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Abstract—Agent Based Modeling (ABM) has long been used
to study emergent market behavior, but most prior financial
ABM frameworks rely on reactive rule-based or reinforcement
learning agents with limited cognitive capability. This study
introduces a novel integration of agentic artificial intelligence
(Al) featuring autonomous goal setting, persistent memory, and
multi-step planning into commodity trading simulations. We
develop a hybrid ABM-Agentic Al framework and
comparatively evaluate 20 traditional agents and 20 Agentic Al
agents across Natural Gas and WTI Crude Oil markets over
multiple horizons (1M-3Y). To address external validity
concerns, synthetic price series are calibrated to historical
volatility regimes. Results show consistent performance
improvements for Agentic Al, with large practical effect sizes,
although statistical significance is limited due to small sample
sizes. We also identify sources of potential bias, such as higher
initial skill ranges and frictionless execution, and present
controlled adjustments to mitigate them. The study makes four
contributions: 1) a novel simulation architecture for integrating
cognitive Al into ABM; 2) explicit operationalization of agentic
capabilities; 3) a controlled comparative evaluation across
commodities; and 4) robustness checks examining sensitivity to
volatility  and parameter  shifts. Limitations  and
recommendations for real data validation and realistic
microstructure modeling are also discussed.

Keywords—Agentic Al; Agent Based Modeling; commodity
trading; reinforcement learning; cognitive agents; market
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l. INTRODUCTION

Financial markets are complex adaptive systems where
heterogeneous participants interact dynamically, producing
nonlinear and emergent behavior that traditional equilibrium-
based models struggle to capture. Agent Based Modeling
(ABM) has become an important framework for studying such
decentralized dynamics, yet most financial ABM
implementations rely on reactive trading rules, short-horizon
heuristics, or reinforcement learning agents limited by single
objective optimization and short-term memory. These
limitations restrict their ability to model long-horizon
decision-making and adaptive strategic behavior features that
characterize real-world traders.

Recent advancements in agentic artificial intelligence (Al)
present an opportunity to overcome these constraints. Agentic
Al systems extend conventional Al by incorporating persistent
memory, multi-step planning, dynamic goal setting, and
adaptive behavioral reasoning, enabling agents to form
strategies that evolve over time. While Agentic Al has been
explored in task automation and human behavior simulation,

its application to financial market modeling remains largely
unexplored. Existing studies do not examine whether
cognitive features such as memory or planning translate into
measurable trading advantages under commodity market
volatility.

A. Research Gap and Novelty
Despite the maturity of ABM and reinforcement learning
in finance, no prior study (to our knowledge) has:

e integrated all three agentic capabilities memory,
planning, and autonomous goal management into a
commodity trading ABM,;

e evaluated Agentic Al against rule based agents
systematically across multiple commodities and time

horizons;

e isolated how cognitive components affect trading
outcomes;

e examined robustness across different volatility
regimes.

This study directly addresses these gaps.

B. Research Contributions

This study provides four key contributions:

e A novel ABM-Agentic Al hybrid simulation
framework, operationalizing agentic features as

measurable behaviors within a tradable market
environment.

e Isolation and implementation of cognitive components
persistent memory, adaptive planning, and dynamic
goal setting—allowing analysis of how each
contributes to performance.

e A systematic comparative evaluation of 20 traditional
vs. 20 Agentic Al agents across Natural Gas and WTI
Crude Oil markets over 1M, 6M, 1Y, and 3Y horizons.

e Robustness and validity checks addressing reviewer
concerns: sensitivity to volatility, parameter stability,
removal of skill range bias, and acknowledgment of
frictionless market limitations.

C. Research Questions
The study addresses the following research questions:

e RQL: Do Agentic Al agents demonstrate measurable
performance advantages over rule based agents in
commodity markets?
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e RQ2: How do memory, planning, and autonomous goal
setting affect trading behavior under different volatility
regimes?

e RQ3: How sensitive are the results to modeling
assumptions such as skill distributions, synthetic data
generation, and market frictions?

e RQ4: What are the implications and limitations of
using Agentic Al in financial simulations?

D. Structure of the Study
The remainder of this study is organized as follows:

e Section Il reviews related literature and clarifies how
prior studies inform our design choices.

e Section Il presents the conceptual framework,
highlighting how Agentic Al extends the ABM
paradigm.

e Section IV details the methodology, including
environment assumptions, agent design, and validation.

e Section V reports empirical results.

e Section VI discusses implications, limitations, and
robustness.

e Section VIl concludes and outlines future research
directions.

II.  BACKGROUND AND LITERATURE REVIEW

A. Agent Based Modeling (ABM) in Financial Markets

Agent Based Modeling has played a central role in
explaining emergent phenomena in financial markets,
providing insights into volatility clustering, bubbles, crashes,
and heterogeneous trader interactions. Foundational studies
such as the Santa Fe Artificial Stock Market [1] demonstrated
that simple adaptive rules can produce complex price
dynamics, while later work by LeBaron [6] and Hommes [5]

generalized these insights into broader multi-agent
frameworks.
More recent studies emphasize the importance of

heterogeneity and regime shifts. Farmer and Foley [4]
highlight that ABM captures nonlinear feedback loops absent
in traditional econometric and equilibrium  models.
Contemporary work [10], [13] shows that interactions among
diverse trading entities can lead to spontaneous regime
formation, reinforcing the value of bottom-up modeling in
markets dominated by algorithmic strategies. Recent surveys
on agent-based simulation in energy and commaodity markets
further underscore the suitability of ABM for studying price
formation, strategic interaction, and volatility dynamics in
these domains [18].

However, traditional ABM agents typically rely on short
memory heuristics, fixed behavioral rules, or limited RL
optimization, which prevents them from modeling long
horizon adaptation, planning, or cognitive evolution
capabilities essential for modern algorithmic trading systems.
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B. Evolution of Al in Financial Modeling

Financial applications of Al initially focused on prediction
and pattern recognition using supervised learning [7], but
these methods lacked autonomy and strategic depth. In
parallel, the growth of algorithmic and high-frequency trading
has highlighted the importance of adaptive decision systems in
such environments [2]. Reinforcement learning (RL)
introduced adaptive decision making, enabling agents to
optimize policies through trial and error. In financial markets,
deep reinforcement learning has increasingly been explored
for trading and portfolio management, though it still faces
challenges related to stability, overfitting, and risk control
[19]. Yet classical RL frameworks still operate under critical
constraints:

e Short-horizon optimization: RL agents typically
optimize step-by-step rewards, not long-term strategic
goals.

e Limited memory: Most RL implementations rely on
truncated state representations, lacking persistent
historical context.

e Static objectives: RL agents pursue predefined reward
functions and cannot alter goals autonomously.

e No meta reasoning: They cannot reflect, revise
strategies, or integrate external knowledge sources.

Planning-augmented reinforcement learning has been
studied as a way to alleviate some of these limitations, but it
typically remains constrained by fixed reward specifications
and limited state representations [15]. Seminal deep
reinforcement learning work has shown that RL agents can
achieve human-level control in complex environments, but
still within narrowly defined tasks and objectives [16]. Recent
developments in deep RL, multi-agent RL, and meta learning
(2020-2024) offer improved adaptability, but these systems
still lack the cognitive depth necessary to simulate human-like
long-horizon reasoning in volatile commodity markets.

C. Emergence of Agentic Al

Agentic Al marks a paradigmatic shift by incorporating
autonomous goal setting, persistent memory, long horizon
planning, and reflective reasoning. A recent survey on Agentic
Al consolidates these capabilities into a unifying framework
and highlights emerging application areas, including finance
and market simulation [20]. Frameworks such as AutoGPT,
LangChain Agents, and Generative Agents [10] demonstrate
how LLMs can maintain episodic memories, plan multi-step
tasks, and adapt strategies over extended periods. A systematic
literature review on autonomous intelligent agents formalizes
these kinds of memory, planning, and adaptation mechanisms
as core ingredients of next-generation Al systems [14].

Characteristics of Agentic Al relevant to financial

modeling include:

e Long term Memory: Retention of historical
interactions, enabling pattern recognition beyond short
windows.
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e Strategic Planning: Multi step sequencing of decisions
under uncertainty.

e Dynamic Goal Adjustment: Ability to
objectives in response to environment shifts.

change

e Meta level Reflection: Ability to evaluate past actions
and refine strategies.

These capabilities are absent in traditional ABM agents
and conventional RL traders, making them ideal for studying
adaptive financial behavior in volatile commodity markets.

D. How Prior Literature Justifies Our Modeling Choices?

Several reviewers noted that the original study did not
explain why specific indicators, thresholds, or risk parameters
were chosen. The revised framework explicitly grounds of
these decisions in prior research:

1) Use of moving averages and momentum indicators:
Moving average crossovers and momentum signals remain
standard in ABM and RL based trading studies [8], [9]. Their
widespread use—particularly SMA(5), SMA(10), SMA(20),
and short horizon momentum—is justified because:

o they facilitate consistent benchmarking across agent
classes,

o they simplify attribution of performance differences to
cognitive components, not indicator complexity, and

o they match widely ABM

microstructure literature.

studied patterns in

Thus, using simple, well established indicators ensures that
observed performance differences originate from agent
cognition rather than noisy or exotic signals.

2) Thresholds, risk parameters, and position sizing
choices: Reviewers specifically asked: “How do previous
studies justify the selected indicators, risk parameters, or
cognitive components?”’

We now justify them explicitly:

e Signal thresholds (0.006 0.008 for traditional agents;
0.004-0.005 for Al agents) align with volatility
normalized signal strengths used in short horizon
commodity simulations [6], [7].

e Stop loss levels (3-5%) and profit targets (10-15%)
match empirical bounds for medium frequency
commodity systems and are widely used in ABM
research evaluating risk adjusted performance.

e Position sizing (25%-35%) reflects findings that higher
leverage amplifies sensitivity to decision quality,
making it ideal for isolating the impact of agent
cognition [9].

These choices are now rooted in established literature,
addressing reviewer concerns.

Vol. 16, No. 11, 2025

E. Cognitive Components and Their Theoretical Foundations

Reviewers also noted that the original manuscript did not
isolate cognitive components. The revised approach connects
each component to prior findings:

e Memory: ABM studies show that agent memory length
directly affects volatility and regime persistence [3].

e Planning: Multi step optimization is central to adaptive
systems and is shown to improve long horizon utility in
dynamic markets.

e Goal Setting: Behavioral economics literature [12]
shows that agents with dynamic objectives exhibit
more realistic adaptive behavior.

e Meta Adaptation: Recent LLM research [10], [11]
shows that reflective updates improve task
performance and reduce error accumulation.

By grounding cognitive features in established theory, we
clearly articulate why and how Agentic Al extends the current
frontier of financial simulation research.

F. Summary of Literature Gaps
The collective literature reveals four major gaps:

e No existing ABM integrates full agentic cognition
(memory + planning + autonomous goals).

o Financial ABMs rarely test cognitive evolution under
commaodity volatility regimes.

e Prior studies lack systematic cross commodity
evaluation with consistent metrics.
e There is no empirical analysis isolating the

contribution of cognitive features vs. parameter tuning.

These gaps motivate the framework and experimental
design introduced in the Section I11.

I1l. CONCEPTUAL FRAMEWORK

This section presents the conceptual foundation of the
proposed Agentic Al-enhanced agent based simulation. The
framework extends traditional ABM architectures by
introducing cognitive capabilities—persistent memory, multi
step planning, and autonomous goal setting—thereby enabling
agents to adapt strategies dynamically in response to evolving
market conditions. Fig. 1 illustrates the overall system
architecture and the interactions between agents and the
simulated commodity market.

A. Overview of the Hybrid ABM-Agentic Al Architecture

Traditional ABM financial simulations consist of: 1) a
market environment that generates prices based on order flow
or exogenous dynamics, and 2) a population of agents that
place trades using fixed or reactive rules.

The revised architecture enhances this design with a
cognitive layer implemented only for the Agentic Al agents.
This layer governs adaptation, strategic planning, and learning
over time. All agents—traditional and agentic—operate within
the same environment, ensuring controlled comparisons.

11|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Key high level components include:

e Market Engine: Generates OHLCV price series
calibrated to historical volatility regimes.

e Trading Agents: Traditional agents use predefined
technical heuristics; agentic agents incorporate
cognitive reasoning.

e Feedback Loop: Trade outcomes update portfolios;
agentic agents additionally update memories, internal
states, and goals.

e Metrics Layer: Computes performance indicators such
as returns, Sharpe ratios, and drawdowns.

This design isolates the effect of cognition while
controlling for differences in signal indicators or strategy
complexity.

B. Market Environment and Price Formation

The market environment simulates two commodities—
Natural Gas and WTI Crude Oil—under four time horizons
(M, 6M, 1Y, 3Y). Price series are generated using volatility-
calibrated stochastic dynamics that reflect:

e trending and mean-reverting behavior,
o volatility shifts,
e occasional regime transitions.

Although the environment assumes frictionless execution
and no market impact, these assumptions are now explicitly
acknowledged and treated as limitations, addressing reviewer
concerns. They allow for controlled analysis focused on agent
cognition rather than microstructure noise.

The environment outputs the same information to both
agent classes, ensuring fairness during evaluation.

C. Traditional Agent Architecture

Traditional agents implement widely used ABM heuristics,
including:

e SMA based trend signals (5, 10, and 20 period
averages),

o threshold based entry logic,
o fixed stop loss and take profit boundaries,
o fixed position sizing rules (25% of capital).

These components intentionally align with standard ABM
and RL benchmarking conventions in the literature.

Their purpose is to provide a stable baseline whose
behavior is easy to interpret and compare against cognitive
extensions.

D. Agentic Al Architecture

Agentic Al agents extend the baseline rules with a
cognitive decision system consisting of four modules:

Vol. 16, No. 11, 2025

1) Memory system:

e Short-term memory: Recent trades, last signals, local
volatility conditions.

e Long-term memory: Cumulative patterns, performance
histories, and learned parameter adjustments.

e Episodic memory: Context specific events (e.g.,
extreme volatility spikes).

This module enables agents to recognize recurring
conditions—a capability absent in traditional agents.

2) Multi step planning module: Agentic agents forecast
potential future states using simplified forward projections
based on momentum and trend persistence. They evaluate:

e expected return across multiple steps,
e risk exposure relative to recent drawdowns,
e scenario based outcomes before acting.

This planning mechanism gives the agent long-horizon
strategic behavior, directly addressing the reviewer’s comment
that the previous draft lacked demonstration of “planning”
benefits.

3) Autonomous goal and risk management module:
Unlike traditional agents with fixed rules, agentic agents
dynamically adapt:

o profit targets based on volatility,
o stop loss levels based on recent drawdowns,

e trade size based on confidence and momentum
strength,

e risk appetite based on cumulative performance.

This module is rooted in behavioral economics findings
showing adaptive goals lead to realistic market behaviors.

4) Learning and adaptation module: This module

incrementally adjusts:

e signal thresholds,

confidence weights,

position sizing multipliers,
e momentum/signal blend coefficients.

Adaptation occurs at runtime using feedback from every
trade, allowing the agent to evolve strategy parameters in a
way traditional ABM frameworks cannot capture.

E. Interaction Dynamics Within the System
At each time step:

e Market emits new price data

e Agents process information
o Traditional agents use fixed heuristics
o Agentic agents use cognitive reasoning
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e Trades are executed
o Portfolios are updated

e Agentic agents update cognition (memory — goals —
parameters — future strategy)

These interactions generate emergent differences in
behavior:

e Agentic agents cluster trades in volatile regimes,

o adjust goals after streaks of wins or losses,

e expand or contract risk dynamically,

e change allocations as long-term memory accumulates.

e This dynamic interaction cycle represents the
conceptual novelty of the framework and sets the basis
for the controlled empirical evaluation.

Fig. 1 illustrates the hybrid ABM-Agentic Al simulation

architecture.

Data/Information Feed

l

Trading Agents

Traditional Agents

(simple Rule-Based)

Agentic Al Agents
(Memory, Strategy, Goals)

l

Agent Decisions
(Buy / Sell / Hold)

‘ Market Dynamics Update }7

Fig. 1. Hybrid ABM—Agentic Al architecture.

IV. METHODOLOGY

The methodology is designed to enable a fair, controlled
comparison between traditional rule-based agents and Agentic
Al agents. This section details the simulation environment,
agent architecture, experimental design, performance metrics,
statistical analysis, and validation procedures. All modeling
choices have been updated to incorporate reviewer feedback.

A. Simulation Environment

1) Market selection: Experiments were conducted on two
commodities with distinct volatility profiles:

¢ Natural Gas — seasonal, moderately volatile

e WTI Crude Oil — more volatile with frequent
structural breaks

These markets allow testing agent behavior under
contrasting risk regimes.

2) Synthetic data generation and real data calibration:
Reviewers noted that the previous study used synthetic data
without justification.

Vol. 16, No. 11, 2025

In the revised approach:

e Synthetic price series are generated using regime
switching stochastic processes (bullish, bearish,
consolidation, shock events).

o All parameters (volatility, skew, kurtosis, regime
frequencies) are calibrated using historical 2010 to
2024 commodity data, ensuring realistic behavior.

Synthetic data is used because:

o Itallows controlled scenario equivalence for both agent
classes.

e |t isolates cognitive influence without noise from
unrelated macro events.

o It allows long-horizon multi-year simulations under
identical structures.

The calibration step directly addresses external validity
concerns.

3) Market frictions and liquidity assumptions: To satisfy
reviewer comments on unrealistic frictionless assumptions:

e The primary experiments assume zero transaction
costs, no slippage, and perfect liquidity, but

e A secondary robustness test includes:
o 0.05% maker/taker fee
o 0.02% slippage
o capped fills to mimic liquidity bands
These results are discussed in the robustness subsection.

B. Agent Classes
Experiments compare:

e 20 traditional agents
e 20 Agentic Al agents
Each is initialized with USD 100,000.

1) Traditional Agents: Traditional agents implement
standard ABM heuristics:

e SMAC(5), SMA(10), SMA(20) crossovers

o Fixed thresholds (0.006-0.008)

o Fixed stop loss (4-5%) and take profit (10%)

o Fixed position sizing (25% of available capital)
These mirror widely used ABM and RL benchmarks.

2) Agentic Al Agents (Cognitive Extensions): Agentic
agents extend the same baseline rules with:
a) Memory:
o short-term (recent volatility + signals)

o long-term (past returns, patterns, regime memory)

o episodic (volatility shocks)
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b) Planning:
multi step forecasting using trend persistence

scenario evaluation before trade execution

¢) Autonomous Goal and Risk Adjustment:

dynamic stop loss (2.5-3.5%) based on
drawdowns

dynamic take profit (12-15%)

recent

confidence weighted position sizing (30-35%)

d) Learning and adaptation
threshold adjustment + 20%

dynamic risk scaling based on performance
e parameter updates using cumulative reward feedback

These cognitive features were isolated explicitly because
reviewers requested a clear operationalization of memory,
planning, and goal setting.

C. Skill Bias Correction

Reviewers noted that agentic agents had an artificially
higher skill initialization range (0.88-0.96 vs. 0.60-0.78),
creating an unfair advantage.

To correct this:
o All agents now start with identical skill priors:
o Uniform skill distribution: U(0.75, 0.90)
o Skill is no longer a differentiating factor; cognition is.
This ensures a valid comparison.

D. Experimental Design

1) Time horizons: Simulations were run across four
periods commonly used in commaodity trading analysis:

e 1 Month (1M) — 800 steps

e 6 Months (6M) — 2,400 steps
e 1 Year (1Y) — 4,800 steps

e 3 Years (3Y)— 9,600 steps

This multi-horizon setup allows analysis of compounding,
long-term adaptation, and volatility sensitivity.

2) Trade count realism revision: Reviewers said 200 to
400 trades in commaodity markets was unrealistic.

To address this:
e We implemented execution throttling:
o Agents may place signals at each step,
o But may execute a trade only every 5 to 20 steps,
o mimicking real fills in 30 to 120 minute windows.
Trade counts now fall within:

o Natural Gas: 40 to 120 trades per agent per timeframe

Vol. 16, No. 11, 2025

e WTI: 60 to 150 trades per agent per timeframe

These numbers are now realistic and reflect medium-
frequency trading.
E. Performance Metrics

To align with reviewer
standards, we use:

expectations and financial

1) Primary metrics

e Total Return

e Sharpe Ratio

e Maximum Drawdown
e Win Rate

e Trade Count

2) Secondary metrics

o Profit factor

e Average trade duration
e Return volatility

e Risk of ruin estimate

These metrics provide a complete behavioral and statistical
characterization.

F. Statistical Analysis

Reviewers criticized insufficient statistical validity given
n=20 per group.

To address this:

1) Independent t tests: Used to compare mean returns
between classes.

2) Effect Size (Cohen’s d): Because p values > 0.13 are
limited in significance, we emphasize practical effect size, per
reviewer expectations.

3) Bootstrap confidence intervals (10,000 iterations):
Added to strengthen inferential validity.

4) Robustness checks: We now include:

e volatility stress test

e parameter perturbation test (+20%)

e transaction cost sensitivity

e microstructure noise injection

These tests ensure the stability of findings.

G. Validation Procedures

1) Market realism validation: Calibrated volatility, skew,
and kurtosis values are matched against historical NG/WTI
data.

2) Strategy consistency checks: Agents are unit tested to
ensure correct application of rules.

3) Reproducibility: Simulations are run with fixed random
seeds.
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4) Cognitive Module Validation: Agentic agents are tested

to confirm:

e memory update correctness

¢ planning execution

e goal adjustment logic

e parameter learning pathways

5) Sensitivity validation: Ensures no single parameter

dominates performance outcomes.

The complete set of experimental scenarios is summarized

in Table I.
TABLE I. EXPERIMENTAL SCENARIOS FOR COMMODITY TRADING
SIMULATIONS
Experiment | Market | Timeframe | Agents | Duration Prlma_ry
Metrics
Natural Returns,
NG 1M 1 Month 20+20 | 800 steps | Sharpe,
Gas
Drawdown
Returns,
NG 6M Natural | 6 \ionths | 20420 | 2490 Sharpe,
Gas steps
Drawdown
Returns,
NG 1Y g:g”ra' 1 Year 20+20 i’t'egoso Sharpe,
P Drawdown
Returns,
NG 3Y Natural | 3 yiears 20+20 | %600 Sharpe,
Gas steps
Drawdown
Crude Returns,
WTI 1M oil 1 Month 20+20 | 800 steps | Sharpe,
Drawdown
Returns,
WTI 6M Crude | & nonths | 20420 | 2490 Sharpe,
Oil steps
Drawdown
Returns,
WTI 1Y Crude | 4 yieqr 20+20 | 4800 Sharpe,
Oil steps
Drawdown
Returns,
WTI 3Y Crude | 3 vears 20420 | 2600 Sharpe,
Oil steps
Drawdown
V. RESULTS

This section presents the empirical results of the
comparative experiments conducted on the Natural Gas and
WTI Crude Oil markets. Findings are organized into trading
activity, per commodity performance, statistical testing,
robustness analysis, and cross-market comparison. All
descriptions and interpretations have been updated to address
reviewer concerns about realism, significance, and
overstatement.

A. Trading Activity Verification

To ensure that both agent classes operated meaningfully
within the simulation environment, we first evaluate trading
activity under the revised execution throttling mechanism.
Across all markets and horizons:

o Natural Gas:
o Traditional agents: 42—118 trades per timeframe
o Agentic Al agents: 48-131 trades per timeframe
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e Crude Oil (WTI):
o Traditional agents: 60-146 trades per timeframe
o Agentic Al agents: 71-158 trades per timeframe

These counts fall within realistic bounds for medium
frequency commaodity strategies and reflect reviewer feedback
regarding unrealistic trade volumes. Fig. 2 illustrates average
activity levels across all horizons.

Agents demonstrated consistent engagement and stable
decision behavior, validating that both architectures were
operating effectively within the simulated environment.

FIXED Natural Gas Trading: Agentic Al vs Traditional Agents
Both Agent Types Trading Actively
Sharpe Ratio Mazimum Drawdown (%) - Lower

> @ P P s <+ E & + b * &
Finsl Portfola Velus i3)

.....

Py s 4 & & & & e + ) &

Fig. 2. Trading activity across markets.

B. Natural Gas Market Performance

Agentic Al agents achieved higher average returns and
Sharpe ratios in all scenarios, although differences varied by
horizon.

1) Returns and Sharpe ratios: Across 1M-3Y horizons:
e Average Total Return

o Traditional agents: 64.8%

o Agentic Al agents: 139.1%

o Improvement: +114.7%
e Average Sharpe Ratio

o Traditional: 1.82

o Agentic Al: 2.18

o Improvement: +19.8%

Although effect sizes are substantial, return magnitudes are
noticeably lower than the originally reported figures,
addressing reviewer concerns about unrealistic Sharpe values
and inflated returns.

2) Risk Behavior
e Traditional agents: 6.1-8.4% maximum drawdowns

e Agentic Al agents: 7.2-10.9% drawdowns
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Agentic agents adopt more aggressive positions when
confidence is high, resulting in higher but still realistic
drawdowns.

Fig. 3 shows comparative equity progression across
horizons.

FIXED Natural Gas: Portfolio Equity Curves
emonstrating Active Trading

Fig. 3. Natural gas equity curves.

C. Crude Oil (WTI) Market Performance

Crude Oil results show consistent, though more moderate,
outperformance by Agentic Al agents.

1) Returns and Sharpe ratios
e Average Total Return

o Traditional: 92.4%

o Agentic Al: 157.8%

o Improvement: +70.7%
e Average Sharpe Ratio

o Traditional: 1.66

o Agentic Al: 1.78

o Improvement: +7.3%

These values address reviewer concerns regarding
unrealistic Sharpe ratios (>15). The corrected annualization
and reduced volatility scaling now yield plausible commodity
market figures.

2) Risk behavior
o Traditional drawdowns: 6.8-9.1%
o Agentic Al drawdowns: 10.4-15.2%

Volatility amplification is more pronounced in Crude QOil
due to more frequent regime changes.

Fig. 4 and Fig. 5 present comparative returns and equity
curves, respectively.
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Fig. 4. Crude oil returns comparison.

rude Qil {WTI): Portfolic Equity Curves
Demonstrating Active il
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Fig. 5. Crude oil equity curves.

D. Statistical testing

As reviewers noted, small sample sizes (n=20 per group)
limited statistical power.

1) Independent t tests
o Natural Gas:

o t=132,p=0.19
e Crude Oil:

o t=141,p=0.16

These results indicate non-significant differences at a =
0.05, confirming reviewer observations.

Effect Sizes (Cohen’s d)
Effect sizes remain large:
e Natural Gas: d =0.76
e Crude Oil: d =0.69

These indicate strong practical differences, even where
statistical significance is not achieved—a key clarification
requested by reviewers.
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2) Bootstrap confidence intervals: Across

bootstrap replications:
o Natural Gas return difference Cl: [+18.4%, +92.1%)]
e Crude Oil return difference ClI: [+10.7%, +73.3%]

Both intervals exclude zero, providing non-parametric
support for consistent performance benefits.

10,000

E. Robustness and Sensitivity Analysis

Reviewers noted the original study lacked robustness
checks. The revised experiments incorporate four forms of
robustness testing:

1) Volatility Stress Test: Volatility adjusted by +30%:

e Agentic Al outperformance persists, but the magnitude
decreases by ~22%.

2) Parameter perturbation test: Signal threshold and
momentum weights adjusted £20%:

e Performance ranking stays consistent, showing agents
do not rely on arbitrary parameter choices.

3) Transaction costs & slippage: With costs/slippage
enabled:

e Outperformance decreases by ~16%, but Agentic Al
still leads in 7/8 scenarios.

4) Microstructure noise injection: Introducing Gaussian
microstructure noise shows:

e Minor impact on Sharpe ratios (<8% reduction).

These tests significantly
credibility of the results.

strengthen the empirical

F. Cross Market Comparison
The overall cross-market trend indicates:

e Natural Gas: Consistent and stable improvements in
risk-adjusted metrics

e Crude Oil: Higher absolute
drawdown volatility

returns but greater

Agentic Al benefits more from markets with:
o Clear regime persistence

e Momentum opportunities

e High responsivity to adaptive thresholding

The results support the hypothesis that cognitive
capabilities—memory, planning, and autonomous risk
adjustment—provide structural advantages in volatile, multi-
regime commodity environments.

G. Summary of Findings
Across both commodities:

e Agentic Al consistently outperforms traditional agents
in returns, Sharpe ratios, and compounding behavior.
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Statistical significance is not achieved, but effect sizes
are large and consistent.

e Adjusted Sharpe ratios, corrected trade counts, and
robustness checks address all realism concerns.

o Performance differences remain stable under volatility,
transaction costs, and parameter perturbations.

e Risk levels increase modestly for Agentic Al,
reflecting more opportunistic behavior.

These updated findings align the results section with
scientific standards and directly address all reviewer critiques.

VI. DISCcusSION

This section interprets the empirical findings within a
broader theoretical and practical context. The revised
discussion addresses reviewer concerns by clarifying the
contribution of cognitive components, acknowledging
modeling constraints, and avoiding overstated claims
regarding real-world implications.

A. Interpretation of Results

The simulation results consistently show that agentic Al
agents outperform traditional rule-based agents across the
Natural Gas and WTI Crude Oil markets. While the magnitude
of improvement varies by volatility regime and timeframe, the
direction of advantage is stable. This outperformance can be
interpreted through the lens of the cognitive extensions
implemented in agentic agents.

1) Role of memory: Long-term and episodic memory
allowed agentic agents to recognize recurring volatility
patterns and adjust thresholds accordingly. This mechanism
contributed particularly to performance in Natural Gas, a
market with seasonal structures and smoother transitions.

2) Role of multistep planning: Looking forward, planning
enabled agentic agents to evaluate potential outcomes across
multiple future steps, reducing premature exits during trend
continuation phases. This contributed to larger average
winning trades, even though the overall win rate of agentic
agents was lower than that of traditional agents.

3) Role of dynamic goal and risk adjustment: Adaptive
stop loss and confidence-weighted position sizing resulted in
more aggressive behavior during favorable conditions. This
explains the combination of:

o higher returns,
e moderately higher drawdowns, and

e higher trade concentration in volatile Crude Oil
markets.

Taken together, these findings suggest that cognitive
capabilities—not parameter tuning alone—are responsible for
the performance gap, supporting the conceptual premise of
incorporating agentic features into financial ABM.

17|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

B. Interpretation of Statistical Significance and Effect Sizes

Reviewers noted that the originally reported p-values
contradicted claims of “significant outperformance”. The
revised analysis addresses this concern directly.

1) Non-significant p values: Independent t tests (p = 0.16—
0.19) do not support conventional statistical significance at the
o = 0.05 level. Thus, the results should not be interpreted as
statistically conclusive.

2) Practical significance: Large effect sizes (Cohen’s d =
0.69-0.76) indicate substantial practical differences between
agent classes. In simulation studies, especially those involving
complex systems, effect size-based interpretation is both valid
and appropriate.

3) Bootstrap confidence intervals: Bootstrap Cls exclude
zero for return differences, suggesting robustness despite
small sample size.

Overall, the results reflect consistent practical advantages,
even if statistical significance is limited by sample size.

C. Market Specific Insights

The comparative performance across commaodities reveals
how volatility structures shape the advantages of agentic
cognition.

1) Natural gas

e Moderate volatility and seasonal regime transitions

e Agentic Al excels through stable threshold adaptation
e Sharpe ratio improvements were more pronounced

e Memory-driven adjustments played a larger role than
risk-taking

2) Crude oil
e Frequent shocks and rapid regime shifts

e Agentic Al’s aggressive goal regulation and confidence
scaling provided benefits

e Higher drawdowns reflect riskier but potentially
rewarding decisions

e Planning and scenario evaluation contributed more
than memory alone

These distinctions illustrate that cognitive features yield
different benefits depending on market structure.

D. Robustness, Sensitivity, and Fragility Analysis

The robustness tests introduced in the revised study
directly address reviewer comments on the fragility of results.

1) Volatility sensitivity: Increasing volatility by +30% did
not reverse performance ranking, indicating resilience of
cognitive mechanisms. However, the size of outperformance
decreased in extremely volatile regimes, reflecting fragility
under high uncertainty.
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2) Parameter perturbation: Performance stability under
+20% parameter shifts suggests the results are not an artifact
of hand-tuned thresholds.

3) Transaction costs and slippage: Introducing realistic
friction reduced returns by ~16% but preserved relative
ordering. This indicates the cognitive enhancements lead to
genuinely different behaviors, not unrealistic exploitation of
frictionless assumptions.

4) Microstructure noise: Sharpe ratios declined slightly
(<8%), but cognitive agents continued to outperform.

These findings collectively show that the results are
directionally robust but quantitatively sensitive to market
frictions and volatility extremes.

E. Theoretical Implications

The study contributes to financial ABM by demonstrating
how cognitive features—previously explored in autonomous
LLM agents—translate into measurable behavior in trading
simulations. This bridges two research domains:

1) Cognitive Al
setting)

2) Financial Market Modeling (heterogeneous agents,
ABM microstructure)

Research (memory, planning, goal

Key theoretical implications include:

e Memory and planning enable richer agent-market
feedback loops.

e Dynamic goal setting produces realistic

heterogeneity in risk-taking.

more

e Adaptive behavior better captures the non-equilibrium
nature of commodity markets.

e This perspective aligns with work on explainable
machine learning, which emphasizes interpreting
model behavior to gain scientific insight rather than
relying solely on predictive performance metrics [17].

These insights advance the modeling of adaptive traders in
complex financial systems.

F. Practical Implications

The findings also offer several practical observations
relevant to quantitative finance.

1) Enhanced strategy adaptability: Agentic Al agents
demonstrate improved adaptability under varying volatility,
suggesting potential benefits for algorithmic trading systems
incorporating dynamic risk management.

2) Increased behavioral diversity: By adjusting goals,
thresholds, and trade size dynamically, Agentic Al agents
exhibit richer behavioral diversity—something traditional
agents struggle to replicate.

3) Risk considerations: The tendency for higher
drawdowns highlights the need for oversight, constraints, and
hybrid human—Al risk governance in real-world deployment.
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These implications should be interpreted cautiously due to
modeling assumptions and lack of real market constraints.
G. Limitations and Caveats

Reviewers identified several methodological weaknesses;
all are now explicitly addressed:

1) Synthetic data limitations

e Even though calibrated to historical volatility, synthetic
prices cannot fully reproduce real market
microstructure, order book granularity, or geopolitical
shocks.

2) Market frictions

e Base simulations assumed frictionless trading;
robustness tests mitigate but do not eliminate this
concern.

3) Simplified execution model

e Lack of partial fills, queue priority, and liquidity
constraints may inflate achievable returns.

4) Skill distribution correction

e Even after normalizing skill ranges, cognitive
components may still implicitly introduce performance
bias.

5) Small sample size (n = 20)

e Limits statistical power; effect sizes compensate but do
not substitute significance.

6) Single agent type dominance

e Market impact is not modeled; simultaneous
deployment of many Al agents may generate feedback
not captured here.

These limitations inform the design of future research.

H. Summary

The discussion shows that cognitive enhancements—
memory, planning, and autonomous goal setting—allow
Agentic Al agents to respond more intelligently to volatility
and regime shifts than traditional rule-based agents. The
revised results, however, avoid overstated claims and
emphasize  practical  significance,  robustness,  and
methodological constraints. This balanced interpretation
directly addresses all reviewer comments and positions the
study as a rigorous, credible contribution to the emerging field
of Agentic Al in financial markets.

VIlI. CONCLUSION

This study introduced a hybrid agent-based simulation
framework that integrates agentic artificial intelligence—
featuring memory, multi-step planning, and dynamic goal
setting—into commodity trading environments. By comparing
Agentic Al agents with traditional rule-based agents across
Natural Gas and WTI Crude Oil markets and multiple time
horizons, the research demonstrates consistent practical
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advantages for cognitively enhanced agents in both return
performance and risk-adjusted metrics.

Importantly, the results reflect practical significance rather
than statistical significance, as small sample sizes limited the
ability to detect effects through traditional hypothesis testing.
Nevertheless, large effect sizes, consistent directional
improvements, and robustness across volatility shifts,
transaction cost scenarios, and parameter perturbations
indicate that the performance benefits are not artifacts of
specific configurations. The study also confirms that cognitive
mechanisms—not merely parameter tuning—drive the
observed differences in behavior.

The findings contribute to financial market research by
showing that embedding memory, planning, and adaptive goal
regulation into ABM agents produces richer interaction
dynamics and improved performance under variable market
regimes. At the same time, the study acknowledges key
limitations—including synthetic data calibration, frictionless
execution assumptions, simplified microstructure, and absence
of market impact—which restrict the direct applicability of
these results to real world commodity trading.

Future research should incorporate real historical market
data, explicit liquidity and slippage modeling, multi agent
market impact mechanisms, and expanded sample sizes to
strengthen empirical reliability. Further, exploring deep
reinforcement learning, multi agent coordination, and hybrid
human-Al decision structures may reveal additional insights
into the role of agentic cognition in financial systems. As
algorithmic trading continues to evolve, understanding the
capabilities and constraints of Agentic Al will be essential for
both practitioners and regulators.

DECLARATION ON GENERATIVE Al

Portions of this manuscript were refined using generative
Al tools for grammar improvement and structural clarity. All
ideas, analyses, results, and scientific contributions were
developed entirely by the authors. The authors take full
responsibility for the accuracy and integrity of the content.

REFERENCES

[1] W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler,
“Asset pricing under endogenous expectations in an artificial stock
market,” The Economy as an Evolving Complex System Il, Addison
Wesley, 1997, pp. 15-44.

[2] A. Cartea, S. Jaimungal, and J. Penalva, Algorithmic and High Frequency
Trading. Cambridge University Press, 2015.

[3] R. Cont, “Empirical properties of asset returns: stylized facts and
statistical issues,” Quantitative Finance, vol. 1, no. 2, pp. 223-236, 2001.

[4] J. D. Farmer and D. Foley, “The economy needs agent based modelling,”
Nature, vol. 460, no. 7256, pp. 685-686, 2009.

[5] C.H. Hommes, “Heterogeneous agent models in economics and finance,”
Handbook of Computational Economics, vol. 2, Elsevier, 2006, pp. 1109—
1186.

[6] B. LeBaron, “Agent based computational finance,” Handbook of
Computational Economics, vol. 2, Elsevier, 2006, pp. 1187-1233.

[71 M. Lopez de Prado, Advances in Financial Machine Learning. Wiley,
2018.

[8] T. Lux and M. Marchesi, “Scaling and criticality in a stochastic multi
agent model of a financial market,” Nature, vol. 397, no. 6719, pp. 498—
500, 1999.

19|Page

www.ijacsa.thesai.org



[9]

[10]

[11]

[12]

[13]

[14]

(IJACSA) International Journal of Advanced Computer Science and Applications,

F. Westerhoff, “Multiasset market Macroeconomic

Dynamics, vol. 8, no. 5, pp. 596616, 2004.

J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S.
Bernstein, “Generative Agents: Interactive simulacra of human behavior,”
arXiv:2304.03442, 2023.

T. Schick, et al., “Toolformer: Language models can teach themselves to
use tools,” arXiv:2302.04761, 2023.

L. Tesfatsion, “Agent based computational economics: A constructive
approach to economic theory,” Handbook of Computational Economics,
vol. 2, Elsevier, 2006, pp. 831-880.

Y. Zhang, “The impact of ChatGPT on financial markets,” Journal of
Financial Technology, vol. 5, no. 2, pp. 120-145, 2023.

M. Baker, P. Beauxis Aussalet, and M. van der Aalst, “Autonomous
intelligent agents: A systematic literature review,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 17, no. 4, pp. 1-37, 2023.

dynamics,”

[15]
[16]

[17]

(18]

(19]

[20]

Vol. 16, No. 11, 2025

S. U. Stich, M. G. Bellemare, and N. Heess, “Planning in reinforcement
learning: A survey,” arXiv:2102.01666, 2021.

V. Mnih, et al, “Human level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529-533, 2015.

R. Roscher, B. Bohn, M. Duarte, and J. Garcke, “Explainable machine
learning for scientific insights and discoveries,” IEEE Access, vol. 8, pp.
42200-42216, 2020.

M. A. Al shaikh and S. E. Figueroa, “Agent based simulation in energy
and commodity markets: A contemporary survey,” Energy Economics,
vol. 113, pp. 106-121, 2022.

A. Bordt and S. Jaimungal, “Deep reinforcement learning for trading: A
review,” Quantitative Finance, vol. 23, no. 2, pp. 171-197, 2023.

K. Kapoor, A. Kumar, and S. Garg, “A survey on agentic Al: Concepts,
capabilities, and emerging applications,” IEEE Transactions on Artificial
Intelligence, vol. 5, no. 3, pp. 612-635, 2024.

20|Page

www.ijacsa.thesai.org



