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Abstract—The increasing use of resource-constrained cyber-

physical devices emphasizes the need for effective and flexible 

methods in the deployment of threat intelligence. The Open 

Cyber Intelligence Framework (OCIF), an architecture that 

applies Security Information and Event Management (SIEM) 

and Security Orchestration, Automation, and Response (SOAR) 

capabilities to resource-constrained environments, is presented in 

this study. The OCIF uses lightweight machine learning models 

in an adaptive way to process cyber threat intelligence (CTI) with 

greater precision and effectiveness. By using Wazuh to monitor 

the behavior of machines and OpenSearch for modeling the 

results of the analysis, the OCIF can reduce false positives by up 

to 6% in real-world implementations. The model ensures 

sufficient threat mitigation without taxing the system by striking 

a balance between anomaly detection, context, and decreased 

communication overhead. Because of its open-source 

propagation and modular form factor, OCIF promotes 

innovation and makes it possible for CTI to be built and used in 

restricted resources with optimal detection and operational 

efficiency. 
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I. INTRODUCTION 

The proliferation of resource-constrained devices permeates 
every aspect of the connected world in the modern digital era, 
making the critical need for cybersecurity tailored to these 
devices' particular challenges indisputable.  A paradigm shift in 
how we protect sensitive data and infrastructure is required due 
to the emergence of Internet of Things (IoT) sensors, 
embedded systems, and other limited devices [1].  Adaptive 
Deployment Strategies and Threat Intelligence Integration are 
two crucial aspects of the Open Cyber Intelligence Framework 
(OCIF) that are thoroughly examined in this research study. 

Resource-constrained devices, characterized by limitations 
in processing power, memory, and bandwidth, inherently pose 
a formidable challenge to traditional cybersecurity frameworks. 
Recognizing this, the OCIF emerges as a beacon of innovation, 
seeking to not merely address these challenges, but to redefine 
the parameters of adaptive and effective cybersecurity tailored 
explicitly for devices with constrained resources [2]. 

Traditional cybersecurity frameworks are inherently 
challenged by resource-constrained devices, which are defined 
by limitations in processing power, memory, and bandwidth. 

Acknowledging this, the OCIF becomes a shining example of 
innovation, aiming to redefine the parameters of effective and 
adaptive cybersecurity specifically designed for devices with 
limited resources, rather than just addressing these issues [2]. 
For IoT and cyber-physical systems, the majority of current 
intrusion detection and CTI solutions are still too bulky, 
insufficiently flexible, and prone to a high rate of false 
positives in environments with limited resources. In actuality, 
the majority of CTI and SOAR/SIEM models make 
assumptions about high bandwidth and processing power, 
which leaves a crucial gap for severely constrained devices [3]. 

For IoT and cyber-physical systems, the majority of current 
intrusion detection and CTI solutions are still too bulky, 
insufficiently flexible, and prone to a high rate of false 
positives in environments with limited resources. In actuality, 
the majority of CTI and SOAR/SIEM models make 
assumptions about high bandwidth and processing power, 
which leaves a crucial gap for severely constrained devices [3]. 
The expansion of the Internet of Things (IoT) exposes 
lightweight computing devices to an increasing number of 
attacks, necessitating the urgent need for a low-overhead, 
adaptable framework that integrates automated deployment and 
CTI. This work uses the Open Cyber Intelligence Framework, 
or OCIF, to address this need. 

The Threat Intelligence Integration component of OCIF 
takes on the task of efficiently absorbing and processing real-
time threat data in order to support the adaptive deployment 
initiatives. Context-aware integration, scalable data processing 
methods, the creation of an ongoing feedback loop, and reliable 
experimental validation are all given special attention in this 
area of study. This dimension seeks to bridge theoretical 
underpinnings with empirical evidence and to offer useful 
insights into efficient Threat Intelligence Integration 
methodologies for resource-constrained devices by utilizing 
platforms like Wazuh [4] in conjunction with predefined 
machine learning algorithms available in OpenSearch. 

A. Cyber Threat Intelligence (CTI) for IoT 

Due to the growing amount of Digital Connectivity and the 
addition of Internet of Things (IoT) devices across every aspect 
of every person's life, the need for a Proactive and Adaptive 
Cybersecurity Paradigm is higher than it's ever been before. 
Cyber Threat Intelligence (CTI) has become a pivotal 
discipline for providing increased Cyber Resilience to IoT 
Ecosystems in an evolving Threat Landscape. The rapid 
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Growth of this interconnected Ecosystem has created many 
Security Challenges for IoT devices, from Smart Home 
Devices to Industrial Sensors, requiring a Sophisticated and 
Context-Aware approach. 

B. The IoT Landscape 

The internet of things (IoT) consists of a large number of 
electronically connected devices, which together make up a 
matrix of vulnerabilities and attack vectors that can be 
exploited by hackers. The features and functions incorporated 
into IoT devices are designed to add convenience and 
efficiency for the user; however, due to the limited processing 
power and variety of communication protocols between these 
devices, they are susceptible to cyberattacks. Therefore, to 
successfully secure the IoT ecosystem, it is critical to fully 
comprehend the functionality of IoT devices and have 
continuous monitoring of the continually changing cyber threat 
landscape. 

C. Dynamics of Cyber Threat Intelligence 

In the context of IoT, cyber threat intelligence is a proactive 
and strategic method of identifying, reducing, and eliminating 
cyberthreats.  It entails gathering, evaluating, and sharing 
useful information about possible risks to IoT networks and 
devices.  By offering contextual insights into the strategies, 
tactics, and practices used by adversaries in the IoT space, CTI 
enables organizations to go beyond reactive defense 
mechanisms, in contrast to traditional cybersecurity measures. 

D. Contextualizing Threats in the IoT landscape 

To properly secure IoT devices and networks from cyber 
attacks, an IoT expert must understand the threats to the 
device/network at a high level. This is accomplished through 
the use of Cyber Threat Intelligence (CTI) applied to IoT. 
When CTI is applied to IoT, it doesn't just allow the IoT expert 
to identify malicious traffic; it also enables the expert to 
understand how to interpret the traffic associated with a 
particular IoT device, how to spot patterns in the traffic, and 
how to identify abnormal behaviour based on the patterns when 
viewed in the context of the overall IoT ecosystem. 

E. Integrating Threat Intelligence into IoT Security Posture 

To stay ahead of the competition, IoT security postures 
must incorporate Cyber Threat Intelligence.  To find possible 
threats, it makes use of machine learning algorithms, advanced 
analytics, and real-time monitoring.  Organizations can 
strengthen the resilience of IoT devices and networks by 
improving their capacity to identify and address new threats 
through the integration of threat intelligence feeds. 

F. Contributions of this Research 

• Integrated Framework for Adaptive Deployment and 
Threat Intelligence 

• Adaptive deployment strategies specifically tailored for 
resource-constrained devices. 

• Context-Aware Threat Intelligence Integration 

• Application of Machine Learning Algorithms 

• A significant contribution of the research is its explicit 
focus on reducing false positives, a common challenge 
in cybersecurity operations 

G. Novelty of this Research 

• The study suggests an integrative strategy that combines 
continuous threat intelligence integration with adaptive 
deployment strategies.  This entire framework, which 
is integrated into the OCIF, offers a complete solution 
for protecting devices with limited resources. 

•  In order to ensure the best cybersecurity measures 
while taking into account the limitations of these 
devices, the research presents Adaptive Deployment 
Strategies designed especially for resource-constrained 
devices. This entails not only understanding and 
profiling the devices but also implementing 
lightweight communication protocols, modular 
deployment architectures, and adaptive resource 
allocation. 

• The ongoing integration of threat intelligence is tailored 
to environments with limited resources. This includes 
context-aware integration, real-time data ingestion, and 
scalable data processing techniques made to function 
well in settings with constrained computational power. 

The organization of this research study is clear and consists 
of five main sections. In Section II, we will conduct a complete 
literature survey that reviews the current literature related to 
Cybersecurity for Resource-Constrained Devices (RCRDs), 
Adaptive Deployment Strategies, and Continuous Threat 
Intelligence Integration, while identifying any gaps in the 
existing body of knowledge. In Section III, we will discuss the 
methods used, including the creation of an Open Cybersecurity 
Infrastructure Framework (OCIF), and present Adaptive 
Deployment Strategies that include Device Profiling, 
Lightweight Protocols, and Contextual Awareness. In addition, 
we will discuss Continuous Threat Intelligence Integration 
techniques, which consist of Real-Time Data Ingestion and 
Scalable Processing. Section IV contains a detailed description 
of the Experimental Setup used in this study, which includes 
Wazuh and OpenSearch as well as a discussion of the results 
and their effect on the number of false positives. Section V 
concludes this research by summarizing the major results and 
discussing the implications for the community. 

II. RELATED WORKS 

The limited resources of devices, such as processing power, 
memory, and energy, pose serious challenges to traditional 
approaches to cyberattack detection.  Devices are vulnerable to 
a number of potential attacks, including data manipulation, 
resource depletion, and denial of service (DoS).  AlWaisi et al. 
[1] have presented a novel framework to address these 
problems.  This framework uses machine learning (ML) 
models optimized for low-resource devices to combine 
anomaly detection, feature extraction, and lightweight data 
collection.  The main objective is to reduce computational load 
and memory usage by optimizing machine learning models 
while taking available resources into account.  Effective attack 
detection is made possible by this methodology, which also 
saves operating time and monitors energy consumption. 
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Kornaros et al. [2] have explored hardware-assisted methods to 
overcome these resource constraints. Examples include 
engineered architectures with specialized memory units, 
dedicated accelerators for specific ML tasks, and secure 
enclaves for trusted execution. However, incorporating 
hardware accelerators requires careful evaluation of 
compromises related to expense, power usage, and complexity. 
Moreover, achieving a balance between latency, accuracy, and 
memory usage is crucial to optimizing machine learning 
models for devices with limited resources. Arshad et al. [3] 
introduced an intrusion detection framework tailored for 
energy-constrained IoT devices. This framework addresses 
obstacles such as processing capacity restrictions and energy 
consumption limitations. It highlights the importance of 
implementing a specialized intrusion detection system to 
efficiently mitigate security risks.  

A methodology for protecting IoT nodes with limited 
resources is presented by Shalaginov et al. [4], highlighting the 
importance of intelligent microcontrollers in distributed smart 
application attack detection. This entails incorporating 
advanced strategies like intelligent microcontrollers, machine 
learning algorithms, or other approaches intended for effective 
operation on IoT nodes with constrained resources. Increased 
security, fewer false positives, and less demand on device 
resources are possible advantages. The increasing use of fog 
computing in critical infrastructure systems and the ensuing 
security issues are acknowledged by Khan et al. [5]. They 
stress the importance of proactive defense tactics against 
possible cyberthreats. A hybrid DL-driven framework for 
SDN-enabled cyber threat detection in the Internet of Things is 
presented by Javeed et al. [6]. The framework likely centres on 
some of the main components of SDN. The authors believe that 
SDN provides additional customisation of networks and that 
the use of SDN also boosts the ability of detection algorithms 
to identify new cyberthreats. The second aspect of 
cybersecurity is the work by Khan et al. [7], who present a 
model for using data analysis to enable the detection and 
mitigation of malicious/internal human threats. An assessment 
of the data analytics methods used, as well as measurable rates 
of accuracy and the ability of the system to adapt to differing 
characteristics within IoT environments, will be included in 
this model. 

Jeffrey et al. [8] performed an exhaustive review of current 
research on anomaly detection methods in the CPS Security 
field and classify the methods into three categories: statistical, 
machine learning, and hybrid methods. The authors' 
assessment will include various aspects, including false-
positive rates, scalability, the rate of accuracy in detecting 
anomalies, and adaptability to dynamic CPS environments. The 
paper by Bradbury et al. [9] provides an assessment of the 
basic principles for threat modelling used to establish the trust 
mechanisms in outsourced task deliveries for IoT devices that 
have limited resource capability. The authors discuss examples 
of where the methods proved successful in identifying, 
deterring secure delegated tasks, and maximising the efficient 
use of resources. The study by Aljuhani et al. [10] presents the 
integration of AI methods as an enhancement to the 
intelligence of IoMT sensors/devices having limited resource 
capacity. 

This entails using AI algorithms, such as machine learning 
and deep learning, to identify unusual behavior and possible 
security risks. The assessment might offer a thorough 
description of particular AI models or algorithms that are 
employed, highlighting their advantages in adjusting to 
changing threat environments. They might also go over how 
the recommended SaaS-based IDS ensures interpretability and 
clarity, enabling system administrators and healthcare 
professionals to comprehend and trust the system's output. 
Celdrán et al. [11] emphasize the significance of creating 
creative and resource-efficient strategies to lessen ransomware 
attacks, especially on Internet of Things (IoT) devices and 
other computing devices with limited capabilities. 

This investigation is intended to examine the major 
principles of how Behavioral Fingerprinting works, including 
how this method provides a basis for identifying and tracking 
the distinct behaviors of ransomware in resource-limited 
systems. In regards to the Passban IDS, Eskandari et al. [12] 
have done extensive work on how the Passban IDS was built, 
including a review of its conceptual framework and the 
methodologies used to create it, including the methods by 
which the system applies intelligent anomaly detection in IoT 
devices, which may be highlighted by the use of modern 
technologies, such as machine learning or artificial 
intelligence, which assist the system in establishing the 
difference between normal and anomalous behavior. Zhu et al. 
[13] focus their work on the conceptual framework and design 
of the GV-FL methodology in APT detection for IoT devices, 
and their work will address the theoretical basis for the 
Federated Learning concepts and what adaptations will be 
necessary to adapt this to the APT detection area. With 
particular modifications made to the field of APT detection, the 
study is anticipated to concentrate on the theoretical 
foundations of federated learning. Crucially, a global viewpoint 
can be taken into account, elucidating how an integrated and 
federated approach enhances the ability to learn and detect 
among a group of devices with limited capacity. 

Liaqat et al. [14] provide contextual information in the 
IoMT domain by highlighting the growing integration of 
medical technologies and devices into networked systems to 
improve healthcare services. The talk describes the particular 
security challenges that IoMT faces, highlighting how 
vulnerable medical devices are to cyberattacks and promoting 
resilient and adaptable security measures. 

In the IoMT domain, Liaqat et al. [14] offer contextual 
information by emphasizing the increasing incorporation of 
medical devices and technologies into interconnected systems 
to enhance healthcare provisions. The discourse outlines the 
unique security dilemmas encountered by IoMT, emphasizing 
the susceptibility of medical devices to cyber threats and 
advocating for security mechanisms that are both adaptive and 
resilient. 

The analysis of low-rate DDoS attacks attacks using the 
MQTT protocol in Software-Defined IoT is addressed in Al-
Fayoumi et al. [15]. Al-Fayoumi et al.'s work provides insights 
into the challenges of low-rate DDoS attacks and proposes a 
potential solution by using Software-Defined Network (SDN) 
for Internet of Things (IoT) [15]. The authors develop their 
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methodology by integrating SDN with a deep learning 
algorithm to detect intrusions into the IoT network. Doriguzzi-
Corin et al. [16] detail in their work an SDN and deep learning-
based Intrusion Detection System for IoT (IDSIoT-SDL). They 
highlight the complexity of IoT security and provide extensive 
analysis of the complexities of IoT security. 

Doriguzzi-Corin et al.'s [16] IDSIoT-SDL methodology 
integrates deep learning algorithms with SDN to provide an 
intrusion detection system for IoT. Lauf et al. [17] describe a 
distributed intrusion detection system and hint that 
understanding of the system's architecture may be warranted to 
assess how the system distributes detection of intrusions over 
the network. From Lauf et al.'s analysis, it is evident that 
distributing the detection process will reduce the workload on 
each IoT device and allow the architecture to use the 
advantages of the collaborative approach to support the 
security of the entire network. In their analysis of the state of 
deep learning-based DDoS attack detection, Doriguzzi-Corin et 
al. [18] highlight the LUCID system as a novel and useful 
method. An overview of the growing threat environment posed 
by Distributed Denial of Service (DDoS) attacks is anticipated 
to open the discussion, highlighting the vital significance of 
putting in place efficient detection systems. 

In an examination of an alternative aspect of cybersecurity, 
Khan et al. [19] investigate the distinctive obstacles and 
susceptibilities linked to IoMT devices. The severity of the 
potential repercussions of security breaches in medical 
environments is duly recognized. The discourse may 
encompass prevalent challenges and avenues of entry that 
specifically target healthcare networks and medical devices, 
with an emphasis on the criticality of implementing resilient 
and intelligent malware detection systems. In their 
comprehensive analysis, Aliabadi et al. [20] thoroughly 
investigate the unique characteristics of CPS constrained by 
resources, particularly focusing on limitations imposed by 
computing capacity, memory, and energy. The authors also 
direct their attention towards the consequences of these 
limitations on traditional intrusion detection approaches. They 
underscore the critical need for inventive and effective methods 
specifically designed to overcome the obstacles presented by 
environments with limited resources. Concerning the 
mitigation of DDoS attacks, Adat et al. [21] may provide 
further details regarding the operational principles and 
architectural design of a framework. Their discourse might 
emphasize how the suggested framework tackles the unique 
obstacles when attempting to alleviate DDoS attacks in Internet 
of Things environments. It is possible to highlight the 
significance of device heterogeneity, scalability, and real-time 
responsiveness in the framework's design. 

Ayyat et al. [22] investigate the ramifications of 
implementing class-aware neural networks for peripheral 
device intrusion detection in a related context. The authors 
highlight the capacity of these networks to address the distinct 
obstacles arising in environments with limited resources. 
Nguyen et al. [23] provide an exhaustive examination of the 
present state of network intrusion detection systems (NIDS) 
concerning IoT gateways, adopting a broader viewpoint. Their 
investigation illuminates the shortcomings of conventional 
NIDS approaches and methodologies concerning IoT 

gateways. The analysis likely highlights the unique attributes 
of IoT networks, such as heterogeneity, limited resources, and 
the ever-changing nature of IoT traffic. These distinctive 
characteristics present obstacles for traditional intrusion 
detection systems. 

From the literature, it is noted that in the realm of 
cybersecurity, several studies highlight distinct challenges and 
vulnerabilities associated with emerging technologies. One 
examination focuses on the security implications of IoT 
devices in medical contexts, recognizing the potential gravity 
of breaches in healthcare environments. A lot of study explores 
the limitations of CPS, particularly those constrained by 
resources like computing capacity, memory, and energy, 
emphasizing the necessity for innovative intrusion detection 
methods in such environments. Addressing the mitigation of 
Distributed Denial of Service (DDoS) attacks in IoT settings, a 
different set of frameworks are discussed, underlining 
considerations of device heterogeneity, scalability, and real-
time responsiveness. In a broader context, the exploration of 
class-aware neural networks for peripheral device intrusion 
detection highlights their adaptability to challenges in resource-
limited environments. Additionally, an extensive examination 
of network intrusion detection systems (NIDS) for IoT 
gateways sheds light on the inadequacies of conventional 
approaches in addressing the unique attributes of IoT networks, 
including heterogeneity, limited resources, and dynamic traffic 
patterns. Collectively, these studies underscore the diverse 
cybersecurity challenges associated with emerging 
technologies, emphasizing the imperative for specialized and 
adaptive security measures. Hence this research proposes a 
novel OCIF for automated deployment and advanced CTI. 

III. ADOPTIVE DEPLOYMENT AND CONTINUOUS THREAT 

INTELLIGENCE INTEGRATION 

In the proposed approach to make cybersecurity work well 
for devices with limited resources, we focus on two key parts: 
Adaptive Deployment and Continuous Threat Intelligence 
Integration. Adaptive Deployment deals with understanding 
these devices, making their communication efficient, and 
adjusting resources dynamically. On the other hand, 
Continuous Threat Intelligence Integration is about keeping an 
eye on the latest threats, adapting to the device's situation in 
real-time, and always learning from what's happening. These 
two methods, combined within the Open Cyber Intelligence 
Framework (OCIF), create a smart and effective cybersecurity 
plan. The goal is to make security fit the unique features of 
devices with fewer resources, making it adaptable and 
responsive to the ever-changing world of threats. Fig. 1 shows 
the architecture of the proposed OCIF. 

A. Adaptive Deployment Strategies 

The Adaptive Deployment Strategies component of the 
OCIF methodology focuses on tailoring the deployment 
process to the unique operational constraints and characteristics 
of resource-constrained devices. This involves a meticulous 
understanding of the diverse ecosystem encompassing Internet 
of Things (IoT) sensors, embedded systems, and other 
constrained devices. The adaptive nature of the OCIF ensures 
that the deployment process is optimized, minimizing the 
impact on device resources. 
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B. Device Profiling 

In the context of OCIF's Adaptive Deployment Strategies, 
the process of device profiling involves more than a surface-
level examination. It necessitates a comprehensive 
understanding of the hardware specifications, operating 
systems, and communication protocols that define the target 
device ecosystem. This depth of analysis is pivotal in forming 
robust device profiles, which subsequently inform tailored 
deployment strategies.  The steps involved in real-time device 
profiling include: 

• Conduct an in-depth analysis of the target device 
ecosystem to create comprehensive device profiles. 

• Identify specific constraints such as limited processing 
power, memory, and bandwidth to inform adaptive 
deployment strategies. 

• Categorize devices based on their functionalities and 
criticality to prioritize deployment efforts. 

 
Fig. 1. Architecture of the proposed OCIF. 

C. Lightweight Protocols 

The design and implementation of lightweight 
communication protocols are central to the success of OCIF's 
Adaptive Deployment Strategies. As a researcher, the focus 
here lies in striking a delicate balance between efficiency and 
minimal overhead. Leveraging industry standards while 
customizing protocols ensures that the communication 
mechanisms are not only standardized but also adapted to the 
unique demands of resource-constrained environments. 

D. Modular Deployment Architecture 

The concept of a modular deployment architecture speaks 
to the flexibility required in adapting the OCIF to diverse 
devices incrementally. In this context, as a researcher, one must 
delve into the intricacies of modular design – ensuring that 
each module is not only adaptable but also able to seamlessly 
integrate with various devices. The goal is to create an 
architecture that is both scalable and responsive to the evolving 
demands of the device ecosystem. The design and deployment 
architecture includes: 

• Design the OCIF with a modular architecture to allow 
for flexible and incremental deployment. 

• Modules should be adaptable to different device types 
and functionalities, enabling a phased deployment 
approach. 

• Ensure that each module aligns with the specific 
constraints of the targeted devices, enhancing 
scalability and ease of integration. 

E. Threat Intelligence Integration 

The Threat Intelligence Integration component of the OCIF 
methodology revolves around seamlessly incorporating threat 
intelligence feeds into the framework. This integration is 
designed to be agile, ensuring that devices can efficiently 
ingest and process threat intelligence data without 
compromising their limited computational resources. 

F. Real-time Threat Data Ingestion 

The process of real-time threat data ingestion is pivotal for 
OCIF's efficacy in responding promptly to emerging threats. In 
a research context, this involves exploring mechanisms that 
enable devices to receive threat intelligence updates with 
minimal latency. Investigating incremental updates and delta 
mechanisms becomes crucial to reduce the data transfer 
volume while ensuring the timely availability of the latest 
threat information. The steps involved in real-time threat data 
ingestion include: 

• Develop mechanisms for real-time ingestion of threat 
intelligence data by resource-constrained devices. 

• Implement protocols that enable devices to receive 
updates without significant latency, ensuring the timely 
availability of the latest threat information. 

• Consider the use of incremental updates and delta 
mechanisms to minimize the data transfer volume. 
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G. Context-Aware Integration 

The concept of context-aware integration speaks to the 
need for aligning threat intelligence feeds with the operational 
characteristics of each device. For a researcher, this 
necessitates an exploration of adaptive integration mechanisms 
that can dynamically adjust to device-specific threat indicators 
and indicators of compromise. The integration should not only 
consider the technical attributes but also incorporate the 
environmental context, refining threat detection algorithms for 
a more nuanced approach. The steps involved in real-time 
integration include: 

• Tailor the integration process to be context-aware, 
aligning threat intelligence feeds with the operational 
characteristics of each device. 

• Consider device-specific threat indicators and indicators 
of compromise to enhance the relevance and accuracy 
of threat intelligence data. 

• Integrate contextual information about the device's 
environment to refine threat detection algorithms. 

H. Scalable Data Processing 

Scalable data processing within the OCIF framework is a 
research frontier that involves addressing the challenge of 
efficiently handling large volumes of threat intelligence data. 
This requires investigating parallel processing and distributed 
computing principles to design mechanisms that can 
accommodate the diverse scale of resource-constrained 
devices. Integrating machine learning algorithms into the 
processing pipeline becomes imperative to prioritize and 
categorize threat intelligence data based on severity and 
relevance. The steps involved in real-time data processing 
include: 

• Implement scalable data processing mechanisms within 
the OCIF to handle large volumes of threat intelligence 
data efficiently. 

• Utilize parallel processing and distributed computing 
principles to ensure that the framework can 
accommodate the diverse scale of resource-constrained 
devices. 

• Integrate machine learning algorithms to prioritize and 
categorize threat intelligence data based on the severity 
and relevance to each device. 

I. Continuous Feedback Loop 

Establishing a continuous feedback loop is a research area 
critical for refining the Threat Intelligence Integration process 
within OCIF. This involves mechanisms where devices provide 
insights into the effectiveness of received threat intelligence 
data. As a researcher, exploring feedback mechanisms and 
algorithms that dynamically adjust and adapt threat intelligence 
feeds based on real-world observations is essential for the 
continuous optimization of the integration process. The steps 
involved in the feedback loop include: 

• Establish a continuous feedback loop that enables 
devices to provide insights on the effectiveness of the 
threat intelligence data received. 

•  Implement mechanisms to adjust and adapt threat 
intelligence feeds based on the actual threat landscape 
observed by the devices. 

• Leverage machine learning algorithms to dynamically 
refine the integration process, ensuring ongoing 
optimization based on real-world data. 

By combining Adaptive Deployment Strategies with 
context-aware Threat Intelligence Integration, the OCIF 
ensures that the deployment process is finely tuned to the 
specific needs of resource-constrained devices. This 
comprehensive approach enhances the framework's 
effectiveness in safeguarding devices while minimizing the 
impact on their limited resources. 

J. Experimental Setup 

For a comprehensive assessment of our Adaptive 
Deployment and Continuous Threat Intelligence Integration 
methodologies within the Open Cyber Intelligence Framework 
(OCIF), to life, a carefully designed experimental setup 
becomes crucial. Here's a concise breakdown of our 
experimental environment. 

1) Dataset curation in the in-house wazuh platform: For 

the comprehensive evaluation of our proposed Adaptive 

Deployment and Continuous Threat Intelligence Integration 

methodologies within the Open Cyber Intelligence Framework 

(OCIF), we have designed an experimental setup 

incorporating a specially curated dataset named 

CyberResilienceSim. This dataset encompasses diverse 

elements essential for simulating real-world scenarios and 

assessing the efficacy of the proposed methodologies. The 

CyberResilienceSim dataset comprises various categories to 

emulate the intricacies of cybersecurity challenges faced by 

resource-constrained devices. Firstly, we simulate data 

representative of such devices, capturing attributes like device 

types, communication protocols, and historical performance 

metrics. This foundational data establishes a virtual 

environment mirroring the limitations and characteristics of 

devices operating with constrained resources. 

Next, the dataset includes a Threat Scenarios category, 
featuring a spectrum of cyber threats that resource-constrained 
devices might encounter. This dataset covers different types of 
threats, including malware attacks, Intrusion attempts, and data 
exfiltration incidents. Each threat scenario is enriched with 
details such as attack vectors, payloads, and timestamps, 
providing a comprehensive set of challenges for the 
methodologies. To enhance realism, we integrate Historical 
Threat Intelligence Feeds into the dataset, comprising 
indicators of compromise (IoCs), information about threat 
actors, and patterns associated with past cyber threats. This 
historical data injects a dynamic and evolving threat landscape 
into the dataset, reflecting the complexities of the real-world 
cybersecurity environment. 

Contextual Device Information is another crucial aspect, 
providing details about the simulated devices. This includes 
device profiles, network configurations, and environmental 
factors. The Adaptive Deployment Strategies leverage this 
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contextual information to adapt and optimize cybersecurity 
measures based on the unique characteristics of each device. 
The dataset also incorporates Anomaly Indicators to evaluate 
the effectiveness of Continuous Threat Intelligence Integration. 
These indicators highlight deviations from baseline behavior, 
unexpected data flows, or unusual access patterns, allowing us 
to assess the system's capability to identify and respond to 
anomalous activities. 

For practical application, a Real-world Scenarios Snapshot 
is included in the dataset, featuring recent cybersecurity 
incidents, threat intelligence reports, and data breaches. This 
provides a comparative analysis of our methodologies against 
real-world conditions. Finally, the dataset is structured to 
capture Performance Metrics Data Points, including false 
positive rates, response times, and adaptive adjustments made 
by the OCIF. These metrics are instrumental in quantifying the 
impact of our methodologies on cybersecurity effectiveness 
and the reduction of false positives. 

2) Sample attack simulations and detection: In a simulated 

real-world scenario, we replicate an Advanced Persistent 

Threat (APT) intrusion targeting a network of resource-

constrained devices within an industrial Internet of Things 

(IoT) environment. The APT actor conducts initial 

reconnaissance to gather information about the devices, 

followed by a phishing campaign aimed at compromising user 

credentials. Exploiting vulnerabilities within the devices, the 

attacker engages in lateral movement to escalate privileges 

and navigate through the ecosystem, ultimately seeking to 

exfiltrate sensitive operational data. Meanwhile, the proposed 

Continuous Threat Intelligence Integration methodology 

actively monitors real-time threat intelligence feeds, cross-

referencing indicators of compromise (IoCs) to identify 

patterns associated with known APT campaigns. 

Simultaneously, Adaptive Deployment Strategies dynamically 

adjust security measures based on identified threat vectors and 

contextual information about compromised devices. For 

instance, if a device shows signs of compromise, the Open 

Cyber Intelligence Framework (OCIF) may temporarily 

restrict its network access or deploy additional security 

measures to contain the threat. This attack simulation, coupled 

with real-world use cases, serves to assess the adaptability and 

efficacy of the proposed methodologies in safeguarding 

resource-constrained devices against sophisticated cyber 

threats. 

IV. RESULTS AND DISCUSSION 

Reducing false positives in Cyber Threat Intelligence (CTI) 
and Security Information and Event Management (SIEM) 
platforms is essential to enhance the efficiency and 
effectiveness of cybersecurity operations. A strategic approach 
involves a combination of fine-tuning existing processes, 
leveraging advanced technologies, and fostering a proactive 

organizational culture. Here's a comprehensive strategy that we 

followed: 

 
Fig. 2. Screenshot of brute force attack. 

Precision in Alert Generation: 

• Fig. 2 to Fig. 6 show the alerts of various events and use 
cases. 

• Refinement of Detection Rules: Regularly review and 
refine detection rules in CTI and SIEM platforms to 
ensure they align with the organization's specific threat 
landscape. Incorporate threat intelligence feeds and 
customize rules based on the organization's context. 

• Threshold Adjustments: Adjust threshold values for 
alerts, considering the organization's normal network 
behavior. Fine-tune thresholds to minimize false 
positives while maintaining sensitivity to potential 
threats. Fig. 2 shows the results of a brute force attack. 

 
(a) CRUD – Delete operation. 

 
(b) CRUD – Modification operation. 

Fig. 3. Results of file auditing. 
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In Fig. 4, the plot likely represents a timeline with date 
stamps on the x-axis and associated alerts on the y-axis. Each 
point or bar on the plot corresponds to a specific alert triggered 
by an event related to the Mitre Attack Framework. The 
purpose of this visualization is to provide a chronological 

overview of detected events, allowing analysts to identify 
patterns, spikes, or clusters of alerts over time. This can be 
crucial for understanding the temporal aspects of the attack 

landscape and pinpointing periods of heightened threat activity. 

Fig. 5 appears to illustrate the rule-level analysis 
categorized by tactics within the Mitre Attack Framework. The 
x-axis may represent different tactics employed by attackers 
based on the time stamps (e.g., Initial Access, Execution, 
Persistence), while the y-axis shows the rule levels associated 
with each tactic (Count). Each bar or data point on the plot 
likely corresponds to the number or severity of rules within a 
specific tactic. This visual representation aids in identifying 
which tactics have a higher concentration of rules, providing 
insights into the focus areas of the detection system and 
potential areas of vulnerability. 

 
Fig. 4. Date stamps and their associated alerts. 

 

Fig. 5. Rule level by tactics. 

Fig. 6 presents the detection results of the top tactics that 
were both simulated and recorded by the attacker. This plot 
likely showcases the effectiveness of the detection system in 
identifying and responding to specific attack tactics. Each bar 
or data point may represent the number of successfully 
detected tactics, providing an overview of the system's 
performance in mitigating simulated attacks. This information 
is valuable for assessing the detection capabilities and strengths 
of the implemented Mitre Attack Framework, offering insights 

into areas of improvement or optimization for better threat 
response. 

 
Fig. 6. Top tactics simulated and recorded. 

 
Fig. 7. Malicious file detection. 

TABLE I.  COMPARISON OF CYBERSECURITY DATASETS FOR RESOURCE-

CONSTRAINED ENVIRONMENTS AND OCIF SUITABILITY 

Dataset Resource-

Constraine

d Device 

Coverage 

CTI/Attac

k 

Mapping 

(MITRE 

ATT&CK

) 

Suitability for 

Lightweight ML 

Models 

NSL-KDD Low  Basic 

mapping 

possible 

High (small, clean 

dataset) 

UNSW-

NB15 

Moderate Good 

mapping to 

attack 

categories 

Moderate 

CICIDS201

7 

Low–

Moderate 

Strong 

mapping to 

MITRE 

techniques 

Moderate 

TON_IoT High Direct 

mapping 

available 

High (sensor-level 

+ network data) 

Edge-

IIoTset 

High Good 

mapping 

for APTs 

& DDoS 

High 

Wazuh + 

OpenSearch 

Logs (Used 

in Your 

Study) 

Very High Fully 

integrated 

(real-world 

MITRE 

ATT&CK 

mapping) 

Very High 

(suitable for 

adaptive/lightweig

ht models) 
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 Among the existing datasets, TON_IoT and Edge-IIoTset 
provide the closest alignment to resource-constrained 
environments; however, neither of them comes with integrated 
SOAR/SIEM behavior is shown in Table I. The Wazuh + 
OpenSearch dataset developed in this work is uniquely 

positioned, with host-level telemetry, real-time CTI mapping, 
and compatibility for light-weight ML, thereby making it the 
ideal choice for testing OCIF's capabilities of Adaptive 

Deployment and False Positive Reduction. 

A. Context-Aware Analysis 

Enrichment with Threat Intelligence: Enhance alerts with 
contextual information from threat intelligence feeds. 
Enriching alerts with indicators of compromise (IoCs) and 
relevant threat context enables analysts to make more informed 
decisions. User and Entity Behavior Analytics (UEBA): 
Incorporate UEBA solutions to analyze user and entity 
behavior, allowing the detection of anomalies that might go 
unnoticed with rule-based approaches. This context-aware 
analysis contributes to reducing false positives. Fig. 3 shows 
the file auditing results. 

B. Machine Learning and AI Integration in Malicious 

Operation Detection 

Anomaly Detection: Implement machine learning 
algorithms to identify anomalous patterns in data. Train models 
with historical data to recognize normal behavior and flag 
deviations, contributing to more accurate threat detection and 
fewer false positives. Behavioral Analysis: Leverage AI-driven 
behavioral analysis to understand the typical behavior of users, 
devices, and applications. Identify deviations from established 
baselines to detect potential threats with greater accuracy.  In 
Fig. 7, the plot visually captures the outcomes of malicious file 
detection, specifically focusing on the identification of 
suspicious binaries. 

C. Continuous Monitoring and Feedback Loop 

Continuous Evaluation: Establish a continuous monitoring 
process that includes regular evaluations of alerts and incident 
reports. This ongoing scrutiny ensures that the detection rules 
remain relevant and effective over time. Feedback Mechanism: 

Encourage security analysts to provide feedback on false 
positives. Establish a feedback loop between analysts and the 
security system to iteratively improve rules and reduce false 

positives. 

D. Discussion 

Through experimentation, promising results were achieved, 

demonstrating a notable reduction of up to 6% in false positive 
rates. The Adaptive Deployment and Continuous Threat 
Intelligence Integration methodologies proved their worth in 
real-world scenarios, contributing to a more adaptive and 
efficient cybersecurity defense. Fig. 4, Fig. 5, and Fig. 6 
served as critical visual aids in the analysis of Mitre Attack 

Framework implementation. The chronological overview in 
Fig. 4 showcased date stamps associated with Mitre attacks, 
aiding in the identification of temporal attack patterns. Fig. 5 
provided a rule-level breakdown by tactics, offering insights 
into the distribution and severity of rules within different 

attack categories. Meanwhile, Fig. 6 illustrated the detection 
results of top tactics, underlining the system's proficiency in 
responding to both simulated and recorded attacker tactics. 
The richness of these visualizations, coupled with the 
experimentation results, contributes to the overarching success 

of the proposed method. The OCIF, equipped with Adaptive 
Deployment, Continuous Threat Intelligence Integration, and 
Mitre Attack Framework analysis, emerges as a robust and 
adaptive solution for securing resource-constrained devices. 

V. CONCLUSION 

In conclusion, this research focused on the development 
and assessment of an innovative Open Cyber Intelligence 
Framework (OCIF) for safeguarding resource-constrained 
devices. The foundation of the investigation lay in proposing 
an Automated Security Operations and Analytics Response 
(SOAR) architecture, integrating multiple security tools and 
leveraging threat intelligence data. As the research unfolded, 
the attention shifted towards refining the architecture to address 
the specific challenges faced by devices with limited resources. 
The OCIF introduced novel strategies, such as Adaptive 
Deployment and Continuous Threat Intelligence Integration, 
tailored to resource-constrained environments. The first work 
showcased the potential of this framework in automating threat 
detection, response, and mitigation, emphasizing its capability 
to enhance an organization's cybersecurity posture and reduce 
the risk of successful attacks. The proposed framework was 
tested on a limited set of resource-constrained devices and 
predefined threat scenarios, which may not fully represent real-
world environments. This therefore places future research on 
expanding OCIF into wider device ecosystems, advanced ML 
models that can dynamically adapt to evolving threats, and 
real-time performance validation at large-scale deployments. 
This research not only advances the theoretical understanding 
of cybersecurity in constrained environments but also provides 
tangible contributions to practical implementations. 
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