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Abstract—Speech Emotion Recognition (SER) has become a 

pivotal topic within affective computing and human–computer 

interaction, where the core challenge lies in jointly capturing both 

the time–frequency structure and the semantic context of speech. 

To overcome the shortcomings of current approaches—including 

single-view feature representation, the lack of emotional 

discriminability in self-supervised models, and suboptimal 

complementarity among fusion strategies—this study proposes a 

parallel dual-branch fusion architecture for SER. The framework 

consists of a wav2vec 2.0 branch and a CNN–Transformer 

spectrogram branch, which respectively extract contextual 

semantic representations from raw waveforms and explicit time–

frequency features from spectrograms. A logistic regression fusion 

mechanism is further introduced at the decision level to achieve 

adaptive weighting in the probability space, thereby fully 

leveraging the complementary strengths of the two feature types. 

Experiments carried out on the RAVDESS audio subset showed 

that the proposed model surpassed several mainstream baselines 

(e.g., CNN-n-GRU and RELUEM), achieving 92.7% accuracy and 

92.2% Macro-F1, with an average improvement of about 3.2 

percentage points. The layer unfreezing studies confirmed the 

effectiveness of partial fine-tuning for transferring pretrained 

features, while the comparative experiments on fusion strategies 

validated the superiority of probability-space fusion in both 

performance and stability. Overall, the proposed framework 

achieves simultaneous gains in accuracy and robustness through 

feature complementarity, branch decoupling, and lightweight 

fusion. Future work will explore cross-lingual generalization, 

multimodal extensions, lightweight deployment, and dynamic 

emotion modeling, contributing to more efficient affective 

computing and intelligent interaction systems. 

Keywords—RAVDESS; Speech Emotion Recognition; 
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I. INTRODUCTION 

Speech Emotion Recognition (SER) is a fundamental field 
of study within affective computing and human–computer 
interaction, focused on automatically identifying a speaker’s 
emotional state from vocal signals. With its ability to enhance 
natural communication between humans and machines, SER has 
demonstrated broad application potential in healthcare 
monitoring, in-vehicle safety systems, intelligent customer 
service, educational assistance, and virtual human interaction [1, 
2]. 

Early approaches primarily utilized manually engineered 
audio attributes, including Mel-Frequency Cepstral Coefficients 
(MFCCs), pitch, energy, and resonance peaks, alongside 

traditional classifiers such as Support Vector Machines (SVMs) 
and Gaussian Mixture Models (GMMs) [3,4]. Although 
effective in constrained scenarios, these methods struggle with 
cross-speaker, cross-lingual, and noise-robust emotion 
recognition. The advent of deep learning has revolutionized the 
field: architectures including Convolutional Neural Networks 
(CNNs), Long Short-Term Memory networks (LSTMs), as well 
as Transformers have significantly boosted performance on SER 
tasks [5-7]. Moreover, integrating residual learning and attention 
mechanisms further enhances the modeling of emotional cues 
[8, 9]. 

In recent years, self-supervised learning (SSL) frameworks, 
exemplified by wav2vec 2.0 [10] and HuBERT [11], have 
enabled pretraining on large-scale unlabeled speech corpora, 
producing robust and transferable speech representations. These 
models achieve remarkable performance in low-resource SER 
scenarios, mitigating data scarcity issues. Meanwhile, end-to-
end architectures directly model raw waveforms [12,13], 
eliminating complex feature engineering and improving model 
generalization. Beyond representation learning, fusion strategies 
have emerged as another critical direction to boost emotion 
recognition performance. By integrating features across multiple 
modalities or hierarchical levels, fusion models can exploit 
complementary information. For instance, multimodal fusion 
networks, feature excitation–aggregation models [14], and 
Aural Transformers [15] have demonstrated substantial gains in 
affective speech understanding. 

Despite these advances, existing SER methods still face 
three major challenges: 

First, single-path feature modeling often fails to jointly 
capture both time–frequency structures and contextual 
dependencies, leading to incomplete emotion representation. 

Second, while SSL models like wav2vec 2.0 provide 
generalizable speech embeddings, they frequently struggle to 
extract emotion-specific fine-grained cues from limited labeled 
corpora, thus limiting recognition accuracy. 

Finally, most fusion techniques remain confined to simple 
feature-level concatenation or independent decision-level 
integration, without fully leveraging the complementarity 
among heterogeneous representations. 

To address the aforementioned limitations, this study 
proposes a parallel dual-branch fusion architecture for Speech 
Emotion Recognition. One branch takes spectrograms as input 
and employs a CNN–Transformer hybrid network to model 
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time–frequency dependencies, while the other branch processes 
raw waveforms using the pretrained wav2vec 2.0 model to 
extract contextualized speech representations. The outputs of 
both branches are then integrated at the model level through a 
decision-fusion mechanism, followed by an emotion classifier. 

The key contributions of this study can be summarized as 
follows: 

1) Parallel dual-branch modeling framework: A unified 

architecture is designed, where the spectrogram branch and 

wav2vec 2.0 branch operate in parallel to capture 

complementary time–frequency and contextual cues, enabling 

multi-level emotional representation learning. 

2) Enhanced emotion-related feature representation: The 

introduction of the spectrogram branch provides explicit time–

frequency information, compensating for the limited emotional 

sensitivity of wav2vec 2.0 when fine-tuned on small-scale 

datasets. This enables the model to more comprehensively 

identify detailed features specific to emotions. 

3) Improved decision-level fusion mechanism: An 

optimized model-level fusion strategy designed to integrate the 

probabilistic outputs of both branches, fully leveraging their 

representational complementarity. Compared with single-path 

or conventional fusion schemes, the proposed approach 

demonstrates superior recognition accuracy and robustness. 

The rest of this study is structured as follows: Section II 
reviews related studies on speech emotion recognition. 
Section III presents the proposed parallel dual-branch 
architecture, including the spectrogram branch, wav2vec 2.0 
branch, and the fusion strategy. Section IV describes the 
experimental setup and performance analysis, covering dataset 
description, data augmentation, comparative methods, and 
ablation experiments. Finally, Section V offers the conclusion 
and outlines potential directions for future work.  

II. RELATED WORK 

A. Handcrafted Feature-Based Methods 

Initial studies on Speech Emotion Recognition (SER) mainly 
depended on manually designed acoustic features such as 
MFCCs, energy, pitch, and formants [3]. Huang et al. combined 
differential MFCC features with a BiLSTM–CNN hybrid 
network, attaining an accuracy exceeding 81% on the 
RAVDESS dataset [16]. Similarly, Gu et al. introduced a multi-
feature fusion strategy that performed well on both Tibetan and 
multilingual datasets [17]. Mishra et al. further enhanced 
performance using MFCC entropy features [3]. Additionally, 
sinusoidal model [18] and cross-lingual feature extraction [19] 
have also been explored for SER. 

Although these handcrafted approaches achieved promising 
results on small-scale datasets, they rely heavily on manual 
feature design and exhibit limited representational capacity, 
making it difficult to capture complex time–frequency variations 
and contextual dependencies. Consequently, their generalization 
ability under noisy or cross-lingual conditions remains 
insufficient. 

B. Deep Learning-Based Methods 

Deep learning methodologies have significantly advanced 
SER. CNNs excel at capturing local spectro-temporal features 
[5,20]; RNNs/LSTMs are well-suited for sequential modeling 
[7]; and Transformers effectively learn long-range dependencies 
[6]. Liu et al. proposed Res-Transformer, which integrates 
residual connections into a Transformer encoder, achieving 
84.89% accuracy on RAVDESS [8]. Wei et al. developed a 
parallel CNN–Transformer architecture that further improved 
SER performance [9]. Similarly, Zhang et al. [21] and Issa et al. 
[5] confirmed the efficacy of deep CNNs for emotional speech 
analysis. 

Despite these advances, deep learning models often require 
large-scale labeled datasets and tend to overfit in low-resource 
scenarios. Moreover, different architectures have 
complementary strengths—CNNs for local detail modeling and 
Transformers for global dependency learning—yet it remains 
challenging to balance both aspects within a single network. 

C. Self-Supervised and End-to-End Methods 

Trigeorgis et al. introduced an end-to-end SER framework 
that directly models raw waveforms without handcrafted 
preprocessing [12]. Nfissi et al. proposed the CNN-n-GRU 
model, which achieved outstanding results in waveform-based 
SER [13]. Recently, self-supervised learning models such as 
wav2vec 2.0 [10] and HuBERT [11] have demonstrated strong 
potential by pretraining on massive unlabeled corpora to learn 
robust and transferable speech representations. Pepino et al. 
combined wav2vec 2.0 with Transformer encoders for emotion 
recognition, further validating the advantages of self-supervised 
representations [22]. 

These methods avoid complex feature engineering and 
achieve improved generalization, yet they still struggle to extract 
emotion-specific fine-grained cues in small-sample settings. 
Moreover, purely end-to-end approaches often neglect the 
explicit time–frequency patterns inherent in spectrograms, 
which are essential for accurate emotional inference. 

D. Feature and Multimodal Fusion Methods 

Feature fusion and multimodal integration have recently 
drawn increasing attention. 

Qi et al. proposed MFGCN [1] and AFEA-Net [14], 
demonstrating the advantages of combining acoustic, visual, and 
linguistic cues. Luna-Jiménez et al. introduced a multimodal 
Aural Transformer framework [15], while Mustaqeem et al. 
proposed AAD-Net [23], achieving excellent end-to-end 
recognition performance. Smietanka et al. [24] enhanced the 
embedding representations by leveraging low-level features, and 
Zhang et al. [25] proposed RELUEM, a model grounded in 
reinforcement learning, which improved emotional feature 
discrimination. 

Nevertheless, most existing fusion methods are limited to 
simple feature-level concatenation or independent decision-
level fusion, lacking the ability to fully exploit inter-feature 
complementarity. Furthermore, some approaches involve high 
computational complexity, which makes it challenging to 
achieve a balance between effectiveness and efficiency. 
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In summary, existing SER approaches face several inherent 
limitations. It remains highly valuable to develop a fusion 
architecture capable of jointly integrating contextual 
information and time–frequency representations, thereby 
achieving comprehensive and robust emotion understanding. 

III. METHODS 

A. Overall Architecture 

The proposed parallel dual-branch fusion architecture 
consists of two independent yet complementary feature 
extraction pathways: 

 wav2vec 2.0 branch: This branch fine-tunes a pretrained 
wav2vec 2.0 model to obtain context-aware deep speech 

representations, effectively capturing semantic and 
prosodic cues directly from raw audio waveforms. 

 Spectrogram branch: Based on 48 kHz Mel-spectrogram 
inputs, this branch employs a CNN–Transformer hybrid 
network to extract explicit time–frequency features, 
enhancing the model’s ability to detect local changes in 
the spectrum and variations over time. 

Each branch independently produces an emotion prediction, 
and their probabilistic outputs are subsequently integrated 
through a decision-level fusion mechanism to yield the final 
classification result. The comprehensive framework of the 
proposed model is depicted in Fig. 1. 

 

Fig. 1. General architecture of the proposed model. 

B. Input Preprocessing 

To ensure the complementarity between the signal-level and 
time–frequency-level representations, we designed a systematic 
data preprocessing pipeline. This process aims to generate dual-
path inputs compatible with both the wav2vec 2.0 and 
spectrogram branches, while enhancing the model’s ability to 
generalize and its robustness through noise augmentation and 
feature normalization. 

Specifically, all raw speech recordings were first trimmed or 
padded to a uniform duration of three seconds, ensuring 
consistent input length across samples. To satisfy the 
requirements of the two branches, a dual-sampling strategy was 
adopted: on one hand, each waveform was downsampled to 16 
kHz for the wav2vec 2.0 branch to match its pretrained sampling 
rate; on the other hand, the original 48 kHz high-resolution audio 
was retained to compute 128-dimensional log-Mel spectrograms, 
providing richer acoustic details for the spectrogram branch. 

During data augmentation, additive white Gaussian noise 
(AWGN) was injected into the 48 kHz waveforms, with random 
signal-to-noise ratios (SNRs) applied to generate multiple 
augmented samples. Each augmented waveform was 
subsequently converted into both a 16 kHz version and its 
corresponding 48 kHz Mel-spectrogram, ensuring dual-path 
consistency while effectively expanding the training set. This 
strategy enhances the model’s adaptability and resilience in 
acoustically demanding conditions. 

Finally, to mitigate amplitude variations and dynamic range 
imbalances across recordings, the spectrogram features were 
standardized before being fed into the network. The 
normalization parameters were estimated from the training 
dataset and consistently applied uniformly to both the validation 
and test datasets, maintaining a stable feature distribution. Such 
normalization facilitates smoother gradient propagation and 
faster convergence during optimization. 
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Through this preprocessing pipeline, the speech data are 
jointly aligned in temporal and spectral domains, establishing a 
unified and robust foundation for parallel dual-branch feature 
extraction and subsequent decision-level fusion. 

C. wav2vec 2.0 Branch 

The wav2vec 2.0 branch is designed to learn context-
dependent emotional representations directly from raw audio 
waveforms. Unlike conventional methods that rely on 
handcrafted acoustic descriptors or shallow convolutional 
features, wav2vec 2.0 leverages self-supervised learning 
techniques applied to extensive unlabeled speech corpora. 
Through this paradigm, the model acquires high-level semantic 
and prosodic patterns of speech without explicit emotion 
annotations, enabling strong transferability in low-resource SER 
scenarios. 

1) Model principle: The wav2vec 2.0 framework consists of 

two major parts: a convolutional feature encoder and a context 

network based on the Transformer model. The convolutional 

encoder converts a continuous speech waveform 𝐱 =
[𝑥1, 𝑥2, … , 𝑥𝑇]  into a low-dimensional latent representation 𝑍 

through multiple one-dimensional convolutional layers: 

𝑍 = 𝑓enc(𝐱) ∈ ℝ𝐿×𝑑𝑧                     (1) 

where, 𝐿 signifies the quantity of frames after temporal 
downsampling, while 𝑑𝑧  indicates the dimensionality of the 
convolutional features. This stage primarily captures local 
acoustic structures and short-term energy variations in the 
waveform. 

The Transformer encoder further models global 
dependencies within the feature sequence: 

𝐻 = 𝑓tr(𝑍) = [ℎ1, … , ℎ𝐿], ℎ𝑖 ∈ ℝ768             (2) 

The Transformer model learns long-range contextual 
relationships among speech frames by employing the multi-head 
self-attention mechanism, effectively encoding intonation, 
rhythm, and prosodic fluctuations that are strongly correlated 
with emotional expression. 

In its pretraining stage, wav2vec 2.0 learns rich speech 
context representations by reconstructing masked speech frames 
through contrastive loss on large-scale unlabeled corpora. In the 
present study, we implement partial fine-tuning of the pretrained 
wav2vec 2.0 model on the downstream emotion recognition 
task, thereby activating its latent emotion-discriminative 
capability while preserving the general acoustic knowledge 
learned during pretraining. 

2) Partial fine-tuning strategy: Since emotional speech 

datasets are typically small in scale, fully fine-tuning all 

parameters of the wav2vec 2.0 model can often result in 

overfitting. To address this issue, a systematic comparison was 

conducted across twelve fine-tuning configurations, ranging 

from unfreezing only the topmost layer to unfreezing all twelve 

Transformer layers. The experimental results revealed that 

unfreezing the last three Transformer encoder layers together 

with the feature projection layer achieved the best validation 

performance and the most stable convergence. 

Accordingly, this study adopts a “three-layer unfreezing” 
partial fine-tuning strategy, in which only the high-level 
semantic parameters are updated, while the lower-level acoustic 
encoder remains frozen. Let the model parameters be denoted as 

Θ = {Θf, Θt, Θp} , where Θt
(K−3:K)

 represents the trainable 

parameters of the top three Transformer layers, and Θp denotes 

the feature projection parameters. The training objective is 
defined as follows: 

min
Θt

(K−3:K)
, Θp

ℒ (y, p)              (3) 

where, ℒ represents the cross-entropy loss function, 𝑦 is the 
true emotion label, and 𝑝 signifies the predicted probability 
distribution over the emotional states. 

3) Utterance-level representation and classification 

structure: The Transformer encoder outputs a sequence of 

frame-level hidden states, which are aggregated via temporal 

mean pooling to form an utterance-level embedding: 

h̅ =
1

L
∑ hi

L
i=1                   (4) 

where, h̅ ∈ ℝ768  denotes the global representation of the 
entire speech segment. 

During the classification stage, a two-layer multilayer 
perceptron (MLP) is employed to project and nonlinearly 

transform h ̅: 

𝑎1 = σ(𝑊1h̅ + 𝑏1)                      (5) 

𝑎2 = σ(𝑊2a1 + 𝑏2)                       (6) 

𝑃𝑤2𝑣 = softmax(𝑊3a2 + 𝑏3)          (7) 

where, 𝜎 (⋅) denotes the ReLU activation function. A 
Dropout layer with a ratio of 0.3 is applied after each fully 
connected layer to alleviate overfitting. The dimensional 

transitions are: h̅(768) → a1(256) → a2(256) → 𝑃𝑤2𝑣(8). 

This hierarchical mapping progressively compresses the 
semantic space while enhancing the discriminability of 
emotional representations. By integrating nonlinear 
transformations and moderate regularization, the classifier 
effectively bridges the contextual embedding from wav2vec 2.0 
to the eight-category emotion prediction task. 

4) Functional role and advantages of the branch: The 

wav2vec 2.0 branch is capable of directly capturing emotion-

related prosodic variations, energy fluctuations, and contextual 

dependencies from raw waveforms without relying on 

handcrafted acoustic features. Compared with the spectrogram 

branch, its advantages can be summarized as follows: 

 Pretrained structural awareness: Benefiting from large-
scale self-supervised pretraining, the model possesses a 
strong perceptual understanding of speech structure, 
enabling rapid adaptation to downstream emotion 
recognition tasks. 

 Efficient partial fine-tuning: By employing the partial 
fine-tuning strategy, the number of trainable parameters 
is effectively reduced, thereby enhancing the model’s 
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robustness and generalization when operating with 
limited data. 

 Complementary abstract representation: The generated 
utterance-level embeddings are highly semantic and 
abstract, complementing the explicit time–frequency 
features extracted by the spectrogram branch. 

Finally, the emotion probability vector 𝑃𝑤2𝑣  produced by 
this branch is integrated with the spectrogram branch output at 
the decision-fusion stage, providing high-level semantic support 
for the subsequent multimodal emotion recognition process. 

D. Spectrogram Branch 

The spectrogram branch is designed to extract explicit 
acoustic representations from the time–frequency domain, 
thereby complementing the semantic and contextual modeling 
capability of the wav2vec 2.0 branch. This branch builds upon 
our previous work [9], with structural refinements and fusion 
optimization introduced in the current study. As illustrated in 
Fig. 1 (highlighted in light orange), it encompasses the complete 
processing pipeline—from data preprocessing and Mel-
spectrogram extraction to convolution–attention hybrid 
modeling. 

1) Input representation: The input to this branch is a log-Mel 

spectrogram generated from 48 kHz audio, comprising 128 Mel 

filters and 278-time frames. The resulting input tensor has a 

shape of 1×128×278, corresponding to the channel, frequency, 

and time dimensions, respectively. This representation inherits 

the spectrogram construction and additive white Gaussian noise 

(AWGN) augmentation strategy proposed in [9], while further 

improvements are introduced in feature normalization and 

temporal alignment, ensuring that the spectrogram input is 

strictly synchronized with the waveform input used in the 

wav2vec 2.0 branch. 

2) Network architecture: The spectrogram branch adopts a 

hybrid Convolution–Transformer–Cross-Attention framework 

for hierarchical acoustic modeling. 

a) Convolutional module: The convolutional front-end 

consists of four residual CNN blocks. Each block comprises 

two convolutional layers, followed by Batch Normalization and 

ReLU activation functions. These blocks are interconnected 

through skip connections, which serve to improve gradient 

propagation and facilitate the reuse of features. This module 

captures short-term energy variations and formant structures 

while progressively downsampling the feature map. The feature 

dimensions evolve as follows: (1×128×278) → (16×64×139) → 

(32×32×69) → (64×16×34) → (64×8×17). 

b) Transformer encoder: A four-layer Transformer 

encoder is utilized to effectively model long-range temporal 

dependencies. The convolutional output is first downsampled 

using a 2D pooling window of [2, 4], resulting in a 64 × 69 

feature map. Before entering the Transformer, the dimensions 

are rearranged to treat the time frames as the primary sequential 

dimension, fitting the encoder’s input format. After encoding, 

the output tensor (shape = 69×64) is restored to batch-first form. 

Each Transformer layer has a hidden size of 64 and 4 attention 

heads, enabling it to model global rhythm and intensity 

variations of emotional speech along the temporal dimension. 

c) Cross-attention module: To achieve complementary 

modeling between convolutional and sequential features, a 

Cross-Attention module is employed. Here, the convolutional 

features function as queries (Q), while the Transformer outputs 

act as keys (K) and values (V). Through attention-weighted 

interaction, the two feature spaces are fused to produce a 64-

dimensional integrated representation that simultaneously 

encodes time–frequency detail and contextual dependency. The 

fused vector is then concatenated with the flattened 

convolutional feature, forming an 8768-dimensional joint 

representation, which is fed into the final classifier. 

3) Classification and feature evolution: The classification 

head operates on a joint representation obtained by 

concatenating the flattened CNN feature with a 64-dimensional 

vector produced by the Cross-Attention module. Concretely, the 

spectrogram input 1×128×278 is processed by the convolutional 

front-end into a feature map 64×8×17, which is flattened to 8704 

dimensions. In parallel, the raw spectrogram is downsampled by 

a 2-D pooling [2, 4] to a 64×69 map and passed through a 4-layer 

Transformer (d=64, 4 heads), yielding a sequence of shape 

69×64. Using Cross-Attention (query = CNN flatten 8704 → 

proj., key/value = Transformer output 69×64), the model 

produces a 64-dimensional fused vector that captures contextual 

dynamics. The two parts are then concatenated to form an 8768-

dimensional feature (8768=8704⊕64), which a single fully 

connected layer maps to the 8 emotion categories. 

4) Functional role: Within the overall system, the 

spectrogram branch is responsible for explicit acoustic 

modeling, focusing on energy distribution, formant resonance, 

and prosodic patterns that characterize emotional tone at the 

physical level. When integrated with the semantic 

representations learned by the wav2vec 2.0 branch, the two 

pathways form a complementary feature hierarchy—from time–

frequency to semantic space—providing a more stable and 

discriminative foundation for final emotion classification. 

E. Decision-Level Fusion 

To fully exploit the complementary strengths of the two 
branches at the semantic and acoustic levels, a logistic 
regression–based fusion mechanism is introduced after the 
classification layer. This approach maintains the independence 
of each branch while achieving optimal emotional decision 
integration through probability-space learning. 

Let, the wav2vec 2.0 branch and the spectrogram branch 
respectively output the predicted probability vectors over 𝐶 

emotion classes as: 𝑃𝑤2𝑣 = [𝑝𝑤2𝑣
(1)

, 𝑝𝑤2𝑣
(2)

, . . . , 𝑝𝑤2𝑣
(𝐶)

], 𝑃𝑠𝑝𝑒𝑐 =

[𝑝𝑠𝑝𝑒𝑐
(1)

, 𝑝𝑠𝑝𝑒𝑐
(2)

, . . . , 𝑝𝑠𝑝𝑒𝑐
(𝐶)

] , where 𝐶=8 denotes the number of 

emotion categories, and each element represents the confidence 
score assigned by the corresponding branch. 

The two vectors are concatenated in probability space to 
form the fusion input feature: 

𝑓 = [𝑃𝑤2𝑣; 𝑃𝑠𝑝𝑒𝑐] ∈ ℝ2𝐶                   (8) 
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where, “[;]” denotes vector concatenation. This combined 
vector encodes the independent judgments of the semantic and 
acoustic branches for each emotion category. 

The logistic regression model performs a linear mapping 
followed by softmax normalization to generate the final fused 
prediction: 

𝑃𝑓𝑢𝑠𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐿𝑅𝑓 + 𝑏𝐿𝑅)            (9) 

here, 𝑊𝐿𝑅 ∈ ℝC×2𝐶 and 𝑏𝐿𝑅 denote the trainable parameters 
and bias term of the logistic regression layer. This formulation 
allows the model to learn optimal linear combinations of branch-
level probabilities across emotion classes. 

During the training process, the cross-entropy loss is 
employed to minimize the divergence between the predicted and 
true distributions: 

ℒfuse = − ∑ yi log(pfuse

(i) )C
i=1                 (10) 

where, 𝑦 = [𝑦1, . . . , 𝑦𝐶]  denotes the one-hot ground-truth 

label, while 𝑝fuse
(𝑖)

 represents the predicted probability for class 𝑖. 
By maximizing the likelihood of the correct class, the logistic 
regression layer learns the optimal fusion parameters [𝑊𝐿𝑅 , 𝑏𝐿𝑅]. 

Unlike fixed-weight or gating-based strategies, the proposed 
fusion mechanism possesses learnable and adaptive parameters, 
enabling it to dynamically adjust the relative contributions of 
both branches across different emotion types. 

For instance, when the wav2vec 2.0 branch excels at 
semantically driven categories (e.g., happy, sad), and the 
spectrogram branch better captures acoustically dominant 
emotions (e.g., angry, calm), the logistic regression model 
automatically rebalances their influences through parameter 
optimization. 

The resulting fused probability vector 𝑃𝑓𝑢𝑠𝑒  serves as the 

final system output, providing a unified basis for performance 
evaluation and result analysis. Experimental results demonstrate 
that this fusion strategy, while maintaining computational 
efficiency, yields notable improvements in overall accuracy and 
robustness. 

IV. EXPERIMENTS 

A. Dataset and Data Augmentation Strategy 

All experiments were conducted on the RAVDESS (Ryerson 
Audio-Visual Database of Emotional Speech and Song) dataset. 
This corpus comprises recordings from 24 professional actors, 
evenly divided by gender (12 male and 12 female), and covers 
eight emotion categories: happy, fearful, surprised, sad, neutral, 
angry, disgust, and calm. Each utterance is expressed at two 
intensity levels, namely normal and strong. This study utilized 
exclusively the speech subset, consisting of 1,440 audio samples 
with an average duration of approximately 3 to 4 seconds per 
clip. 

To ensure balanced emotion distribution, a stratified random 
split was employed, dividing the data into training, validation, 
and test subsets with an approximate proportional distribution of 
8:1:1. During training, additive white Gaussian noise (AWGN) 
augmentation was applied only to the training set to enhance 
model robustness. For each training utterance, three augmented 
versions were generated with randomly selected signal-to-noise 
ratios (SNRs) of 10, 20, and 30 dB. The validation and test 
datasets remained clean and unaltered, preserving the original 
audio quality for fair evaluation. 

The detailed data split statistics are summarized in Table Ⅰ. 

TABLE I DATA PARTITION AND SAMPLE STATISTICS 

Subset Number of Samples Percentage (%) Description 

Training set 1147 80 Used for model training with AWGN-based augmentation (3 SNR levels: 10, 20, 30 dB) 

Validation set 143 10 Used for adjusting hyperparameters and choosing the best model 

Test set 150 10 Used for the ultimate performance assessment under clean conditions 

Total 1440 100 Speech subset of RAVDESS (8 emotion classes × 24 speakers) 

Note: The training set was augmented threefold using additive white Gaussian noise (AWGN) at various SNR levels, while the validation and test datasets remained unaltered to ensure fair evaluation. 

B. Experimental Setup 

1) Experimental environment: All experiments were 

conducted on a single Linux workstation. The system 

configuration is summarized as follows: 

 Operating System: Ubuntu 22.04 

 GPU: NVIDIA RTX 5880 Ada (48 GB VRAM) 

 Python Version: 3.10 

 PyTorch Version: 2.1.0 

 CUDA Version: 12.4 

This hardware and software setup provides sufficient 
computational capacity for parallel training and fusion 
experiments involving the dual-branch architecture. 

2) Training configuration: Model training was performed in 

three stages: 

 Training the wav2vec 2.0 branch 

 Training the CNN–Transformer spectrogram branch  

 Optimizing the logistic regression fusion layer 

The main hyperparameter configurations for each stage are 
summarized in Table Ⅱ. 
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TABLE II TRAINING PARAMETERS FOR DIFFERENT STAGES 

Parameter wav2vec 2.0 Branch Spectrogram Branch Logistic Regression Fusion Layer 

Optimizer AdamW SGD Adam 

Initial Learning Rate 1×10⁻⁴ 1×10⁻² 5×10⁻⁴ 

Batch Size 32 32 32 

Epochs 120 500 30 

Loss Function CrossEntropyLoss CrossEntropyLoss CrossEntropyLoss 

Learning Rate Scheduler CosineAnnealing StepLR (step=10, γ=0.7) Fixed learning rate 

Early-Stopping Criterion 
Stop if validation accuracy does not 

improve for 10 epochs 

Stop if validation loss does not decrease for 

25 consecutive epochs 

Stop if validation Macro-F1 remains 

stable for 5 epochs 

All models employed CrossEntropyLoss as the classification 
objective. During training, gradient clipping (clip = 1.0) was 
applied to prevent gradient explosion and ensure stable 
optimization. The input utterances were standardized to a fixed 
duration of 3 seconds, with sampling rates of 16 kHz for the 
wav2vec 2.0 branch and 48 kHz for the spectrogram branch, 
respectively. 

C. Comparative Experiments 

To verify the effectiveness of the proposed parallel dual-
branch fusion architecture, this section presents comparative 
experiments against multiple baseline models and fusion 
strategies. Both quantitative and qualitative analyses are 
employed to assess the performance improvements and the 
interpretability of the results. 

1) Comparative methods and evaluation criteria: To 

objectively evaluate the performance advantages of the proposed 

model, several representative Speech Emotion Recognition 

(SER) methods from recent years (2023–2025) were selected as 

comparative baselines. 

The selection of baseline models follows these principles: 

 Recency and relevance: methods published within the 
last three years to reflect the current research trends; 

 Completeness of evaluation: models reporting 
comprehensive metrics (Precision, Accuracy, Recall, and 
F1-score) for fair comparison; 

 Speaker-dependent setting: consistent with this study’s 
evaluation protocol; 

 Audio-only modality: models that perform SER using 
acoustic features only, without incorporating visual or 
textual information; 

 Dataset consistency: all methods are evaluated on the 
RAVDESS dataset to ensure comparability under 
identical data conditions. 

The comparative methods are summarized as follows: 

a) MFCC-fusion (2023) [4]: This method integrates 

MFCC, ΔMFCC, and Δ²MFCC features via a PCA-based 

contribution fusion strategy and employs a BiLSTM–CNN 

hybrid network for emotion recognition. 

b) AFEA-Net (2025) [14]: AFEA-Net is an audio-based 

SER framework that fuses low-level Fbank features and high-

level WavLM embeddings through an excitation-and-

aggregation mechanism under a multi-task learning framework, 

effectively enhancing emotion-relevant feature alignment. 

c) CNN-n-GRU (2025) [13]: CNN-n-GRU is an end-to-

end model that directly learns emotional representations from 

raw speech waveforms by integrating convolutional layers to 

capture local features and gated recurrent units (GRUs) to 

model temporal dependencies. 

d) MFGCN (2025) [1]: MFGCN introduces a multimodal 

fusion graph convolutional network that captures semantic–

emotional dependencies among acoustic features. For fair 

comparison, only the audio-stream branch (MFGCN-a) is 

considered here, which utilizes WavLM acoustic embeddings 

and enhances emotion classification through multi-perspective 

fusion. 

e) IGRFXG (2025) [26]: IGRFXG is an ensemble-based 

feature selection framework integrating Random Forest, 

XGBoost ranking, and Information Gain mechanisms to select 

the most informative acoustic descriptors. The selected feature 

kernel is used with SVM and MLP classifiers, achieving strong 

results on audio-only RAVDESS data. 

f) RELUEM (2025) [25]: This model combines deep 

reinforcement learning with a convolution–recurrent hybrid 

structure, enabling adaptive speech emotion recognition 

through learned decision policies. It dynamically adjusts 

classification strategies to capture emotional transitions, 

achieving high stability and accuracy on the RAVDESS dataset. 

To comprehensively evaluate the performance of all models 
on the SER task, four widely used classification metrics were 
adopted: Accuracy, Precision, Recall, and F1-score. These 
metrics jointly reflect the ability to recognize patterns, 
generalization stability, and class-wise balance across emotional 
categories. 

2) Experimental results: Table Ⅲ summarizes the 

performance comparison between the proposed dual-branch 

fusion model and several representative SER methods using the 

RAVDESS dataset. The findings highlight the proposed 

framework's ability to enhance both recognition accuracy and 

feature robustness across emotional categories. 
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TABLE III PERFORMANCE COMPARISON OF VARIOUS SER METHODS ON THE RAVDESS DATASET (%) 

Method Year Accuracy (%) Precision Recall F1-score 

MFCC-Fusion [4] 2023 81.5 82.5 85.5 - 

AFEA-Net [14] 2025 80.3 80.8 80.6 80.4 

CNN-n-GRU [13] 2025 86.6 87.1 86.6 86.7 

MFGCN [1] 2025 85.7 85.7 85.1 85.4 

IGRFXG [26] 2025 79.3 - - - 

RELUEM [25] 2025 89.5 87 85 86 

Ours 2025 92.7 92.4 92.5 92.2 

From Table Ⅲ, it can be observed that the most recent state-
of-the-art SER methods have achieved recognition accuracies 
exceeding 80%, with deep feature learning models showing a 
clear advantage over traditional acoustic-feature-based 
approaches. Specifically, the conventional MFCC-Fusion (2023) 
model relies solely on handcrafted low-level acoustic descriptors 
and achieves an accuracy of 81.5%. In contrast, deep learning–
based approaches such as AFEA-Net (2025), CNN-n-GRU 
(2025), and MFGCN (2025) leverage multi-task learning, 
temporal feature extraction, and graph-based fusion, reaching 
accuracies of 80.3%, 86.6%, and 85.7%, respectively. The 
ensemble feature-selection model IGRFXG (2025) attains 
79.3%, while the reinforcement-learning-driven RELUEM 
(2025) demonstrates outstanding performance with an accuracy 
of 89.5%, highlighting the potential of dynamic policy 
optimization in emotion classification. 

In comparison, the proposed dual-branch fusion model 
attains the highest overall performance on all evaluation metrics, 
achieving 92.7% accuracy, 92.4% precision, 92.5% recall, and 
92.2% F1-score. Compared with the strongest baseline, 
RELUEM, the proposed method yields an accuracy gain of 
approximately 3.2 percentage points. 

This performance improvement primarily stems from the 
complementary nature of the dual-branch architecture: 

 wav2vec 2.0 branch: captures high-level semantic and 
prosodic cues, providing contextual information critical 
for emotional differentiation. 

 Spectrogram branch: models energy distribution and 
spectral dynamics, offering structured acoustic 
representations for emotion discrimination. 

 Logistic-regression fusion layer: adaptively re-weights 
the two feature spaces in the probability domain, 
balancing semantic and acoustic contributions for 
optimal decision fusion. 

These findings collectively highlight the effectiveness and 
robustness of the proposed dual-branch fusion framework in 
speech emotion recognition. To further investigate class-wise 
performance, the confusion matrix of the fused model applied to 
the RAVDESS dataset is shown in Fig. 2. 

 

Fig. 2. Confusion matrix of the proposed model applied to the RAVDESS 

dataset. 

Each cell indicates the count of samples corresponding to the 
true (row) and predicted (column) emotion columns, while the 
diagonal entries represent correctly classified samples. Overall, 
the model exhibits balanced performance across all eight 
emotion categories, with the diagonal cells showing notably 
higher counts than off-diagonal ones—demonstrating strong 
discriminative capability and stable classification behavior 
across emotional states. 

As shown in Fig. 2, the model achieves perfect recognition 
for happy and sad (20/20 correct each). For surprise, 18 out of 
20 samples are correctly identified, with 1 misclassified as 
neutral and 1 as fear. The disgust class records 19/20 correct 
predictions, with 1 sample misclassified as fear. Fear achieves 
18/20 correct, with 2 samples misclassified as disgust. Angry 
attains 17/20 correct, with 1 sample confused with calm and 1 
with sad. Mild confusions occur among low-arousal emotions: 
neutral has 9/10 correct with 1 misclassified as disgust, while 
calm has 18/20 correct with 1 misclassified as sad and 1 as angry. 

Overall, the model performs best on emotions with 
pronounced prosodic dynamics (e.g., happy, sad, surprise), 
whereas residual errors arise between acoustically similar or 
adjacent categories (e.g., neutral–calm and angry–fear–disgust). 
This pattern confirms that the proposed dual-branch fusion 
effectively captures complementary semantic and prosodic cues, 
delivering stable and interpretable SER performance on this split. 
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D. Layer Unfreezing Experiments of wav2vec 2.0 

To investigate the contribution of different representation 
layers within wav2vec 2.0 to the speech emotion recognition 
task, a systematic layer unfreezing experiment was conducted 
across its 12 Transformer encoder blocks. In this analysis, the 
range of trainable parameters was progressively expanded to 
explore the relationship between feature hierarchy and task 

adaptability. All experiments were performed under identical 
training data, optimizer, and hyperparameter settings, with only 
the number of unfrozen layers varied. 

For brevity and representativeness, four typical 
configurations—unfreezing 1, 3, 5, and 9 layers—are presented 
and analyzed. Table Ⅳ presents a summary of the performance 
results obtained from the RAVDESS dataset. 

TABLE IV PERFORMANCE COMPARISON OF WAV2VEC 2.0 UNDER DIFFERENT UNFREEZING DEPTHS (RAVDESS) 

Unfrozen Layers Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1 (%) Performance Description 

1 layer 82.67 83.63 80.63 81.22 
Dominated by shallow acoustic cues; 

limited semantic perception 

3 layers 88.67 88.22 88.75 88.19 
Best overall performance; balanced 

semantic–acoustic representation 

5 layers 88 87.22 86.88 86.81 
Slight overfitting observed as deeper 

layers are updated 

9 layers 17.33 5.0 16.25 7.42 
Model collapse due to the disruption of 

pretrained representations 

   
(a) Unfreezing 1 layer.                                                          (b) Unfreezing 3 layers 

   
(c) Unfreezing 5 layers.                                                                         (d) Unfreezing 9 layers 

Fig. 3. Training and validation accuracy curves of wav2vec 2.0 fine-tuning. 

As shown in Table Ⅳ, model performance exhibits a distinct 
“rise–then–fall” trend as the number of unfrozen layers increases. 
When only the first layer is unfrozen, the model mainly relies on 
low-level acoustic patterns, achieving 82.67% accuracy, which 
reflects limited emotional abstraction capability. Performance 
peaks when three layers are unfrozen, reaching 88.67% accuracy 
and 88.19% Macro-F1, indicating that the integration of low-
level acoustic and mid-level semantic representations yields the 
most effective balance. 

Further unfreezing up to five layers leads to a slight decline, 
suggesting feature drift and a growing risk of overfitting. When 
more than nine layers are unfrozen, the model collapses 
(accuracy drops to 17.33%), as the pretrained representations 
become severely distorted, undermining semantic stability and 
generalization ability. 

The corresponding training and validation curves under 
different unfreezing configurations are illustrated in Fig. 3, 
further confirming the degradation pattern observed with 
excessive parameter unfreezing. 
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In summary, across the full range of 1–12 layers unfreezing 
experiments, the configuration with the last three layers 
unfrozen (Layer-3 setting) achieved the best overall 
performance, highlighting the crucial role of mid-level semantic 
representations in wav2vec 2.0 for speech emotion recognition. 
These findings indicate that appropriately controlling the 
unfreezing depth not only maximizes the utilization of pretrained 
knowledge but also enhances both the transferability and 
stability of the model in downstream emotional tasks. 

E. Fusion Strategy Comparison Experiments 

To evaluate the performance differences among various 
fusion mechanisms within the dual-branch architecture, five 

groups of experiments were designed while keeping the 
backbone structure identical. The first two groups represent 
single-branch models, used to assess the independent modeling 
capability of the acoustic and semantic branches. The remaining 
three groups implement different fusion strategies, aiming to 
analyze the effectiveness of probability-space fusion. All 
experiments were conducted on the RAVDESS dataset, and the 
performance was evaluated using Accuracy, Precision, Recall, 
and Macro-F1 as the primary metrics. The detailed results are 
presented in Table Ⅴ. 

TABLE V PERFORMANCE COMPARISON OF DIFFERENT FUSION STRATEGIES ON THE RAVDESS DATASET 

Fusion Strategy Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1 (%) Description 

Spectrogram-only 

model 
77 76 74 74 

Uses only acoustic spectrogram features; 

lacks semantic modeling capability 

wav2vec 2.0-only 

model (3-layer 

unfreeze) 

88.67 88.22 88.75 88.19 
Utilizes semantic representations; strong 

emotional discriminability 

Weighted fusion 90.67 90.4 90.62 90.32 
Linear weighted combination of branch 

outputs; improves overall performance 

Gated fusion 88 87.97 86.87 87.08 

Employs dynamic weight allocation; 

slightly unstable under small-sample 

conditions 

Logistic regression 

fusion 
92.67 92.36 92.5 92.24 

Adaptive probability-space fusion; 

achieves the best overall performance 

As shown in Table Ⅴ, the choice of fusion strategy 
significantly impacts model performance. 

Under single-branch conditions, the spectrogram-only model 
achieves only 77.0% accuracy, indicating that low-level acoustic 
features alone are insufficient to represent complex emotional 
states. In contrast, the wav2vec 2.0-only model achieves 88.7% 
accuracy, demonstrating that semantic-level representations 
derived from pretrained models offer stronger discriminative 
power for emotion classification. 

Among the fusion strategies, the weighted fusion approach 
linearly combines the outputs of both branches, improving 
performance to 90.7%, which confirms the complementarity 
between semantic and acoustic features. The gated fusion 
mechanism adaptively adjusts feature weights based on the input 
but exhibits training instability under limited data, leading to a 
slight drop in accuracy (88.0%). In comparison, the proposed 
logistic regression fusion achieves adaptive weighting in 
probability space with a smaller parameter scale and more stable 
convergence. It attains the best results across all metrics 
(Accuracy = 92.7%, Macro-F1 = 92.2%), demonstrating the 
superiority and robustness of the proposed fusion mechanism. 

These findings indicate that probability-space fusion 
effectively integrates the discriminative strengths of both feature 
domains, achieving simultaneous improvements in accuracy and 
stability without increasing model complexity. To provide a 
more intuitive comparison, Fig. 4 illustrates the performance 
differences among various fusion strategies. 

As shown in Fig. 4, the proposed logistic regression fusion 
method significantly outperforms other strategies in both 

Accuracy and Macro-F1, exhibiting stronger feature integration 
and discriminative capability. This further validates the 
effectiveness and efficiency of the proposed adaptive fusion 
framework developed for speech emotion recognition. 

 

Fig. 4. Comparison of different fusion strategies on the RAVDESS dataset. 

F. Discussion 

Section IV(C) to Section IV(E) have systematically verified 
the efficacy of the proposed parallel dual-branch fusion 
architecture through comprehensive experimental results. To 
attain a deeper understanding of the underlying mechanisms 
driving its performance improvements, this section provides a 
detailed analysis from three complementary perspectives—
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architectural design, optimization strategy, and feature fusion 
mechanism—and further discusses the empirical findings from 
the layer unfreezing and fusion strategy experiments. 

1) Model mechanism and sources of performance 

improvement: The superior performance of the proposed model 

primarily stems from the synergistic effects of three key factors: 

feature complementarity, branch-wise decoupled optimization, 

and probability-space fusion. 

a) Complementarity of feature representations: The 

wav2vec 2.0 branch, pretrained on large-scale unlabeled speech 

corpora, captures high-level semantic and prosodic 

representations—such as rhythm, intonation variation, and 

emotional dynamics—thereby enhancing the model’s global 

awareness of emotional cues. Meanwhile, the spectrogram 

branch, based on a CNN–Transformer hybrid structure, models 

acoustic energy distributions and harmonic patterns, exhibiting 

higher sensitivity to fine-grained spectral variations. By jointly 

focusing on the semantic–prosodic and acoustic–spectral 

domains, the two branches form a multi-level complementary 

representation. This enables the fusion layer to learn more 

discriminative emotion features from multi-perspective 

information sources. 

b) Branch decoupling and optimization stability: A stage-

wise training strategy is employed—each branch is optimized 

independently before fusion. This decoupled design effectively 

mitigates the gradient interference and feature competition 

commonly observed in end-to-end joint training, allowing each 

branch to converge independently under its optimal learning 

rate and scheduling policy. As a result, the model generates 

more stable and diverse emotional representations, leading to 

enhanced training stability and generalization performance 

compared with single-stage joint optimization. 

c) Effectiveness of probability-space fusion: During 

fusion, logistic regression is applied to learn the optimal 

weighting of branch-level Softmax probability vectors. 

Compared with complex gating or attention-based mechanisms, 

this lightweight design achieves adaptive fusion with 

significantly fewer parameters. It accelerates convergence, 

improves stability, and achieves the highest recognition 

accuracy (92.7%) and Macro-F1 (92.2%) on the RAVDESS 

dataset. As illustrated in Fig. 4 and Table Ⅴ, probability-space 

fusion achieves an optimal balance between performance and 

robustness. 

2) Insights from the layer unfreezing experiments: The 

wav2vec 2.0 layer unfreezing experiments (Section IV D) 

further reveal the relationship between model performance and 

the depth of pretrained feature adaptation. Results indicate a 

clear “rise–then–fall” trend as the number of unfrozen layers 

increases, with the three-layer unfreezing configuration (Layer-

3) achieving the best performance (Accuracy = 88.67%, Macro-

F1 = 88.19%). 

This finding underscores that mid-level semantic 
representations in wav2vec 2.0 possess the highest 
transferability for emotion recognition tasks. Shallow layers 
mainly encode low-level acoustic information with limited 

semantic abstraction, while deeper layers tend to introduce task-
specific bias, causing overfitting and feature drift. 

Therefore, moderate unfreezing depth effectively balances 
pretrained stability and task adaptability, yielding more 
discriminative semantic embeddings for downstream fusion. 

3) Emotion category discriminability and limitations: As 

observed from the confusion matrix (Fig. 2), the model achieves 

near-perfect recognition for high-energy emotions such as happy, 

sad, and surprise, with diagonal entries approaching 100%. In 

contrast, mild confusion occurs among low-energy or 

acoustically similar emotions, particularly neutral–calm and 

angry–fear–disgust. This suggests that the model exhibits strong 

discriminative capability for emotions with distinct prosodic 

variations, yet still faces challenges in distinguishing 

acoustically overlapping or data-sparse categories. 

Two major factors contribute to this phenomenon: 

 Several high-arousal negative emotions share 
overlapping spectral characteristics at the acoustic level, 
making them inherently harder to separate. 

 The current model still faces limitations in feature 
distribution learning under class-imbalance conditions. 

Future work could address these challenges by introducing 
adversarial learning or emotion-aware reweighting mechanisms, 
which may enhance recognition performance for ambiguous or 
boundary emotions. 

V. CONCLUSION 

This study addresses the long-standing challenge in SER—
that is, the difficulty of simultaneously capturing time–
frequency structures and semantic dependencies using a single 
feature representation. To this end, a parallel dual-branch fusion 
architecture is proposed, consisting of a wav2vec 2.0 branch and 
a CNN–Transformer spectrogram branch, which respectively 
extract semantic-level and acoustic-level features. A logistic 
regression fusion layer is further introduced to achieve adaptive 
weighting in probability space, effectively integrating contextual 
and time–frequency information. Experimental results on the 
RAVDESS dataset demonstrate that the proposed model 
achieves an accuracy of 92.7% and a Macro-F1 score of 92.2%, 
outperforming the best existing baseline by approximately 3.2 
percentage points. The layer unfreezing experiment validates the 
effectiveness of unfreezing the last three layers of wav2vec 2.0, 
while the fusion strategy comparison confirms the superiority of 
probability-space fusion in both performance and stability. 

Result analysis shows that the model excels at recognizing 
high-energy and distinct emotions such as happy, sad, and 
surprise, with diagonal recognition rates approaching 100% in 
the confusion matrix. However, slight confusion remains among 
acoustically similar or data-sparse categories such as neutral–
calm and angry–fear. In summary, the proposed framework 
effectively balances performance and robustness through feature 
complementarity, branch decoupling, and lightweight fusion, 
fully validating the effectiveness of parallel dual-branch 
modeling in SER tasks. 
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Future work will proceed in three directions: 

1) Validating the model’s transferability on multilingual 

and cross-domain corpora to enhance generalization; 

2) Extending the framework to multimodal emotion 

perception by integrating speech, facial expressions, and textual 

cues; and 

3) Pursuing model lightweighting and real-time inference 

optimization, as well as exploring emotion dynamics modeling 

and interpretability mechanisms, to promote practical 

deployment in education, healthcare, and human–computer 

interaction scenarios. 
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