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Abstract—Convolutional neural networks (CNNs) were widely
used in object detection tasks. Usually, CNNs with strong object
detection performance were difficult to apply to small, mobile
embedded systems with limited computational resources due to
the large number of parameters. Aiming at this problem, the
lightweight improvement method for the safety helmet object
detection task based on YOLOV7 has been studied. The first step
was the lightweight improvement of the network. Taking YOLOv7
and YOLOvV7-Tiny as the basic networks, respectively, the
backbone network was improved using the MobileOne network.
YOLOvV7-MobileOne  (YOLOvV7-MO) and YOLOvV7-Tiny-
MobileOne (YOLOvV7-TMO) were obtained. Compared with the
original network parameters, the number of parameters
decreased by 36.8% and 37.9%, respectively. Verified on the
Pascal VOC dataset, the YOLOvV7-MO had a 3.7% decrease in
mAP @.5 compared to the YOLOvV7. The YOLOvV7-MO had a
9.8% increase in MAP @.5 compared to the YOLOvV7-TMO. The
second step was to improve the detection accuracy. The
Coordinate Attention (CA) module was integrated at different
positions of YOLOV7-MO and YOLOV7-TMO, respectively, to
obtain YOLOv7-MO-Coordinate Attention (YOLOv7-MOC) and
YOLOvV7-TMO-Coordinate Attention (YOLOvV7-TMOC).
Verified on the Pascal VOC dataset, YOLOv7-MOC improved
1.44% compared to YOLOv7-MOQO's mAP @.5 and reduced FPS
by 5.4Hz. Verified on the self-constructed two-wheeled cyclists
helmet dataset (TCHD), YOLOv7-MOC increased by 0.8%
compared to YOLOV7-MO's mAP @.5 and reduced FPS by 0.3Hz.
YOLOvV7-MOC increased by 1.0% compared to YOLOvV7's mAP
@.5 to 77.1%. The corresponding FPS was 28.7Hz higher,
reaching 89.3Hz. Finally, experiments were conducted using the
Raspberry Pi 4B embedded development board, based on the
Linux system and the Pytorch framework, with the YOLOvV7-
TMOC network model. The results proved that the improved
network model can be applied to the object detection of small
embedded systems.

Keywords—Object detection; YOLOv7; MobileOne; CA module;
TCHD

I.  INTRODUCTION

Two-wheelers have become one of the common means of
transportation. While they bring about convenience in
transportation, they also lead to a continuous increase in traffic
accidents. Such accidents often cause injuries to the riders of
two-wheelers. If the riders do not wear helmets for protection, it

will result in more serious head injuries. Safety helmets could
effectively reduce the degree of head injury caused by traffic
accidents to two-wheeled cyclists [1]. How to supervise and
ensure that two-wheeled cyclists wear helmets correctly when
riding on the road has become a problem that traffic safety
management departments and scholars have paid attention to.
With the rapid development of computer vision technology, it
was a feasible way to use computer vision technology to help
solve the above problems [2-5].

The convolutional neural networks have become a research
hotspot in the field of computer vision for object detection. In
2016, Redmon et al. proposed the object detection network
YOLO (You Only Look Once) [6]. With this network, the input
image could obtain the position of the object and the confidence
probability of the category to which the object belonged after
only one round of network learning, achieving end-to-end
detection and improving real-time performance. Subsequently,
YOLOv2 [7], YOLOv3 [8], and YOLOv4 [9] have been
proposed to improve the object detection network based on the
YOLO network, etc. In 2022, Glenn et al. proposed the
YOLOV5 network based on the YOLO series network [10].
YOLOV5 inherited the CSPDarknet53 backbone feature
extraction network and introduced PANet [11] to process
objects of different scales, effectively improving the detection
accuracy of the network model. The improvement of the feature
fusion network by the YOLOV5 network resulted in a larger
network model. In 2023, Wang et al. proposed the YOLOv7
network model based on module parameterization and a
dynamic label assignment strategy [12]. Their proposed multi-
branch stacking module could massively reduce the redundant
channels in network training, which improved the detection
accuracy of the YOLOV7 network but led to a slower detection
speed.

When it came to using convolutional neural networks for
object detection of safety helmets, Rattapoom et al. used the K-
Nearest Neighbor (KNN) classifier to classify the head with or
without a helmet [13]. The results showed that the average
correct detection rate was 84%, 68% and 74% for near, far, and
dual lanes, respectively. Although the detection accuracy was
high, the network model was large, and the detection speed was
too slow to be suitable for real-time detection. Yu et al. proposed
an EV helmet detection method based on the YOLOv3 network
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in 2019 [14]. The method achieved higher accuracy in object
detection by increasing the diversity of the dataset and
optimizing the training parameters. In addition, the researchers
further combined the optical flow calculation method to improve
the algorithm'’s robustness and real-time performance. In 2020,
Siebert et al. developed an object detection algorithm that
collected 91,000 frames of annotated motorcycle helmet videos
at observation sites in seven cities in Myanmar [15]. After
training, the algorithm was found to detect motorcycle helmets
with higher accuracy compared to human observers. However,
it was not suitable for real-time detection due to its slow
detection speed. Huang et al. used an improved Faster R-CNN
network for helmet detection and localization in 2021 [16]. Due
to the dataset and algorithm limitations, the method still had
specific problems of false and missed detection. Jia et al.
proposed a motorcycle helmet detection algorithm based on
YOLOV5 [17], which improved the network accuracy by 5.2%
using a soft NMS instead of YOLOvV5's NMS. However, it had
a more extensive network model and higher hardware
requirements, which were unsuitable for real-time road
detection. Zhao et al. proposed a method to improve the
YOLOv7 network by using the GSConv network to replace
some of the Conv in 2023 [18]. The improved network
parameter counts reached 36.4M, making the network structure
complex. Bao et al. proposed a method to improve the object
detection of the YOLOv8s backbone network by using the
MobileOne network with a parameter count reaching 11.7M in
2024 [19], which did not apply to embedded devices with small
calculating power.

In summary, the current convolutional neural network-based
two-wheeled cyclists helmet detection methods must be revised.
Most of them used YOLO and SDD networks to improve
accuracy. When embedded devices are used, the application is
often limited due to minor hardware calculation power. Based
on the objective conditions of practical application, drawing on
the research experience of other scholars, a lightweight and
high-precision two-wheeled cyclists helmet convolutional
neural network model was obtained, from two aspects of the
research, the establishment of the two-wheeled cyclists helmet
dataset and the improvement of the YOLOv7 convolutional
neural network.

The contributions of this study include the following three
points:

e Collected images of two-wheeled cyclists helmets by
field photography and expanded the dataset using seven
data enhancement methods, such as rotation, mirroring,
and panning transformation to obtain a two-wheeled
cyclists helmet dataset (TCHD) containing 5957 images.

e The convolution and feature extraction layers of
YOLOv7 and YOLOv7-Tiny networks were modified
using the MobileOne network. Then, the CA module and
K-means++ clustering algorithm were introduced,
respectively, to improve the detection accuracy of the
network, thereby obtaining YOLOv7-MOC and
YOLOV7-TMOC networks. The detection results on the
Pascal VOC dataset and TCHD showed that the
lightweight network model had good detection
performance.
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e Using the Raspberry Pi 4B embedded development
board, based on the Linux system and the Pytorch
framework, and equipped with the YOLOv7-C-MO
network model, experimental tests were conducted. The
results proved that the improved YOLOvV7 network
model can be applied to the object detection of small
embedded systems.

The rest of the study was organized as follows: Section 1l
briefly describes the works related to the YOLOv7 network, the
TCHD establishment, and the evaluation metrics. Section Il
focused on the research on lightweighting and accuracy
improvement based on the YOLOV7 network, as well as the
development of the testing system and experimental
verification. Section IV is the conclusion of this study.

Il. RELATED WORK

Based on the analysis of the current research status of object
detection networks presented in the introduction, the YOLO
series of networks exhibited exceptionally high performance in
object detection. However, for object detection tasks with
constrained computational resources, there remains potential for
optimization within the YOLO network architecture.

A. YOLOvV7 Network

Through the comparison of the YOLO series of networks,
the YOLOv7 network was chosen for research [20]. The
network structure of YOLOV7 is shown in Fig. 1.

B. Create a Two-Wheeled Cyclists Helmet Dataset

The two-wheeled cyclists helmet dataset (TCHD) used in
our study was jointly established by members of the research
group. They took random images from the side of the road,
including cars, motorcycles, bicycles, and pedestrians, and these
images included images of multiple two-wheeled cyclists
overlapping on the road and other complex scenes. There were
851 images in the entire original TCHD. Fig. 2 shows 16
samples of these images.

To enhance the training performance of the network,
mitigate overfitting, and improve generalization capabilities, the
TCHD was augmented using seven distinct image data
augmentation techniques. An image taken from the TCHD was
shown in Fig. 3(a) as an example. The transformed images were
shown in Fig. 3(b) to Fig. 3(h).

e Hue-Saturation-Value (HSV) transformation: In
OpenCV, set three hyperparameters as h_gain (Hue) as
0.5, s_gain (Saturation) as 0.5, and v_gain (Value) as 0.5,
respectively. Fig. 3(a), after transformation using the
HSV function, is shown in Fig. 3(b).

o Brightness: Used the brightness enhancement function in
OpenCV and set the brightness value to 1.5.
Transformed Fig. 3(a) to obtain Fig. 3(c).

e Contrast: Used the contrast enhancement function in
OpenCV and set the contrast value to 1.5. Transformed
Fig. 3(a) to obtain Fig. 3(d).

e Mirroring: It was implemented using the image mirroring
function in OpenCV. Fig. 3(a) was mirrored horizontally
to obtain Fig. 3(e).
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e Shear variation: Fig. 3(a) was sheared by 30° along the e Panning variation: Using the translation function in
horizontal direction to obtain Fig. 3(f). OpenCV, the movement distance in Fig. 3(a) was set to

. ] . . . 5 in the horizontal direction and 30 in the vertical
e Affine transform: The image expansion was carried out direction, and the translation result was shown in

by rotating and scaling the original image. Taking the Fig. 3(h)
center of Fig. 3(a) as the rotation center, the rotation ' '
angle was set to 30°, and the scaling factor was set to 0.5

for transformation to obtain Fig. 3(g).
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(e) Mirroring

(f) Shear

(g) Affine transform

(h) Panning

Fig. 3. The results obtained through 7 image enhancement methods.

Through the expansion of image data by the above methods,
the number of TCHD images has increased from 851 to 5,957.
Then, the objects in the images were classified. According to the
different characteristics of two-wheeled cyclists wearing safety
helmets and those not wearing safety helmets, the objects were
divided into two categories: those wearing safety helmets and
those not wearing safety helmets. Then, the labeling tool named
Labelimg was used to label all the objects in the images.

The newly established TCHD was different from the COCO
dataset in many aspects, such as the number of classes [21].
When the new TCHD was used to train the YOLOV7 network,
the size of the anchor boxes would also need to be modified. So,
the K-Means++ [22] algorithm was used to cluster the TCHD
dataset, and the anchor boxes size was obtained as (7,7), (19,23),
(33,36), (51,57), (70,74), (99,109), (258,240), (392,340),
(469,430).

C. Network Model Evaluation Metrics

This study evaluated the network model performance in
terms of detection accuracy and detection speed, and mean
average precision (mAP) and frames per second (FPS) were

chosen to measure the network model performance, respectively.

The mAP was the mean average accuracy of all classes in the
dataset and was used as an evaluation index for the detection
accuracy of the network model [23]. The higher the value of the
mMAP, the better the performance of the network model. The FPS
represented the number of images that the network model could
detect per second and was used as an evaluation index for the
detection speed of the network model. The larger the value of
this evaluation index was, the faster the object detection task was
carried out. Usually, the number of parameters, computation
amount, and network model size affected the FPS.

I1l. NETWORK MODEL IMPROVEMENT

A. Network Model Lightweight

1) Feature extraction network lightweight: The MobileOne
[24] was a lightweight model that has been optimized based on
MobileNetV1l [25]. This model primarily consisted of a
depthwise convolutional layer, two pointwise convolutional
layers, a branched convolutional layer, and an SE module [26].
The characteristics of the MobileOne network were high real-
time performance and low computational complexity. The
MobileOne was used to replace the ELAN network in the
Backbone part of the YOLOV7 network. The modified network
was named YOLOv7-MobileOne (YOLOvV7-MO), and its
network structure is shown in Fig. 4.

The detailed structure of the YOLOv7-MO feature
extraction network is shown in Table I.

Table I shows the parameter information of the YOLOv7-
MO, including sequence, convolutional module, and channel
number of input and output parameters. Compared with the
YOLOVT7 feature extraction network, the number of layers in the
YOLOv7-MO network was reduced from 57 layers to 27 layers.

A MobileNetV1l was one of the MobileOne series of
networks. The idea and method of replacing ELAN in YOLOv7
with MobileNetV1 were the same as those of MobileOne. After
the replacement, the YOLOv7-Mobilenetvl (YOLOvV7-MV1)
network was obtained.

In order to further reduce the size of the network, the small
version of the YOLOV7 network, the YOLOV7-Tiny network,
was selected for improvement. The MobileOne module was
used to establish the YOLOvV7-Tiny feature extraction network
by using the same idea and method as the improved YOLOv7
network. The structure of the YOLOv7-Tiny-MobileOne
(YOLOv7-TMO) feature extraction network was obtained, as
shown in Fig. 5.
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TABLE I. THE STRUCTURE OF YOLOV7-MO NETWORK

Stage Number Model Input size Output size
0 1 GSConv 3 32
1 1 GSConv 32 64
2 1 GSConv 64 64
3 1 GSConv 64 128
4 1 MobileOne 128 128
5 1 GSConv 128 256
6 1 MP - -
7 1 GSConv 256 128
8 1 GSConv 256 128
9 1 GSConv 128 128
10 1 Concat - -
11 1 MobileOne 256 256
12 1 GSConv 256 512
13 1 MP - -
14 1 GSConv 512 256
15 1 GSConv 512 256
16 1 GSConv 256 256
17 1 Concat - -
18 1 MobileOne 512 512
19 1 GSConv 512 1024
20 1 MP - -
21 1 GSConv 1024 512
22 1 GSConv 1024 512
23 1 GSConv 512 512
24 1 Concat - -
25 1 GSConv 1024 256
26 1 MobileOne 1024 1024
27 1 GSConv 1024 256

Vol. 16, No. 11, 2025

with the YOLOv7-Tiny, the number of parameters in the
YOLOvV7-TMO was reduced by 37.9% to 3.76 M.

TABLE Il THE PARAMETERS’ NUMBERS OF 5 NETWORKS
Network Parameter’ number /M
YOLOvV7-Tiny 6.06
YOLOv7-TMO 3.76
YOLOv7 37.43
YOLOv7-MV1 25.19
YOLOvV7-MO 23.65

2) Experiment and analysis: The main experimental
conditions included Inter(R)Core(TM) i9-10900XCPU@2 as
the computer core, NVIDIA GeForcePTX3080 (10GB) as the

graphics processing unit, and 64GB RAM as the computer
memory. The deep learning framework was PyTorch, the
acceleration environment was CUDAL1.3, and the
programming language was Python3.7. The main parameter
settings include: the input image size was Img_size=(640,640),
the number of samples in each batch of iterative training was
Batch_size=8, the iteration training times epoch=200, the initial
learning rate was 0.01, and the weight attenuation factor was
0.0005 [27].

The public dataset PASCAL VOC was selected for the
experimental dataset [28], and the training set sharing was set to
90%, resulting in 18,277 images for training and 3,226 images
for verification [29].

The YOLOv7 and YOLOvV7-Tiny, as well as the improved
YOLOvV7-MO, YOLOV7-TMO and YOLOvV7-MV1 were
respectively trained on PASCAL VOC dataset. The number of
model parameters obtained after training was listed in Table II.

As shown in Table Il, compared with the YOLOv7, the
number of parameters in the YOLOv7-MO and YOLOv7-MV1
was reduced to 23.65 M and 25.19 M, respectively. Compared

The loss curves of the 5 networks are compared in Fig. 6.

= YOLOV7-Tiny
YOLOV7-TMO

0.12 4 — YoLOov7

—— YOLOV7-Mv1

— YOLOV7-MO

0.10

0.06

[} 25 50 75 100 125 150 175 200
Epochs

Fig. 6. Loss curves of the 5 networks.

As shown in Fig. 6, the value of loss decreases with the
increase of iterative calculation for all five kinds of networks,
but the convergence speed of the improved network was
significantly slower than that of the pre-improved network. At
the 200 step, the network corresponding to loss from large to
small was YOLOv7-MO, YOLOv7-MV1, YOLOv7-TMO,
YOLOvV7-Tiny, and YOLOV7. The maximum value of loss was
close t0 0.072, and the minimum value was close to 0.02. It takes
longer for lightweight networks to converge.

Further comparing the object detection performance of the

five networks on the PASCAL VOC dataset, the values of

precision (P), recall (R), mAP@.5, FPS and model size were
listed in Table IIL.

TABLE III. THE DETECTION RESULTS OF 5 NETWORKS ON THE PASCAL
Model
0, 0, 0,
Network P/% | RI% | mAP@.5/% | FPS/Hz size/MB

YOLOv7- 748 | 762 | 775 93.5 1.7

Tiny

YOLOv7-

T™O 743 | 714 | 76.9 97.4 7.7
YOLOv7 853 | 87.7 | 904 45 79.4
YOLOv7-

MV1 80.5 | 82.0 | 81.6 72 57.3
YOLOvV7-

MO 834 | 873 | 86.7 94.2 49.6

As shown in Table III, the YOLOv7-MO network had a 1.9%

decrease in precision and a 3.7% decrease in MAP @.5
compared to the YOLOV7 network, but the model size decreased

by 37.5% and the FPS increased 49.2 Hz. Compared to the
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YOLOvV7-MV1 network, the precision improved by 2.9%, the
MAP@.5 improved by 5.1%, the model size of the network
decreased by 13.4%, and the FPS improved by 23.5%.
YOLOV7-TMO decreased mAP@.5 by 0.6% compared to
YOLOV7-Tiny, but the model size decreased by 34.1%, and the
FPS increased 3.9 Hz. So, the YOLOv7-MO had comprehensive
advantages in mAP@.5 and FPS compared with other networks.

B. Integration of Attention Mechanisms

An Attention Mechanism (AM) is a method to improve the
accuracy of network models for object detection tasks. A

Vol. 16, No. 11, 2025

common AM module was the Coordinate Attention (CA) [30].
The CA module embedded the object's position information in
the image into the channel attention so that the detection model
could better localize and detect the object.

The CA modules were added and combined at different
positions in the Neck of the YOLOv7-MO, and three YOLOv7-
MO network structures with CA modules were designed for
comparative study, as shown in Fig. 7.
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Fig. 7. Three different networks by adding CA in the YOLOv7-MO.

The Neck-CA1 was shown in Fig. 7(b), where 1 CA module
was added at the connection between the last layer of the
backbone network and the feature fusion network. The Neck-
CA3 was shown in Fig. 7(c), where 3 CA modules were added
before each of the three scale feature layers enters the detection
layer. The Neck-CA4 was shown in Fig. 7(d), where 4 CA
modules were added at the connection between the last layer of
the backbone network and the feature fusion network.

The 3 networks by adding CA in the YOLOvV7-MO were
trained and tested on PASCAL VOC dataset with Epoch=100.
The test results were shown in Table IV.

As shown in Table IV, compared with YOLOvV7-MO, the
MAP@.5 of Neck-CA1, Neck-CA3 and Neck-CA4 increased by
0.4%, 0.8% and 1.44%, respectively. Compared with YOLOV7-
MO, the FPS of Neck-CAl, Neck-CA3 and Neck-CA4

decreased with the increase of CA number, and Neck-CA4
decreased by 4.9%.

TABLE IV. THE TEST RESULTS OF 4 NETWORKS ON THE PASCAL VOC
Network CA’s number FPS/Hz mAP@.5/%

YOLOv7-MO 0 94.2 86.7

Neck-CA1l 1 943 87.1

Neck-CA3 3 92.5 87.5

Neck-CA4 4 89.6 88.14

The YOLOvV7-MO network was improved to obtain
YOLOV7-MO-CA (YOLOv7-MOC) by selecting the Neck-
CA4 with the highest accuracy. A structure of the YOLOv7-
MOC network was shown in Fig. 8.
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Fig. 8. A structure of the YOLOvV7-MOC.

The same method was used to improve the YOLOvV7-TMO
network, and YOLOv7-TMO-CA (YOLOv7-TMOC) was
obtained.

C. Experiments and Analysis

This section used the same experimental platform and
parameters as Section III-A(2) to compare and analyze the
performance of the improved networks. All the analyzed
networks included five such as YOLOv7-Tiny, YOLOv7-
TMOC, YOLOv7, YOLOV7-MO, and YOLOvV7-MOC. The
TCHD was used in the dataset, and the dataset was divided
according to the training set accounting for 80% of the dataset,
resulting in 4766 images in the training set and 1191 images in
the verification set. After training, the loss curves of the five
networks were shown in Fig. 9.

As shown in Fig. 9, the loss value of the five networks
decreased with the increase of iterative calculation. Among
them, the convergence speed of YOLOvV7-TMOC network was
the fastest. When iteration reached 200 steps, the loss value of
YOLOvV7-TMOC network was the smallest, close to 0.041,
compared with other four networks. The change of loss curves
of YOLOvV7-MO and YOLOv7-MOC networks was basically
the same. When iterating to 200 steps, the loss was close to
0.056. The loss curve of YOLOV7 network and YOLOvV7-Tiny
network had a similar change trend. When iterating to 200 steps,
the loss was close to 0.046.

Further compared with the object detection performance of
the five networks on the TCHD, and the values of precision,
recall, mMAP@.5, FPS and model size were listed in Table V,
respectively.

= YOLOV7-Tiny
YOLOV7-TMOC
= YOLOV7
0.104 —— YOLOV7-MO
= YOLOV7-MOC

T T T T T T T T T
0 25 50 75 100 125 150 175 200
Epochs

Fig. 9. The loss curves of the 5 networks.

TABLE V. THE DETECTION RESULTS OF 5 NETWORKS ON THE TCHD
Model
0, 0, 0,
Network | P/% | R/% | mAP@.5/% | FPSHz | o\t
YOLOv7- 748 | 762 | 76.6 94.1 11.6
Tiny
YOLOV7-
TMOC 818 | 67.7 | 742 97.8 6.1
YOLOV7 88.5 | 72.7 | 76.1 60.6 712
YOLOVI-MO | 837 | 753 | 76.3 89.6 49 4
YOLOV7-
MOC 853 | 762 | 77.1 89.3 49.6

As shown in Table V, the model sizes of the five networks,
arranged from smallest to largest, were YOLOv7-TMOC,
YOLOvV7-Tiny, YOLOv7-MO, YOLOV7-MOC, and YOLOV7.
The mAP@.5 values of the five networks, ranked from highest
to lowest, were YOLOvV7-MOC, YOLOv7-Tiny, YOLOvV7-MO,
YOLOv7, and YOLOvV7-TMOC. The FPS values of the five
networks, ordered from highest to lowest, were YOLOv7-
TMOC, YOLOvV7-Tiny, YOLOv7-MO, YOLOv7-MOC, and
YOLOv7.
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The model size of YOLOV7-TMOC was the smallest, which
was 47.4% smaller than that of YOLOv7-Tiny and 91.4%
smaller than that of YOLOv7. The mAP@.5 of YOLOv7-MOC
was the highest, which was 1.0% higher than that of YOLOv7
and 0.5% higher than that of YOLOv7-Tiny. The FPS of
YOLOvV7-TMOC was the highest, increasing by 3.8% compared
to YOLOvV7-Tiny and by 38.0% compared to YOLOV?7.

Compared with  YOLOV7-TMOC, YOLOv7-MOC
improved mAP@.5 by 2.9%, reduced FPS by 8.7%, and
increased model size by 87.7%.

So, YOLOvV7-TMOC had the advantages of a small model
size and fast detection speed. YOLOV7-MOC had the advantage
of high detection accuracy.

D. Development and Application Testing of the Monitoring
System

The improved network was applied to the real-time
monitoring system for two-wheeled cyclists' helmets on the
road.

The main hardware components of the monitoring system
included a Raspberry Pi 4B development board, a camera, a
touch screen display, and a power supply, as shown in Fig. 10.

Fig. 10. Hardware of the real-time monitoring system.

The monitoring system software was based on the Linux
system, the PyTorch framework, the PyQt5-tools, and was
equipped with the YOLOV7-TMOC network model. The main
interface of the monitoring system is shown in Fig. 11. The
system supported the detection of data such as images and
videos.

! Monitoring system
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Fig. 11. Main interface of the real-time monitoring system.

Vol. 16, No. 11, 2025

The monitoring system was tested at the actual road site, and
the results are shown in Fig. 12.

W' Monitaring system
Real-time monitoring system for cyclists' helmets

Model Image Folder Video Camera Run Stop Save Exit NoTracl

o 1

save image in
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helmet:0

read image form
F:/Ul/yolovT
pygt-master,
1111, jpg

B [time:0. 162565
save image in
resul t\2. jpg
safety helmet:2,
no satety
helmet:0

(a) Image detection

B! Manitoring system

Real-time monitoring system for cyclists' helmets
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time:0. 157585
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helmet:1
172/923 Frames.
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= :5*;.
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time:0. 15957s
safety helmet:2,
no safety
helmet:0

(b) Video detection
Fig. 12. Input sample detection.

As shown in Fig. 12(a), the monitoring system input images
are captured by the roadside and detected a total of two objects
of safety helmets. The system could accurately determine the
number of objects as 2, and the precision rates of the two objects
from left to right were 73% and 71%, respectively. As shown in
Fig. 12(b), the monitoring system could accurately detect the
number of objects from the input real-time video as 2, and the
precision rates of the two objects from left to right were 73%
and 81%, respectively.

Through actual verification, the improved network model
and the constructed monitoring system could perform real-time,
correct detection of the safety helmets of two-wheeled cyclists.

IV. CONCLUSION

Regarding the intelligent detection of safety helmets worn
by two-wheeled cyclists on the road, this study studied a
lightweight detection network that could be used in handheld
detection instruments.

Firstly, in order to make the network lightweight, the ELAN
structure in the YOLOv7 and YOLOvV7-Tiny feature extraction
networks was replaced with the lightweight MobileOne
network, resulting in YOLOv7-MO and YOLOv7-TMO. To
improve the detection accuracy, the feature fusion network of
YOLOvV7-MO was improved using the CA and C3 Faster
modules, resulting in YOLOvV7-MOC. In the same way, the
YOLOv7-Tiny network was also lightweight modified,
resulting in the YOLOV7-TMOC network.
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Secondly, the verification using the self-created dataset
TCHD showed that the model sizes of YOLOv7-MOC and
YOLOvV7-TMOC were respectively 30.3% and 47.4% smaller
than those of YOLOV7 and YOLOvV7-Tiny. The mAP@.5 of the
YOLOvV7-MOC network reached 77.1%, and the frame rate
reached 89.3 Hz, both higher than the 76.1% mAP@.5 and 60.6
Hz frame rate of YOLOv7. The mAP@.5 of the YOLOv7-
TMOC network was 74.2%, slightly lower than that of
YOLOvV7-Tiny (76.6%), but its frame rate was 97.8 Hz, which
exceeded the 94.1 Hz of YOLOV7-Tiny.

Finally, the improved network was applied to the real-time
monitoring system for safety helmets worn by two-wheeled
cyclists on the road. Through image and video testing of the
monitoring system, it was demonstrated that the improved
network could be used in portable real-time detection devices.
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