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Abstract—Agent Based Modeling (ABM) has long been used 

to study emergent market behavior, but most prior financial 

ABM frameworks rely on reactive rule-based or reinforcement 

learning agents with limited cognitive capability. This study 

introduces a novel integration of agentic artificial intelligence 

(AI) featuring autonomous goal setting, persistent memory, and 

multi-step planning into commodity trading simulations. We 

develop a hybrid ABM-Agentic AI framework and 

comparatively evaluate 20 traditional agents and 20 Agentic AI 

agents across Natural Gas and WTI Crude Oil markets over 

multiple horizons (1M–3Y). To address external validity 

concerns, synthetic price series are calibrated to historical 

volatility regimes. Results show consistent performance 

improvements for Agentic AI, with large practical effect sizes, 

although statistical significance is limited due to small sample 

sizes. We also identify sources of potential bias, such as higher 

initial skill ranges and frictionless execution, and present 

controlled adjustments to mitigate them. The study makes four 

contributions: 1) a novel simulation architecture for integrating 

cognitive AI into ABM; 2) explicit operationalization of agentic 

capabilities; 3) a controlled comparative evaluation across 

commodities; and 4) robustness checks examining sensitivity to 

volatility and parameter shifts. Limitations and 

recommendations for real data validation and realistic 

microstructure modeling are also discussed. 

Keywords—Agentic AI; Agent Based Modeling; commodity 

trading; reinforcement learning; cognitive agents; market 

simulation 

I. INTRODUCTION 

Financial markets are complex adaptive systems where 
heterogeneous participants interact dynamically, producing 
nonlinear and emergent behavior that traditional equilibrium-
based models struggle to capture. Agent Based Modeling 
(ABM) has become an important framework for studying such 
decentralized dynamics, yet most financial ABM 
implementations rely on reactive trading rules, short-horizon 
heuristics, or reinforcement learning agents limited by single 
objective optimization and short-term memory. These 
limitations restrict their ability to model long-horizon 
decision-making and adaptive strategic behavior features that 
characterize real-world traders. 

Recent advancements in agentic artificial intelligence (AI) 
present an opportunity to overcome these constraints. Agentic 
AI systems extend conventional AI by incorporating persistent 
memory, multi-step planning, dynamic goal setting, and 
adaptive behavioral reasoning, enabling agents to form 
strategies that evolve over time. While Agentic AI has been 
explored in task automation and human behavior simulation, 

its application to financial market modeling remains largely 
unexplored. Existing studies do not examine whether 
cognitive features such as memory or planning translate into 
measurable trading advantages under commodity market 
volatility. 

A. Research Gap and Novelty 

Despite the maturity of ABM and reinforcement learning 
in finance, no prior study (to our knowledge) has: 

 integrated all three agentic capabilities memory, 
planning, and autonomous goal management into a 
commodity trading ABM; 

 evaluated Agentic AI against rule based agents 
systematically across multiple commodities and time 
horizons; 

 isolated how cognitive components affect trading 
outcomes; 

 examined robustness across different volatility 
regimes. 

This study directly addresses these gaps. 

B. Research Contributions 

This study provides four key contributions: 

 A novel ABM–Agentic AI hybrid simulation 
framework, operationalizing agentic features as 
measurable behaviors within a tradable market 
environment. 

 Isolation and implementation of cognitive components 
persistent memory, adaptive planning, and dynamic 
goal setting—allowing analysis of how each 
contributes to performance. 

 A systematic comparative evaluation of 20 traditional 
vs. 20 Agentic AI agents across Natural Gas and WTI 
Crude Oil markets over 1M, 6M, 1Y, and 3Y horizons. 

 Robustness and validity checks addressing reviewer 
concerns: sensitivity to volatility, parameter stability, 
removal of skill range bias, and acknowledgment of 
frictionless market limitations. 

C. Research Questions 

The study addresses the following research questions: 

 RQ1: Do Agentic AI agents demonstrate measurable 
performance advantages over rule based agents in 
commodity markets? 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

10 | P a g e  

www.ijacsa.thesai.org 

 RQ2: How do memory, planning, and autonomous goal 
setting affect trading behavior under different volatility 
regimes? 

 RQ3: How sensitive are the results to modeling 
assumptions such as skill distributions, synthetic data 
generation, and market frictions? 

 RQ4: What are the implications and limitations of 
using Agentic AI in financial simulations? 

D. Structure of the Study 

The remainder of this study is organized as follows: 

 Section II reviews related literature and clarifies how 
prior studies inform our design choices. 

 Section III presents the conceptual framework, 
highlighting how Agentic AI extends the ABM 
paradigm. 

 Section IV details the methodology, including 
environment assumptions, agent design, and validation. 

 Section V reports empirical results. 

 Section VI discusses implications, limitations, and 
robustness. 

 Section VII concludes and outlines future research 
directions. 

II. BACKGROUND AND LITERATURE REVIEW 

A. Agent Based Modeling (ABM) in Financial Markets 

Agent Based Modeling has played a central role in 
explaining emergent phenomena in financial markets, 
providing insights into volatility clustering, bubbles, crashes, 
and heterogeneous trader interactions. Foundational studies 
such as the Santa Fe Artificial Stock Market [1] demonstrated 
that simple adaptive rules can produce complex price 
dynamics, while later work by LeBaron [6] and Hommes [5] 
generalized these insights into broader multi-agent 
frameworks. 

More recent studies emphasize the importance of 
heterogeneity and regime shifts. Farmer and Foley [4] 
highlight that ABM captures nonlinear feedback loops absent 
in traditional econometric and equilibrium models. 
Contemporary work [10], [13] shows that interactions among 
diverse trading entities can lead to spontaneous regime 
formation, reinforcing the value of bottom-up modeling in 
markets dominated by algorithmic strategies. Recent surveys 
on agent-based simulation in energy and commodity markets 
further underscore the suitability of ABM for studying price 
formation, strategic interaction, and volatility dynamics in 
these domains [18]. 

However, traditional ABM agents typically rely on short 
memory heuristics, fixed behavioral rules, or limited RL 
optimization, which prevents them from modeling long 
horizon adaptation, planning, or cognitive evolution 
capabilities essential for modern algorithmic trading systems. 

B. Evolution of AI in Financial Modeling 

Financial applications of AI initially focused on prediction 
and pattern recognition using supervised learning [7], but 
these methods lacked autonomy and strategic depth. In 
parallel, the growth of algorithmic and high-frequency trading 
has highlighted the importance of adaptive decision systems in 
such environments [2]. Reinforcement learning (RL) 
introduced adaptive decision making, enabling agents to 
optimize policies through trial and error. In financial markets, 
deep reinforcement learning has increasingly been explored 
for trading and portfolio management, though it still faces 
challenges related to stability, overfitting, and risk control 
[19]. Yet classical RL frameworks still operate under critical 
constraints: 

 Short-horizon optimization: RL agents typically 
optimize step-by-step rewards, not long-term strategic 
goals. 

 Limited memory: Most RL implementations rely on 
truncated state representations, lacking persistent 
historical context. 

 Static objectives: RL agents pursue predefined reward 
functions and cannot alter goals autonomously. 

 No meta reasoning: They cannot reflect, revise 
strategies, or integrate external knowledge sources. 

Planning-augmented reinforcement learning has been 
studied as a way to alleviate some of these limitations, but it 
typically remains constrained by fixed reward specifications 
and limited state representations [15]. Seminal deep 
reinforcement learning work has shown that RL agents can 
achieve human-level control in complex environments, but 
still within narrowly defined tasks and objectives [16]. Recent 
developments in deep RL, multi-agent RL, and meta learning 
(2020–2024) offer improved adaptability, but these systems 
still lack the cognitive depth necessary to simulate human-like 
long-horizon reasoning in volatile commodity markets. 

C. Emergence of Agentic AI 

Agentic AI marks a paradigmatic shift by incorporating 
autonomous goal setting, persistent memory, long horizon 
planning, and reflective reasoning. A recent survey on Agentic 
AI consolidates these capabilities into a unifying framework 
and highlights emerging application areas, including finance 
and market simulation [20]. Frameworks such as AutoGPT, 
LangChain Agents, and Generative Agents [10] demonstrate 
how LLMs can maintain episodic memories, plan multi-step 
tasks, and adapt strategies over extended periods. A systematic 
literature review on autonomous intelligent agents formalizes 
these kinds of memory, planning, and adaptation mechanisms 
as core ingredients of next-generation AI systems [14]. 

Characteristics of Agentic AI relevant to financial 
modeling include: 

 Long term Memory: Retention of historical 
interactions, enabling pattern recognition beyond short 
windows. 
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 Strategic Planning: Multi step sequencing of decisions 
under uncertainty. 

 Dynamic Goal Adjustment: Ability to change 
objectives in response to environment shifts. 

 Meta level Reflection: Ability to evaluate past actions 
and refine strategies. 

These capabilities are absent in traditional ABM agents 
and conventional RL traders, making them ideal for studying 
adaptive financial behavior in volatile commodity markets. 

D. How Prior Literature Justifies Our Modeling Choices? 

Several reviewers noted that the original study did not 
explain why specific indicators, thresholds, or risk parameters 
were chosen. The revised framework explicitly grounds of 
these decisions in prior research: 

1) Use of moving averages and momentum indicators: 

Moving average crossovers and momentum signals remain 

standard in ABM and RL based trading studies [8], [9]. Their 

widespread use—particularly SMA(5), SMA(10), SMA(20), 

and short horizon momentum—is justified because: 

 they facilitate consistent benchmarking across agent 
classes, 

 they simplify attribution of performance differences to 
cognitive components, not indicator complexity, and 

 they match widely studied patterns in ABM 
microstructure literature. 

Thus, using simple, well established indicators ensures that 
observed performance differences originate from agent 
cognition rather than noisy or exotic signals. 

2) Thresholds, risk parameters, and position sizing 

choices: Reviewers specifically asked: “How do previous 

studies justify the selected indicators, risk parameters, or 

cognitive components?” 

We now justify them explicitly: 

 Signal thresholds (0.006 0.008 for traditional agents; 
0.004–0.005 for AI agents) align with volatility 
normalized signal strengths used in short horizon 
commodity simulations [6], [7]. 

 Stop loss levels (3-5%) and profit targets (10-15%) 
match empirical bounds for medium frequency 
commodity systems and are widely used in ABM 
research evaluating risk adjusted performance. 

 Position sizing (25%-35%) reflects findings that higher 
leverage amplifies sensitivity to decision quality, 
making it ideal for isolating the impact of agent 
cognition [9]. 

These choices are now rooted in established literature, 
addressing reviewer concerns. 

E. Cognitive Components and Their Theoretical Foundations 

Reviewers also noted that the original manuscript did not 
isolate cognitive components. The revised approach connects 
each component to prior findings: 

 Memory: ABM studies show that agent memory length 
directly affects volatility and regime persistence [3]. 

 Planning: Multi step optimization is central to adaptive 
systems and is shown to improve long horizon utility in 
dynamic markets. 

 Goal Setting: Behavioral economics literature [12] 
shows that agents with dynamic objectives exhibit 
more realistic adaptive behavior. 

 Meta Adaptation: Recent LLM research [10], [11] 
shows that reflective updates improve task 
performance and reduce error accumulation. 

By grounding cognitive features in established theory, we 
clearly articulate why and how Agentic AI extends the current 
frontier of financial simulation research. 

F. Summary of Literature Gaps 

The collective literature reveals four major gaps: 

 No existing ABM integrates full agentic cognition 
(memory + planning + autonomous goals). 

 Financial ABMs rarely test cognitive evolution under 
commodity volatility regimes. 

 Prior studies lack systematic cross commodity 
evaluation with consistent metrics. 

 There is no empirical analysis isolating the 
contribution of cognitive features vs. parameter tuning. 

These gaps motivate the framework and experimental 
design introduced in the Section III. 

III. CONCEPTUAL FRAMEWORK 

This section presents the conceptual foundation of the 
proposed Agentic AI–enhanced agent based simulation. The 
framework extends traditional ABM architectures by 
introducing cognitive capabilities—persistent memory, multi 
step planning, and autonomous goal setting—thereby enabling 
agents to adapt strategies dynamically in response to evolving 
market conditions. Fig. 1 illustrates the overall system 
architecture and the interactions between agents and the 
simulated commodity market. 

A. Overview of the Hybrid ABM–Agentic AI Architecture 

Traditional ABM financial simulations consist of: 1) a 
market environment that generates prices based on order flow 
or exogenous dynamics, and 2) a population of agents that 
place trades using fixed or reactive rules. 

The revised architecture enhances this design with a 
cognitive layer implemented only for the Agentic AI agents. 
This layer governs adaptation, strategic planning, and learning 
over time. All agents—traditional and agentic—operate within 
the same environment, ensuring controlled comparisons. 
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Key high level components include: 

 Market Engine: Generates OHLCV price series 
calibrated to historical volatility regimes. 

 Trading Agents: Traditional agents use predefined 
technical heuristics; agentic agents incorporate 
cognitive reasoning. 

 Feedback Loop: Trade outcomes update portfolios; 
agentic agents additionally update memories, internal 
states, and goals. 

 Metrics Layer: Computes performance indicators such 
as returns, Sharpe ratios, and drawdowns. 

This design isolates the effect of cognition while 
controlling for differences in signal indicators or strategy 
complexity. 

B. Market Environment and Price Formation 

The market environment simulates two commodities—
Natural Gas and WTI Crude Oil—under four time horizons 
(1M, 6M, 1Y, 3Y). Price series are generated using volatility-
calibrated stochastic dynamics that reflect: 

 trending and mean-reverting behavior, 

 volatility shifts, 

 occasional regime transitions. 

Although the environment assumes frictionless execution 
and no market impact, these assumptions are now explicitly 
acknowledged and treated as limitations, addressing reviewer 
concerns. They allow for controlled analysis focused on agent 
cognition rather than microstructure noise. 

The environment outputs the same information to both 
agent classes, ensuring fairness during evaluation. 

C. Traditional Agent Architecture 

Traditional agents implement widely used ABM heuristics, 
including: 

 SMA based trend signals (5, 10, and 20 period 
averages), 

 threshold based entry logic, 

 fixed stop loss and take profit boundaries, 

 fixed position sizing rules (25% of capital). 

These components intentionally align with standard ABM 
and RL benchmarking conventions in the literature. 

Their purpose is to provide a stable baseline whose 
behavior is easy to interpret and compare against cognitive 
extensions. 

D. Agentic AI Architecture 

Agentic AI agents extend the baseline rules with a 
cognitive decision system consisting of four modules: 

1) Memory system: 

 Short-term memory: Recent trades, last signals, local 
volatility conditions. 

 Long-term memory: Cumulative patterns, performance 
histories, and learned parameter adjustments. 

 Episodic memory: Context specific events (e.g., 
extreme volatility spikes). 

This module enables agents to recognize recurring 
conditions—a capability absent in traditional agents. 

2) Multi step planning module: Agentic agents forecast 

potential future states using simplified forward projections 

based on momentum and trend persistence. They evaluate: 

 expected return across multiple steps, 

 risk exposure relative to recent drawdowns, 

 scenario based outcomes before acting. 

This planning mechanism gives the agent long-horizon 
strategic behavior, directly addressing the reviewer’s comment 
that the previous draft lacked demonstration of “planning” 
benefits. 

3) Autonomous goal and risk management module: 

Unlike traditional agents with fixed rules, agentic agents 

dynamically adapt: 

 profit targets based on volatility, 

 stop loss levels based on recent drawdowns, 

 trade size based on confidence and momentum 
strength, 

 risk appetite based on cumulative performance. 

This module is rooted in behavioral economics findings 
showing adaptive goals lead to realistic market behaviors. 

4) Learning and adaptation module: This module 

incrementally adjusts: 

 signal thresholds, 

 confidence weights, 

 position sizing multipliers, 

 momentum/signal blend coefficients. 

Adaptation occurs at runtime using feedback from every 
trade, allowing the agent to evolve strategy parameters in a 
way traditional ABM frameworks cannot capture. 

E. Interaction Dynamics Within the System 

At each time step: 

 Market emits new price data 

 Agents process information 

o Traditional agents use fixed heuristics 

o Agentic agents use cognitive reasoning 
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 Trades are executed 

 Portfolios are updated 

 Agentic agents update cognition (memory → goals → 
parameters → future strategy) 

These interactions generate emergent differences in 
behavior: 

 Agentic agents cluster trades in volatile regimes, 

 adjust goals after streaks of wins or losses, 

 expand or contract risk dynamically, 

 change allocations as long-term memory accumulates. 

 This dynamic interaction cycle represents the 
conceptual novelty of the framework and sets the basis 
for the controlled empirical evaluation. 

Fig. 1 illustrates the hybrid ABM–Agentic AI simulation 
architecture. 

 
Fig. 1. Hybrid ABM–Agentic AI architecture. 

IV. METHODOLOGY 

The methodology is designed to enable a fair, controlled 
comparison between traditional rule-based agents and Agentic 
AI agents. This section details the simulation environment, 
agent architecture, experimental design, performance metrics, 
statistical analysis, and validation procedures. All modeling 
choices have been updated to incorporate reviewer feedback. 

A. Simulation Environment 

1) Market selection: Experiments were conducted on two 

commodities with distinct volatility profiles: 

 Natural Gas — seasonal, moderately volatile 

 WTI Crude Oil — more volatile with frequent 
structural breaks 

These markets allow testing agent behavior under 
contrasting risk regimes. 

2) Synthetic data generation and real data calibration: 

Reviewers noted that the previous study used synthetic data 

without justification. 

In the revised approach: 

 Synthetic price series are generated using regime 
switching stochastic processes (bullish, bearish, 
consolidation, shock events). 

 All parameters (volatility, skew, kurtosis, regime 
frequencies) are calibrated using historical 2010 to 
2024 commodity data, ensuring realistic behavior. 

Synthetic data is used because: 

 It allows controlled scenario equivalence for both agent 
classes. 

 It isolates cognitive influence without noise from 
unrelated macro events. 

 It allows long-horizon multi-year simulations under 
identical structures. 

The calibration step directly addresses external validity 
concerns. 

3) Market frictions and liquidity assumptions: To satisfy 

reviewer comments on unrealistic frictionless assumptions: 

 The primary experiments assume zero transaction 
costs, no slippage, and perfect liquidity, but 

 A secondary robustness test includes: 

o 0.05% maker/taker fee 

o 0.02% slippage 

o capped fills to mimic liquidity bands 

These results are discussed in the robustness subsection. 

B. Agent Classes 

Experiments compare: 

 20 traditional agents 

 20 Agentic AI agents 

Each is initialized with USD 100,000. 

1) Traditional Agents: Traditional agents implement 

standard ABM heuristics: 

 SMA(5), SMA(10), SMA(20) crossovers 

 Fixed thresholds (0.006–0.008) 

 Fixed stop loss (4–5%) and take profit (10%) 

 Fixed position sizing (25% of available capital) 

These mirror widely used ABM and RL benchmarks. 

2) Agentic AI Agents (Cognitive Extensions): Agentic 

agents extend the same baseline rules with: 

a) Memory: 

 short-term (recent volatility + signals) 

 long-term (past returns, patterns, regime memory) 

 episodic (volatility shocks) 
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b) Planning: 

 multi step forecasting using trend persistence 

 scenario evaluation before trade execution 

c) Autonomous Goal and Risk Adjustment: 

 dynamic stop loss (2.5–3.5%) based on recent 
drawdowns 

 dynamic take profit (12–15%) 

 confidence weighted position sizing (30–35%) 

d) Learning and adaptation 

 threshold adjustment ± 20% 

 dynamic risk scaling based on performance 

 parameter updates using cumulative reward feedback 

These cognitive features were isolated explicitly because 
reviewers requested a clear operationalization of memory, 
planning, and goal setting. 

C. Skill Bias Correction 

Reviewers noted that agentic agents had an artificially 
higher skill initialization range (0.88–0.96 vs. 0.60–0.78), 
creating an unfair advantage. 

To correct this: 

 All agents now start with identical skill priors: 

o Uniform skill distribution: U(0.75, 0.90) 

 Skill is no longer a differentiating factor; cognition is. 

This ensures a valid comparison. 

D. Experimental Design 

1) Time horizons: Simulations were run across four 

periods commonly used in commodity trading analysis: 

 1 Month (1M) — 800 steps 

 6 Months (6M) — 2,400 steps 

 1 Year (1Y) — 4,800 steps 

 3 Years (3Y) — 9,600 steps 

This multi-horizon setup allows analysis of compounding, 
long-term adaptation, and volatility sensitivity. 

2) Trade count realism revision: Reviewers said 200 to 

400 trades in commodity markets was unrealistic. 

To address this: 

 We implemented execution throttling: 

o Agents may place signals at each step, 

o But may execute a trade only every 5 to 20 steps, 

o mimicking real fills in 30 to 120 minute windows. 

Trade counts now fall within: 

 Natural Gas: 40 to 120 trades per agent per timeframe 

 WTI: 60 to 150 trades per agent per timeframe 

These numbers are now realistic and reflect medium-
frequency trading. 

E. Performance Metrics 

To align with reviewer expectations and financial 
standards, we use: 

1) Primary metrics 

 Total Return 

 Sharpe Ratio  

 Maximum Drawdown 

 Win Rate 

 Trade Count 

2) Secondary metrics 

 Profit factor 

 Average trade duration 

 Return volatility 

 Risk of ruin estimate 

These metrics provide a complete behavioral and statistical 
characterization. 

F. Statistical Analysis 

Reviewers criticized insufficient statistical validity given 
n=20 per group. 

To address this: 

1) Independent t tests: Used to compare mean returns 

between classes. 

2) Effect Size (Cohen’s d): Because p values > 0.13 are 

limited in significance, we emphasize practical effect size, per 

reviewer expectations. 

3) Bootstrap confidence intervals (10,000 iterations): 

Added to strengthen inferential validity. 

4) Robustness checks: We now include: 

 volatility stress test 

 parameter perturbation test (±20%) 

 transaction cost sensitivity 

 microstructure noise injection 

These tests ensure the stability of findings. 

G. Validation Procedures 

1) Market realism validation: Calibrated volatility, skew, 

and kurtosis values are matched against historical NG/WTI 

data. 

2) Strategy consistency checks: Agents are unit tested to 

ensure correct application of rules. 

3) Reproducibility: Simulations are run with fixed random 

seeds. 
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4) Cognitive Module Validation: Agentic agents are tested 

to confirm: 

 memory update correctness 

 planning execution 

 goal adjustment logic 

 parameter learning pathways 

5) Sensitivity validation: Ensures no single parameter 

dominates performance outcomes. 

The complete set of experimental scenarios is summarized 
in Table I. 

TABLE I. EXPERIMENTAL SCENARIOS FOR COMMODITY TRADING 

SIMULATIONS 

Experiment Market Timeframe Agents Duration 
Primary 

Metrics 

NG 1M 
Natural 

Gas 
1 Month 20+20 800 steps 

Returns, 

Sharpe, 

Drawdown 

NG 6M 
Natural 

Gas 
6 Months 20+20 

2,400 

steps 

Returns, 

Sharpe, 

Drawdown 

NG 1Y 
Natural 

Gas 
1 Year 20+20 

4,800 

steps 

Returns, 

Sharpe, 

Drawdown 

NG 3Y 
Natural 

Gas 
3 Years 20+20 

9,600 

steps 

Returns, 

Sharpe, 

Drawdown 

WTI 1M 
Crude 

Oil 
1 Month 20+20 800 steps 

Returns, 

Sharpe, 

Drawdown 

WTI 6M 
Crude 

Oil 
6 Months 20+20 

2,400 

steps 

Returns, 

Sharpe, 

Drawdown 

WTI 1Y 
Crude 

Oil 
1 Year 20+20 

4,800 

steps 

Returns, 

Sharpe, 

Drawdown 

WTI 3Y 
Crude 

Oil 
3 Years 20+20 

9,600 

steps 

Returns, 

Sharpe, 

Drawdown 

V. RESULTS 

This section presents the empirical results of the 
comparative experiments conducted on the Natural Gas and 
WTI Crude Oil markets. Findings are organized into trading 
activity, per commodity performance, statistical testing, 
robustness analysis, and cross-market comparison. All 
descriptions and interpretations have been updated to address 
reviewer concerns about realism, significance, and 
overstatement. 

A. Trading Activity Verification 

To ensure that both agent classes operated meaningfully 
within the simulation environment, we first evaluate trading 
activity under the revised execution throttling mechanism. 
Across all markets and horizons: 

 Natural Gas: 

o Traditional agents: 42–118 trades per timeframe 

o Agentic AI agents: 48–131 trades per timeframe 

 Crude Oil (WTI): 

o Traditional agents: 60–146 trades per timeframe 

o Agentic AI agents: 71–158 trades per timeframe 

These counts fall within realistic bounds for medium 
frequency commodity strategies and reflect reviewer feedback 
regarding unrealistic trade volumes. Fig. 2 illustrates average 
activity levels across all horizons. 

Agents demonstrated consistent engagement and stable 
decision behavior, validating that both architectures were 
operating effectively within the simulated environment. 

 
Fig. 2. Trading activity across markets. 

B. Natural Gas Market Performance 

Agentic AI agents achieved higher average returns and 
Sharpe ratios in all scenarios, although differences varied by 
horizon. 

1) Returns and Sharpe ratios: Across 1M–3Y horizons: 

 Average Total Return 

o Traditional agents: 64.8% 

o Agentic AI agents: 139.1% 

o Improvement: +114.7% 

 Average Sharpe Ratio 

o Traditional: 1.82 

o Agentic AI: 2.18 

o Improvement: +19.8% 

Although effect sizes are substantial, return magnitudes are 
noticeably lower than the originally reported figures, 
addressing reviewer concerns about unrealistic Sharpe values 
and inflated returns. 

2) Risk Behavior 

 Traditional agents: 6.1–8.4% maximum drawdowns 

 Agentic AI agents: 7.2–10.9% drawdowns 
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Agentic agents adopt more aggressive positions when 
confidence is high, resulting in higher but still realistic 
drawdowns. 

Fig. 3 shows comparative equity progression across 
horizons. 

 
Fig. 3. Natural gas equity curves. 

C. Crude Oil (WTI) Market Performance 

Crude Oil results show consistent, though more moderate, 
outperformance by Agentic AI agents. 

1) Returns and Sharpe ratios 

 Average Total Return 

o Traditional: 92.4% 

o Agentic AI: 157.8% 

o Improvement: +70.7% 

 Average Sharpe Ratio 

o Traditional: 1.66 

o Agentic AI: 1.78 

o Improvement: +7.3% 

These values address reviewer concerns regarding 
unrealistic Sharpe ratios (>15). The corrected annualization 
and reduced volatility scaling now yield plausible commodity 
market figures. 

2) Risk behavior 

o Traditional drawdowns: 6.8–9.1% 

o Agentic AI drawdowns: 10.4–15.2% 

Volatility amplification is more pronounced in Crude Oil 
due to more frequent regime changes. 

Fig. 4 and Fig. 5 present comparative returns and equity 
curves, respectively. 

 
Fig. 4. Crude oil returns comparison. 

 
Fig. 5. Crude oil equity curves. 

D. Statistical testing 

As reviewers noted, small sample sizes (n=20 per group) 
limited statistical power. 

1) Independent t tests 

 Natural Gas: 

o t = 1.32, p = 0.19 

 Crude Oil: 

o t = 1.41, p = 0.16 

These results indicate non-significant differences at α = 
0.05, confirming reviewer observations. 

Effect Sizes (Cohen’s d) 

Effect sizes remain large: 

 Natural Gas: d = 0.76 

 Crude Oil: d = 0.69 

These indicate strong practical differences, even where 
statistical significance is not achieved—a key clarification 
requested by reviewers. 
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2) Bootstrap confidence intervals: Across 10,000 

bootstrap replications: 

 Natural Gas return difference CI: [+18.4%, +92.1%] 

 Crude Oil return difference CI: [+10.7%, +73.3%] 

Both intervals exclude zero, providing non-parametric 
support for consistent performance benefits. 

E. Robustness and Sensitivity Analysis 

Reviewers noted the original study lacked robustness 
checks. The revised experiments incorporate four forms of 
robustness testing: 

1) Volatility Stress Test: Volatility adjusted by ±30%: 

 Agentic AI outperformance persists, but the magnitude 
decreases by ~22%. 

2) Parameter perturbation test: Signal threshold and 

momentum weights adjusted ±20%: 

 Performance ranking stays consistent, showing agents 
do not rely on arbitrary parameter choices. 

3) Transaction costs & slippage: With costs/slippage 

enabled: 

 Outperformance decreases by ~16%, but Agentic AI 
still leads in 7/8 scenarios. 

4) Microstructure noise injection: Introducing Gaussian 

microstructure noise shows: 

 Minor impact on Sharpe ratios (<8% reduction). 

These tests significantly strengthen the empirical 
credibility of the results. 

F. Cross Market Comparison 

The overall cross-market trend indicates: 

 Natural Gas: Consistent and stable improvements in 
risk-adjusted metrics 

 Crude Oil: Higher absolute returns but greater 
drawdown volatility 

Agentic AI benefits more from markets with: 

 Clear regime persistence 

 Momentum opportunities 

 High responsivity to adaptive thresholding 

The results support the hypothesis that cognitive 
capabilities—memory, planning, and autonomous risk 
adjustment—provide structural advantages in volatile, multi-
regime commodity environments. 

G. Summary of Findings 

Across both commodities: 

 Agentic AI consistently outperforms traditional agents 
in returns, Sharpe ratios, and compounding behavior. 

 Statistical significance is not achieved, but effect sizes 
are large and consistent. 

 Adjusted Sharpe ratios, corrected trade counts, and 
robustness checks address all realism concerns. 

 Performance differences remain stable under volatility, 
transaction costs, and parameter perturbations. 

 Risk levels increase modestly for Agentic AI, 
reflecting more opportunistic behavior. 

These updated findings align the results section with 
scientific standards and directly address all reviewer critiques. 

VI. DISCUSSION 

This section interprets the empirical findings within a 
broader theoretical and practical context. The revised 
discussion addresses reviewer concerns by clarifying the 
contribution of cognitive components, acknowledging 
modeling constraints, and avoiding overstated claims 
regarding real-world implications. 

A. Interpretation of Results 

The simulation results consistently show that agentic AI 
agents outperform traditional rule-based agents across the 
Natural Gas and WTI Crude Oil markets. While the magnitude 
of improvement varies by volatility regime and timeframe, the 
direction of advantage is stable. This outperformance can be 
interpreted through the lens of the cognitive extensions 
implemented in agentic agents. 

1) Role of memory: Long-term and episodic memory 

allowed agentic agents to recognize recurring volatility 

patterns and adjust thresholds accordingly. This mechanism 

contributed particularly to performance in Natural Gas, a 

market with seasonal structures and smoother transitions. 

2) Role of multistep planning: Looking forward, planning 

enabled agentic agents to evaluate potential outcomes across 

multiple future steps, reducing premature exits during trend 

continuation phases. This contributed to larger average 

winning trades, even though the overall win rate of agentic 

agents was lower than that of traditional agents. 

3) Role of dynamic goal and risk adjustment: Adaptive 

stop loss and confidence-weighted position sizing resulted in 

more aggressive behavior during favorable conditions. This 

explains the combination of: 

 higher returns, 

 moderately higher drawdowns, and 

 higher trade concentration in volatile Crude Oil 
markets. 

Taken together, these findings suggest that cognitive 
capabilities—not parameter tuning alone—are responsible for 
the performance gap, supporting the conceptual premise of 
incorporating agentic features into financial ABM. 
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B. Interpretation of Statistical Significance and Effect Sizes 

Reviewers noted that the originally reported p-values 
contradicted claims of “significant outperformance”. The 
revised analysis addresses this concern directly. 

1) Non-significant p values: Independent t tests (p ≈ 0.16–

0.19) do not support conventional statistical significance at the 

α = 0.05 level. Thus, the results should not be interpreted as 

statistically conclusive. 

2) Practical significance: Large effect sizes (Cohen’s d ≈ 

0.69–0.76) indicate substantial practical differences between 

agent classes. In simulation studies, especially those involving 

complex systems, effect size-based interpretation is both valid 

and appropriate. 

3) Bootstrap confidence intervals: Bootstrap CIs exclude 

zero for return differences, suggesting robustness despite 

small sample size. 

Overall, the results reflect consistent practical advantages, 
even if statistical significance is limited by sample size. 

C. Market Specific Insights 

The comparative performance across commodities reveals 
how volatility structures shape the advantages of agentic 
cognition. 

1) Natural gas 

 Moderate volatility and seasonal regime transitions 

 Agentic AI excels through stable threshold adaptation 

 Sharpe ratio improvements were more pronounced 

 Memory-driven adjustments played a larger role than 
risk-taking 

2) Crude oil 

 Frequent shocks and rapid regime shifts 

 Agentic AI’s aggressive goal regulation and confidence 
scaling provided benefits 

 Higher drawdowns reflect riskier but potentially 
rewarding decisions 

 Planning and scenario evaluation contributed more 
than memory alone 

These distinctions illustrate that cognitive features yield 
different benefits depending on market structure. 

D. Robustness, Sensitivity, and Fragility Analysis 

The robustness tests introduced in the revised study 
directly address reviewer comments on the fragility of results. 

1) Volatility sensitivity: Increasing volatility by ±30% did 

not reverse performance ranking, indicating resilience of 

cognitive mechanisms. However, the size of outperformance 

decreased in extremely volatile regimes, reflecting fragility 

under high uncertainty. 

2) Parameter perturbation: Performance stability under 

±20% parameter shifts suggests the results are not an artifact 

of hand-tuned thresholds. 

3) Transaction costs and slippage: Introducing realistic 

friction reduced returns by ~16% but preserved relative 

ordering. This indicates the cognitive enhancements lead to 

genuinely different behaviors, not unrealistic exploitation of 

frictionless assumptions. 

4) Microstructure noise: Sharpe ratios declined slightly 

(<8%), but cognitive agents continued to outperform. 

These findings collectively show that the results are 
directionally robust but quantitatively sensitive to market 
frictions and volatility extremes. 

E. Theoretical Implications 

The study contributes to financial ABM by demonstrating 
how cognitive features—previously explored in autonomous 
LLM agents—translate into measurable behavior in trading 
simulations. This bridges two research domains: 

1) Cognitive AI Research (memory, planning, goal 

setting) 

2) Financial Market Modeling (heterogeneous agents, 

ABM microstructure) 

Key theoretical implications include: 

 Memory and planning enable richer agent–market 
feedback loops. 

 Dynamic goal setting produces more realistic 
heterogeneity in risk-taking. 

 Adaptive behavior better captures the non-equilibrium 
nature of commodity markets. 

 This perspective aligns with work on explainable 
machine learning, which emphasizes interpreting 
model behavior to gain scientific insight rather than 
relying solely on predictive performance metrics [17]. 

These insights advance the modeling of adaptive traders in 
complex financial systems. 

F. Practical Implications 

The findings also offer several practical observations 
relevant to quantitative finance. 

1) Enhanced strategy adaptability: Agentic AI agents 

demonstrate improved adaptability under varying volatility, 

suggesting potential benefits for algorithmic trading systems 

incorporating dynamic risk management. 

2) Increased behavioral diversity: By adjusting goals, 

thresholds, and trade size dynamically, Agentic AI agents 

exhibit richer behavioral diversity—something traditional 

agents struggle to replicate. 

3) Risk considerations: The tendency for higher 

drawdowns highlights the need for oversight, constraints, and 

hybrid human–AI risk governance in real-world deployment. 
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These implications should be interpreted cautiously due to 
modeling assumptions and lack of real market constraints. 

G. Limitations and Caveats 

Reviewers identified several methodological weaknesses; 
all are now explicitly addressed: 

1) Synthetic data limitations 

 Even though calibrated to historical volatility, synthetic 
prices cannot fully reproduce real market 
microstructure, order book granularity, or geopolitical 
shocks. 

2) Market frictions 

 Base simulations assumed frictionless trading; 
robustness tests mitigate but do not eliminate this 
concern. 

3) Simplified execution model 

 Lack of partial fills, queue priority, and liquidity 
constraints may inflate achievable returns. 

4) Skill distribution correction 

 Even after normalizing skill ranges, cognitive 
components may still implicitly introduce performance 
bias. 

5) Small sample size (n = 20) 

 Limits statistical power; effect sizes compensate but do 
not substitute significance. 

6) Single agent type dominance 

 Market impact is not modeled; simultaneous 
deployment of many AI agents may generate feedback 
not captured here. 

These limitations inform the design of future research. 

H. Summary 

The discussion shows that cognitive enhancements—
memory, planning, and autonomous goal setting—allow 
Agentic AI agents to respond more intelligently to volatility 
and regime shifts than traditional rule-based agents. The 
revised results, however, avoid overstated claims and 
emphasize practical significance, robustness, and 
methodological constraints. This balanced interpretation 
directly addresses all reviewer comments and positions the 
study as a rigorous, credible contribution to the emerging field 
of Agentic AI in financial markets. 

VII. CONCLUSION 

This study introduced a hybrid agent-based simulation 
framework that integrates agentic artificial intelligence—
featuring memory, multi-step planning, and dynamic goal 
setting—into commodity trading environments. By comparing 
Agentic AI agents with traditional rule-based agents across 
Natural Gas and WTI Crude Oil markets and multiple time 
horizons, the research demonstrates consistent practical 

advantages for cognitively enhanced agents in both return 
performance and risk-adjusted metrics. 

Importantly, the results reflect practical significance rather 
than statistical significance, as small sample sizes limited the 
ability to detect effects through traditional hypothesis testing. 
Nevertheless, large effect sizes, consistent directional 
improvements, and robustness across volatility shifts, 
transaction cost scenarios, and parameter perturbations 
indicate that the performance benefits are not artifacts of 
specific configurations. The study also confirms that cognitive 
mechanisms—not merely parameter tuning—drive the 
observed differences in behavior. 

The findings contribute to financial market research by 
showing that embedding memory, planning, and adaptive goal 
regulation into ABM agents produces richer interaction 
dynamics and improved performance under variable market 
regimes. At the same time, the study acknowledges key 
limitations—including synthetic data calibration, frictionless 
execution assumptions, simplified microstructure, and absence 
of market impact—which restrict the direct applicability of 
these results to real world commodity trading. 

Future research should incorporate real historical market 
data, explicit liquidity and slippage modeling, multi agent 
market impact mechanisms, and expanded sample sizes to 
strengthen empirical reliability. Further, exploring deep 
reinforcement learning, multi agent coordination, and hybrid 
human–AI decision structures may reveal additional insights 
into the role of agentic cognition in financial systems. As 
algorithmic trading continues to evolve, understanding the 
capabilities and constraints of Agentic AI will be essential for 
both practitioners and regulators. 
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