2K QHD)—were tested across 
four configurations: ceiling-mounted and table-level, each 
facing toward or away from a window. These combinations 
were chosen to evaluate the effects of resolution, elevation, and 
light source orientation on detection reliability. 

Results revealed that camera orientation relative to light 
sources had the greatest influence on detection success. As 
shown in Table II, all three cameras consistently achieved 
better results when positioned away from windows, regardless 
of resolution or mounting height. Cameras facing windows 
frequently failed to detect fire instances due to glare, 
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reflections, or contrast loss—particularly in brightly lit 
environments. 

TABLE II.  FIRE DETECTION RESULTS FROM EACH CAMERA AND 

POSITION 

Cameras 

Facing window Facing away from window 

On ceiling 
On table-

level 
On ceiling 

On table-

level 

C200 Fail Fail Success Success 

C211 Fail Success Success Success 

C220 Fail Success Success Success 

 
Fig. 10. Fire detection frames from ceiling-mounted cameras. 

 
Fig. 11. Fire detection frames from table-level cameras. 

While higher resolution (2K) offered marginal 
improvements in detecting small or distant flames, the gains 
were not substantial enough to justify the added computational 
overhead if placement was suboptimal. In particular, the C211 
(2K 3MP) showed slightly better overall performance across 
conditions, but even this model struggled in unfavorable 
orientations. Visual results in Fig. 10 and Fig. 11 support these 
findings, with clearer and more accurate detections appearing 
in camera views facing away from light. 

These results suggest that proper orientation and strategic 
positioning—avoiding direct light interference—are more 
critical to reliable fire detection than increasing resolution or 
changing elevation alone. Such insights are vital for effective 
system deployment in real-world environments, especially 
where infrastructure constraints limit camera options. 

B. Implementation of the Notification System 

To ensure timely user alerts in both connected and offline 
environments, BantaySunog integrates a dual-channel 
notification system using Firebase Cloud Messaging (FCM) 
and the Telerivet SMS API. Upon detecting a fire, the system 
automatically sends both an image-rich push notification and a 
backup SMS containing fire detection details. 

Fig. 12 shows the FCM and SMS notifications on the end-
user smartphone. This confirms the successful reception of 
alerts from BantaySunog through FCM and Telerivet in the 
end-user smartphone. 

 
Fig. 12. FCM and SMS notifications. 
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TABLE III.  FIRE DETECTION-TO-NOTIFICATION TIMES FROM SUCCESSFUL 

FIRE DETECTIONS 

Successful camera configurations Time (seconds) 

C220, Table-level, Facing window 18.749 

C211, Table-level, Facing window 8.495 

C200, Table-level, Facing away from window 9.658 

C211, Table-level, Facing away from window 9.446 

C220, Table-level, Facing away from window 7.264 

C220, Ceiling-mounted, Facing away from window 15.192 

C220, Ceiling-mounted, Facing away from window 7.396 

C220, Ceiling-mounted, Facing away from window 9.324 

Table III presents the fire detection-to-notifications times 
from the successful fire detections during the tests to determine 
the optimal camera configuration. The average delay between 
fire detection and full alert receipt was 10.69 seconds. This 
includes model processing, message generation, and cross-
platform delivery. All alerts were received in under 30 seconds, 
meeting the benchmark advised by FO1 Vargas of BFP Davao. 

These results affirm that BantaySunog's notification system 
meets the real-time responsiveness required for fire 
emergencies and offers high reliability through multi-channel 
delivery. 

V. CONCLUSIONS AND RECOMMENDATIONS 

This study introduced BantaySunog, an indoor vision-based 
fire detection system that integrates a YOLOv8n object 
detection model with a reinforcement learning-based 
optimization algorithm (ROA), paired with a dual-channel alert 
system. The research evaluated three primary objectives: 
improving training performance through ROA, identifying 
optimal camera configurations for deployment, and ensuring 
real-time alert delivery under realistic conditions. Findings 
show that while ROA reduced training time and promoted a 
conservative prediction strategy, it failed to consistently 
improve detection performance. The BantaySunog model often 
underperformed in recall and mAP50–95, especially on the 
original dataset, suggesting that ROA’s policy may require 
further tuning to handle more complex or diverse training 
scenarios. This indicates that, in its current form, ROA is not a 
reliable drop-in optimization tool for CNN-based fire detection 
in safety-critical applications. 

Camera deployment tests revealed that orientation—
specifically avoiding direct exposure to windows or light 
sources—had a greater impact on detection reliability than 
resolution or elevation. Proper placement significantly reduced 
false negatives, underscoring the importance of environment-
specific configuration in real-world deployments. The dual-
channel alert system using FCM and Telerivet successfully 
delivered notifications within an average of 10.69 seconds, 
well below the 30-second threshold advised by the Bureau of 
Fire Protection. This confirms the system’s readiness for 
deployment in infrastructure-limited environments where 
redundancy and speed are critical. Future work should explore 
adaptive versions of ROA or alternative reinforcement learning 
strategies tailored for object detection. Additional evaluation in 
real fire conditions, including smoke or occlusion scenarios, 

would strengthen generalizability. Deployment across multiple 
households with varied layouts could further validate the 
system’s robustness in uncontrolled environments. 
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