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Abstract—This study presents an indoor vision-based fire
detection system that integrates a YOLOv8n object detection
model with a Reinforcement Learning-based Optimization
Algorithm (ROA) for hyperparameter tuning. The research
investigates three key aspects: 1) the effectiveness of ROA in
improving model performance, 2) the optimal smart camera
resolution and placement for indoor fire detection, and 3) the
implementation of a real-time dual-channel user notification
system. The BantaySunog model iteratively adjusted a few
hyperparameters using the Reinforcement Learning-based
Optimization Algorithm (ROA) [Talaat & Gamel, 2023]. An
episodic framework was used for training, with 15 episodes of 20
epochs each, for a maximum of 300 epochs. Each episode's top
weights were carried over to the following one. To balance
exploration and exploitation, ROA employed an epsilon-greedy
policy with an epsilon value that decreased from 0.9 to 0.2.
Experimental results show that while ROA reduced training time
and yielded a more conservative prediction strategy, it did not
consistently outperform the baseline YOLOv8n in terms of
detection metrics such as recall and mAPS50-95. Camera
deployment tests identified that positioning cameras away from
direct light sources significantly improved detection success, with
both elevation and resolution contributing to overall system
performance. Finally, a dual-channel alert mechanism combining
Firebase Cloud Messaging (FCM) and Telerivet SMS API
enabled the timely delivery of fire alerts, aligning with real-world
standards. The findings contribute to the development of reliable
and accessible fire detection systems, especially for densely
populated residential areas with limited infrastructure.
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I.  INTRODUCTION

Fires cause significant harm globally due to their
destructive potential in residential, commercial, and natural
environments [1]. Early detection is essential; for instance, in
Seoul, property damage and casualties increase significantly if
fires are not reported within five minutes [2]. In the
Philippines, over 3,000 incidents occurred in the first two
months of 2024 alone, with a majority in residential zones and
caused by lighted cigarettes, cooking, and faulty electrical
wiring [3]. Davao City has seen a 300% increase in fire
damage this year [4-6].

Traditional fire detection systems—based on heat, smoke,
or flame sensors—remain dominant due to building code
requirements [7], but they suffer delayed activation and high

false-alarm rates indoors [8-10]. In contrast, vision-based fire
detectors (VFDs) use real-time video analysis and CNNs such
as YOLO for faster detection [11, 12], although most current
work focuses on outdoor or large-scale fires [7, 13].

This study proposes BantaySunog, an indoor fire detection
and alert system combining a YOLOv8n model with
hyperparameter tuning via Reinforcement Learning-based
Optimization Algorithm (ROA) [14]. It also integrates Firebase
Cloud Messaging and the Telerivet SMS API for real-time,
dual-channel notifications. The research is guided by three
objectives: 1) evaluate the effect of ROA on fire detection
performance, 2) identify optimal camera resolution and
positioning, and 3) assess the system’s ability to deliver real-
time alerts under various conditions.

II. RELATED WORKS

This section reviews prior studies that informed the design
and evaluation of BantaySunog. It focuses on six domains:
1) fire incident trends, 2) traditional vs. vision-based fire
detection, 3) reinforcement learning-based optimization of
CNNs, 4) image dataset augmentation, 5) camera deployment
factors, and 6) multi-channel user notification systems.

Fire outbreaks remain a major threat worldwide due to
human error, electrical faults, and inadequate infrastructure [1].
In South Korea, architectural fires account for over 80% of
casualties and 88% of fire-related property damage,
emphasizing the vulnerability of indoor environments [2]. In
the Philippines, smoking and open flames were leading causes
of fire in early 2024 [3], with Davao City alone reporting a
300% increase in fire damage [4-6]. Traditional detectors rely
on sensors for heat, smoke, or UV radiation [15, 16], but they
are susceptible to delayed activation and false positives,
particularly in ventilated indoor environments [8-10, 17]. In
contrast, VFDs use computer vision and CNNs to detect fire
visually in real-time [11, 12], allowing earlier intervention.
However, these systems demand high computation and
visibility, and can still produce false detections if affected by
lighting conditions or obstructions [13, 18, 19].

YOLO-based models have become increasingly favored
due to their balance of speed and accuracy [20, 21]. Several
studies highlight their adaptability to indoor and smart city
scenarios [7, 11, 19]. ROA is a recent reinforcement learning-
based method designed to optimize CNN hyperparameters
through Q-learning [14]. It uses an agent that iteratively refines
network-trained hyperparameters (NTHs) such as learning rate
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and loss weights to improve training outcomes. ROA operates
by updating a Q-table that guides hyperparameter selection
based on prior training rewards. While promising for image
classification tasks, its effect on object detection remains
underexplored. Data augmentation is essential in training
robust models under limited data conditions [22, 23].
Techniques such as flipping, rotation, and color distortion
increase dataset variety and reduce overfitting [24-26]. Larger
datasets have been created through systematic augmentation
[11, 27], often using specialized tools such as Albumentations
[28].

Camera resolution, orientation, and elevation play a vital
role in real-world deployment. Higher resolution enhances
detail detection but increases computational load [29-32].
Camera orientation significantly affects detection accuracy;
glare or reflections from windows can lead to false positives
[33-37]. Studies suggest that facing cameras away from bright
sources improves reliability [38, 39].

Elevation also influences the field of view and detection
success. Ceiling-mounted cameras offer wider coverage [40,
41], while lower placements may capture finer details for
specific tasks [42]. For timely alerts, fire detection systems
must notify users through redundant channels. Firebase Cloud
Messaging (FCM) supports rich, image-based mobile
notifications [43], while Telerivet’s REST API ensures SMS
delivery even without internet [44]. Prior research supports
combining both for higher reliability in emergencies [45-47].
Such dual-channel systems align with best practices in crisis
response and are particularly useful in areas with unstable
connectivity.

III.  MATERIALS AND METHODS

This study employed a quantitative research design
structured around three objectives: 1) to evaluate the impact of
ROA on training a YOLOvV8n model, 2) to determine optimal
smart camera configurations for fire detection, and 3) to
implement a dual-channel alert system for real-time
notifications. The conceptual framework in Fig. 1 illustrates the
overall workflow of the study.
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Fig. 1. Conceptual framework.
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A. Dataset Augmentation

The "Indoor Fire Detection Dataset" in roboflow [48] was
used, comprising 920 labeled images split into training,
validation, and test sets. To improve generalization and
simulate visual variability, the dataset was expanded to 3,680
images using the Albumentations library [28]. Augmentation
steps included horizontal flipping (50% chance), random
rotation (+15°, 30% chance), and fixed-angle rotations of 90°,
180°, and 270°. A comparison of the original and augmented
versions is shown in Fig. 2.

Original Augmented

E

Fig.2. Sample indoor fire image before and after augmentation.

B. Model Training

Model training was based on YOLOvV8n [20] using
Ultralytics’s YOLO module in Python, executed in Google
Colab Pro with NVIDIA T4 GPUs.

The BantaySunog model employed the Reinforcement
Learning-based Optimization Algorithm (ROA) [Talaat &
Gamel, 2023] to iteratively tune selected hyperparameters.
Training followed an episodic structure: 15 episodes of 20
epochs each, totaling 300 maximum epochs. The best weights
from each episode were carried over to the next. ROA used an
epsilon-greedy policy with the epsilon value decaying from 0.9
to 0.2 to balance exploration and exploitation. Fig. 3 visualizes
the episodic training process of the BantaySunog model.
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Fig. 3. The BantaySunog model training process.

The hyperparameter search space included four network-
trained hyperparameters (NTHs) and three augmentation
parameters, as shown in Table I, along with the candidate value
ranges for each.

To provide a baseline for comparison with the
BantaySunog model, YOLOv8n was trained continuously for
up to 300 epochs using default hyperparameters. Early
stopping was enabled with a patience of 75 epochs.
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TABLEI. HYPERPARAMETER SEARCH SPACE AND VALUE RANGES
Default
Hyperparameter values Range of values
Final learning rate 0.01 [0.001,0.005,0.01,0.05,0.1]
Box loss weight 7.5 [7,7.25,7.5,7.75,8]

Classification loss weight 0.5 [0.38,0.44,0.5, 0.56,0.63]

Distribution  focal loss

weight 1.5 [1,1.25,1.5,1.75,2]
Degrees of rotation 0 [0, 45,90, 135, 180]
Shear factor 0 [0, 3.75,7.5,11.25,15]

Perspective transformation | 0 [0, 0.00025,0.0005,0.00075,0.001]

C. ROA Evaluation

This study employed a systematic evaluation comparing the
BantaySunog model’s training and testing results against those
of the baseline YOLOv8n model trained with default values to
determine the effectiveness of ROA as a hyperparameter
optimization strategy. The following key metrics were
considered in the training and testing results comparisons: 1)
precision, which measures the proportion of correctly
identified fire instances among all detections made, 2) recall,
which captures the model’s ability to detect actual fire
instances present in the scene, 3) mAPS50, which represents the
average precision across all classes using a single Intersection
over Union (IoU) threshold of 0.50, and 4) mAP50-95, a more
comprehensive metric that evaluates the model’s fine-grained
localization accuracy and consistency.

L 4

A 6

Ceiling-mounted facing a On table-level facing a

window window

™

4 é

Ceiling-mounted facing away On table-level facing away
from a window from a window

Fig. 4. Camera placements for testing.

D. Camera Resolution and Placement

Three TP-Link Tapo cameras were tested: C200 (1080p),
C211 (2K 3MP), and C220 (2K QHD). Each camera was
deployed in four positions: 1) ceiling-mounted facing a
window, 2) table-level facing a window, 3) ceiling-mounted
facing away from a window, and 4) table-level facing away.
Each position is illustrated in Fig. 4. This experiment evaluated
how resolution, glare exposure, and elevation influence fire
detection accuracy [29, 38, 40].
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E. Notification System

To ensure prompt alerts under various connectivity
conditions, a dual-channel system was developed. Firebase
Cloud Messaging (FCM) [43] was used for push notifications
via a Flutter mobile app. For offline scenarios, Telerivet’s
REST API [44] was integrated into the model to trigger SMS
alerts through a dedicated Android gateway.

F. Expert Consultation on Real-world Standards

The detection-to-notification delay was benchmarked based
on guidance from Fire Officer 1 Jesardnel S. Vargas, FDAS
Specialist at BFP Davao. He specified a maximum 30-second
detection window from the fire’s incipient stage. During
camera tests, a stopwatch mechanism was used to measure
detection and alert times relative to this benchmark.

IV. RESULTS AND DISCUSSION

On the original training set, the baseline model completed
training in 117 epochs (0378 hours), whereas the ROA-
optimized BantaySunog model converged slightly faster in 106
epochs (0.362 hours). This trend persisted on the augmented
training set, where the baseline required 176 epochs (2.265
hours) compared to BantaySunog’s 149 epochs (2.045 hours).
These results indicate that ROA reduced both the number of
epochs and the amount of time needed for training.

Original dataset - Key metrics over Epochs
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Fig. 5. Training metrics on the original dataset.

However, on the original training set, the baseline model
outperformed BantaySunog in training stability and
performance, as seen in Fig. 5. Precision and mAP50 curves
were higher and more stable for the baseline, while
BantaySunog showed greater volatility—especially in mAP50—
95, signaling weaker localization quality. Recall was similarly
less consistent, with the baseline maintaining centered, stable
performance across epochs while BantaySunog showed
frequent dips and underperformance.

The performance gap widened on the augmented training
set. The baseline model consistently led across all metrics—
precision,  recall, mAP50, and mAP50-95—while
BantaySunog’s curves remained flatter and lower in amplitude,
as seen in Fig. 6. This suggested minimal learming progress per
epoch and an inability to scale with the increased dataset
complexity. Although BantaySunog occasionally peaked in
precision during early epochs, this was not sustained and came
at the cost of reduced recall and poor localization.
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While ROA improved convergence speed, it failed to
enhance—and in some cases undermined—training quality.
The training metrics indicate that ROA guided the model
toward more conservative but less effective learning behavior,
especially on complex datasets. These results raise concerns
about ROA’s generalizability and its adaptability to broader
training conditions beyond fast convergence.

On the original testing set, the baseline model outperformed
the BantaySunog model in nearly all key metrics. Most
notably, it achieved higher recall (0.9227 vs. 0.7879) and
mAPS50-95 (0.5548 vs. 0.3646), indicating better detection
coverage and localization accuracy. Although BantaySunog
reported higher precision (0.9217 vs. 0.8354), this came at the
expense of missing more true positives, consistent with a more
conservative detection strategy. This behavior likely stems
from ROA's tuning bias toward reducing false positives. Fig. 7
compares the testing result metrics from both models on each
dataset, while Fig. 8 and Fig. 9 visually illustrate this
conservativeness, showing sparser bounding box predictions
compared to the baseline's more liberal detection.

Augmented dataset - Key metrics over Epochs
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Fig. 6. Training metrics on the augmented dataset

On the augmented testing set, performance between the two
models became more comparable, though the baseline still led
in key areas. It slightly surpassed BantaySunog in precision
(0.8896 vs. 0.8841) and mAP50-95 (0.5564 vs. 0.5153), while
BantaySunog exhibited minor gains in recall (0.8664 vs.
0.8546) and mAP50 (0.9179 vs. 0.8898). These results suggest
that ROA may provide some benefit in detecting more fire
instances and improving bounding box coverage under data-
rich conditions, but not enough to yield consistently superior
overall performance.

ROA appears to promote cautious predictions but falls
short in enhancing generalization. The occasional metric gains
under augmentation are outweighed by consistent
underperformance in stricter quality measures such as mAP50—
95. This reinforces concermns about ROA’s limited scalability
and its tendency to prioritize false-positive minimization over
comprehensive detection quality.

The ROA-optimized BantaySunog model consistently
trained faster than the baseline YOLOvV8n, converging in fewer
epochs and with reduced wall time. However, this efficiency
came at the cost of performance. Training curves were flatter,
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especially on the augmented dataset, indicating limited
learning progress. Testing results echoed this trend:
BantaySunog had lower recall and mAP50-95 on the original
dataset and only marginal improvements under augmentation.
Its higher precision reflected a conservative prediction style,
but this also meant missing more true positives and weaker
localization. Overall, while ROA reduced training duration, it
did not enhance—and sometimes degraded—detection quality,
suggesting that further refinement is needed before ROA can
reliably optimize CNN-based object detectors for safety-critical
applications.

Model Performance Comparison by Dataset

Original Dataset Augmented Dataset

- pascine - aseline
Bantaysunog

Fig. 7. Comparison of testing results.
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Fig. 8. Original testing set predictions from each model.
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Fig. 9. Augmented testing set predictions from each model.

A. Optimal Camera Resolution and Placement

To determine optimal camera deployment for indoor fire
detection, three smart cameras—TP-Link Tapo C200 (1080p),
C211 (2K 3MP), and C220 (2K QHD)—were tested across
four configurations: ceiling-mounted and table-level, each
facing toward or away from a window. These combinations
were chosen to evaluate the effects of resolution, elevation, and
light source orientation on detection reliability.

Results revealed that camera orientation relative to light
sources had the greatest influence on detection success. As
shown in Table II, all three cameras consistently achieved
better results when positioned away from windows, regardless
of resolution or mounting height. Cameras facing windows
frequently failed to detect fire instances due to glare,
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reflections, or contrast loss—particularly in brightly lit
environments.

TABLEII. FIRE DETECTION RESULTS FROM EACH CAMERA AND
POSITION
Facing window Facing away from window
Cameras " On table- - On table-
On ceiling On ceiling

level level
C200 Fail Fail Success Success
C211 Fail Success Success Success
C220 Fail Success Success Success

Cameras on Ceiling

Facing towards window

Facing away from a window

c211

Cc220 Cc220

Fig. 10. Fire detection frames from ceiling-mounted cameras.

Cameras on Table-level

Facing towards window Facing away from a window

c211

C220 Cc220

Fig. 11. Fire detection frames from table-level cameras.
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While higher resolution (2K) offered marginal
improvements in detecting small or distant flames, the gains
were not substantial enough to justify the added computational
overhead if placement was suboptimal. In particular, the C211
(2K 3MP) showed slightly better overall performance across
conditions, but even this model struggled in unfavorable
orientations. Visual results in Fig. 10 and Fig. 11 support these
findings, with clearer and more accurate detections appearing
in camera views facing away from light.

These results suggest that proper orientation and strategic
positioning—avoiding direct light interference—are more
critical to reliable fire detection than increasing resolution or
changing elevation alone. Such insights are vital for effective
system deployment in real-world environments, especially
where infrastructure constraints limit camera options.

B. Implementation of the Notification System

To ensure timely user alerts in both connected and offline
environments, BantaySunog integrates a dual-channel
notification system using Firebase Cloud Messaging (FCM)
and the Telerivet SMS APIL. Upon detecting a fire, the system
automatically sends both an image-rich push notification and a
backup SMS containing fire detection details.

Fig. 12 shows the FCM and SMS notifications on the end-
user smartphone. This confirms the successful reception of
alerts from BantaySunog through FCM and Telerivet in the
end-user smartphone.

o

iy Bl = B0

~

Fig. 12. FCM and SMS notifications.
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TABLE III. FIRE DETECTION-TO-NOTIFICATION TIMES FROM SUCCESSFUL
FIRE DETECTIONS
Successful camera configurations Time (seconds)
C220, Table-level, Facing window 18.749
C211, Table-level, Facing window 8.495
C200, Table-level, Facing away from window 9.658
C211, Table-level, Facing away from window 9.446
C220, Table-level, Facing away from window 7.264
C220, Ceiling-mounted, Facing away from window 15.192
(€220, Ceiling-mounted, Facing away from window 7.396
C220, Ceiling-mounted, Facingaway from window 9.324

Table III presents the fire detection-to-notifications times
from the successful fire detections during the tests to determine
the optimal camera configuration. The average delay between
fire detection and full alert receipt was 10.69 seconds. This
includes model processing, message generation, and cross-
platform delivery. All alerts were received in under 30 seconds,
meeting the benchmark advised by FO1 Vargas of BFP Davao.

These results affirm that Bantay Sunog's notification system
meets the real-time responsiveness required for fire
emergencies and offers high reliability through multi-channel
delivery.

V. CONCLUSIONS AND RECOMMENDATIONS

This study introduced BantaySunog, an indoor vision-based
fire detection system that integrates a YOLOv8n object
detection model with a reinforcement learning-based
optimization algorithm (ROA), paired with a dual-channel alert
system. The research evaluated three primary objectives:
improving training performance through ROA, identifying
optimal camera configurations for deployment, and ensuring
real-time alert delivery under realistic conditions. Findings
show that while ROA reduced training time and promoted a
conservative prediction strategy, it failed to consistently
improve detection performance. The BantaySunog model often
underperformed in recall and mAP50-95, especially on the
original dataset, suggesting that ROA’s policy may require
further tuning to handle more complex or diverse training
scenarios. This indicates that, in its current form, ROA is not a
reliable drop-in optimization tool for CNN-based fire detection
in safety-critical applications.

Camera deployment tests revealed that orientation—
specifically avoiding direct exposure to windows or light
sources—had a greater impact on detection reliability than
resolution or elevation. Proper placement significantly reduced
false negatives, underscoring the importance of environment-
specific configuration in real-world deployments. The dual-
channel alert system using FCM and Telerivet successfully
delivered notifications within an average of 10.69 seconds,
well below the 30-second threshold advised by the Bureau of
Fire Protection. This confirms the system’s readiness for
deployment in infrastructure-limited environments where
redundancy and speed are critical. Future work should explore
adaptive versions of ROA or alternative reinforcement learning
strategies tailored for object detection. Additional evaluation in
real fire conditions, including smoke or occlusion scenarios,
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would strengthen generalizability. Deployment across multiple
households with varied layouts could further validate the
system’s robustness in uncontrolled environments.
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