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Abstract—Speech Emotion Recognition (SER) has become a
pivotal topic within affective computing and human-computer
interaction, where the core challenge lies in jointly capturing both
the time—frequency structure and the semantic context of speech.
To overcome the shortcomings of current approaches—including
single-view feature representation, the lack of emotional
discriminability in self-supervised models, and suboptimal
complementarity among fusion strategies—this study proposes a
parallel dual-branch fusion architecture for SER. The framework
consists of a wav2vec 2.0 branch and a CNN-Transformer
spectrogram branch, which respectively extract contextual
semantic representations from raw waveforms and explicit time—
frequency features from spectrograms. A logistic regression fusion
mechanism is further introduced at the decision level to achieve
adaptive weighting in the probability space, thereby fully
leveraging the complementary strengths of the two feature types.
Experiments carried out on the RAVDESS audio subset showed
that the proposed model surpassed several mainstream baselines
(e.g., CNN-n-GRU and RELUEM), achieving 92.7% accuracy and
92.2% Macro-F1, with an average improvement of about 3.2
percentage points. The layer unfreezing studies confirmed the
effectiveness of partial fine-tuning for transferring pretrained
features, while the comparative experiments on fusion strategies
validated the superiority of probability-space fusion in both
performance and stability. Overall, the proposed framework
achieves simultaneous gains in accuracy and robustness through
feature complementarity, branch decoupling, and lightweight
fusion. Future work will explore cross-lingual generalization,
multimodal extensions, lightweight deployment, and dynamic
emotion modeling, contributing to more efficient affective
computing and intelligent interaction systems.

Keywords—RAVDESS;  Speech  Emotion  Recognition;
spectrogram modeling; probability-space fusion; wav2vec 2.0 fine-
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l. INTRODUCTION

Speech Emotion Recognition (SER) is a fundamental field
of study within affective computing and human—computer
interaction, focused on automatically identifying a speaker’s
emotional state from vocal signals. With its ability to enhance
natural communication between humans and machines, SER has
demonstrated broad application potential in healthcare
monitoring, in-vehicle safety systems, intelligent customer
service, educational assistance, and virtual human interaction [1,
2].

Early approaches primarily utilized manually engineered
audio attributes, including Mel-Frequency Cepstral Coefficients
(MFCCs), pitch, energy, and resonance peaks, alongside
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traditional classifiers such as Support Vector Machines (SVMs)
and Gaussian Mixture Models (GMMs) [3,4]. Although
effective in constrained scenarios, these methods struggle with
cross-speaker, cross-lingual, and noise-robust emotion
recognition. The advent of deep learning has revolutionized the
field: architectures including Convolutional Neural Networks
(CNNS), Long Short-Term Memory networks (LSTMs), as well
as Transformers have significantly boosted performance on SER
tasks [5-7]. Moreover, integrating residual learning and attention
mechanisms further enhances the modeling of emotional cues
[8, 9.

In recent years, self-supervised learning (SSL) frameworks,
exemplified by wav2vec 2.0 [10] and HuBERT [11], have
enabled pretraining on large-scale unlabeled speech corpora,
producing robust and transferable speech representations. These
models achieve remarkable performance in low-resource SER
scenarios, mitigating data scarcity issues. Meanwhile, end-to-
end architectures directly model raw waveforms [12,13],
eliminating complex feature engineering and improving model
generalization. Beyond representation learning, fusion strategies
have emerged as another critical direction to boost emotion
recognition performance. By integrating features across multiple
modalities or hierarchical levels, fusion models can exploit
complementary information. For instance, multimodal fusion
networks, feature excitation—aggregation models [14], and
Aural Transformers [15] have demonstrated substantial gains in
affective speech understanding.

Despite these advances, existing SER methods still face
three major challenges:

First, single-path feature modeling often fails to jointly
capture both time—frequency structures and contextual
dependencies, leading to incomplete emotion representation.

Second, while SSL models like wav2vec 2.0 provide
generalizable speech embeddings, they frequently struggle to
extract emotion-specific fine-grained cues from limited labeled
corpora, thus limiting recognition accuracy.

Finally, most fusion techniques remain confined to simple
feature-level concatenation or independent decision-level
integration, without fully leveraging the complementarity
among heterogeneous representations.

To address the aforementioned limitations, this study
proposes a parallel dual-branch fusion architecture for Speech
Emotion Recognition. One branch takes spectrograms as input
and employs a CNN-Transformer hybrid network to model
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time—frequency dependencies, while the other branch processes
raw waveforms using the pretrained wav2vec 2.0 model to
extract contextualized speech representations. The outputs of
both branches are then integrated at the model level through a
decision-fusion mechanism, followed by an emotion classifier.

The key contributions of this study can be summarized as
follows:

1) Parallel dual-branch modeling framework: A unified
architecture is designed, where the spectrogram branch and
wav2vec 2.0 branch operate in parallel to capture
complementary time—frequency and contextual cues, enabling
multi-level emotional representation learning.

2) Enhanced emotion-related feature representation: The
introduction of the spectrogram branch provides explicit time—
frequency information, compensating for the limited emotional
sensitivity of wav2vec 2.0 when fine-tuned on small-scale
datasets. This enables the model to more comprehensively
identify detailed features specific to emotions.

3) Improved decision-level fusion mechanism: An
optimized model-level fusion strategy designed to integrate the
probabilistic outputs of both branches, fully leveraging their
representational complementarity. Compared with single-path
or conventional fusion schemes, the proposed approach
demonstrates superior recognition accuracy and robustness.

The rest of this study is structured as follows: Section Il
reviews related studies on speech emotion recognition.
Section Il presents the proposed parallel dual-branch
architecture, including the spectrogram branch, wav2vec 2.0
branch, and the fusion strategy. Section IV describes the
experimental setup and performance analysis, covering dataset
description, data augmentation, comparative methods, and
ablation experiments. Finally, Section V offers the conclusion
and outlines potential directions for future work.

Il.  RELATED WORK

A. Handcrafted Feature-Based Methods

Initial studies on Speech Emotion Recognition (SER) mainly
depended on manually designed acoustic features such as
MFCCs, energy, pitch, and formants [3]. Huang et al. combined
differential MFCC features with a BiLSTM-CNN hybrid
network, attaining an accuracy exceeding 81% on the
RAVDESS dataset [16]. Similarly, Gu et al. introduced a multi-
feature fusion strategy that performed well on both Tibetan and
multilingual datasets [17]. Mishra et al. further enhanced
performance using MFCC entropy features [3]. Additionally,
sinusoidal model [18] and cross-lingual feature extraction [19]
have also been explored for SER.

Although these handcrafted approaches achieved promising
results on small-scale datasets, they rely heavily on manual
feature design and exhibit limited representational capacity,
making it difficult to capture complex time—frequency variations
and contextual dependencies. Consequently, their generalization
ability under noisy or cross-lingual conditions remains
insufficient.
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B. Deep Learning-Based Methods

Deep learning methodologies have significantly advanced
SER. CNNs excel at capturing local spectro-temporal features
[5,20]; RNNs/LSTMs are well-suited for sequential modeling
[7]; and Transformers effectively learn long-range dependencies
[6]. Liu et al. proposed Res-Transformer, which integrates
residual connections into a Transformer encoder, achieving
84.89% accuracy on RAVDESS [8]. Wei et al. developed a
parallel CNN-Transformer architecture that further improved
SER performance [9]. Similarly, Zhang et al. [21] and Issa et al.
[5] confirmed the efficacy of deep CNNs for emotional speech
analysis.

Despite these advances, deep learning models often require
large-scale labeled datasets and tend to overfit in low-resource
scenarios.  Moreover,  different  architectures  have
complementary strengths—CNNSs for local detail modeling and
Transformers for global dependency learning—yet it remains
challenging to balance both aspects within a single network.

C. Self-Supervised and End-to-End Methods

Trigeorgis et al. introduced an end-to-end SER framework
that directly models raw waveforms without handcrafted
preprocessing [12]. Nfissi et al. proposed the CNN-n-GRU
model, which achieved outstanding results in waveform-based
SER [13]. Recently, self-supervised learning models such as
wav2vec 2.0 [10] and HUBERT [11] have demonstrated strong
potential by pretraining on massive unlabeled corpora to learn
robust and transferable speech representations. Pepino et al.
combined wav2vec 2.0 with Transformer encoders for emotion
recognition, further validating the advantages of self-supervised
representations [22].

These methods avoid complex feature engineering and
achieve improved generalization, yet they still struggle to extract
emotion-specific fine-grained cues in small-sample settings.
Moreover, purely end-to-end approaches often neglect the
explicit time—frequency patterns inherent in spectrograms,
which are essential for accurate emotional inference.

D. Feature and Multimodal Fusion Methods

Feature fusion and multimodal integration have recently
drawn increasing attention.

Qi et al. proposed MFGCN [1] and AFEA-Net [14],
demonstrating the advantages of combining acoustic, visual, and
linguistic cues. Luna-Jiménez et al. introduced a multimodal
Aural Transformer framework [15], while Mustageem et al.
proposed AAD-Net [23], achieving excellent end-to-end
recognition performance. Smietanka et al. [24] enhanced the
embedding representations by leveraging low-level features, and
Zhang et al. [25] proposed RELUEM, a model grounded in
reinforcement learning, which improved emotional feature
discrimination.

Nevertheless, most existing fusion methods are limited to
simple feature-level concatenation or independent decision-
level fusion, lacking the ability to fully exploit inter-feature
complementarity. Furthermore, some approaches involve high
computational complexity, which makes it challenging to
achieve a balance between effectiveness and efficiency.
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In summary, existing SER approaches face several inherent
limitations. It remains highly valuable to develop a fusion
architecture capable of jointly integrating contextual
information and time—frequency representations, thereby
achieving comprehensive and robust emotion understanding.

I1l.  METHODS

A. Overall Architecture

The proposed parallel dual-branch fusion architecture
consists of two independent yet complementary feature
extraction pathways:

e wav2vec 2.0 branch: This branch fine-tunes a pretrained
wav2vec 2.0 model to obtain context-aware deep speech
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representations, effectively capturing semantic and
prosodic cues directly from raw audio waveforms.

e Spectrogram branch: Based on 48 kHz Mel-spectrogram
inputs, this branch employs a CNN-Transformer hybrid
network to extract explicit time—frequency features,
enhancing the model’s ability to detect local changes in
the spectrum and variations over time.

Each branch independently produces an emotion prediction,
and their probabilistic outputs are subsequently integrated
through a decision-level fusion mechanism to yield the final
classification result. The comprehensive framework of the
proposed model is depicted in Fig. 1.
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Fig. 1. General architecture of the proposed model.

B. Input Preprocessing

To ensure the complementarity between the signal-level and
time—frequency-level representations, we designed a systematic
data preprocessing pipeline. This process aims to generate dual-
path inputs compatible with both the wav2vec 2.0 and
spectrogram branches, while enhancing the model’s ability to
generalize and its robustness through noise augmentation and
feature normalization.

Specifically, all raw speech recordings were first trimmed or
padded to a uniform duration of three seconds, ensuring
consistent input length across samples. To satisfy the
requirements of the two branches, a dual-sampling strategy was
adopted: on one hand, each waveform was downsampled to 16
kHz for the wav2vec 2.0 branch to match its pretrained sampling
rate; on the other hand, the original 48 kHz high-resolution audio
was retained to compute 128-dimensional log-Mel spectrograms,
providing richer acoustic details for the spectrogram branch.

During data augmentation, additive white Gaussian noise
(AWGN) was injected into the 48 kHz waveforms, with random
signal-to-noise ratios (SNRs) applied to generate multiple
augmented samples. Each augmented waveform was
subsequently converted into both a 16 kHz version and its
corresponding 48 kHz Mel-spectrogram, ensuring dual-path
consistency while effectively expanding the training set. This
strategy enhances the model’s adaptability and resilience in
acoustically demanding conditions.

Finally, to mitigate amplitude variations and dynamic range
imbalances across recordings, the spectrogram features were
standardized before being fed into the network. The
normalization parameters were estimated from the training
dataset and consistently applied uniformly to both the validation
and test datasets, maintaining a stable feature distribution. Such
normalization facilitates smoother gradient propagation and
faster convergence during optimization.
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Through this preprocessing pipeline, the speech data are
jointly aligned in temporal and spectral domains, establishing a
unified and robust foundation for parallel dual-branch feature
extraction and subsequent decision-level fusion.

C. wav2vec 2.0 Branch

The wav2vec 2.0 branch is designed to learn context-
dependent emotional representations directly from raw audio
waveforms. Unlike conventional methods that rely on
handcrafted acoustic descriptors or shallow convolutional
features, wav2vec 2.0 leverages self-supervised learning
techniques applied to extensive unlabeled speech corpora.
Through this paradigm, the model acquires high-level semantic
and prosodic patterns of speech without explicit emotion
annotations, enabling strong transferability in low-resource SER
scenarios.

1) Model principle: The wav2vec 2.0 framework consists of
two major parts: a convolutional feature encoder and a context
network based on the Transformer model. The convolutional
encoder converts a continuous speech waveform x =
[x1, x5, ..., x7] Into a low-dimensional latent representation Z
through multiple one-dimensional convolutional layers:

Z = fone(x) € R @)

where, L signifies the quantity of frames after temporal
downsampling, while d, indicates the dimensionality of the
convolutional features. This stage primarily captures local
acoustic structures and short-term energy variations in the
waveform.

The Transformer encoder further models

dependencies within the feature sequence:
H=f{(Z) =[hy,..,h;], h; € R7® @

The Transformer model learns long-range contextual
relationships among speech frames by employing the multi-head
self-attention mechanism, effectively encoding intonation,
rhythm, and prosodic fluctuations that are strongly correlated
with emotional expression.

global

In its pretraining stage, wav2vec 2.0 learns rich speech
context representations by reconstructing masked speech frames
through contrastive loss on large-scale unlabeled corpora. In the
present study, we implement partial fine-tuning of the pretrained
wav2vec 2.0 model on the downstream emotion recognition
task, thereby activating its latent emotion-discriminative
capability while preserving the general acoustic knowledge
learned during pretraining.

2) Partial fine-tuning strategy: Since emotional speech
datasets are typically small in scale, fully fine-tuning all
parameters of the wav2vec 2.0 model can often result in
overfitting. To address this issue, a systematic comparison was
conducted across twelve fine-tuning configurations, ranging
from unfreezing only the topmost layer to unfreezing all twelve
Transformer layers. The experimental results revealed that
unfreezing the last three Transformer encoder layers together
with the feature projection layer achieved the best validation
performance and the most stable convergence.

Vol. 16, No. 11, 2025

Accordingly, this study adopts a “three-layer unfreezing”
partial fine-tuning strategy, in which only the high-level
semantic parameters are updated, while the lower-level acoustic
encoder remains frozen. Let the model parameters be denoted as
® = {0;0,0,} , where 8 ¥ represents the trainable
parameters of the top three Transformer layers, and ©,, denotes
the feature projection parameters. The training objective is
defined as follows:

@EKr_g}lg' N L(y.p) ®3)
where, L represents the cross-entropy loss function, y is the

true emotion label, and p signifies the predicted probability
distribution over the emotional states.

3) Utterance-level representation and classification
structure: The Transformer encoder outputs a sequence of
frame-level hidden states, which are aggregated via temporal
mean pooling to form an utterance-level embedding:

- 1
h=13k,h (4)

where, h € R78 denotes the global representation of the
entire speech segment.

During the classification stage, a two-layer multilayer
perceptron (MLP) is employed to project and nonlinearly
transform h :

a; = o(Wyh + by) ®)
a, = o(Wa; + by) (6)
P,», = softmax(Wsa, + b3) @)

where, o () denotes the ReLU activation function. A
Dropout layer with a ratio of 0.3 is applied after each fully
connected layer to alleviate overfitting. The dimensional
transitions are: h(768) — a;(256) — a,(256) — P,,,,(8).

This hierarchical mapping progressively compresses the
semantic space while enhancing the discriminability of
emotional  representations. By integrating  nonlinear
transformations and moderate regularization, the classifier
effectively bridges the contextual embedding from wav2vec 2.0
to the eight-category emotion prediction task.

4) Functional role and advantages of the branch: The
wav2vec 2.0 branch is capable of directly capturing emotion-
related prosodic variations, energy fluctuations, and contextual
dependencies from raw waveforms without relying on
handcrafted acoustic features. Compared with the spectrogram
branch, its advantages can be summarized as follows:

e Pretrained structural awareness: Benefiting from large-
scale self-supervised pretraining, the model possesses a
strong perceptual understanding of speech structure,
enabling rapid adaptation to downstream emotion
recognition tasks.

o Efficient partial fine-tuning: By employing the partial
fine-tuning strategy, the number of trainable parameters
is effectively reduced, thereby enhancing the model’s
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robustness and generalization when operating with
limited data.

e Complementary abstract representation: The generated
utterance-level embeddings are highly semantic and
abstract, complementing the explicit time—frequency
features extracted by the spectrogram branch.

Finally, the emotion probability vector P,,,,, produced by
this branch is integrated with the spectrogram branch output at
the decision-fusion stage, providing high-level semantic support
for the subsequent multimodal emotion recognition process.

D. Spectrogram Branch

The spectrogram branch is designed to extract explicit
acoustic representations from the time—frequency domain,
thereby complementing the semantic and contextual modeling
capability of the wav2vec 2.0 branch. This branch builds upon
our previous work [9], with structural refinements and fusion
optimization introduced in the current study. As illustrated in
Fig. 1 (highlighted in light orange), it encompasses the complete
processing pipeline—from data preprocessing and Mel-
spectrogram  extraction to convolution-attention hybrid
modeling.

1) Inputrepresentation: The input to this branch is a log-Mel
spectrogram generated from 48 kHz audio, comprising 128 Mel
filters and 278-time frames. The resulting input tensor has a
shape of 1x128x278, corresponding to the channel, frequency,
and time dimensions, respectively. This representation inherits
the spectrogram construction and additive white Gaussian noise
(AWGN) augmentation strategy proposed in [9], while further
improvements are introduced in feature normalization and
temporal alignment, ensuring that the spectrogram input is
strictly synchronized with the waveform input used in the
wav2vec 2.0 branch.

2) Network architecture: The spectrogram branch adopts a
hybrid Convolution—Transformer—Cross-Attention framework
for hierarchical acoustic modeling.

a) Convolutional module: The convolutional front-end
consists of four residual CNN blocks. Each block comprises
two convolutional layers, followed by Batch Normalization and
ReLU activation functions. These blocks are interconnected
through skip connections, which serve to improve gradient
propagation and facilitate the reuse of features. This module
captures short-term energy variations and formant structures
while progressively downsampling the feature map. The feature
dimensions evolve as follows: (1x128x278) — (16x64x139) —
(32x32x69) — (64x16x34) — (64x8x17).

b) Transformer encoder: A four-layer Transformer
encoder is utilized to effectively model long-range temporal
dependencies. The convolutional output is first downsampled
using a 2D pooling window of [2, 4], resulting in a 64 x 69
feature map. Before entering the Transformer, the dimensions
are rearranged to treat the time frames as the primary sequential
dimension, fitting the encoder’s input format. After encoding,
the output tensor (shape = 69%64) is restored to batch-first form.
Each Transformer layer has a hidden size of 64 and 4 attention
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heads, enabling it to model global rhythm and intensity
variations of emotional speech along the temporal dimension.
¢) Cross-attention module: To achieve complementary
modeling between convolutional and sequential features, a
Cross-Attention module is employed. Here, the convolutional
features function as queries (Q), while the Transformer outputs
act as keys (K) and values (V). Through attention-weighted
interaction, the two feature spaces are fused to produce a 64-
dimensional integrated representation that simultaneously
encodes time—frequency detail and contextual dependency. The
fused vector is then concatenated with the flattened
convolutional feature, forming an 8768-dimensional joint
representation, which is fed into the final classifier.

3) Classification and feature evolution: The classification
head operates on a joint representation obtained by
concatenating the flattened CNN feature with a 64-dimensional
vector produced by the Cross-Attention module. Concretely, the
spectrogram input 1x128x278 is processed by the convolutional
front-end into a feature map 64x8x17, which is flattened to 8704
dimensions. In parallel, the raw spectrogram is downsampled by
a 2-D pooling [2, 4] to a 64x69 map and passed through a 4-layer
Transformer (d=64, 4 heads), yielding a sequence of shape
69x64. Using Cross-Attention (query = CNN flatten 8704 —
proj., key/value = Transformer output 69x64), the model
produces a 64-dimensional fused vector that captures contextual
dynamics. The two parts are then concatenated to form an 8768-
dimensional feature (8768=8704@%4), which a single fully
connected layer maps to the 8 emotion categories.

4) Functional role: Within the overall system, the
spectrogram branch is responsible for explicit acoustic
modeling, focusing on energy distribution, formant resonance,
and prosodic patterns that characterize emotional tone at the
physical level. When integrated with the semantic
representations learned by the wav2vec 2.0 branch, the two
pathways form a complementary feature hierarchy—from time—
frequency to semantic space—providing a more stable and
discriminative foundation for final emotion classification.

E. Decision-Level Fusion

To fully exploit the complementary strengths of the two
branches at the semantic and acoustic levels, a logistic
regression—based fusion mechanism is introduced after the
classification layer. This approach maintains the independence
of each branch while achieving optimal emotional decision
integration through probability-space learning.

Let, the wav2vec 2.0 branch and the spectrogram branch
respectively output the predicted probability vectors over C

. ) _r,D 0 —
emotion classes as: Pw2v—[szwpwz)w---'p\fm]' Pipec =

[pSe Db, DSobe] . Where C=8 denotes the number of
emotion categories, and each element represents the confidence

score assigned by the corresponding branch.

The two vectors are concatenated in probability space to
form the fusion input feature:

f = [Pwaw; Pspec] € R*¢ (8)
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where, “[;]” denotes vector concatenation. This combined
vector encodes the independent judgments of the semantic and
acoustic branches for each emotion category.

The logistic regression model performs a linear mapping
followed by softmax normalization to generate the final fused
prediction:

Pryse = softmax(Wirf + bir) 9)

here, W, € R®*2C and b, denote the trainable parameters
and bias term of the logistic regression layer. This formulation
allows the model to learn optimal linear combinations of branch-
level probabilities across emotion classes.

During the training process, the cross-entropy loss is
employed to minimize the divergence between the predicted and
true distributions:

Lige = = L1 vil0g(pike) (10)
where, y = [y,...,¥c] denotes the one-hot ground-truth

label, while pf(lfze represents the predicted probability for class i.
By maximizing the likelihood of the correct class, the logistic
regression layer learns the optimal fusion parameters [W;z, br]-

Unlike fixed-weight or gating-based strategies, the proposed
fusion mechanism possesses learnable and adaptive parameters,
enabling it to dynamically adjust the relative contributions of
both branches across different emotion types.

For instance, when the wav2vec 2.0 branch excels at
semantically driven categories (e.g., happy, sad), and the
spectrogram branch better captures acoustically dominant
emotions (e.g., angry, calm), the logistic regression model
automatically rebalances their influences through parameter
optimization.
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The resulting fused probability vector Pf,,,. serves as the
final system output, providing a unified basis for performance
evaluation and result analysis. Experimental results demonstrate
that this fusion strategy, while maintaining computational
efficiency, yields notable improvements in overall accuracy and
robustness.

IV. EXPERIMENTS

A. Dataset and Data Augmentation Strategy

All experiments were conducted on the RAVDESS (Ryerson
Audio-Visual Database of Emotional Speech and Song) dataset.
This corpus comprises recordings from 24 professional actors,
evenly divided by gender (12 male and 12 female), and covers
eight emotion categories: happy, fearful, surprised, sad, neutral,
angry, disgust, and calm. Each utterance is expressed at two
intensity levels, namely normal and strong. This study utilized
exclusively the speech subset, consisting of 1,440 audio samples
with an average duration of approximately 3 to 4 seconds per
clip.

To ensure balanced emotion distribution, a stratified random
split was employed, dividing the data into training, validation,
and test subsets with an approximate proportional distribution of
8:1:1. During training, additive white Gaussian noise (AWGN)
augmentation was applied only to the training set to enhance
model robustness. For each training utterance, three augmented
versions were generated with randomly selected signal-to-noise
ratios (SNRs) of 10, 20, and 30 dB. The validation and test
datasets remained clean and unaltered, preserving the original
audio quality for fair evaluation.

The detailed data split statistics are summarized in Table I.

TABLE | DATA PARTITION AND SAMPLE STATISTICS
Subset Number of Samples Percentage (%) Description
Training set 1147 80 Used for model training with AWGN-based augmentation (3 SNR levels: 10, 20, 30 dB)
Validation set | 143 10 Used for adjusting hyperparameters and choosing the best model
Test set 150 10 Used for the ultimate performance assessment under clean conditions
Total 1440 100 Speech subset of RAVDESS (8 emotion classes x 24 speakers)

Note: The training set was augmented threefold using additive white Gaussian noise (AWGN) at various SNR levels, while the validation and test datasets remained unaltered to ensure fair evaluation.

B. Experimental Setup

1) Experimental environment: All experiments were
conducted on a single Linux workstation. The system
configuration is summarized as follows:

e Operating System: Ubuntu 22.04

e GPU: NVIDIA RTX 5880 Ada (48 GB VRAM)
e Python Version: 3.10

e PyTorch Version: 2.1.0

e CUDA Version: 12.4

This hardware and software setup provides sufficient
computational capacity for parallel training and fusion
experiments involving the dual-branch architecture.

2) Training configuration: Model training was performed in
three stages:

e Training the wav2vec 2.0 branch
e Training the CNN-Transformer spectrogram branch
e Optimizing the logistic regression fusion layer

The main hyperparameter configurations for each stage are
summarized in Table II.
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TABLE Il TRAINING PARAMETERS FOR DIFFERENT STAGES

Parameter wav2vec 2.0 Branch Spectrogram Branch Logistic Regression Fusion Layer
Optimizer AdamW SGD Adam
Initial Learning Rate 1x107* 1x1072 5x107*
Batch Size 32 32 32
Epochs 120 500 30
Loss Function CrossEntropyLoss CrossEntropyLoss CrossEntropyLoss
Learning Rate Scheduler CosineAnnealing StepLR (step=10, y=0.7) Fixed learning rate
Early-Stopping Criterion Isgqc;p“;:‘/ ;/iloi?it(i]oenpicéﬂ;racy does not g;ogoigs\éacﬂﬁe\ilt;oenp:)c;shssdoes not decrease for ;?kﬁ;ffz)/?gdea;i)ocl ;\/Iacro-Fl remains

All models employed CrossEntropyLoss as the classification
objective. During training, gradient clipping (clip = 1.0) was
applied to prevent gradient explosion and ensure stable
optimization. The input utterances were standardized to a fixed
duration of 3 seconds, with sampling rates of 16 kHz for the
wav2vec 2.0 branch and 48 kHz for the spectrogram branch,
respectively.

C. Comparative Experiments

To verify the effectiveness of the proposed parallel dual-
branch fusion architecture, this section presents comparative
experiments against multiple baseline models and fusion
strategies. Both quantitative and qualitative analyses are
employed to assess the performance improvements and the
interpretability of the results.

1) Comparative methods and evaluation criteria: To
objectively evaluate the performance advantages of the proposed
model, several representative Speech Emotion Recognition
(SER) methods from recent years (2023-2025) were selected as
comparative baselines.

The selection of baseline models follows these principles:

e Recency and relevance: methods published within the
last three years to reflect the current research trends;

e Completeness of evaluation: models reporting
comprehensive metrics (Precision, Accuracy, Recall, and
F1-score) for fair comparison;

e Speaker-dependent setting: consistent with this study’s
evaluation protocol;

e Audio-only modality: models that perform SER using
acoustic features only, without incorporating visual or
textual information;

e Dataset consistency: all methods are evaluated on the
RAVDESS dataset to ensure comparability under
identical data conditions.

The comparative methods are summarized as follows:

a) MFCC-fusion (2023) [4]: This method integrates
MFCC, AMFCC, and A*MFCC features via a PCA-based
contribution fusion strategy and employs a BiLSTM-CNN
hybrid network for emotion recognition.

b) AFEA-Net (2025) [14]: AFEA-NEet is an audio-based
SER framework that fuses low-level Fbank features and high-
level WavLM embeddings through an excitation-and-
aggregation mechanism under a multi-task learning framework,
effectively enhancing emotion-relevant feature alignment.

¢) CNN-n-GRU (2025) [13]: CNN-n-GRU is an end-to-
end model that directly learns emotional representations from
raw speech waveforms by integrating convolutional layers to
capture local features and gated recurrent units (GRUS) to
model temporal dependencies.

d) MFGCN (2025) [1]: MFGCN introduces a multimodal
fusion graph convolutional network that captures semantic—
emotional dependencies among acoustic features. For fair
comparison, only the audio-stream branch (MFGCN-a) is
considered here, which utilizes WavLM acoustic embeddings
and enhances emotion classification through multi-perspective
fusion.

e) IGRFXG (2025) [26]: IGRFXG is an ensemble-based
feature selection framework integrating Random Forest,
XGBoost ranking, and Information Gain mechanisms to select
the most informative acoustic descriptors. The selected feature
kernel is used with SVM and MLP classifiers, achieving strong
results on audio-only RAVDESS data.

f) RELUEM (2025) [25]: This model combines deep
reinforcement learning with a convolution—recurrent hybrid
structure, enabling adaptive speech emotion recognition
through learned decision policies. It dynamically adjusts
classification strategies to capture emotional transitions,
achieving high stability and accuracy on the RAVDESS dataset.

To comprehensively evaluate the performance of all models
on the SER task, four widely used classification metrics were
adopted: Accuracy, Precision, Recall, and F1-score. These
metrics jointly reflect the ability to recognize patterns,
generalization stability, and class-wise balance across emotional
categories.

2) Experimental results: Table TIII summarizes the
performance comparison between the proposed dual-branch
fusion model and several representative SER methods using the
RAVDESS dataset. The findings highlight the proposed
framework's ability to enhance both recognition accuracy and
feature robustness across emotional categories.
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TABLE Il PERFORMANCE COMPARISON OF VARIOUS SER METHODS ON THE RAVDESS DATASET (%)
Method Year Accuracy (%) Precision Recall F1-score

MFCC-Fusion [4] 2023 81.5 82.5 85.5 -

AFEA-Net [14] 2025 80.3 80.8 80.6 80.4
CNN-n-GRU [13] 2025 86.6 87.1 86.6 86.7

MFGCN [1] 2025 85.7 85.7 85.1 85.4

IGRFXG [26] 2025 79.3 - - -

RELUEM [25] 2025 89.5 87 85 86

Ours 2025 92.7 92.4 92.5 92.2

From Table 11, it can be observed that the most recent state-
of-the-art SER methods have achieved recognition accuracies
exceeding 80%, with deep feature learning models showing a
clear advantage over traditional acoustic-feature-based
approaches. Specifically, the conventional MFCC-Fusion (2023)
model relies solely on handcrafted low-level acoustic descriptors
and achieves an accuracy of 81.5%. In contrast, deep learning—
based approaches such as AFEA-Net (2025), CNN-n-GRU
(2025), and MFGCN (2025) leverage multi-task learning,
temporal feature extraction, and graph-based fusion, reaching
accuracies of 80.3%, 86.6%, and 85.7%, respectively. The
ensemble feature-selection model IGRFXG (2025) attains
79.3%, while the reinforcement-learning-driven RELUEM
(2025) demonstrates outstanding performance with an accuracy
of 89.5%, highlighting the potential of dynamic policy
optimization in emotion classification.

In comparison, the proposed dual-branch fusion model
attains the highest overall performance on all evaluation metrics,
achieving 92.7% accuracy, 92.4% precision, 92.5% recall, and
92.2% F1-score. Compared with the strongest baseline,
RELUEM, the proposed method yields an accuracy gain of
approximately 3.2 percentage points.

This performance improvement primarily stems from the
complementary nature of the dual-branch architecture:

e wav2vec 2.0 branch: captures high-level semantic and
prosodic cues, providing contextual information critical
for emotional differentiation.

e Spectrogram branch: models energy distribution and
spectral dynamics, offering structured acoustic
representations for emotion discrimination.

e Logistic-regression fusion layer: adaptively re-weights
the two feature spaces in the probability domain,
balancing semantic and acoustic contributions for
optimal decision fusion.

These findings collectively highlight the effectiveness and
robustness of the proposed dual-branch fusion framework in
speech emotion recognition. To further investigate class-wise
performance, the confusion matrix of the fused model applied to
the RAVDESS dataset is shown in Fig. 2.

Confusion Matrix on RAVDESS
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Fig. 2. Confusion matrix of the proposed model applied to the RAVDESS
dataset.

Each cell indicates the count of samples corresponding to the
true (row) and predicted (column) emotion columns, while the
diagonal entries represent correctly classified samples. Overall,
the model exhibits balanced performance across all eight
emotion categories, with the diagonal cells showing notably
higher counts than off-diagonal ones—demonstrating strong
discriminative capability and stable classification behavior
across emotional states.

As shown in Fig. 2, the model achieves perfect recognition
for happy and sad (20/20 correct each). For surprise, 18 out of
20 samples are correctly identified, with 1 misclassified as
neutral and 1 as fear. The disgust class records 19/20 correct
predictions, with 1 sample misclassified as fear. Fear achieves
18/20 correct, with 2 samples misclassified as disgust. Angry
attains 17/20 correct, with 1 sample confused with calm and 1
with sad. Mild confusions occur among low-arousal emotions:
neutral has 9/10 correct with 1 misclassified as disgust, while
calm has 18/20 correct with 1 misclassified as sad and 1 as angry.

Overall, the model performs best on emotions with
pronounced prosodic dynamics (e.g., happy, sad, surprise),
whereas residual errors arise between acoustically similar or
adjacent categories (e.g., neutral-calm and angry—fear—disgust).
This pattern confirms that the proposed dual-branch fusion
effectively captures complementary semantic and prosodic cues,
delivering stable and interpretable SER performance on this split.
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D. Layer Unfreezing Experiments of wav2vec 2.0

To investigate the contribution of different representation
layers within wav2vec 2.0 to the speech emotion recognition
task, a systematic layer unfreezing experiment was conducted
across its 12 Transformer encoder blocks. In this analysis, the
range of trainable parameters was progressively expanded to
explore the relationship between feature hierarchy and task

Vol. 16, No. 11, 2025

adaptability. All experiments were performed under identical
training data, optimizer, and hyperparameter settings, with only
the number of unfrozen layers varied.

For brevity and representativeness, four typical
configurations—unfreezing 1, 3, 5, and 9 layers—are presented
and analyzed. Table IV presents a summary of the performance
results obtained from the RAVDESS dataset.

TABLE IV PERFORMANCE COMPARISON OF WAV2VEC 2.0 UNDER DIFFERENT UNFREEZING DEPTHS (RAVDESS)

Unfrozen Layers Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1 (%) Performance Description

1 layer 82.67 83.63 80.63 81.22 Dominated by shallow acoustic cues;
limited semantic perception

3 layers 88.67 88.22 88.75 88.19 Best overall performance; balanced
semantic—acoustic representation

5 layers 38 87.22 36.88 86.81 Slight overfitting observed as deeper
layers are updated

9 layers 17.33 50 16.25 742 Mode! collapse due tq the disruption of
pretrained representations
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(c) Unfreezing 5 layers.
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Fig. 3. Training and validation accuracy curves of wav2vec 2.0 fine-tuning.

As shown in Table IV, model performance exhibits a distinct

“rise-then—fall” trend as the number of unfrozen layers increases.

When only the first layer is unfrozen, the model mainly relies on
low-level acoustic patterns, achieving 82.67% accuracy, which
reflects limited emotional abstraction capability. Performance
peaks when three layers are unfrozen, reaching 88.67% accuracy
and 88.19% Macro-F1, indicating that the integration of low-
level acoustic and mid-level semantic representations yields the
most effective balance.

Further unfreezing up to five layers leads to a slight decline,
suggesting feature drift and a growing risk of overfitting. When
more than nine layers are unfrozen, the model collapses
(accuracy drops to 17.33%), as the pretrained representations
become severely distorted, undermining semantic stability and
generalization ability.

The corresponding training and validation curves under
different unfreezing configurations are illustrated in Fig. 3,
further confirming the degradation pattern observed with
excessive parameter unfreezing.
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In summary, across the full range of 1-12 layers unfreezing
experiments, the configuration with the last three layers
unfrozen (Layer-3 setting) achieved the best overall
performance, highlighting the crucial role of mid-level semantic
representations in wav2vec 2.0 for speech emotion recognition.
These findings indicate that appropriately controlling the
unfreezing depth not only maximizes the utilization of pretrained
knowledge but also enhances both the transferability and
stability of the model in downstream emotional tasks.

E. Fusion Strategy Comparison Experiments

To evaluate the performance differences among various
fusion mechanisms within the dual-branch architecture, five

Vol. 16, No. 11, 2025

groups of experiments were designed while keeping the
backbone structure identical. The first two groups represent
single-branch models, used to assess the independent modeling
capability of the acoustic and semantic branches. The remaining
three groups implement different fusion strategies, aiming to
analyze the effectiveness of probability-space fusion. All
experiments were conducted on the RAVDESS dataset, and the
performance was evaluated using Accuracy, Precision, Recall,
and Macro-F1 as the primary metrics. The detailed results are
presented in Table V.

TABLE V PERFORMANCE COMPARISON OF DIFFERENT FUSION STRATEGIES ON THE RAVDESS DATASET
Fusion Strategy Accuracy (%) | Macro Precision (%) | Macro Recall (%) Macro F1 (%) Description

Spectrogram-only 77 76 74 74 Uses only acoustic spectrogram features;

model lacks semantic modeling capability

wavavec 2.0-only Utilizes semantic representations; stron

model (3-layer 88.67 88.22 88.75 88.19 : 1antic represt  strong
emotional discriminability

unfreeze)

Weighted fusion 90.67 90.4 90.62 90.32 Linear weighted combination of branch
outputs; improves overall performance
Employs dynamic weight allocation;

Gated fusion 88 87.97 86.87 87.08 slightly unstable under small-sample
conditions

Logistic regression 92.67 92.36 9025 92.24 Adaptive probability-space fusion;

fusion ' ' ' ' achieves the best overall performance

As shown in Table V, the choice of fusion strategy
significantly impacts model performance.

Under single-branch conditions, the spectrogram-only model
achieves only 77.0% accuracy, indicating that low-level acoustic
features alone are insufficient to represent complex emotional
states. In contrast, the wav2vec 2.0-only model achieves 88.7%
accuracy, demonstrating that semantic-level representations
derived from pretrained models offer stronger discriminative
power for emotion classification.

Among the fusion strategies, the weighted fusion approach
linearly combines the outputs of both branches, improving
performance to 90.7%, which confirms the complementarity
between semantic and acoustic features. The gated fusion
mechanism adaptively adjusts feature weights based on the input
but exhibits training instability under limited data, leading to a
slight drop in accuracy (88.0%). In comparison, the proposed
logistic regression fusion achieves adaptive weighting in
probability space with a smaller parameter scale and more stable
convergence. It attains the best results across all metrics
(Accuracy = 92.7%, Macro-F1 = 92.2%), demonstrating the
superiority and robustness of the proposed fusion mechanism.

These findings indicate that probability-space fusion
effectively integrates the discriminative strengths of both feature
domains, achieving simultaneous improvements in accuracy and
stability without increasing model complexity. To provide a
more intuitive comparison, Fig. 4 illustrates the performance
differences among various fusion strategies.

As shown in Fig. 4, the proposed logistic regression fusion
method significantly outperforms other strategies in both

Accuracy and Macro-F1, exhibiting stronger feature integration
and discriminative capability. This further validates the
effectiveness and efficiency of the proposed adaptive fusion
framework developed for speech emotion recognition.

Comparison of Fusion Strategies on RAVDESS

Accuracy (%)
Macro-F1 (%)

80

60

Score (%)

20

0
w2 &
oo ecuoq ot ec?

Fig. 4. Comparison of different fusion strategies on the RAVDESS dataset.

F. Discussion

Section IV(C) to Section I1VV(E) have systematically verified
the efficacy of the proposed parallel dual-branch fusion
architecture through comprehensive experimental results. To
attain a deeper understanding of the underlying mechanisms
driving its performance improvements, this section provides a
detailed analysis from three complementary perspectives—

146 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

architectural design, optimization strategy, and feature fusion
mechanism—and further discusses the empirical findings from
the layer unfreezing and fusion strategy experiments.

1) Model mechanism and sources of performance
improvement: The superior performance of the proposed model
primarily stems from the synergistic effects of three key factors:
feature complementarity, branch-wise decoupled optimization,
and probability-space fusion.

a) Complementarity of feature representations: The
wav2vec 2.0 branch, pretrained on large-scale unlabeled speech
corpora, captures high-level semantic and prosodic
representations—such as rhythm, intonation variation, and
emotional dynamics—thereby enhancing the model’s global
awareness of emotional cues. Meanwhile, the spectrogram
branch, based on a CNN-Transformer hybrid structure, models
acoustic energy distributions and harmonic patterns, exhibiting
higher sensitivity to fine-grained spectral variations. By jointly
focusing on the semantic—prosodic and acoustic—spectral
domains, the two branches form a multi-level complementary
representation. This enables the fusion layer to learn more
discriminative emotion features from multi-perspective
information sources.

b) Branch decoupling and optimization stability: A stage-
wise training strategy is employed—each branch is optimized
independently before fusion. This decoupled design effectively
mitigates the gradient interference and feature competition
commonly observed in end-to-end joint training, allowing each
branch to converge independently under its optimal learning
rate and scheduling policy. As a result, the model generates
more stable and diverse emotional representations, leading to
enhanced training stability and generalization performance
compared with single-stage joint optimization.

c) Effectiveness of probability-space fusion: During
fusion, logistic regression is applied to learn the optimal
weighting of branch-level Softmax probability vectors.
Compared with complex gating or attention-based mechanisms,
this lightweight design achieves adaptive fusion with
significantly fewer parameters. It accelerates convergence,
improves stability, and achieves the highest recognition
accuracy (92.7%) and Macro-F1 (92.2%) on the RAVDESS
dataset. As illustrated in Fig. 4 and Table V, probability-space
fusion achieves an optimal balance between performance and
robustness.

2) Insights from the layer unfreezing experiments: The
wav2vec 2.0 layer unfreezing experiments (Section IV D)
further reveal the relationship between model performance and
the depth of pretrained feature adaptation. Results indicate a
clear “rise-then—fall” trend as the number of unfrozen layers
increases, with the three-layer unfreezing configuration (Layer-
3) achieving the best performance (Accuracy = 88.67%, Macro-
F1=88.19%).

This finding underscores that mid-level semantic
representations in  wav2vec 2.0 possess the highest
transferability for emotion recognition tasks. Shallow layers
mainly encode low-level acoustic information with limited
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semantic abstraction, while deeper layers tend to introduce task-
specific bias, causing overfitting and feature drift.

Therefore, moderate unfreezing depth effectively balances
pretrained stability and task adaptability, yielding more
discriminative semantic embeddings for downstream fusion.

3) Emotion category discriminability and limitations: As
observed from the confusion matrix (Fig. 2), the model achieves
near-perfect recognition for high-energy emotions such as happy,
sad, and surprise, with diagonal entries approaching 100%. In
contrast, mild confusion occurs among low-energy or
acoustically similar emotions, particularly neutral-calm and
angry—fear—disgust. This suggests that the model exhibits strong
discriminative capability for emotions with distinct prosodic
variations, yet still faces challenges in distinguishing
acoustically overlapping or data-sparse categories.

Two major factors contribute to this phenomenon:

e Several high-arousal negative emotions share
overlapping spectral characteristics at the acoustic level,
making them inherently harder to separate.

e The current model still faces limitations in feature
distribution learning under class-imbalance conditions.

Future work could address these challenges by introducing
adversarial learning or emotion-aware reweighting mechanisms,
which may enhance recognition performance for ambiguous or
boundary emotions.

V. CONCLUSION

This study addresses the long-standing challenge in SER—
that is, the difficulty of simultaneously capturing time—
frequency structures and semantic dependencies using a single
feature representation. To this end, a parallel dual-branch fusion
architecture is proposed, consisting of a wav2vec 2.0 branch and
a CNN-Transformer spectrogram branch, which respectively
extract semantic-level and acoustic-level features. A logistic
regression fusion layer is further introduced to achieve adaptive
weighting in probability space, effectively integrating contextual
and time—frequency information. Experimental results on the
RAVDESS dataset demonstrate that the proposed model
achieves an accuracy of 92.7% and a Macro-F1 score of 92.2%,
outperforming the best existing baseline by approximately 3.2
percentage points. The layer unfreezing experiment validates the
effectiveness of unfreezing the last three layers of wav2vec 2.0,
while the fusion strategy comparison confirms the superiority of
probability-space fusion in both performance and stability.

Result analysis shows that the model excels at recognizing
high-energy and distinct emotions such as happy, sad, and
surprise, with diagonal recognition rates approaching 100% in
the confusion matrix. However, slight confusion remains among
acoustically similar or data-sparse categories such as neutral—
calm and angry—fear. In summary, the proposed framework
effectively balances performance and robustness through feature
complementarity, branch decoupling, and lightweight fusion,
fully validating the effectiveness of parallel dual-branch
modeling in SER tasks.
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Future work will proceed in three directions:

1) Validating the model’s transferability on multilingual
and cross-domain corpora to enhance generalization;

2) Extending the framework to multimodal emotion
perception by integrating speech, facial expressions, and textual
cues; and

3) Pursuing model lightweighting and real-time inference
optimization, as well as exploring emotion dynamics modeling
and interpretability mechanisms, to promote practical
deployment in education, healthcare, and human-computer
interaction scenarios.
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