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Abstract—Head-mounted displays (HMDs) enhance virtual
reality (VR) experiences, but occlude the upper face, hindering
realistic user representation. To address this, some studies
employ sensors to capture facial expressions under occlusion,
while deep learning methods typically rely on image inpainting to
restore missing regions. However, these approaches often suffer
from limitations such as insufficient shallow feature
representation, high computational complexity, and redundant
model structures. This study proposes a lightweight generative
adversarial network (GAN) that utilizes multi-feature fusion and
deformable attention for face reconstruction under HMD
occlusion. Specifically, a Lie group feature learning module is
used to enhance shallow geometric representations, while
reference-guided deformable attention dynamically focuses on
occluded regions, improving both structural fidelity and
efficiency. Experiments across multiple face datasets show that
the proposed method outperforms existing mainstream
approaches regarding structural fidelity, detail restoration
capability, and model efficiency. The proposed framework offers
a promising solution for integration with HMDs equipped with
facial tracking, enabling more realistic and expressive avatars in
VR applications.

Keywords—Generative adversarial network; Lie group feature
learning; deformable attention; face reconstruction; virtual reality;
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l. INTRODUCTION

Virtual reality (VR) is a technology that creates virtual
environments by simulating real-world sensory experiences
(such as vision, hearing, and touch) using computers [1]. The
rapid growth of VR has enabled its widespread use in domains
such as education [2],[3],[4], healthcare [5],[6].[7],
entertainment [8],[9],[10], remote collaboration [11],[12],[13],
and more. As a VR interaction device, the head-mounted
display (HMD) provides users with a highly immersive
communication experience and enables more natural and vivid
forms of interaction [14]. However, since the HMD covers the
upper face, it obstructs the effective extraction of facial
features. It makes it challenging to integrate facial information
fully into the virtual scene [15]. The occlusion reduces the
realism of virtual communication and affects users' social
experiences [16]. Therefore, removing HMD occlusion from
facial images and restoring missing facial information has
become a key challenge in enhancing the realism of VR
interaction.

There are two main approaches for reconstructing the face
under HMD occlusion [17]: model-based methods and image-
based methods. Model-based methods use sensors to capture
facial information in the occluded areas and achieve full face
reconstruction by fitting a 3D face model [18],[19],[20],[21].
For example, Chen et al. [18] reconstructed the users' facial
expression and restored eye gaze direction by using three
infrared cameras to directly capture the occluded face beneath
the HMD. Kin et al. [19] proposed a facial expression
recognition system that combines facial electromyography
(fEMG) and electrooculography (EOG). The system collects
signals via tiny electrodes placed around the eyes and uses
machine learning to estimate virtual blendshape weights,
enabling natural mapping of expressions to 3D avatars.
However, such methods require the integration of additional
sensors into the HMD, leading to problems such as reduced
wearing comfort and increased cost [22]. In recent years,
advanced HMDs such as the Meta Quest Pro have been
gradually adopted in industrial applications. By integrating
similar sensors into the HMDs, they have improved wearing
comfort and enhanced facial expression tracking [23].
Nevertheless, in practical applications, these devices still
cannot capture complete facial texture information, making it
challenging to render high-fidelity facial appearances.

Image-based methods primarily use deep learning models
to generate the occluded facial regions, aiming to restore the
missing information in facial images realistically [17],
[24],[25],[26]. Numan et al. [17] introduced a GAN-based
HMD removal framework that simultaneously reconstructs the
incomplete color and depth information in RGB-D facial
images. Gupta et al. [24] introduced spatial supervision and
landmark prediction modules to improve facial image quality
in the de-occlusion task. They optimized the reconstruction of
the peri-ocular region by leveraging the inherent structure of
the eye and enhanced feature extraction by incorporating an
attention module. Ghorbani Lohesara et al. [25] incorporated a
self-attention into a GAN, enabling HMD occlusion removal
by exploiting multiple reference video frames. Bai et al. [26]
proposed a universal facial encoding system for consumer-
grade HMDs. By employing self-supervised learning and
training on large-scale unlabeled HMD camera data, their
method achieved cross-view face reconstruction without
relying on 3D models or high-quality labels, significantly
improving overall model performance.
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In recent years, diffusion models [27] have made
significant breakthroughs in image generation and have
demonstrated superior performance to traditional GANSs in
tasks such as image restoration and image synthesis [28]. The
central idea is to produce high-quality images via a progressive
denoising process, which leads to more stable training and
greater fidelity in fine image details. However, such methods
typically require multi-step sampling, which leads to long
generation times, low inference efficiency, and high demands
on computational resources [29], [30]. Therefore, given the
resource constraints in virtual reality applications, this study
adopts a GAN-based generation approach.

Although GAN-based methods have shown promising
progress in HMD-occluded face reconstruction, the current
literature still presents several notable research gaps. First,
most existing studies rely heavily on deep convolutional
semantic features and overlook shallow geometric cues, which
are crucial for maintaining structural consistency in
reconstructed facial regions. Second, the attention mechanisms
commonly adopted in prior work are dominated by global self-
attention, whose quadratic computational complexity results in
high memory consumption and low efficiency—making these
models unsuitable for real-time or resource-constrained VR
applications. Third, many existing approaches employ complex
and redundant GAN architectures with large parameter counts,
limiting the deployability and hindering practical integration
into lightweight VR systems. These gaps highlight the need for
a lightweight, geometry-aware, and computationally efficient
framework  for  high-fidelity = HMD-occluded  face
reconstruction.

In response to the identified research gaps, this study
presents a lightweight, geometry-aware GAN architecture that
incorporates multi-feature fusion and an efficient deformable
attention module. The core design of the approach is described
as follows:

1) To introduce the Lie group feature learning method to
perform a structured representation of shallow features. By
combining deep semantic features with shallow visual
information, it effectively improved the integrity and geometric
consistency of feature expression.

2) To propose a deformable attention mechanism guided
by facial reference images, effectively reducing memory usage
and computational complexity.

3) To propose a lightweight GAN model that combines
parallel dilated convolution, Lie group feature modeling, and
an attention module. This significantly reduces the model
complexity and inference time while maintaining good
reconstruction quality.

The primary contributions of this research can be outlined
as follows:

1) Proposed a multi-feature fusion strategy combining
shallow and deep features, and the Lie group feature learning
method is introduced to significantly enhance the model's
ability to model facial structure.

2) Designed a deformable attention mechanism guided by
facial reference images (face deformable attention), which
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effectively reduces the computational complexity, improves the
focus on key areas, and reduces the impact of irrelevant regions.

3) Constructed a lightweight GAN architecture that
ensures high-fidelity reconstruction while having good
adaptability.

The remainder of this study is organized as follows:
Section Il reviews the related work on HMD-occluded face
reconstruction. Section Il presents the proposed lightweight
multi-feature fusion GAN with deformable attention.
Section IV describes the experimental setup, implementation
details, and performance evaluation. Section V concludes the
study and outlines potential directions for future research.

Il.  RELATED WORK

A. Occluded Face Reconstruction

Occluded face reconstruction is a challenging problem that
has recently garnered significant attention. Current approaches
can be categorized into two groups broadly [25]: model-based
methods and image-based methods. Model-based methods rely
on statistical models, such as 3D morphable models (3DMMs)
[31], to estimate facial geometry and texture. Purps et al. [32]
identified unoccluded facial regions, extracted facial
landmarks, followed the Facial Action Coding System (FACS)
to achieve facial muscle activation, and created realistic virtual
images through 3D modeling software to achieve facial
expression presentation. However, the above methods are
mainly aimed at small-scale facial occlusions and have
particular difficulties for large-scale occlusions, such as the
difficulty in capturing detailed facial features. To overcome the
limitations of small-scale facial occlusions, some studies have
adopted more complex techniques to deal with large-scale
facial occlusions. For example, He et al. [33] fitted a 3D facial
model, used 3D facial information to reconstruct the occluded
parts, and combined Gabor-based occlusion dictionary learning
to increase feature diversity and better represent occluded
faces. Li et al. [34] separated the occluded areas through an
abnormal region segmentation network, avoiding the model
fitting error caused by occlusion, achieving more accurate
model fitting positioning, and improving the quality of
occluded facial reconstruction.

Image-based methods usually use deep learning models to
complete face images. Ju et al. [35] randomly added masks to
the face dataset to synthesize an occluded face dataset,
achieved self-supervised training by generating damaged
images with simulated occlusion and rotation, and combined
CFR-GAN to repair texture in occluded areas. Yu et al. [36]
introduced a reference-guided face inpainting approach that
restores missing pixels using a reference image of the same
identity as the occluded face. Similarity constraints were
employed to synthesize finer detailed texture information. Lu
et al. [37] proposed a face inpainting method that combines a
multi-stage generative adversarial network with a global
attention mechanism. Their framework leverages a generator
with skip connections, an encoder—decoder structure, and a
local refinement network to enhance inpainting quality. Luo et
al. [38] proposed a two-stage control framework that
disentangles the reference image into identity features and
texture details. They achieved identity-preserving face image
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completion in the case of large-area missing photos.
Hassanpour et al. [39] developed a GAN-based ‘eye-to-face
network’ (E2F-Net) that targets the restoration of the periocular
region to improve the realism and completeness of the
reconstructed face images. While image-based approaches
perform better on large occlusions, they primarily rely on deep
convolutional semantic features and often lack explicit
modeling of shallow geometric structures, which are essential
for preserving facial consistency under severe occlusion. These
limitations suggest that a more geometry-aware and
lightweight GAN architecture is necessary—motivating the
method proposed in this work.

B. Lie Group Feature Learning

Lie group machine learning [40] is a paradigm that
integrates Lie group theory with machine learning algorithms,
leveraging the mathematical structure of Lie groups to improve
feature representation, generalization, and robustness,
particularly for data exhibiting symmetry and geometric
constraints [41]. Lie group feature learning is widely used to
extract shallow features of target objects. Its theoretical basis
stems from the advantages of Lie groups in describing
geometric transformations and symmetries [42],[43],[44],[45].
Shallow features typically encompass the geometric structure
of the target object, local texture details, and basic statistical
properties, capturing essential patterns in the data’s primary
representation. These features are vital in deep learning
systems because they provide a reliable basic representation for
subsequent high-level feature learning. Xu et al. [42] first
applied Lie group feature learning to shallow feature extraction
of remote sensing images, effectively learning and representing
shallow features such as target size and shape in remote
sensing images, and combined with CNN models to achieve
more discriminative feature extraction. The results show that
Lie group feature learning can effectively enhance the feature
representation ability of deep learning models [43]. Xu et al.
[44],[45] further applied Lie group feature learning to the deep
learning model for scene classification, allowing the model to
capture and represent a more diverse set of features, enhancing
the interpretability of the model, and thus effectively
improving the model’s scene classification performance. Cai et
al. [46] used Lie groups to learn and implement natural motion
data representation. Then they used CNN to discover and
classify Lie group features, improving the accuracy of human
motion recognition and saving computing time. Yang et al.
[47] designed a Lie algebraic residual network (LARNet),
which effectively improved face recognition accuracy by
combining Lie groups and residual networks, and was robust to
face posture. Although Lie group feature learning has shown
promise in capturing geometric structures across different
fields, it remains largely unexplored in occluded face
reconstruction.

C. Attention Mechanism

The attention mechanism, inspired by human visual
perception, allows the model to focus on the most relevant
regions of the input data [48]. Initially, this mechanism was
mainly used in natural language processing and significantly
improved model performance. With the development of
technology, researchers have gradually extended the attention
mechanism to the field of computer vision and achieved many
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breakthrough results [49],[50],[51]. However, while improving
the accuracy of the model, this mechanism also introduces new
problems [52], such as high computational complexity and
extensive memory usage. To solve these problems, scholars
have proposed some solutions, such as Deformable Attention
(DAT) [53], Slide-Transformer [54], Single-Head Vision
Transformer (SHVIT) [55], etc., which reduce the redundancy
in attention calculation through different strategies and
significantly improve its computational efficiency. Lu et al.
[37] used the global attention mechanism to enhance global
feature interaction and reduce information dispersion, thereby
better realizing face information restoration. Wan et al. [56]
introduced an unsupervised face restoration approach that
integrates contrastive learning with an attention mechanism.
The feature attention module focuses on key feature
information and establishes long-range dependencies to
improve the face restoration effect. Xu et al. [27] proposed a
face inpainting approach that combines parallel visual attention
(PVA) with a diffusion model. By inserting a parallel attention
matrix into the denoising network and focusing on the
reference image features extracted by the identity encoder, the
identity preservation ability of the restored face is effectively
improved. Chen et al. [57] proposed a channel attention layer
with spatial activation, combined with a sandwich-style feed-
forward network structure, to achieve efficient spatial modeling
and context understanding of damaged images at multiple
scales. While these methods significantly enhance restoration
fidelity, most existing works either assume global attention,
which is computationally heavy, or do not fully leverage facial
cues that could better guide reconstruction under occlusion,
such as HMDs.

I1l.  PROPOSED METHOD

A. Overview

0 illustrates the complete framework of the model. Initially,
the Lie group feature learning is adopted to extract shallow
features from the reference face image, while a convolutional
neural network captures high-level features. These features are
then fused and used as input for the subsequent stage; then, a
generator is constructed, in which we propose a deformable
attention mechanism guided by facial reference images to
reconstruct the face under HMD occlusion; finally, through
adversarial training between the generator and discriminator,
images containing various facial detail information are
gradually generated to achieve high-fidelity face
reconstruction.

B. Feature Learning

1) Shallow feature learning: The image samples are first
projected onto the Lie group manifold space to derive their
corresponding Lie group representations. Then, feature
extraction is performed within the manifold space. Inspired by
the method proposed in [42], key features such as color and
gradient information are extracted at each pixel, and a Lie
group-based regional covariance matrix is constructed based on
these features. This matrix characterizes the shallow structural
properties of the sample and provides a richer feature
representation for subsequent analysis and processing. The
formulation is as follows:
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Fig. 1. Framework overview.
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where, the pixel position (x, y) and the gradient
(| , %’;y)b are the basic characteristics of the target

object, the gradient can provide key features such as texture,
edge, and direction. Compared with [42], we increased the
image pixel in the x and y directions of the second-order mixed

. . a%1(x,
partial derivative | a)f;; )| to capture local curvature change,

capture complex and essential features such as eyebrows,
corners of the eyes, and corners of the mouth more accurately.

92 . . . L.
And | 6’;;';' )| of intersection is very sensitive and can detect

the image of the cross and the nonlinear change, enhancing the
model’s perception of delicate features.

In the research [42], RGB and YChbCr are used as basic
color features to enhance the representation of target objects in
remote sensing scenes. This research focuses on the color
distribution of different areas, such as skin tone, occlusions,
etc. However, in a different light, the value of skin color in the
RGB space will change significantly, especially when the non-
uniform light performance is worse. In [58], the authors show
that HSV is more robust to changes in facial illumination.
Therefore, we capture color features in the HSV color space.
Hue H and saturation S can describe skin color well and have
certain invariances to brightness changes, making skin color
feature extraction more reliable.

HOG counts the local gradient change around each pixel. In
[59], the authors show that HOG features are susceptible to
object deformation, so introducing HOG features can
effectively extract facial edge and shape information. The
Gabor feature is widely used for characterizing image texture
information [60]. It effectively captures and discriminates
textures because their frequency and orientation selectivity
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align with the response characteristics of the human visual
system.

2) High-level feature learning: In this section, a multi-
layer convolutional neural network (CNN) is used to extract
high-level semantic features from the reference face image. Fig.
2 shows the high-level feature learning network structure used
in this research. The semantic features of the reference face
image are gradually extracted through multiple convolutions
(including standard convolutions and parallel dilated
convolutions) combined with batch normalization (BN) and
SeL.U activation functions. To extract the high-level features of
the reference face image at a deeper level, three residual
modules are used to deepen the network structure and reduce

feature loss.
3=Residual Block

k9n128s1 k3n128sl k3nl28s1

========9

Parallel Dilated
Output

Convolution

E
]
=
2
=1
o

Convolution

Fig. 2. High-level feature learning network. k, n, and s indicate kernel size,
number of channels, and stride, respectively.

This study uses dilated convolutions with r=1, 2, and 3
dilation rates to perform parallel operations. As shown in Fig.
3, given a feature map Ft, it is segmented into four parts, Ftcl,
Ftc2, Ftc3, and Ftc4, along the channel. A 3x3 convolution
kernel is used to perform dilated convolution operations on two
adjacent parts, so that each dilated convolution can share some
parameters. Then the output of the dilated convolution is fused
with the original feature. Finally, the number of channels is
readjusted through a 1x1 convolutional network.

Dilation rate=3
Dilation rate=2 I
Dilation rate=] |
VJ‘! =
et | Pl Pres | Fioa ‘
Ft Ftq Ftp T F
Concat

l Conv 1x1
1

Fig. 3. The principle of parallel dilated convolution.
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TABLE I. THE NUMBER OF PARAMETERS OF PARALLEL DILATED CONVOLUTION AND ORDINARY CONVOLUTION
Methods Kernel Size Input Channel Output Channel Layer Parameters Size Total(M)
Convl 512x512x3%3=2,359,296
3x3 512 512 Conv2 512x512x3x%3=2,359,296 7,077,888 ~ 7.08
Ordina Conv3 512x512x3x3=2,359,296
Y Convl 512x512x5x5=6,553,600
5x5 512 512 Conv2 512x512x5x5=6,553,600 19,660,800 =~ 19.66
Conv3 512x512x5x5=6,553,600
Convl
Parallel 5x5 512 512 Conv2 512x512x5x5=6,553,600 6,553,600 ~ 6.55
Conv3
k9n64s1 k3n128s1 - 53. - k3n128sl k3n128sl k3n3sl
1
1
1
1 L
- 1 w e} — o]
P! N D =) D
g = 2 =gl |Eg| |ZE g
5 = A 3 o) m | A s sE| |8 = o) = =
EPEPIEPTEPIZ M P E PP EaPzc?ees a2 P e PE
B 5 = g a 2| = 2| |B £ = Z A £ =
o § S R 55| |8 5§ G o
[an : o : (=¥ = [
1
1
1

F

Fig. 4. The generator structure. k, n, and s indicate kernel size, number of channels, and stride, respectively.

Compared to traditional convolution, parallel dilated
convolution effectively enlarges the receptive field and
decreases the number of parameters by sharing parameters
across branches with different dilation factors, as summarized
in TABLE I. When the input and output channels are 512 and
the convolution kernel size is 5x5, the parameter count of
standard convolution is approximately three times higher than
that of parallel dilated convolution. Notably, the parameter
counts of parallel dilated convolution using a 5x5 convolution
kernel are only 6.55M, even less than the parameters of three
traditional convolution operations using a 3x3 convolution
kernel. Therefore, the parallel dilated convolution effectively
reduces the model size while ensuring the feature extraction
effect.

C. Generator

1) Generator structure: In this section, a generator
consisting of convolutional layers, residual blocks, and an
attention module is constructed for face reconstruction under
HMD occlusion, as presented in Fig. 4. This model proposes a
face deformable attention module guided by a reference face
image to reconstruct the face under HMD occlusion and
generate finer textures in the occluded area. In the model, the
BN layer is placed before the convolutional layer. This
operation has been proven in research [45] to effectively speed
up model convergence, improve gradient propagation, and
enhance model generalization ability.

Three residual blocks are used in the generator to
effectively avoid the gradient vanishing or gradient exploding
problems that occur as the network depth increases. The
residual block structure is presented in Fig. 5. Firstly, the input
features undergo batch normalization, followed by parallel

dilated convolution, which enlarges the receptive field while
retaining fine details. To improve non-linear representation and
ensure numerical stability, the SeLU activation function is
applied. Finally, a skip connection directly adds the original
input features to the convolutional outputs, mitigating feature
loss as network depth increases. The formulation is as follows:

Xiy1 = X; + SeLU(PDConv(BN (x;)) 2)

Input
|
v

| BN |
I

lParallcl Dilated Convolulion‘

‘ SeLU ‘

Fig. 5. The residual block network.

where, x; denotes the input to a residual block, while x;, ,
represents its output, which also serves as the input to the
subsequent residual block, and PDConv(:) represents the
parallel dilated convolution operation.

2) Face deformable attention: This section proposes a
deformable attention mechanism guided by face reference
images, as illustrated in Fig. 6. Given the HMD occluded face
feature map F,,goceq € R¥XWXC it is projected to query tokens
Q by linear transformation. Given the reference face feature
map F,.r € RF*WXC the reference points p(x,y) € R#r<Wr
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are generated by uniform grid sampling in F,..,. The reference
points p are represented as 2D coordinates normalized to the
range [-1,1] according to the mesh shape. By feeding Q into the
offset network, a set of offset values Ap = of fset(Q) can be
obtained. Adding the positional offset Ap to the reference
points p, the reference points can be dynamically adjusted
towards critical regions (e.g., the eye area), yielding new
coordinate points p. Sampling at points p on the reference
feature map F,., produces a new feature map F,.,', which
contains authentic reference features of the eye region under
HMD occlusion. These features further support reconstructing
a complete face under HMD occlusion. Key K and Value V can
be obtained by linear transformation of F,..;' using projection
matrices W} and W,,. The attention score is then obtained by
calculating the similarity between Q and K, which represents
the relevance of the query to each key. Finally, the attention
score is normalized, and the values are weighted to generate
the final weighted feature. Thus, the face information of the
HMD occluded area can be recovered to help realize high-
fidelity face reconstruction under HMD occlusion.
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(a) (b) Offset Structure

Fig. 6. Face deformable attention structure.

Fig. 6(b) shows the offset network structure. Q is
downsampled through a Max pooling layer, and then
nonlinearity is introduced through ReLU. The channels are
compressed and mapped using 1x1 convolution. Finally, the
position offset 2D coordinates are output. In the offset network,
a predefined factor s is used for scaling to prevent the training
process from being unstable due to excessive offset. Face
deformable attention is calculated as follows:

Q = FmaskedW » K= Fref’Wk’ V= Fref’VVv (3)

Fyyut = softmax (% + b) 4 (@)

where, W,, W,, W, are learnable projection matrices
optimized during training, enabling the attention can
effectively capture the relationships between input features.
Fpnaskea 1S the input HMD occluded face feature map, F,." is
the grid sampling result of the reference face feature map, and
b is the relative position offset value.
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D. Discriminator

The discriminator is constructed to differentiate
reconstructed face images from real ones, as illustrated in Fig.
7. The reference face image and the reconstructed face image
are randomly selected as the input of the discriminator. The
input image first undergoes convolution to obtain initial feature
representations, followed by the SeLU activation function to
introduce nonlinearity. Subsequently, the network uses three
parallel dilated convolutions to extract image features further
and capture contextual information. The architecture combines
average pooling to reduce spatial dimensions and aggregate
features, and then uses a fully connected layer for advanced
feature processing. Finally, through the Sigmoid activation, the
input image is assigned a discrimination result.

k9n6ds]

Sigmoid

Convolution
Average Pooling
Fully connected

Fig. 7. The structure of the discriminator. k, n, and s indicate kernel size,
number of channels, and stride, respectively.

The discriminator evaluates the input image and feeds the
result back to the generator, guiding it to iteratively optimize
its parameters and generate more realistic images. During
adversarial training, the discriminator continuously updates its
parameters to enhance its capability to differentiate between
authentic and reconstructed images. Through this adversarial
process, the generator gradually enhances the quality of its
outputs, making the reconstructed images increasingly similar
to real ones. Meanwhile, the discriminator delivers effective
feedback to the generator by extracting deep feature
representations, helping it to capture finer details and more
complex features, thus facilitating better parameter
optimization. Ultimately, the discriminator ensures that the
facial images generated by the generator achieve high visual
quality and detailed expression, effectively addressing the
challenge of high-fidelity face reconstruction under HMD
occlusion.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Dataset

Due to the difficulty of obtaining real HMD-occluded faces
with corresponding ground truth, synthetic datasets were used
to ensure quantitative evaluation and reproducibility [32],[61].
The baseline datasets used in this study are FFHQ and CelebA.
This study adopts FFHQ and CelebA, two widely used
benchmark face datasets. FFHQ provides high-resolution
(1024x1024) facial images with rich diversity in age, ethnicity,
pose, and expression, making it suitable for high-fidelity
reconstruction tasks and supervised learning with clean,
unobstructed ground truth. CelebA offers a large-scale
collection of face images with substantial identity and attribute
variation, which supports evaluating the model’s generalization
ability across different facial characteristics. Based on these
datasets, 68,274 synthetic HMD-occluded images were
generated from FFHQ and 143,669 from CelebA. The model

164|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

was trained on the occluded FFHQ dataset and evaluated on
the FFHQ and CelebA test sets to verify its generalization
capability.

B. Experiment Setup

Experiments were conducted on a computing platform
equipped with an NVIDIA RTX 4090 GPU (24 GB VRAM)
and a 12th Gen Intel(R) Core(TM) i7-12700K CPU. The
implementation was based on PyTorch 2.0.0 with CUDA 11.8
for GPU acceleration, using Python 3.8. Model training
employed the Adam optimizer with first-order and second-
order momentum estimates (1 = 0.5, 2 =0.999) and a
batch size of 8. The learning rate for both the generator and
discriminator was set to 0.0002, and training was performed for
100 epochs. The detailed experimental configuration is
summarized in TABLE II.

TABLE II. EXPERIMENTAL SETUP
Category Configuration
Hardware NVIDIA RTX 4090 GPU (24GB),
Intel Core i7-12700K CPU

Software Python 3.8, PyTorch 2.0.0, CUDA 11.8
Optimizer Adam(B81 = 0.5, 2 = 0.999)
Batch Size 8
Learning
Rate 0.0002
Epoch 100

C. Result and Analysis

1) Qualitative analysis: To verify the effectiveness of the
proposed method in face reconstruction under HMD occlusion,
this study conducts a qualitative analysis on the test set and
compares the differences in visualization between the proposed
approach and several widely used contemporary methods. Fig.
8 shows the face reconstruction results of different approaches
in the FFHQ dataset.

As presented in the comparison results in Fig. 8, the
existing methods can restore the basic contours of the occluded
face to a certain extent, but there are generally problems such
as blurred reconstruction areas, discontinuous boundaries, or
structural distortion, especially in key areas such as the eyes
and brow bones, which make it difficult to restore the true face
accurately. As shown in Fig. 8(c), this method exposes the
problems of global structure loss and regional incoherence in
the generated results. Obviously, it lacks overall coordination,
making it challenging to model facial semantics consistently.
As shown in Fig. 8(d), MAT has enhanced local texture
modeling by introducing the Transformer structure, but its
structural alignment and detail continuity performance are still
unsatisfactory. For example, in the 4th row and 4th column,
there is a misalignment phenomenon in the reconstruction of
the face contour under the side view, indicating that its
modeling ability under complex postures still has room for
improvement. AOT-GAN also exhibits similar problems, and
from the visualization results in Fig. 8(e), it can be observed
that its reconstruction results are obviously insufficient in
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diversity, and the eye structures generated in multiple samples
are highly similar, lacking personalized performance. In
addition, noticeable color differences and texture breakage
often occur in the occluded area, affecting the overall visual
consistency. In contrast, our approach is more natural, realistic,
and diverse in visual effects. Meanwhile, our results also
generated facial features and structures that were closely
aligned with the ground truth, such as the distance between the
eyebrows and eyes, the proportion of the facial features, the
color of the eyes, etc. It can not only accurately restore the
structural contours of the occluded area, but also show better
coherence and consistency in fusion with the non-occluded
area.

Fig. 8. Vision comparison. Each row is: (a) Input image, (b) Ground truth, (c)
RFI[38], (d) MAT[62], (¢) AOT-GAN[63], and (f) the proposed method.

2) Quantitative analysis: The proposed model is also
verified on the CelebA dataset. To objectively measure the
performance of the proposed method, this study uses three
common image quality evaluation indicators: SSIM, PSNR,
and LPIPS, and evaluates the results against existing leading
image inpainting approaches. SSIM quantifies the structural
similarity between the reconstructed and the original images.
The higher the value, the closer the structure; PSNR primarily
reflects the overall quality of image restoration. Higher values
indicate lower image distortion; LPIPS evaluates image
similarity based on the perceptual characteristics of the deep
network, which can better capture the differences in human
visual perception. The lower the value, the closer the
reconstructed face is to the real face. We further report the
number of parameters and FLOPs to verify the model's
lightweight design and computational efficiency. FLOPs
indicate the number of floating-point operations required for a
single forward pass and serve as a measure of computational
complexity. Since runtime can vary across different devices,
this research did not use it as an evaluation metric.
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A comparison of our method with multiple leading
approaches is presented in TABLE Ill. Compared with
mainstream GAN-based models, our method achieves higher
SSIM and PSNR, as well as lower LPIPS, indicating superior
reconstruction quality. Although RFI achieves lower FLOPs
(5.67G) than ours (10.55G), its parameter count is much higher
(128.87M). When compared with attention-based models such
as AOR and MAT, our method achieves better image-level
metrics while significantly reducing both parameter counts and
FLOPs, demonstrating the efficiency of the face deformable
attention module with dynamic sampling. Compared with
lightweight GAN models like FastGAN, although our FLOPs
(10.55G) are slightly higher than theirs (9.6G), our model has
fewer than one-third of their parameters while achieving higher
image quality, showing that we maintain a lightweight design
without compromising reconstruction performance. Although
diffusion-based methods have recently shown promising
results, they were not included in the quantitative comparison
due to the lack of publicly available code. Overall, these results
indicate that our model effectively balances high-quality face
reconstruction with a compact and computationally efficient
design.
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w/o FDA: Remove the Face Deformable Attention (FDA)
module and keep other components.

Ours: The complete model, including two key components:
Lie group feature learning and face deformable attention.

TABLE IV. PERFORMANCE COMPARISON: FULL MODEL VS. ABLATED
VARIANTS
SSIM?1 PNSR? LPIPS|
wlo Lie 0.892 28.36 0.04
w/o FDA 0.843 23.48 0.08
ours 0.912 30.64 0.03

TABLE IlIl.  COMPARISON WITH STATE-OF-THE-ART RESEARCH
Parameters FLOPs
Research SSIM PNSR LPIPS

(M) (G)
Lafin[64] 0.902 26.25 0.92 25.32 75.03
EC[65] 0.846 25.28 2.82 60.95 88.64
AOR[66] 0.918 29.02 0.07 43.75 100.27
EVI-
HRnet[25] 0.899 25.83 0.03 26.01 62.31
MAT[62] 0.894 21.26 0.11 56.94 68.25
AQOT-
GAN[63] 0.901 22.01 0.11 15.20 18.22
RFI[38] 0.852 20.61 0.13 128.87 5.67
FastGAN | gge5 | 2234 | 051 | 944 96
[67]
PI-MFO-
GAN [68] 0.878 27.50 0.18 50.63 42.65
MGAN-
CRCMI69] 0.892 26.30 0.27 25.85 24.3
Ours 0.912 30.64 0.03 2.23 10.55

D. Ablation Study

To assess the effect of each component within the proposed
model for HMD face reconstruction, an ablation study was
carried out. Key components were selectively removed, and the
effectiveness of the resulting model variants was systematically
compared. TABLE V. summarizes the experimental
configurations and the corresponding outcomes, comprising the
following three model variants:

w/o Lie: Remove the Lie group feature learning module and
keep other components.

The quantitative results demonstrate that removing the Lie
group feature learning module leads to a notable decline in
performance, with SSIM dropping to 0.892 and PSNR
decreasing to 28.36. This indicates a weakened ability to
restore structural information and preserve fine details. Upon
further removal of the attention mechanism, the performance
deteriorates, with LPIPS increasing to 0.080, reflecting a
significant decline in perceptual quality. In contrast, the whole
model consistently achieves superior results across all
evaluation measures, underscoring the contribution and
necessity of the proposed components.

o~

Masked Face i 209

Ground Truth ™

w/oLie

Fig. 9. Visual example of the ablation experiment.

To further illustrate the contribution of each module to the
reconstruction performance, Fig. 9 presents a visual
comparison of reconstructed results generated by different
model variants on occluded facial images. In the w/o Lie
configuration, the reconstructed outputs exhibit noticeable
blurring and incomplete structural restoration in the occluded
regions. The absence of fine-grained details highlights the
importance of the Lie group feature learning module in
providing low-level geometric and structural information.
Without this module, the model struggles to capture local facial
features, impairing its ability to reconstruct detailed and
coherent textures. In the w/o FDA configuration, the results
suffer from prominent artifacts and structural misalignments.
Some examples display unnatural facial deformations,
indicating that the proposed FDA module effectively guides
the model to focus on critical facial regions and enhances its
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ability to maintain global structural consistency by leveraging
reference image information. The removal of this component
hinders the integration of semantic cues, resulting in a
noticeable decline in reconstruction quality. In contrast, the
complete model achieves the most natural and structurally
coherent visual results. It successfully restores precise facial
details and maintains high texture and structural consistency
across occluded and non-occluded regions. These observations
further validate the synergistic effectiveness of combining Lie
group feature learning with the face deformable attention
mechanism in improving overall reconstruction performance.

In summary, the ablation study comprehensively
demonstrates the substantial contributions of the proposed key
modules to overall model performance, as evidenced by both
quantitative metrics and qualitative visual comparisons.
Although the Lie group feature learning module and the face
deformable attention mechanism function through distinct
mechanisms, they complement each other in enhancing
structural restoration and maintaining visual coherence. Their
synergistic integration constitutes a core strength of the model
architecture. This design improves reconstruction quality under
occlusion conditions and offers a scalable and generalizable
framework for more complex facial restoration tasks in future
applications.

V. CONCLUSION

This study proposes an innovative model based on GAN to
solve the problem of face reconstruction under HMD
occlusion. By introducing the Lie group feature learning
module, the model effectively captures the geometric structure
and local changes, enriches the feature representation, and
enhances the robustness. In addition, we design a deformable
attention mechanism guided by the reference face image to
dynamically adjust the model's attention area, so that the model
can not only accurately repair the occluded area, but also
maintain the natural and realistic reconstruction effect,
effectively improving the consistency and credibility of the
generated image. The proposed model is verified on the
synthetic FFHQ and CelebA datasets. Experimental results
indicate that it outperforms existing methods across multiple
evaluation metrics, including structural similarity, perceptual
consistency, and model efficiency.

Despite these encouraging results, several limitations
remain. First, the current model operates only at the single-
image level and does not incorporate temporal information,
which constrains its ability to generate temporally consistent
reconstructions for dynamic HMD-occluded facial sequences.
Second, although the architecture is designed to be lightweight,
real-time deployment on resource-constrained standalone VR
headsets may still require further optimization, particularly
given that the present reconstruction results are limited to 2D
image outputs. Future work will focus on further lightweight
optimization and the incorporation of temporal cues to achieve
consistent dynamic reconstruction, as well as exploring 3D-
level facial texture completion.

Beyond the technical findings, this work also provides
broader insights into the future development of HMD-occluded
face reconstruction and VR realism. By demonstrating the
value of combining Lie group—based geometric modeling with
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deformable attention, this study highlights a promising
direction for designing generative models that balance
structural fidelity with computational efficiency. Such
geometry-aware lightweight architectures may reshape current
approaches to face inpainting, offering an alternative to purely
convolutional or diffusion-based pipelines. Furthermore, the
ability to restore plausible and identity-consistent facial
textures has potential implications for social VR, avatar
expressiveness, and immersive communication, where natural
facial cues directly influence user experience and presence.
Although this research does not involve direct system
deployment, the findings underscore the importance of
sustainable and responsible facial synthesis, especially in an
era where generative diffusion models and identity-sensitive
applications continue to evolve. These reflections position the
proposed framework not only as a technical contribution but
also as a foundation for future interdisciplinary advances in
VR-oriented facial reconstruction.
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