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Abstract—The increasing use of resource-constrained cyber-
physical devices emphasizes the need for effective and flexible
methods in the deployment of threat intelligence. The Open
Cyber Intelligence Framework (OCIF), an architecture that
applies Security Information and Event Management (SIEM)
and Security Orchestration, Automation, and Response (SOAR)
capabilities to resource-constrained environments, is presented in
this study. The OCIF uses lightweight machine learning models
in an adaptive way to process cyber threat intelligence (CTI) with
greater precision and effectiveness. By using Wazuh to monitor
the behavior of machines and OpenSearch for modeling the
results of the analysis, the OCIF can reduce false positives by up
to 6% in real-world implementations. The model ensures
sufficient threat mitigation without taxing the system by striking
a balance between anomaly detection, context, and decreased
communication overhead. Because of its open-source
propagation and modular form factor, OCIF promotes
innovation and makes it possible for CTI to be built and used in
restricted resources with optimal detection and operational
efficiency.
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I.  INTRODUCTION

The proliferation of resource-constrained devices permeates
every aspect of the connected world in the modern digital era,
making the critical need for cybersecurity tailored to these
devices' particular challenges indisputable. A paradigm shift in
how we protect sensitive data and infrastructure is required due
to the emergence of Internet of Things (IoT) sensors,
embedded systems, and other limited devices [1]. Adaptive
Deployment Strategies and Threat Intelligence Integration are
two crucial aspects of the Open Cyber Intelligence Framework
(OCIF) that are thoroughly examined in this research study.

Resource-constrained devices, characterized by limitations
in processing power, memory, and bandwidth, inherently pose
a formidable challenge to traditional cybersecurity frameworks.
Recognizing this, the OCIF emerges as a beacon of innovation,
seeking to not merely address these challenges, but to redefine
the parameters of adaptive and effective cybersecurity tailored
explicitly for devices with constrained resources [2].

Traditional cybersecurity frameworks are inherently
challenged by resource-constrained devices, which are defined
by limitations in processing power, memory, and bandwidth.
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Acknowledging this, the OCIF becomes a shining example of
innovation, aiming to redefine the parameters of effective and
adaptive cybersecurity specifically designed for devices with
limited resources, rather than just addressing these issues [2].
For IoT and cyber-physical systems, the majority of current
intrusion detection and CTI solutions are still too bulky,
insufficiently flexible, and prone to a high rate of false
positives in environments with limited resources. In actuality,
the majority of CTI and SOAR/SIEM models make
assumptions about high bandwidth and processing power,
which leaves a crucial gap for severely constrained devices[3].

For IoT and cyber-physical systems, the majority of current
intrusion detection and CTI solutions are still too bulky,
insufficiently flexible, and prone to a high rate of false
positives in environments with limited resources. In actuality,
the majority of CTI and SOAR/SIEM models make
assumptions about high bandwidth and processing power,
which leaves a crucial gap for severely constrained devices [3].
The expansion of the Intemet of Things (IoT) exposes
lightweight computing devices to an increasing number of
attacks, necessitating the urgent need for a low-overhead,
adaptable framework that integrates automated deployment and
CTI. This work uses the Open Cyber Intelligence Framework,
or OCIF, to address this need.

The Threat Intelligence Integration component of OCIF
takes on the task of efficiently absorbing and processing real-
time threat data in order to support the adaptive deployment
initiatives. Context-aware integration, scalable data processing
methods, the creation of an ongoing feedback loop, and reliable
experimental validation are all given special attention in this
area of study. This dimension seeks to bridge theoretical
underpinnings with empirical evidence and to offer useful
insights into efficient Threat Intelligence Integration
methodologies for resource-constrained devices by utilizing
platforms like Wazuh [4] in conjunction with predefined
machine learning algorithms available in OpenSearch.

A. Cyber Threat Intelligence (CTI) for loT

Due to the growing amount of Digital Connectivity and the
addition of Internet of Things (IoT) devices across every aspect
of every person's life, the need for a Proactive and Adaptive
Cybersecurity Paradigm is higher than it's ever been before.
Cyber Threat Intelligence (CTI) has become a pivotal
discipline for providing increased Cyber Resilience to IoT
Ecosystems in an evolving Threat Landscape. The rapid
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Growth of this interconnected Ecosystem has created many
Security Challenges for IoT devices, from Smart Home
Devices to Industrial Sensors, requiring a Sophisticated and
Context-Aware approach.

B. The loT Landscape

The internet of things (IoT) consists of a large number of
electronically connected devices, which together make up a
matrix of vulnerabilities and attack vectors that can be
exploited by hackers. The features and functions incorporated
into IoT devices are designed to add convenience and
efficiency for the user; however, due to the limited processing
power and variety of communication protocols between these
devices, they are susceptible to cyberattacks. Therefore, to
successfully secure the IoT ecosystem, it is critical to fully
comprehend the functionality of IoT devices and have
continuous monitoring of the continually changing cyber threat
landscape.

C. Dynamics of Cyber Threat Intelligence

In the context of IoT, cyber threat intelligence is a proactive
and strategic method of identifying, reducing, and eliminating
cyberthreats. It entails gathering, evaluating, and sharing
useful information about possible risks to IoT networks and
devices. By offering contextual insights into the strategies,
tactics, and practices used by adversaries in the IoT space, CTI
enables organizations to go beyond reactive defense
mechanisms, in contrast to traditional cybersecurity measures.

D. Contextualizing Threats in the IoT landscape

To properly secure IoT devices and networks from cyber
attacks, an IoT expert must understand the threats to the
device/network at a high level. This is accomplished through
the use of Cyber Threat Intelligence (CTI) applied to IoT.
When CTl is applied to IoT, it doesn't just allow the IoT expert
to identify malicious traffic; it also enables the expert to
understand how to interpret the traffic associated with a
particular IoT device, how to spot patterns in the traffic, and
how to identify abnormal behaviour based on the patterns when
viewed in the context of the overall IoT ecosystem.

E. Integrating Threat Intelligence into loT Security Posture

To stay ahead of the competition, [oT security postures
must incorporate Cyber Threat Intelligence. To find possible
threats, it makes use of machine learning algorithms, advanced
analytics, and real-time monitoring.  Organizations can
strengthen the resilience of IoT devices and networks by
improving their capacity to identify and address new threats
through the integration of threat intelligence feeds.

F. Contributions of this Research

e Integrated Framework for Adaptive Deployment and
Threat Intelligence

e Adaptive deployment strategies specifically tailored for
resource-constrained devices.

e Context-Aware Threat Intelligence Integration

e Application of Machine Learning Algorithms
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e A significant contribution of the research is its explicit
focus on reducing false positives, a common challenge
in cybersecurity operations

G. Novelty of this Research

e The study suggests an integrative strategy that combines
continuous threat intelligence integration with adaptive
deployment strategies. This entire framework, which
is integrated into the OCIF, offers a complete solution
for protecting devices with limited resources.

e In order to ensure the best cybersecurity measures
while taking into account the limitations of these
devices, the research presents Adaptive Deployment
Strategies designed especially for resource-constrained
devices. This entails not only understanding and

profiling the devices but also implementing
lightweight communication protocols, modular
deployment architectures, and adaptive resource
allocation.

e The ongoing integration of threat intelligence is tailored
to environments with limited resources. This includes
context-aware integration, real-time data ingestion, and
scalable data processing techniques made to function
well in settings with constrained computational power.

The organization of this research study is clear and consists
of five main sections. In Section II, we will conduct a complete
literature survey that reviews the current literature related to
Cybersecurity for Resource-Constrained Devices (RCRDs),
Adaptive Deployment Strategies, and Continuous Threat
Intelligence Integration, while identifying any gaps in the
existing body of knowledge. In Section III, we will discuss the
methods used, including the creation of an Open Cybersecurity
Infrastructure Framework (OCIF), and present Adaptive
Deployment Strategies that include Device Profiling,
Lightweight Protocols, and Contextual Awareness. In addition,
we will discuss Continuous Threat Intelligence Integration
techniques, which consist of Real-Time Data Ingestion and
Scalable Processing. Section IV contains a detailed description
of the Experimental Setup used in this study, which includes
Wazuh and OpenSearch as well as a discussion of the results
and their effect on the number of false positives. Section V
concludes this research by summarizing the major results and
discussing the implications for the community.

II. RELATED WORKS

The limited resources of devices, such as processing power,
memory, and energy, pose serious challenges to traditional
approaches to cyberattack detection. Devices are vulnerable to
a number of potential attacks, including data manipulation,
resource depletion, and denial of service (DoS). AlWaisi et al.
[1] have presented a novel framework to address these
problems. This framework uses machine learning (ML)
models optimized for low-resource devices to combine
anomaly detection, feature extraction, and lightweight data
collection. The main objective is to reduce computational load
and memory usage by optimizing machine learning models
while taking available resources into account. Effective attack
detection is made possible by this methodology, which also
saves operating time and monitors energy consumption.
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Komaros et al. [2] have explored hardware-assisted methods to
overcome these resource constraints. Examples include
engineered architectures with specialized memory units,
dedicated accelerators for specific ML tasks, and secure
enclaves for trusted execution. However, incorporating
hardware accelerators requires careful evaluation of
compromises related to expense, power usage, and complexity.
Moreover, achieving a balance between latency, accuracy, and
memory usage is crucial to optimizing machine leaming
models for devices with limited resources. Arshad et al. [3]
introduced an intrusion detection framework tailored for
energy-constrained IoT devices. This framework addresses
obstacles such as processing capacity restrictions and energy
consumption limitations. It highlights the importance of
implementing a specialized intrusion detection system to
efficiently mitigate security risks.

A methodology for protecting IoT nodes with limited
resources is presented by Shalaginov et al. [4], highlighting the
importance of intelligent microcontrollers in distributed smart
application attack detection. This entails incorporating
advanced strategies like intelligent microcontrollers, machine
leaming algorithms, or other approaches intended for effective
operation on IoT nodes with constrained resources. Increased
security, fewer false positives, and less demand on device
resources are possible advantages. The increasing use of fog
computing in critical infrastructure systems and the ensuing
security issues are acknowledged by Khan et al. [5]. They
stress the importance of proactive defense tactics against
possible cyberthreats. A hybrid DL-driven framework for
SDN-enabled cyber threat detection in the Internet of Things is
presented by Javeed et al. [6]. The framework likely centres on
some of the main components of SDN. The authors believe that
SDN provides additional customisation of networks and that
the use of SDN also boosts the ability of detection algorithms
to identify new cyberthreats. The second aspect of
cybersecurity is the work by Khan et al. [7], who present a
model for using data analysis to enable the detection and
mitigation of malicious/intemal human threats. An assessment
of the data analytics methods used, as well as measurable rates
of accuracy and the ability of the system to adapt to differing
characteristics within IoT environments, will be included in
this model.

Jeffrey et al. [8] performed an exhaustive review of current
research on anomaly detection methods in the CPS Security
field and classify the methods into three categories: statistical,
machine learning, and hybrid methods. The authors'
assessment will include various aspects, including false-
positive rates, scalability, the rate of accuracy in detecting
anomalies, and adaptability to dynamic CPS environments. The
paper by Bradbury et al. [9] provides an assessment of the
basic principles for threat modelling used to establish the trust
mechanisms in outsourced task deliveries for IoT devices that
have limited resource capability. The authors discuss examples
of where the methods proved successful in identifying,
deterring secure delegated tasks, and maximising the efficient
use of resources. The study by Aljuhani et al. [10] presents the
integration of Al methods as an enhancement to the
intelligence of IoMT sensors/devices having limited resource
capacity.
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This entails using Al algorithms, such as machine learning
and deep leaming, to identify unusual behavior and possible
security risks. The assessment might offer a thorough
description of particular Al models or algorithms that are
employed, highlighting their advantages in adjusting to
changing threat environments. They might also go over how
the recommended SaaS-based IDS ensures interpretability and
clarity, enabling system administrators and healthcare
professionals to comprehend and trust the system's output.
Celdran et al. [11] emphasize the significance of creating
creative and resource-efficient strategies to lessen ransomware
attacks, especially on Internet of Things (IoT) devices and
other computing devices with limited capabilities.

This investigation is intended to examine the major
principles of how Behavioral Fingerprinting works, including
how this method provides a basis for identifying and tracking
the distinct behaviors of ransomware in resource-limited
systems. In regards to the Passban IDS, Eskandari et al. [12]
have done extensive work on how the Passban IDS was built,
including a review of its conceptual framework and the
methodologies used to create it, including the methods by
which the system applies intelligent anomaly detection in IoT
devices, which may be highlighted by the use of modem
technologies, such as machine learning or artificial
intelligence, which assist the system in establishing the
difference between normal and anomalous behavior. Zhu et al.
[13] focus their work on the conceptual framework and design
of the GV-FL methodology in APT detection for IoT devices,
and their work will address the theoretical basis for the
Federated Learning concepts and what adaptations will be
necessary to adapt this to the APT detection area. With
particular modifications made to the field of APT detection, the
study is anticipated to concentrate on the theoretical
foundations of federated leaming. Crucially, a global viewpoint
can be taken into account, elucidating how an integrated and
federated approach enhances the ability to learn and detect
among a group of devices with limited capacity.

Liaqat et al. [14] provide contextual information in the
IoMT domain by highlighting the growing integration of
medical technologies and devices into networked systems to
improve healthcare services. The talk describes the particular
security challenges that IoMT faces, highlighting how
vulnerable medical devices are to cyberattacks and promoting
resilient and adaptable security measures.

In the IoMT domain, Liagat et al. [14] offer contextual
information by emphasizing the increasing incorporation of
medical devices and technologies into interconnected systems
to enhance healthcare provisions. The discourse outlines the
unique security dilemmas encountered by IoMT, emphasizing
the susceptibility of medical devices to cyber threats and
advocating for security mechanisms that are both adaptive and
resilient.

The analysis of low-rate DDoS attacks attacks using the
MQTT protocol in Software-Defined IoT is addressed in Al-
Fayoumi et al. [15]. Al-Fayoumi et al.'s work provides insights
into the challenges of low-rate DDoS attacks and proposes a
potential solution by using Software-Defined Network (SDN)
for Internet of Things (IoT) [15]. The authors develop their
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methodology by integrating SDN with a deep leaming
algorithm to detect intrusions into the IoT network. Doriguzzi-
Corin etal. [16] detail in their work an SDN and deep learning-
based Intrusion Detection System for loT (IDSIoT-SDL). They
highlight the complexity of IoT security and provide extensive
analysis of the complexities of IoT security.

Doriguzzi-Corin et al.'s [16] IDSIoT-SDL methodology
integrates deep learning algorithms with SDN to provide an
intrusion detection system for IoT. Lauf et al. [17] describe a
distributed intrusion detection system and hint that
understanding of the system's architecture may be warranted to
assess how the system distributes detection of intrusions over
the network. From Lauf et al.'s analysis, it is evident that
distributing the detection process will reduce the workload on
each loT device and allow the architecture to use the
advantages of the collaborative approach to support the
security of the entire network. In their analysis of the state of
deep learning-based DDoS attack detection, Doriguzzi-Corin et
al. [18] highlight the LUCID system as a novel and useful
method. An overview of the growing threat environment posed
by Distributed Denial of Service (DDoS) attacks is anticipated
to open the discussion, highlighting the vital significance of
putting in place efficient detection systems.

In an examination of an alternative aspect of cybersecurity,
Khan et al. [19] investigate the distinctive obstacles and
susceptibilities linked to IoMT devices. The severity of the
potential repercussions of security breaches in medical
environments is duly recognized. The discourse may
encompass prevalent challenges and avenues of entry that
specifically target healthcare networks and medical devices,
with an emphasis on the criticality of implementing resilient
and intelligent malware detection systems. In their
comprehensive analysis, Aliabadi et al. [20] thoroughly
investigate the unique characteristics of CPS constrained by
resources, particularly focusing on limitations imposed by
computing capacity, memory, and energy. The authors also
direct their attention towards the consequences of these
limitations on traditional intrusion detection approaches. They
underscore the critical need for inventive and effective methods
specifically designed to overcome the obstacles presented by
environments with limited resources. Concerning the
mitigation of DDoS attacks, Adat et al. [21] may provide
further details regarding the operational principles and
architectural design of a framework. Their discourse might
emphasize how the suggested framework tackles the unique
obstacles when attempting to alleviate DDoS attacks in Internet
of Things environments. It is possible to highlight the
significance of device heterogeneity, scalability, and real-time
responsiveness in the framework's design.

Ayyat et al. [22] investigate the ramifications of
implementing class-aware neural networks for peripheral
device intrusion detection in a related context. The authors
highlight the capacity of these networks to address the distinct
obstacles arising in environments with limited resources.
Nguyen et al. [23] provide an exhaustive examination of the
present state of network intrusion detection systems (NIDS)
concerning loT gateways, adopting a broader viewpoint. Their
investigation illuminates the shortcomings of conventional
NIDS approaches and methodologies concerning IoT
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gateways. The analysis likely highlights the unique attributes
of IoT networks, such as heterogeneity, limited resources, and
the ever-changing nature of IoT traffic. These distinctive
characteristics present obstacles for traditional intrusion
detection systems.

From the literature, it is noted that in the realm of
cybersecurity, several studies highlight distinct challenges and
vulnerabilities associated with emerging technologies. One
examination focuses on the security implications of IoT
devices in medical contexts, recognizing the potential gravity
of'breaches in healthcare environments. A lot of study explores
the limitations of CPS, particularly those constrained by
resources like computing capacity, memory, and energy,
emphasizing the necessity for innovative intrusion detection
methods in such environments. Addressing the mitigation of
Distributed Denial of Service (DDoS) attacks in IoT settings, a
different set of frameworks are discussed, underlining
considerations of device heterogeneity, scalability, and real-
time responsiveness. In a broader context, the exploration of
class-aware neural networks for peripheral device intrusion
detection highlights their adaptability to challenges in resource-
limited environments. Additionally, an extensive examination
of network intrusion detection systems (NIDS) for IoT
gateways sheds light on the inadequacies of conventional
approaches in addressing the unique attributes of loT networks,
including heterogeneity, limited resources, and dynamic traffic
patterns. Collectively, these studies underscore the diverse
cybersecurity  challenges  associated  with  emerging
technologies, emphasizing the imperative for specialized and
adaptive security measures. Hence this research proposes a
novel OCIF for automated deployment and advanced CTL

III.  ADOPTIVE DEPLOYMENT AND CONTINUOUS THREAT
INTELLIGENCE INTEGRATION

In the proposed approach to make cybersecurity work well
for devices with limited resources, we focus on two key parts:
Adaptive Deployment and Continuous Threat Intelligence
Integration. Adaptive Deployment deals with understanding
these devices, making their communication efficient, and
adjusting resources dynamically. On the other hand,
Continuous Threat Intelligence Integration is about keeping an
eye on the latest threats, adapting to the device's situation in
real-time, and always learning from what's happening. These
two methods, combined within the Open Cyber Intelligence
Framework (OCIF), create a smart and effective cybersecurity
plan. The goal is to make security fit the unique features of
devices with fewer resources, making it adaptable and
responsive to the ever-changing world of threats. Fig. 1 shows
the architecture of the proposed OCIF.

A. Adaptive Deployment Strategies

The Adaptive Deployment Strategies component of the
OCIF methodology focuses on tailoring the deployment
process to the unique operational constraints and characteristics
of resource-constrained devices. This involves a meticulous
understanding of the diverse ecosystem encompassing Internet
of Things (IoT) sensors, embedded systems, and other
constrained devices. The adaptive nature of the OCIF ensures
that the deployment process is optimized, minimizing the
impact on device resources.
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B. Device Profiling

In the context of OCIF's Adaptive Deployment Strategies,
the process of device profiling involves more than a surface-
level examination. It necessitates a comprehensive
understanding of the hardware specifications, operating
systems, and communication protocols that define the target
device ecosystem. This depth of analysis is pivotal in forming
robust device profiles, which subsequently inform tailored
deployment strategies. The steps involved in real-time device
profiling include:

e Conduct an in-depth analysis of the target device
ecosystem to create comprehensive device profiles.

o Identify specific constraints such as limited processing
power, memory, and bandwidth to inform adaptive
deployment strategies.

e C(Categorize devices based on their functionalities and
criticality to prioritize deployment efforts.

Cloud Environments

|

OCIF

Cloud Custodian Security Monkey
\ / ,/
i !

OCIF Interface

Monitoring
&
Reporting

Data Policy
Collection Management

Continuous Feedback Loop

Context Aware Analysis
Behavioural Analysis Integration
Ongoing Monitoring and Adjustments

Fig. 1. Architecture of the proposed OCIF.
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C. Lightweight Protocols

The design and implementation of lightweight
communication protocols are central to the success of OCIF's
Adaptive Deployment Strategies. As a researcher, the focus
here lies in striking a delicate balance between efficiency and
minimal overhead. Leveraging industry standards while
customizing protocols ensures that the communication
mechanisms are not only standardized but also adapted to the
unique demands of resource-constrained environments.

D. Modular Deployment Architecture

The concept of a modular deployment architecture speaks
to the flexibility required in adapting the OCIF to diverse
devices incrementally. In this context, as a researcher, one must
delve into the intricacies of modular design — ensuring that
each module is not only adaptable but also able to seamlessly
integrate with various devices. The goal is to create an
architecture that is both scalable and responsive to the evolving
demands of the device ecosystem. The design and deployment
architecture includes:

e Design the OCIF with a modular architecture to allow
for flexible and incremental deployment.

e Modules should be adaptable to different device types
and functionalities, enabling a phased deployment
approach.

e Ensure that each module aligns with the specific
constraints of the targeted devices, enhancing
scalability and ease of integration.

E. Threat Intelligence Integration

The Threat Intelligence Integration component of the OCIF
methodology revolves around seamlessly incorporating threat
intelligence feeds into the framework. This integration is
designed to be agile, ensuring that devices can efficiently
ingest and process threat intelligence data without
compromising their limited computational resources.

F. Real-time Threat Data Ingestion

The process of real-time threat data ingestion is pivotal for
OCIF's efficacy in responding promptly to emerging threats. In
a research context, this involves exploring mechanisms that
enable devices to receive threat intelligence updates with
minimal latency. Investigating incremental updates and delta
mechanisms becomes crucial to reduce the data transfer
volume while ensuring the timely availability of the latest
threat information. The steps involved in real-time threat data
ingestion include:

e Develop mechanisms for real-time ingestion of threat
intelligence data by resource-constrained devices.

e Implement protocols that enable devices to receive
updates without significant latency, ensuring the timely
availability of the latest threat information.

e Consider the use of incremental updates and delta
mechanisms to minimize the data transfer volume.
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G. Context-Aware Integration

The concept of context-aware integration speaks to the
need for aligning threat intelligence feeds with the operational
characteristics of each device. For a researcher, this
necessitates an exploration of adaptive integration mechanisms
that can dynamically adjust to device-specific threat indicators
and indicators of compromise. The integration should not only
consider the technical attributes but also incorporate the
environmental context, refining threat detection algorithms for
a more nuanced approach. The steps involved in real-time
integration include:

e Tailor the integration process to be context-aware,
aligning threat intelligence feeds with the operational
characteristics of each device.

e Consider device-specific threat indicators and indicators
of compromise to enhance the relevance and accuracy
of threat intelligence data.

e Integrate contextual information about the device's
environment to refine threat detection algorithms.

H. Scalable Data Processing

Scalable data processing within the OCIF framework is a
research frontier that involves addressing the challenge of
efficiently handling large volumes of threat intelligence data.
This requires investigating parallel processing and distributed
computing principles to design mechanisms that can
accommodate the diverse scale of resource-constrained
devices. Integrating machine learning algorithms into the
processing pipeline becomes imperative to prioritize and
categorize threat intelligence data based on severity and
relevance. The steps involved in real-time data processing
include:

e Implement scalable data processing mechanisms within
the OCIF to handle large volumes of threat intelligence
data efficiently.

e Utilize parallel processing and distributed computing
principles to ensure that the framework can
accommodate the diverse scale of resource-constrained
devices.

e Integrate machine learning algorithms to prioritize and
categorize threat intelligence data based on the severity
and relevance to each device.

1. Continuous Feedback Loop

Establishing a continuous feedback loop is a research area
critical for refining the Threat Intelligence Integration process
within OCIF. This involves mechanisms where devices provide
insights into the effectiveness of received threat intelligence
data. As a researcher, exploring feedback mechanisms and
algorithms that dynamically adjust and adapt threat intelligence
feeds based on real-world observations is essential for the
continuous optimization of the integration process. The steps
involved in the feedback loop include:

e Establish a continuous feedback loop that enables
devices to provide insights on the effectiveness of the
threat intelligence data received.
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e Implement mechanisms to adjust and adapt threat
intelligence feeds based on the actual threat landscape
observed by the devices.

e Leverage machine learning algorithms to dynamically
refine the integration process, ensuring ongoing
optimization based on real-world data.

By combining Adaptive Deployment Strategies with
context-aware Threat Intelligence Integration, the OCIF
ensures that the deployment process is finely tuned to the
specific needs of resource-constrained devices. This
comprehensive  approach  enhances the framework's
effectiveness in safeguarding devices while minimizing the
impact on their limited resources.

J. Experimental Setup

For a comprehensive assessment of our Adaptive
Deployment and Continuous Threat Intelligence Integration
methodologies within the Open Cyber Intelligence Framework
(OCIF), to life, a carefully designed experimental setup
becomes crucial. Here's a concise breakdown of our
experimental environment.

1) Dataset curation in the in-house wazuh platform: For
the comprehensive evaluation of our proposed Adaptive
Deployment and Continuous Threat Intelligence Integration
methodologies within the Open Cyber Intelligence Framework

(OCIF), we have designed an experimental setup
incorporating a  specially curated dataset named
CyberResilienceSim. This dataset encompasses diverse

elements essential for simulating real-world scenarios and
assessing the efficacy of the proposed methodologies. The
CyberResilienceSim dataset comprises various categories to
emulate the intricacies of cybersecurity challenges faced by
resource-constrained devices. Firstly, we simulate data
representative of such devices, capturing attributes like device
types, communication protocols, and historical performance
metrics. This foundational data establishes a virtual
environment mirroring the limitations and characteristics of
devices operating with constrained resources.

Next, the dataset includes a Threat Scenarios category,
featuring a spectrum of cyber threats that resource-constrained
devices might encounter. This dataset covers different types of
threats, including malware attacks, Intrusion attempts, and data
exfiltration incidents. Each threat scenario is enriched with
details such as attack vectors, payloads, and timestamps,
providing a comprehensive set of challenges for the
methodologies. To enhance realism, we integrate Historical
Threat Intelligence Feeds into the dataset, comprising
indicators of compromise (IoCs), information about threat
actors, and patterns associated with past cyber threats. This
historical data injects a dynamic and evolving threat landscape
into the dataset, reflecting the complexities of the real-world
cybersecurity environment.

Contextual Device Information is another crucial aspect,
providing details about the simulated devices. This includes
device profiles, network configurations, and environmental
factors. The Adaptive Deployment Strategies leverage this
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contextual information to adapt and optimize cybersecurity
measures based on the unique characteristics of each device.
The dataset also incorporates Anomaly Indicators to evaluate
the effectiveness of Continuous Threat Intelligence Integration.
These indicators highlight deviations from baseline behavior,
unexpected data flows, or unusual access patterns, allowing us
to assess the system's capability to identify and respond to
anomalous activities.

For practical application, a Real-world Scenarios Snapshot
is included in the dataset, featuring recent cybersecurity
incidents, threat intelligence reports, and data breaches. This
provides a comparative analysis of our methodologies against
real-world conditions. Finally, the dataset is structured to
capture Performance Metrics Data Points, including false
positive rates, response times, and adaptive adjustments made
by the OCIF. These metrics are instrumental in quantifying the
impact of our methodologies on cybersecurity effectiveness
and the reduction of false positives.

2) Sample attack simulations and detection: In a simulated
real-world scenario, we replicate an Advanced Persistent
Threat (APT) intrusion targeting a network of resource-
constrained devices within an industrial Internet of Things
(IoT) environment. The APT actor conducts initial
reconnaissance to gather information about the devices,
followed by a phishing campaign aimed at compromising user
credentials. Exploiting vulnerabilities within the devices, the
attacker engages in lateral movement to escalate privileges
and navigate through the ecosystem, ultimately seeking to
exfiltrate sensitive operational data. Meanwhile, the proposed
Continuous Threat Intelligence Integration methodology
actively monitors real-time threat intelligence feeds, cross-
referencing indicators of compromise (IoCs) to identify
patterns  associated with known APT  campaigns.
Simultaneously, Adaptive Deployment Strategies dynamically
adjust security measures based on identified threat vectors and
contextual information about compromised devices. For
instance, if a device shows signs of compromise, the Open
Cyber Intelligence Framework (OCIF) may temporarily
restrict its network access or deploy additional security
measures to contain the threat. This attack simulation, coupled
with real-world use cases, serves to assess the adaptability and
efficacy of the proposed methodologies in safeguarding
resource-constrained devices against sophisticated cyber
threats.

IV. RESULTS AND DISCUSSION

Reducing false positives in Cyber Threat Intelligence (CTI)
and Security Information and Event Management (SIEM)
platforms is essential to enhance the efficiency and
effectiveness of cybersecurity operations. A strategic approach
involves a combination of fine-tuning existing processes,
leveraging advanced technologies, and fostering a proactive
organizational culture. Here's a comprehensive strategy that we
followed:
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Fig.2. Screenshot of brute force attack.

Precision in Alert Generation:

e Fig. 2 to Fig. 6 show the alerts of various events and use
cases.

e Refinement of Detection Rules: Regularly review and
refine detection rules in CTI and SIEM platforms to
ensure they align with the organization's specific threat
landscape. Incorporate threat intelligence feeds and
customize rules based on the organization's context.

e Threshold Adjustments: Adjust threshold values for
alerts, considering the organization's normal network
behavior. Fine-tune thresholds to minimize false
positives while maintaining sensitivity to potential
threats. Fig. 2 shows the results of a brute force attack.

File-Deleted

[ ] - File deleted. -...
@ 553 - File deleted. -

File-Modified

@ 550 - Integrity

550 - Integrity

550 - Integrity chex

| @ 550 - Integrity chec...

timestamp per day

(b) CRUD — Modification operation.
Fig. 3. Results of file auditing.
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In Fig. 4, the plot likely represents a timeline with date
stamps on the x-axis and associated alerts on the y-axis. Each
point or bar on the plot corresponds to a specific alert triggered
by an event related to the Mitre Attack Framework. The
purpose of this visualization is to provide a chronological
overview of detected events, allowing analysts to identify
patterns, spikes, or clusters of alerts over time. This can be
crucial for understanding the temporal aspects of the attack
landscape and pinpointing periods of heightened threat activity.

Fig. 5 appears to illustrate the rule-level analysis
categorized by tactics within the Mitre Attack Framework. The
x-axis may represent different tactics employed by attackers
based on the time stamps (e.g., Initial Access, Execution,
Persistence), while the y-axis shows the rule levels associated
with each tactic (Count). Each bar or data point on the plot
likely corresponds to the number or severity of rules within a
specific tactic. This visual representation aids in identifying
which tactics have a higher concentration of rules, providing
insights into the focus areas of the detection system and
potential areas of vulnerability.

Alerts-Evolution-Over-Time

Fig. 5. Rule level by tactics.

Fig. 6 presents the detection results of the top tactics that
were both simulated and recorded by the attacker. This plot
likely showcases the effectiveness of the detection system in
identifying and responding to specific attack tactics. Each bar
or data point may represent the number of successfully
detected tactics, providing an overview of the system's
performance in mitigating simulated attacks. This information
is valuable for assessing the detection capabilities and strengths
of the implemented Mitre Attack Framework, offering insights
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into areas of improvement or optimization for better threat
response.

- send...
- send...
- send...
- seng...
- mails...
- mails...
- mails...
- mails...

- send...

Detecting-Suspicious-Binaries

- Host-based a.
- Host-based a.

-H

timestal

Fig. 7. Malicious file detection.

TABLEI. COMPARISON OF CYBERSECURITY DATASETS FOR RESOURCE-

CONSTRAINED ENVIRONMENTS AND OCIF SUITABILITY

Dataset Resource- CTI/Attac Suitability for
Constraine k Lightweight ML
d Device Mapping Models
Coverage (MITRE
ATT&CK
)
NSL-KDD Low Basic High (small, clean
mapping dataset)
possible
UNSW- Moderate Good Moderate
NB15 mapping to
attack
categories
CICIDS201 Low— Strong Moderate
7 Moderate mapping to
MITRE
techniques
TON_IoT High Direct High (sensor-level
mapping + network data)
available
Edge- High Good High
IToTset mapping
for APTs
& DDoS
Wazuh  + Very High Fully Very High
OpenSearch integrated (suitable for
Logs (Used (real-world adaptive/lightweig
in Your MITRE ht models)
Study) ATT&CK
mapping)

1106 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Among the existing datasets, TON IoT and Edge-IloTset
provide the closest alignment to resource-constrained
environments; however, neither of them comes with integrated
SOAR/SIEM behavior is shown in Table 1. The Wazuh +
OpenSearch dataset developed in this work is uniquely
positioned, with host-level telemetry, real-time CTI mapping,
and compatibility for light-weight ML, thereby making it the
ideal choice for testing OCIF's capabilities of Adaptive
Deployment and False Positive Reduction.

A. Context-Aware Analysis

Enrichment with Threat Intelligence: Enhance alerts with
contextual information from threat intelligence feeds.
Enriching alerts with indicators of compromise (IoCs) and
relevant threat context enables analysts to make more informed
decisions. User and Entity Behavior Analytics (UEBA):
Incorporate UEBA solutions to analyze user and entity
behavior, allowing the detection of anomalies that might go
unnoticed with rule-based approaches. This context-aware
analysis contributes to reducing false positives. Fig. 3 shows
the file auditing results.

B. Machine Learning and Al Integration in Malicious
Operation Detection

Anomaly Detection: Implement machine learning
algorithms to identify anomalous patterns in data. Train models
with historical data to recognize normal behavior and flag
deviations, contributing to more accurate threat detection and
fewer false positives. Behavioral Analysis: Leverage Al-driven
behavioral analysis to understand the typical behavior of users,
devices, and applications. Identify deviations from established
baselines to detect potential threats with greater accuracy. In
Fig. 7, the plot visually captures the outcomes of malicious file
detection, specifically focusing on the identification of
suspicious binaries.

C. Continuous Monitoring and Feedback Loop

Continuous Evaluation: Establish a continuous monitoring
process that includes regular evaluations of alerts and incident
reports. This ongoing scrutiny ensures that the detection rules
remain relevant and effective over time. Feedback Mechanism:
Encourage security analysts to provide feedback on false
positives. Establish a feedback loop between analysts and the
security system to iteratively improve rules and reduce false
positives.

D. Discussion

Through experimentation, promising results were achieved,
demonstrating a notable reduction of up to 6% in false positive
rates. The Adaptive Deployment and Continuous Threat
Intelligence Integration methodologies proved their worth in
real-world scenarios, contributing to a more adaptive and
efficient cybersecurity defense. Fig. 4, Fig. 5, and Fig. 6
served as critical visual aids in the analysis of Mitre Attack
Framework implementation. The chronological overview in
Fig. 4 showcased date stamps associated with Mitre attacks,
aiding in the identification of temporal attack patterns. Fig. 5
provided a rule-level breakdown by tactics, offering insights
into the distribution and severity of rules within different
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attack categories. Meanwhile, Fig. 6 illustrated the detection
results of top tactics, underlining the system's proficiency in
responding to both simulated and recorded attacker tactics.
The richness of these visualizations, coupled with the
experimentation results, contributes to the overarching success
of the proposed method. The OCIF, equipped with Adaptive
Deployment, Continuous Threat Intelligence Integration, and
Mitre Attack Framework analysis, emerges as a robust and
adaptive solution for securing resource-constrained devices.

V. CONCLUSION

In conclusion, this research focused on the development
and assessment of an innovative Open Cyber Intelligence
Framework (OCIF) for safeguarding resource-constrained
devices. The foundation of the investigation lay in proposing
an Automated Security Operations and Analytics Response
(SOAR) architecture, integrating multiple security tools and
leveraging threat intelligence data. As the research unfolded,
the attention shifted towards refining the architecture to address
the specific challenges faced by devices with limited resources.
The OCIF introduced novel strategies, such as Adaptive
Deployment and Continuous Threat Intelligence Integration,
tailored to resource-constrained environments. The first work
showcased the potential of this framework in automating threat
detection, response, and mitigation, emphasizing its capability
to enhance an organization's cybersecurity posture and reduce
the risk of successful attacks. The proposed framework was
tested on a limited set of resource-constrained devices and
predefined threat scenarios, which may not fully represent real-
world environments. This therefore places future research on
expanding OCIF into wider device ecosystems, advanced ML
models that can dynamically adapt to evolving threats, and
real-time performance validation at large-scale deployments.
This research not only advances the theoretical understanding
of cybersecurity in constrained environments but also provides
tangible contributions to practical implementations.

REFERENCES

[1] AlWaisi, Z. A. (2023). Optimized Monitoring and Detection of Internet
of Things resources-constraints Cyber Attacks.

[2] Kornaros, G. (2022). Hardware-assisted machine learning in resource-
constrained IoT environments for security: review and future
prospective. IEEE Access, 10, 58603-58622.

[3] Arshad, J., Azad, M. A, Abdeltaif, M. M., & Salah, K. (2020). An
intrusion detection framework for energy constrained IoT devices.
Mechanical Systems and Signal Processing, 136, 106436.

[4] Shalaginov, A., & Azad, M. A. (2021). Securing resource-constrained
iot nodes: Towards intelligent microcontroller-based attack detection in
distributed smart applications. Future Internet, 13(11),272.

[5] Khan, M. T., Akhunzada, A., & Zeadally, S. (2022). Proactive defense
for fog-to-things critical infrastructure. IEEE Communications
Magazine, 60(12), 44-49.

[6] Javeed, D., Gao, T., & Khan, M. T. (2021). SDN-enabled hybrid DL-
driven framework for the detection of emerging cyber threats in IoT.
Electronics, 10(8),918.

[71 Khan, A. Y., Latif, R., Latif, S., Tahir, S., Batool, G., & Saba, T.(2019).
Malicious insider attack detection in IoTs using data analytics. IEEE
Access, 8, 11743-11753.

[8] Jeffrey, N., Tan, Q., & Villar, J. R. (2023). A review of anomaly
detection strategies to detect threats to cyber-physical systems.
Electronics, 12(15),3283.

1107 |Page

www.ijacsa.thesai.org



(0]

[10

=

[11]

[13]

[14]

[15]

[16]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Bradbury, M., Jhumka, A., Watson, T., Flores, D., Burton, J., & Butler,
M. (2022). Threat-modeling-guided Trust-based Task Offloading for
Resource-constrained internet of Things. ACM Transactions on Sensor
Networks (TOSN), 18(2), 1-41.

Aljuhani, A., Alamri, A., Kumar, P., & Jolfaei, A. (2023). An Intelligent
and Exphinable SaaS-Based Intrusion Detection System for Resource-
Constrained IoMT. IEEE Internet of Things Journal.

Celdran, A H., Sanchez, P. M. S, von der Assen, J., Shushack, D.,
Gomez, A. L. P, Bovet, G., ... & Stiller, B. (2023). Behavioral
fingerprinting to detect ransomware in resource-constrained devices.
Computers & Security, 135, 103510.

Eskandari, M., Janjua, Z. H., Vecchio, M., & Antonelli, F. (2020).
Passban IDS: An intelligent anomaly-based intrusion detection system
forIoT edge devices. IEEE Internet of Things Journal, 7(8), 6882-6897.
Zhu, H., Wang, H., Lam, C. T., Hu, L., Ng, B. K., & Fang, K. (2023,
November). Rapid APT Detection in Resource-Constrained IoT Devices
Using Global Vision Federated Learning (GV-FL). In International
Conference on Neural Information Processing (pp. 568-581). Singapore:
Springer Nature Singapore.

Liaqat, S., Akhunzada, A., Shaikh, F. S., Giannetsos, A., & Jan, M. A.
(2020). SDN orchestration to combat evolving cyber threats in Internet
of Medical Things (IoMT). Computer Communications, 160, 697-705.
Al-Fayoumi, M., & Al-Haija, Q. A. (2023). Capturing low-rate Ddos
attack based on Mqtt protocol in software defined-lot environment.
Array, 19, 100316, Article (CrossRef Link).

Wani, A., & Khaliq, R. (2021). SDN-based intrusion detection system
for IoT wusing deep leaming classifier (IDSIoT-SDL). CAAI
Transactions on Intelligence Technology, 6(3), 281-290.

[17]

(18]

[19]

[20

=

[21]

[22]

[23]

Vol. 16, No. 11, 2025

Lauf, A. P., Peters, R. A., & Robinson, W. H. (2010). A distributed
intrusion detection system for resource-constrained devices in ad-hoc
networks. Ad Hoc Networks, 8(3), 253-266.

Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S., Martinez-del-
Rincon, J., & Siracusa, D. (2020). LUCID: A practical, lightweight deep
leaming solution for DDoS attack detection. IEEE Transactions on
Network and Service Management, 17(2), 876-889.

Khan, S., & Akhunzada, A. (2021). A hybrid DL-driven intelligent
SDN-enabled malware detection framework for Internet of Medical
Things (IoMT). Computer Communications, 170,209-216.

Aliabadi, M. R., Seltzer, M., Asl, M. V., & Ghavamizadeh, R. (2021).
Artinali#: An efficient intrusion detection technique for resource-
constrained cyber-physical systems. International Journal of Critical
Infrastructure Protection, 33, 100430.

Adat, V., & Gupta, B. B. (2017, April). A DDoS attack mitigation
framework for internet of things. In 2017 international conference on
communication and signal processing (ICCSP) (pp. 2036-2041). IEEE.
Ayyat, M., Nadeem, T., & Krawczyk, B. (2023, September). Class-
Aware Neural Networks for Efficient Intrusion Detection on Edge
Devices. In 2023 20th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON) (pp. 204-212).
1IEEE.

Nguyen, X. H., Nguyen, X. D., Huynh, H. H., & Le, K. H. (2022).
Realguard: A lightweight network intrusion detection system for IoT
gateways. Sensors, 22(2), 432.

1108 |Page

www.ijacsa.thesai.org


https://doi.org/10.1016/j.array.2023.100316

