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Abstract—Head-mounted displays (HMDs) enhance virtual 

reality (VR) experiences, but occlude the upper face, hindering 

realistic user representation. To address this, some studies 

employ sensors to capture facial expressions under occlusion, 

while deep learning methods typically rely on image inpainting to 

restore missing regions. However, these approaches often suffer 

from limitations such as insufficient shallow feature 

representation, high computational complexity, and redundant 

model structures. This study proposes a lightweight generative 

adversarial network (GAN) that utilizes multi-feature fusion and 

deformable attention for face reconstruction under HMD 

occlusion. Specifically, a Lie group feature learning module is 

used to enhance shallow geometric representations, while 

reference-guided deformable attention dynamically focuses on 

occluded regions, improving both structural fidelity and 

efficiency. Experiments across multiple face datasets show that 

the proposed method outperforms existing mainstream 

approaches regarding structural fidelity, detail restoration 

capability, and model efficiency. The proposed framework offers 

a promising solution for integration with HMDs equipped with 

facial tracking, enabling more realistic and expressive avatars in 

VR applications. 
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I. INTRODUCTION 

Virtual reality (VR) is a technology that creates virtual 
environments by simulating real-world sensory experiences 
(such as vision, hearing, and touch) using computers [1]. The 
rapid growth of VR has enabled its widespread use in domains 
such as education [2],[3],[4], healthcare [5],[6],[7], 
entertainment [8],[9],[10], remote collaboration [11],[12],[13], 
and more. As a VR interaction device, the head-mounted 
display (HMD) provides users with a highly immersive 
communication experience and enables more natural and vivid 
forms of interaction [14]. However, since the HMD covers the 
upper face, it obstructs the effective extraction of facial 
features. It makes it challenging to integrate facial information 
fully into the virtual scene [15]. The occlusion reduces the 
realism of virtual communication and affects users' social 
experiences [16]. Therefore, removing HMD occlusion from 
facial images and restoring missing facial information has 
become a key challenge in enhancing the realism of VR 
interaction. 

There are two main approaches for reconstructing the face 
under HMD occlusion [17]: model-based methods and image-
based methods. Model-based methods use sensors to capture 
facial information in the occluded areas and achieve full face 
reconstruction by fitting a 3D face model [18],[19],[20],[21]. 
For example, Chen et al. [18] reconstructed the users' facial 
expression and restored eye gaze direction by using three 
infrared cameras to directly capture the occluded face beneath 
the HMD. Kin et al. [19] proposed a facial expression 
recognition system that combines facial electromyography 
(fEMG) and electrooculography (EOG). The system collects 
signals via tiny electrodes placed around the eyes and uses 
machine learning to estimate virtual blendshape weights, 
enabling natural mapping of expressions to 3D avatars. 
However, such methods require the integration of additional 
sensors into the HMD, leading to problems such as reduced 
wearing comfort and increased cost [22]. In recent years, 
advanced HMDs such as the Meta Quest Pro have been 
gradually adopted in industrial applications. By integrating 
similar sensors into the HMDs, they have improved wearing 
comfort and enhanced facial expression tracking [23]. 
Nevertheless, in practical applications, these devices still 
cannot capture complete facial texture information, making it 
challenging to render high-fidelity facial appearances. 

Image-based methods primarily use deep learning models 
to generate the occluded facial regions, aiming to restore the 
missing information in facial images realistically [17], 
[24],[25],[26]. Numan et al. [17] introduced a GAN-based 
HMD removal framework that simultaneously reconstructs the 
incomplete color and depth information in RGB-D facial 
images. Gupta et al. [24] introduced spatial supervision and 
landmark prediction modules to improve facial image quality 
in the de-occlusion task. They optimized the reconstruction of 
the peri-ocular region by leveraging the inherent structure of 
the eye and enhanced feature extraction by incorporating an 
attention module. Ghorbani Lohesara et al. [25] incorporated a 
self-attention into a GAN, enabling HMD occlusion removal 
by exploiting multiple reference video frames. Bai et al. [26] 
proposed a universal facial encoding system for consumer-
grade HMDs. By employing self-supervised learning and 
training on large-scale unlabeled HMD camera data, their 
method achieved cross-view face reconstruction without 
relying on 3D models or high-quality labels, significantly 
improving overall model performance. 
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In recent years, diffusion models [27] have made 
significant breakthroughs in image generation and have 
demonstrated superior performance to traditional GANs in 
tasks such as image restoration and image synthesis [28]. The 
central idea is to produce high-quality images via a progressive 
denoising process, which leads to more stable training and 
greater fidelity in fine image details. However, such methods 
typically require multi-step sampling, which leads to long 
generation times, low inference efficiency, and high demands 
on computational resources [29], [30]. Therefore, given the 
resource constraints in virtual reality applications, this study 
adopts a GAN-based generation approach. 

Although GAN-based methods have shown promising 
progress in HMD-occluded face reconstruction, the current 
literature still presents several notable research gaps. First, 
most existing studies rely heavily on deep convolutional 
semantic features and overlook shallow geometric cues, which 
are crucial for maintaining structural consistency in 
reconstructed facial regions. Second, the attention mechanisms 
commonly adopted in prior work are dominated by global self-
attention, whose quadratic computational complexity results in 
high memory consumption and low efficiency—making these 
models unsuitable for real-time or resource-constrained VR 
applications. Third, many existing approaches employ complex 
and redundant GAN architectures with large parameter counts, 
limiting the deployability and hindering practical integration 
into lightweight VR systems. These gaps highlight the need for 
a lightweight, geometry-aware, and computationally efficient 
framework for high-fidelity HMD-occluded face 
reconstruction. 

In response to the identified research gaps, this study 
presents a lightweight, geometry-aware GAN architecture that 
incorporates multi-feature fusion and an efficient deformable 
attention module. The core design of the approach is described 
as follows: 

1) To introduce the Lie group feature learning method to 

perform a structured representation of shallow features. By 

combining deep semantic features with shallow visual 

information, it effectively improved the integrity and geometric 

consistency of feature expression. 

2) To propose a deformable attention mechanism guided 

by facial reference images, effectively reducing memory usage 

and computational complexity. 

3) To propose a lightweight GAN model that combines 

parallel dilated convolution, Lie group feature modeling, and 

an attention module. This significantly reduces the model 

complexity and inference time while maintaining good 

reconstruction quality. 

The primary contributions of this research can be outlined 
as follows: 

1) Proposed a multi-feature fusion strategy combining 

shallow and deep features, and the Lie group feature learning 

method is introduced to significantly enhance the model's 

ability to model facial structure. 

2) Designed a deformable attention mechanism guided by 

facial reference images (face deformable attention), which 

effectively reduces the computational complexity, improves the 

focus on key areas, and reduces the impact of irrelevant regions. 

3) Constructed a lightweight GAN architecture that 

ensures high-fidelity reconstruction while having good 

adaptability. 

The remainder of this study is organized as follows: 
Section II reviews the related work on HMD-occluded face 
reconstruction. Section III presents the proposed lightweight 
multi-feature fusion GAN with deformable attention. 
Section IV describes the experimental setup, implementation 
details, and performance evaluation. Section V concludes the 
study and outlines potential directions for future research. 

II. RELATED WORK 

A. Occluded Face Reconstruction 

Occluded face reconstruction is a challenging problem that 
has recently garnered significant attention. Current approaches 
can be categorized into two groups broadly [25]: model-based 
methods and image-based methods. Model-based methods rely 
on statistical models, such as 3D morphable models (3DMMs) 
[31], to estimate facial geometry and texture. Purps et al. [32] 
identified unoccluded facial regions, extracted facial 
landmarks, followed the Facial Action Coding System (FACS) 
to achieve facial muscle activation, and created realistic virtual 
images through 3D modeling software to achieve facial 
expression presentation. However, the above methods are 
mainly aimed at small-scale facial occlusions and have 
particular difficulties for large-scale occlusions, such as the 
difficulty in capturing detailed facial features. To overcome the 
limitations of small-scale facial occlusions, some studies have 
adopted more complex techniques to deal with large-scale 
facial occlusions. For example, He et al. [33] fitted a 3D facial 
model, used 3D facial information to reconstruct the occluded 
parts, and combined Gabor-based occlusion dictionary learning 
to increase feature diversity and better represent occluded 
faces. Li et al. [34] separated the occluded areas through an 
abnormal region segmentation network, avoiding the model 
fitting error caused by occlusion, achieving more accurate 
model fitting positioning, and improving the quality of 
occluded facial reconstruction. 

Image-based methods usually use deep learning models to 
complete face images. Ju et al. [35] randomly added masks to 
the face dataset to synthesize an occluded face dataset, 
achieved self-supervised training by generating damaged 
images with simulated occlusion and rotation, and combined 
CFR-GAN to repair texture in occluded areas. Yu et al. [36] 
introduced a reference-guided face inpainting approach that 
restores missing pixels using a reference image of the same 
identity as the occluded face. Similarity constraints were 
employed to synthesize finer detailed texture information. Lu 
et al. [37] proposed a face inpainting method that combines a 
multi-stage generative adversarial network with a global 
attention mechanism. Their framework leverages a generator 
with skip connections, an encoder–decoder structure, and a 
local refinement network to enhance inpainting quality. Luo et 
al. [38] proposed a two-stage control framework that 
disentangles the reference image into identity features and 
texture details. They achieved identity-preserving face image 
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completion in the case of large-area missing photos. 
Hassanpour et al. [39] developed a GAN-based ‘eye-to-face 
network’ (E2F-Net) that targets the restoration of the periocular 
region to improve the realism and completeness of the 
reconstructed face images. While image-based approaches 
perform better on large occlusions, they primarily rely on deep 
convolutional semantic features and often lack explicit 
modeling of shallow geometric structures, which are essential 
for preserving facial consistency under severe occlusion. These 
limitations suggest that a more geometry-aware and 
lightweight GAN architecture is necessary—motivating the 
method proposed in this work. 

B. Lie Group Feature Learning 

Lie group machine learning [40] is a paradigm that 
integrates Lie group theory with machine learning algorithms, 
leveraging the mathematical structure of Lie groups to improve 
feature representation, generalization, and robustness, 
particularly for data exhibiting symmetry and geometric 
constraints [41]. Lie group feature learning is widely used to 
extract shallow features of target objects. Its theoretical basis 
stems from the advantages of Lie groups in describing 
geometric transformations and symmetries [42],[43],[44],[45]. 
Shallow features typically encompass the geometric structure 
of the target object, local texture details, and basic statistical 
properties, capturing essential patterns in the data’s primary 
representation. These features are vital in deep learning 
systems because they provide a reliable basic representation for 
subsequent high-level feature learning. Xu et al. [42] first 
applied Lie group feature learning to shallow feature extraction 
of remote sensing images, effectively learning and representing 
shallow features such as target size and shape in remote 
sensing images, and combined with CNN models to achieve 
more discriminative feature extraction. The results show that 
Lie group feature learning can effectively enhance the feature 
representation ability of deep learning models [43]. Xu et al. 
[44],[45] further applied Lie group feature learning to the deep 
learning model for scene classification, allowing the model to 
capture and represent a more diverse set of features, enhancing 
the interpretability of the model, and thus effectively 
improving the model’s scene classification performance. Cai et 
al. [46] used Lie groups to learn and implement natural motion 
data representation. Then they used CNN to discover and 
classify Lie group features, improving the accuracy of human 
motion recognition and saving computing time. Yang et al. 
[47] designed a Lie algebraic residual network (LARNet), 
which effectively improved face recognition accuracy by 
combining Lie groups and residual networks, and was robust to 
face posture. Although Lie group feature learning has shown 
promise in capturing geometric structures across different 
fields, it remains largely unexplored in occluded face 
reconstruction. 

C. Attention Mechanism 

The attention mechanism, inspired by human visual 
perception, allows the model to focus on the most relevant 
regions of the input data [48]. Initially, this mechanism was 
mainly used in natural language processing and significantly 
improved model performance. With the development of 
technology, researchers have gradually extended the attention 
mechanism to the field of computer vision and achieved many 

breakthrough results [49],[50],[51]. However, while improving 
the accuracy of the model, this mechanism also introduces new 
problems [52], such as high computational complexity and 
extensive memory usage. To solve these problems, scholars 
have proposed some solutions, such as Deformable Attention 
(DAT) [53], Slide-Transformer [54], Single-Head Vision 
Transformer (SHViT) [55], etc., which reduce the redundancy 
in attention calculation through different strategies and 
significantly improve its computational efficiency. Lu et al. 
[37] used the global attention mechanism to enhance global 
feature interaction and reduce information dispersion, thereby 
better realizing face information restoration. Wan et al. [56] 
introduced an unsupervised face restoration approach that 
integrates contrastive learning with an attention mechanism. 
The feature attention module focuses on key feature 
information and establishes long-range dependencies to 
improve the face restoration effect. Xu et al. [27] proposed a 
face inpainting approach that combines parallel visual attention 
(PVA) with a diffusion model. By inserting a parallel attention 
matrix into the denoising network and focusing on the 
reference image features extracted by the identity encoder, the 
identity preservation ability of the restored face is effectively 
improved. Chen et al. [57] proposed a channel attention layer 
with spatial activation, combined with a sandwich-style feed-
forward network structure, to achieve efficient spatial modeling 
and context understanding of damaged images at multiple 
scales. While these methods significantly enhance restoration 
fidelity, most existing works either assume global attention, 
which is computationally heavy, or do not fully leverage facial 
cues that could better guide reconstruction under occlusion, 
such as HMDs. 

III. PROPOSED METHOD 

A. Overview 

0 illustrates the complete framework of the model. Initially, 
the Lie group feature learning is adopted to extract shallow 
features from the reference face image, while a convolutional 
neural network captures high-level features. These features are 
then fused and used as input for the subsequent stage; then, a 
generator is constructed, in which we propose a deformable 
attention mechanism guided by facial reference images to 
reconstruct the face under HMD occlusion; finally, through 
adversarial training between the generator and discriminator, 
images containing various facial detail information are 
gradually generated to achieve high-fidelity face 
reconstruction. 

B. Feature Learning 

1) Shallow feature learning: The image samples are first 

projected onto the Lie group manifold space to derive their 

corresponding Lie group representations. Then, feature 

extraction is performed within the manifold space. Inspired by 

the method proposed in [42], key features such as color and 

gradient information are extracted at each pixel, and a Lie 

group-based regional covariance matrix is constructed based on 

these features. This matrix characterizes the shallow structural 

properties of the sample and provides a richer feature 

representation for subsequent analysis and processing. The 

formulation is as follows: 
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Fig. 1. Framework overview. 
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where, the pixel position (x, y) and the gradient 

(|
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
| , |

𝜕𝐼(𝑥,𝑦)

𝜕𝑦
|) are the basic characteristics of the target 

object, the gradient can provide key features such as texture, 
edge, and direction. Compared with [42], we increased the 
image pixel in the x and y directions of the second-order mixed 

partial derivative |
𝜕2𝐼(𝑥,𝑦)

𝜕𝑥𝜕𝑦
| to capture local curvature change, 

capture complex and essential features such as eyebrows, 
corners of the eyes, and corners of the mouth more accurately. 

And |
𝜕2𝐼(𝑥,𝑦)

𝜕𝑥𝜕𝑦
| of intersection is very sensitive and can detect 

the image of the cross and the nonlinear change, enhancing the 
model’s perception of delicate features. 

In the research [42], RGB and YCbCr are used as basic 
color features to enhance the representation of target objects in 
remote sensing scenes. This research focuses on the color 
distribution of different areas, such as skin tone, occlusions, 
etc. However, in a different light, the value of skin color in the 
RGB space will change significantly, especially when the non-
uniform light performance is worse. In [58], the authors show 
that HSV is more robust to changes in facial illumination. 
Therefore, we capture color features in the HSV color space. 
Hue H and saturation S can describe skin color well and have 
certain invariances to brightness changes, making skin color 
feature extraction more reliable. 

HOG counts the local gradient change around each pixel. In 
[59], the authors show that HOG features are susceptible to 
object deformation, so introducing HOG features can 
effectively extract facial edge and shape information. The 
Gabor feature is widely used for characterizing image texture 
information [60]. It effectively captures and discriminates 
textures because their frequency and orientation selectivity 

align with the response characteristics of the human visual 
system. 

2) High-level feature learning: In this section, a multi-

layer convolutional neural network (CNN) is used to extract 

high-level semantic features from the reference face image. Fig. 

2 shows the high-level feature learning network structure used 

in this research. The semantic features of the reference face 

image are gradually extracted through multiple convolutions 

(including standard convolutions and parallel dilated 

convolutions) combined with batch normalization (BN) and 

SeLU activation functions. To extract the high-level features of 

the reference face image at a deeper level, three residual 

modules are used to deepen the network structure and reduce 

feature loss. 

 

Fig. 2. High-level feature learning network. k, n, and s indicate kernel size, 

number of channels, and stride, respectively. 

This study uses dilated convolutions with r=1, 2, and 3 
dilation rates to perform parallel operations. As shown in Fig. 
3, given a feature map Ft, it is segmented into four parts, Ftc1, 
Ftc2, Ftc3, and Ftc4, along the channel. A 3×3 convolution 
kernel is used to perform dilated convolution operations on two 
adjacent parts, so that each dilated convolution can share some 
parameters. Then the output of the dilated convolution is fused 
with the original feature. Finally, the number of channels is 
readjusted through a 1×1 convolutional network. 

 

Fig. 3. The principle of parallel dilated convolution. 
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TABLE I.  THE NUMBER OF PARAMETERS OF PARALLEL DILATED CONVOLUTION AND ORDINARY CONVOLUTION 

Methods Kernel Size Input Channel Output Channel Layer Parameters Size Total(M) 

Ordinary 

3×3 512 512 

Conv1 

Conv2 

Conv3 

512×512×3×3=2,359,296 

512×512×3×3=2,359,296 

512×512×3×3=2,359,296 

7,077,888 ≈ 7.08 

5×5 512 512 

Conv1 

Conv2 

Conv3 

512×512×5×5=6,553,600 

512×512×5×5=6,553,600 

512×512×5×5=6,553,600 

19,660,800 ≈ 19.66 

Parallel 5×5 512 512 

Conv1 

Conv2 

Conv3 

512×512×5×5=6,553,600 6,553,600 ≈ 6.55 

 

Fig. 4. The generator structure. k, n, and s indicate kernel size, number of channels, and stride, respectively. 

Compared to traditional convolution, parallel dilated 
convolution effectively enlarges the receptive field and 
decreases the number of parameters by sharing parameters 
across branches with different dilation factors, as summarized 
in TABLE I. When the input and output channels are 512 and 
the convolution kernel size is 5×5, the parameter count of 
standard convolution is approximately three times higher than 
that of parallel dilated convolution. Notably, the parameter 
counts of parallel dilated convolution using a 5×5 convolution 
kernel are only 6.55M, even less than the parameters of three 
traditional convolution operations using a 3×3 convolution 
kernel. Therefore, the parallel dilated convolution effectively 
reduces the model size while ensuring the feature extraction 
effect. 

C. Generator 

1) Generator structure: In this section, a generator 

consisting of convolutional layers, residual blocks, and an 

attention module is constructed for face reconstruction under 

HMD occlusion, as presented in Fig. 4. This model proposes a 

face deformable attention module guided by a reference face 

image to reconstruct the face under HMD occlusion and 

generate finer textures in the occluded area. In the model, the 

BN layer is placed before the convolutional layer. This 

operation has been proven in research [45] to effectively speed 

up model convergence, improve gradient propagation, and 

enhance model generalization ability. 

Three residual blocks are used in the generator to 
effectively avoid the gradient vanishing or gradient exploding 
problems that occur as the network depth increases. The 
residual block structure is presented in Fig. 5. Firstly, the input 
features undergo batch normalization, followed by parallel 

dilated convolution, which enlarges the receptive field while 
retaining fine details. To improve non-linear representation and 
ensure numerical stability, the SeLU activation function is 
applied. Finally, a skip connection directly adds the original 
input features to the convolutional outputs, mitigating feature 
loss as network depth increases. The formulation is as follows: 

𝑥𝑖+1 =  𝑥𝑖 + 𝑆𝑒𝐿𝑈(𝑃𝐷𝐶𝑜𝑛𝑣(𝐵𝑁(𝑥𝑖))   (2) 

 

Fig. 5. The residual block network. 

where, 𝑥𝑖 denotes the input to a residual block, while 𝑥𝑖+1 
represents its output, which also serves as the input to the 
subsequent residual block, and 𝑃𝐷𝐶𝑜𝑛𝑣(∙)  represents the 
parallel dilated convolution operation. 

2) Face deformable attention: This section proposes a 

deformable attention mechanism guided by face reference 

images, as illustrated in Fig. 6. Given the HMD occluded face 

feature map 𝐹𝑚𝑎𝑠𝑘𝑒𝑑 ∈ ℝ𝐻×𝑊×𝐶, it is projected to query tokens 

Q by linear transformation. Given the reference face feature 

map 𝐹𝑟𝑒𝑓 ∈ ℝ𝐻×𝑊×𝐶 , the reference points 𝑝(𝑥, 𝑦) ∈ ℝ𝐻𝑟×𝑊𝑟 
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are generated by uniform grid sampling in 𝐹𝑟𝑒𝑓. The reference 

points p are represented as 2D coordinates normalized to the 

range [-1,1] according to the mesh shape. By feeding Q into the 

offset network, a set of offset values ∆𝑝 = 𝑜𝑓𝑓𝑠𝑒𝑡(𝑄) can be 

obtained. Adding the positional offset ∆𝑝  to the reference 

points p, the reference points can be dynamically adjusted 

towards critical regions (e.g., the eye area), yielding new 

coordinate points 𝑝̂ . Sampling at points 𝑝̂  on the reference 

feature map 𝐹𝑟𝑒𝑓  produces a new feature map 𝐹𝑟𝑒𝑓
′ , which 

contains authentic reference features of the eye region under 

HMD occlusion. These features further support reconstructing 

a complete face under HMD occlusion. Key K and Value V can 

be obtained by linear transformation of 𝐹𝑟𝑒𝑓
′ using projection 

matrices 𝑊𝑘  and 𝑊𝑣 . The attention score is then obtained by 

calculating the similarity between Q and K, which represents 

the relevance of the query to each key. Finally, the attention 

score is normalized, and the values are weighted to generate 

the final weighted feature. Thus, the face information of the 

HMD occluded area can be recovered to help realize high-

fidelity face reconstruction under HMD occlusion. 

 

Fig. 6. Face deformable attention structure. 

Fig. 6(b) shows the offset network structure. Q is 
downsampled through a Max pooling layer, and then 
nonlinearity is introduced through ReLU. The channels are 
compressed and mapped using 1×1 convolution. Finally, the 
position offset 2D coordinates are output. In the offset network, 
a predefined factor s is used for scaling to prevent the training 
process from being unstable due to excessive offset. Face 
deformable attention is calculated as follows: 

𝑄 = 𝐹𝑚𝑎𝑠𝑘𝑒𝑑𝑊𝑞，𝐾 = 𝐹𝑟𝑒𝑓
′𝑊𝑘，𝑉 = 𝐹𝑟𝑒𝑓

′𝑊𝑣 (3) 

𝐹𝑜𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝑏) 𝑉          (4) 

where, 𝑊𝑞，𝑊𝑘，𝑊𝑣  are learnable projection matrices 

optimized during training, enabling the attention can 
effectively capture the relationships between input features. 
𝐹𝑚𝑎𝑠𝑘𝑒𝑑 is the input HMD occluded face feature map, 𝐹𝑟𝑒𝑓

′ is 

the grid sampling result of the reference face feature map, and 
b is the relative position offset value. 

D. Discriminator 

The discriminator is constructed to differentiate 
reconstructed face images from real ones, as illustrated in Fig. 
7. The reference face image and the reconstructed face image 
are randomly selected as the input of the discriminator. The 
input image first undergoes convolution to obtain initial feature 
representations, followed by the SeLU activation function to 
introduce nonlinearity. Subsequently, the network uses three 
parallel dilated convolutions to extract image features further 
and capture contextual information. The architecture combines 
average pooling to reduce spatial dimensions and aggregate 
features, and then uses a fully connected layer for advanced 
feature processing. Finally, through the Sigmoid activation, the 
input image is assigned a discrimination result. 

 

Fig. 7. The structure of the discriminator. k, n, and s indicate kernel size, 

number of channels, and stride, respectively. 

The discriminator evaluates the input image and feeds the 
result back to the generator, guiding it to iteratively optimize 
its parameters and generate more realistic images. During 
adversarial training, the discriminator continuously updates its 
parameters to enhance its capability to differentiate between 
authentic and reconstructed images. Through this adversarial 
process, the generator gradually enhances the quality of its 
outputs, making the reconstructed images increasingly similar 
to real ones. Meanwhile, the discriminator delivers effective 
feedback to the generator by extracting deep feature 
representations, helping it to capture finer details and more 
complex features, thus facilitating better parameter 
optimization. Ultimately, the discriminator ensures that the 
facial images generated by the generator achieve high visual 
quality and detailed expression, effectively addressing the 
challenge of high-fidelity face reconstruction under HMD 
occlusion. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Dataset 

Due to the difficulty of obtaining real HMD-occluded faces 
with corresponding ground truth, synthetic datasets were used 
to ensure quantitative evaluation and reproducibility [32],[61]. 
The baseline datasets used in this study are FFHQ and CelebA. 
This study adopts FFHQ and CelebA, two widely used 
benchmark face datasets. FFHQ provides high-resolution 
(1024×1024) facial images with rich diversity in age, ethnicity, 
pose, and expression, making it suitable for high-fidelity 
reconstruction tasks and supervised learning with clean, 
unobstructed ground truth. CelebA offers a large-scale 
collection of face images with substantial identity and attribute 
variation, which supports evaluating the model’s generalization 
ability across different facial characteristics. Based on these 
datasets, 68,274 synthetic HMD-occluded images were 
generated from FFHQ and 143,669 from CelebA. The model 
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was trained on the occluded FFHQ dataset and evaluated on 
the FFHQ and CelebA test sets to verify its generalization 
capability. 

B. Experiment Setup 

Experiments were conducted on a computing platform 
equipped with an NVIDIA RTX 4090 GPU (24 GB VRAM) 
and a 12th Gen Intel(R) Core(TM) i7-12700K CPU. The 
implementation was based on PyTorch 2.0.0 with CUDA 11.8 
for GPU acceleration, using Python 3.8. Model training 
employed the Adam optimizer with first-order and second-
order momentum estimates ( 𝛽1 = 0.5, 𝛽2 = 0.999 ) and a 
batch size of 8. The learning rate for both the generator and 
discriminator was set to 0.0002, and training was performed for 
100 epochs. The detailed experimental configuration is 
summarized in TABLE II.  

TABLE II.  EXPERIMENTAL SETUP 

Category Configuration 

Hardware 
NVIDIA RTX 4090 GPU (24GB),  

Intel Core i7-12700K CPU 

Software Python 3.8, PyTorch 2.0.0, CUDA 11.8 

Optimizer Adam(𝛽1 = 0.5, 𝛽2 = 0.999) 

Batch Size 8 

Learning 

Rate 
0.0002 

Epoch 100 

C. Result and Analysis 

1) Qualitative analysis: To verify the effectiveness of the 

proposed method in face reconstruction under HMD occlusion, 

this study conducts a qualitative analysis on the test set and 

compares the differences in visualization between the proposed 

approach and several widely used contemporary methods. Fig. 

8 shows the face reconstruction results of different approaches 

in the FFHQ dataset. 

As presented in the comparison results in Fig. 8, the 
existing methods can restore the basic contours of the occluded 
face to a certain extent, but there are generally problems such 
as blurred reconstruction areas, discontinuous boundaries, or 
structural distortion, especially in key areas such as the eyes 
and brow bones, which make it difficult to restore the true face 
accurately. As shown in Fig. 8(c), this method exposes the 
problems of global structure loss and regional incoherence in 
the generated results. Obviously, it lacks overall coordination, 
making it challenging to model facial semantics consistently. 
As shown in Fig. 8(d), MAT has enhanced local texture 
modeling by introducing the Transformer structure, but its 
structural alignment and detail continuity performance are still 
unsatisfactory. For example, in the 4th row and 4th column, 
there is a misalignment phenomenon in the reconstruction of 
the face contour under the side view, indicating that its 
modeling ability under complex postures still has room for 
improvement. AOT-GAN also exhibits similar problems, and 
from the visualization results in Fig. 8(e), it can be observed 
that its reconstruction results are obviously insufficient in 

diversity, and the eye structures generated in multiple samples 
are highly similar, lacking personalized performance. In 
addition, noticeable color differences and texture breakage 
often occur in the occluded area, affecting the overall visual 
consistency. In contrast, our approach is more natural, realistic, 
and diverse in visual effects. Meanwhile, our results also 
generated facial features and structures that were closely 
aligned with the ground truth, such as the distance between the 
eyebrows and eyes, the proportion of the facial features, the 
color of the eyes, etc. It can not only accurately restore the 
structural contours of the occluded area, but also show better 
coherence and consistency in fusion with the non-occluded 
area. 

 

Fig. 8. Vision comparison. Each row is: (a) Input image, (b) Ground truth, (c) 

RFI[38], (d) MAT[62], (e) AOT-GAN[63], and (f) the proposed method. 

2) Quantitative analysis: The proposed model is also 

verified on the CelebA dataset. To objectively measure the 

performance of the proposed method, this study uses three 

common image quality evaluation indicators: SSIM, PSNR, 

and LPIPS, and evaluates the results against existing leading 

image inpainting approaches. SSIM quantifies the structural 

similarity between the reconstructed and the original images. 

The higher the value, the closer the structure; PSNR primarily 

reflects the overall quality of image restoration. Higher values 

indicate lower image distortion; LPIPS evaluates image 

similarity based on the perceptual characteristics of the deep 

network, which can better capture the differences in human 

visual perception. The lower the value, the closer the 

reconstructed face is to the real face. We further report the 

number of parameters and FLOPs to verify the model's 

lightweight design and computational efficiency. FLOPs 

indicate the number of floating-point operations required for a 

single forward pass and serve as a measure of computational 

complexity. Since runtime can vary across different devices, 

this research did not use it as an evaluation metric. 
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A comparison of our method with multiple leading 
approaches is presented in TABLE III. Compared with 
mainstream GAN-based models, our method achieves higher 
SSIM and PSNR, as well as lower LPIPS, indicating superior 
reconstruction quality. Although RFI achieves lower FLOPs 
(5.67G) than ours (10.55G), its parameter count is much higher 
(128.87M). When compared with attention-based models such 
as AOR and MAT, our method achieves better image-level 
metrics while significantly reducing both parameter counts and 
FLOPs, demonstrating the efficiency of the face deformable 
attention module with dynamic sampling. Compared with 
lightweight GAN models like FastGAN, although our FLOPs 
(10.55G) are slightly higher than theirs (9.6G), our model has 
fewer than one-third of their parameters while achieving higher 
image quality, showing that we maintain a lightweight design 
without compromising reconstruction performance. Although 
diffusion-based methods have recently shown promising 
results, they were not included in the quantitative comparison 
due to the lack of publicly available code. Overall, these results 
indicate that our model effectively balances high-quality face 
reconstruction with a compact and computationally efficient 
design. 

TABLE III.  COMPARISON WITH STATE-OF-THE-ART RESEARCH 

Research SSIM PNSR LPIPS 
Parameters 

(M) 

FLOPs 

(G) 

Lafin[64] 0.902 26.25 0.92 25.32 75.03 

EC[65] 0.846 25.28 2.82 60.95 88.64 

AOR[66] 0.918 29.02 0.07 43.75 100.27 

EVI-

HRnet[25] 
0.899 25.83 0.03 26.01 62.31 

MAT[62] 0.894 21.26 0.11 56.94 68.25 

AOT-

GAN[63] 
0.901 22.01 0.11 15.20 18.22 

RFI[38] 0.852 20.61 0.13 128.87 5.67 

FastGAN 

[67] 
0.865 22.34 0.51 9.44 9.6 

PI-MFO-

GAN [68] 
0.878 27.50 0.18 50.63 42.65 

MGAN-

CRCM[69] 
0.892 26.30 0.27 25.85 24.3 

Ours 0.912 30.64 0.03 2.23 10.55 

D. Ablation Study 

To assess the effect of each component within the proposed 
model for HMD face reconstruction, an ablation study was 
carried out. Key components were selectively removed, and the 
effectiveness of the resulting model variants was systematically 
compared. TABLE IV. summarizes the experimental 
configurations and the corresponding outcomes, comprising the 
following three model variants: 

w/o Lie: Remove the Lie group feature learning module and 
keep other components. 

w/o FDA: Remove the Face Deformable Attention (FDA) 
module and keep other components. 

Ours: The complete model, including two key components: 
Lie group feature learning and face deformable attention. 

TABLE IV.  PERFORMANCE COMPARISON: FULL MODEL VS. ABLATED 

VARIANTS 

 SSIM↑ PNSR↑ LPIPS↓ 

w/o Lie 0.892 28.36 0.04 

w/o FDA 0.843 23.48 0.08 

Ours 0.912 30.64 0.03 

The quantitative results demonstrate that removing the Lie 
group feature learning module leads to a notable decline in 
performance, with SSIM dropping to 0.892 and PSNR 
decreasing to 28.36. This indicates a weakened ability to 
restore structural information and preserve fine details. Upon 
further removal of the attention mechanism, the performance 
deteriorates, with LPIPS increasing to 0.080, reflecting a 
significant decline in perceptual quality. In contrast, the whole 
model consistently achieves superior results across all 
evaluation measures, underscoring the contribution and 
necessity of the proposed components. 

 

Fig. 9. Visual example of the ablation experiment. 

To further illustrate the contribution of each module to the 
reconstruction performance, Fig. 9 presents a visual 
comparison of reconstructed results generated by different 
model variants on occluded facial images. In the w/o Lie 
configuration, the reconstructed outputs exhibit noticeable 
blurring and incomplete structural restoration in the occluded 
regions. The absence of fine-grained details highlights the 
importance of the Lie group feature learning module in 
providing low-level geometric and structural information. 
Without this module, the model struggles to capture local facial 
features, impairing its ability to reconstruct detailed and 
coherent textures. In the w/o FDA configuration, the results 
suffer from prominent artifacts and structural misalignments. 
Some examples display unnatural facial deformations, 
indicating that the proposed FDA module effectively guides 
the model to focus on critical facial regions and enhances its 
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ability to maintain global structural consistency by leveraging 
reference image information. The removal of this component 
hinders the integration of semantic cues, resulting in a 
noticeable decline in reconstruction quality. In contrast, the 
complete model achieves the most natural and structurally 
coherent visual results. It successfully restores precise facial 
details and maintains high texture and structural consistency 
across occluded and non-occluded regions. These observations 
further validate the synergistic effectiveness of combining Lie 
group feature learning with the face deformable attention 
mechanism in improving overall reconstruction performance. 

In summary, the ablation study comprehensively 
demonstrates the substantial contributions of the proposed key 
modules to overall model performance, as evidenced by both 
quantitative metrics and qualitative visual comparisons. 
Although the Lie group feature learning module and the face 
deformable attention mechanism function through distinct 
mechanisms, they complement each other in enhancing 
structural restoration and maintaining visual coherence. Their 
synergistic integration constitutes a core strength of the model 
architecture. This design improves reconstruction quality under 
occlusion conditions and offers a scalable and generalizable 
framework for more complex facial restoration tasks in future 
applications. 

V. CONCLUSION 

This study proposes an innovative model based on GAN to 
solve the problem of face reconstruction under HMD 
occlusion. By introducing the Lie group feature learning 
module, the model effectively captures the geometric structure 
and local changes, enriches the feature representation, and 
enhances the robustness. In addition, we design a deformable 
attention mechanism guided by the reference face image to 
dynamically adjust the model's attention area, so that the model 
can not only accurately repair the occluded area, but also 
maintain the natural and realistic reconstruction effect, 
effectively improving the consistency and credibility of the 
generated image. The proposed model is verified on the 
synthetic FFHQ and CelebA datasets. Experimental results 
indicate that it outperforms existing methods across multiple 
evaluation metrics, including structural similarity, perceptual 
consistency, and model efficiency. 

Despite these encouraging results, several limitations 
remain. First, the current model operates only at the single-
image level and does not incorporate temporal information, 
which constrains its ability to generate temporally consistent 
reconstructions for dynamic HMD-occluded facial sequences. 
Second, although the architecture is designed to be lightweight, 
real-time deployment on resource-constrained standalone VR 
headsets may still require further optimization, particularly 
given that the present reconstruction results are limited to 2D 
image outputs. Future work will focus on further lightweight 
optimization and the incorporation of temporal cues to achieve 
consistent dynamic reconstruction, as well as exploring 3D-
level facial texture completion. 

Beyond the technical findings, this work also provides 
broader insights into the future development of HMD-occluded 
face reconstruction and VR realism. By demonstrating the 
value of combining Lie group–based geometric modeling with 

deformable attention, this study highlights a promising 
direction for designing generative models that balance 
structural fidelity with computational efficiency. Such 
geometry-aware lightweight architectures may reshape current 
approaches to face inpainting, offering an alternative to purely 
convolutional or diffusion-based pipelines. Furthermore, the 
ability to restore plausible and identity-consistent facial 
textures has potential implications for social VR, avatar 
expressiveness, and immersive communication, where natural 
facial cues directly influence user experience and presence. 
Although this research does not involve direct system 
deployment, the findings underscore the importance of 
sustainable and responsible facial synthesis, especially in an 
era where generative diffusion models and identity-sensitive 
applications continue to evolve. These reflections position the 
proposed framework not only as a technical contribution but 
also as a foundation for future interdisciplinary advances in 
VR-oriented facial reconstruction. 
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