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Abstract—For economically developed small geographic 

regions, population forecasting serves as a vital tool for achieving 

refined regional management. However, due to relying on the 

subjective experience of experts, traditional methods for 

predicting birth rates have shortcomings in accuracy, resulting in 

unreliable results. To address this limitation, this study 

introduces deep learning (DL) models into the domain of birth 

rate prediction. Specifically, a hybrid TCN-Bi-LSTM model is 

proposed, integrating a Temporal Convolutional Network (TCN) 

with a Bi-directional Long Short-Term Memory (Bi-LSTM) 

network to predict birth populations in small regions. The 

proposed hybrid model effectively leverages the strengths of the 

TCN and Bi-LSTM to capture both local temporal patterns and 

long-term hidden dependencies within birth rate time series data. 

The proposed birth rate prediction model not only incorporates 

historical data on regional birth rates but also accounts for the 

influence of factors such as divorce rates, consumption levels, 

and population size. Furthermore, an enhanced meta-heuristic 

algorithm is designed to optimize the hyperparameters of the 

hybrid TCN-Bi-LSTM model, with the aim of increasing its 

prediction accuracy. The hippopotamus position update strategy 

was introduced into the Newton-Raphson-Based Optimizer 

(NRBO), and an improved NRBO (INRBO) algorithm was 

developed. Finally, the performance of the proposed birth rate 

prediction model was validated using a dataset from three 

regions or countries. The prediction results demonstrate that, 

compared to the other four models, the proposed INRBO-TCN–

Bi-LSTM model achieves the best performance, with an average 

reduction of 95% in training loss. 

Keywords—Temporal Convolutional Network; Bi-directional 
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I. INTRODUCTION 

For some economically developed small regions, the birth 
rate is of significant importance in assessing the fiscal 
sustainability of the social welfare system. At the same time, 
the number of births plays a crucial role in the rational 
allocation of public service resources such as education and 
healthcare [1]. As a result, predicting the birth population or 
birth rate has long been a major focus for demographers and 
policymakers. However, birth rates are easily influenced by 
factors such as economic growth, divorce rates, and regional 
population size, which pose challenges to the accuracy of birth 
rate prediction models [2]. An accurate birth rate prediction 

model can provide a decision-making basis for the formulation 
of social welfare, healthcare, and education policies. 
Traditional population forecasting models often rely heavily on 
the expertise of demographers, which can lead to limitations in 
accuracy. With advances in deep learning (DL) and machine 
learning (ML), recent studies have begun to apply DL and ML 
models to population prediction and birth rate forecasting tasks 
[3]. 

Predicting birth rates is a classic time series forecasting 
problem. The most popular solutions for solving such problems 
currently are prediction models based on Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN), such 
as the classic TCN [4] and Long Short-Term Memory (LSTM) 
networks [5]. The TCN and LSTM networks are capable of 
capturing local information and hidden information of the 
long-term dimension in time series data, respectively. 
However, current deep learning-based birth rate prediction 
models still rely on manual hyperparameter tuning to improve 
their accuracy. To address this issue, Huang et al. employed the 
particle swarm optimization (PSO) algorithm to optimize the 
hyperparameters of the CNN, with the goal of identifying the 
optimal hyperparameter configuration for the CNN model [6]. 
Although CNN and LSTM networks have been widely applied 
in various prediction problems, DL based birth rate prediction 
models face the following challenges: 

• Birth rate data has obvious low-frequency 
characteristics and scarcity, and the available sample 
size is very limited, which is a huge challenge for DL 
models that require a large amount of data for training. 

• There are scale differences and multicollinearity among 
multiple socio-economic indicators, such as economic 
growth rate, divorce rate, and population size within the 
region, which pose difficulties for feature fusion. 

• TCN is extremely sensitive to hyperparameters, and the 
birth rate is strongly influenced by sudden external 
factors such as policy adjustments and major events. 
These factors make accurate prediction of birth rates 
difficult. 

To solve the above problems, this study proposes an 
INBRO-TCN-Bi-LSTM model. The proposed model leverages 
both TCN and Bi-LSTM architectures to extract different types 
of key features from birth rate-related time series data. Liao et 

#Equal contribution. 

*Corresponding author. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 11, 2025 

188 | P a g e  
www.ijacsa.thesai.org 

al. used the output of TCN as the input of LSTM and designed 
CNN-LSTM for predicting earthquake probability [7]. 
Differently, the proposed hybrid model employs the output of 
the Bi-LSTM, carrying rich contextual information, as an 
enhanced feature input to the fully connected layer of the TCN. 
This enables the prediction model to incorporate not only the 
local patterns extracted through TCN convolution but also the 
long-term bidirectional dependencies captured by the Bi-
LSTM. Furthermore, to enhance the prediction accuracy, an 
improved metaheuristic algorithm was applied to optimize both 
the hyperparameters and the structure of the TCN-Bi-LSTM 
model. The overall architecture of the proposed model is 
illustrated in Fig. 1. The main contributions of this study are 
summarized as follows: 

• A birth rate prediction model based on TCN and Bi-
LSTM was proposed. The input of the proposed birth 
rate model includes not only historical birth rate data 
but also various socioeconomic indicators such as 
consumption level, divorce rate, and total population, 
with the aim of capturing the complex factors 
influencing birth rates. 

• The feature vector of the birth rate prediction results 
output by the Bi-LSTM network is used as an enhanced 

feature input to the TCN fully connected layer. This 
integration enables the birth rate to better understand 
the relationship between changes in socio-economic 
indicators and birth rates. 

• The hippopotamus position update strategy has been 
introduced into the NRBO algorithm, and an improved 
NRBO (INRBO) algorithm has been designed to 
optimize the hyperparameters of TCN and Bi-LSTM 
models. 

• Finally, the INRBO-TCN-Bi-LSTM model was 
validated using birth rate datasets from Singapore, 
Macau, and Luxembourg. The experimental results 
show that compared with the other four population 
prediction models, the proposed model reduces the 
training loss by an average of 95%. 

The remaining content of this study is arranged as follows: 
In Section II of the manuscript, work related to birth rate 
prediction is reviewed. Section III introduces the proposed 
INBRO-TCN-Bi-LSTM model. Section IV presents the 
application results of the proposed model in the problem of 
birth rate prediction. Finally, Section V summarizes the entire 
text. 

 
Fig. 1. The structure of the TCN-Bi-LSTM model. 

II. RELATED WORK 

A. The Prediction Models Based on Deep Learning 

For learning based birth rate prediction methods, some 
studies have explored the application of LSTM in birth rate 
prediction problems. Alemayehu et al. used a DL model to 
predict the birth rate trend in Ethiopia [8]. This study is based 
on population data from Ethiopia from 2000 to 2019, and 
evaluates the applicability of these methods in the field of birth 
population prediction by comparing the predictive performance 
of different models. Tzitirididou-Chatzopoulou et al. conducted 
research on birth rate prediction in Scotland and designed an 
adaptive machine learning algorithm [9]. The adaptive birth 
rate prediction framework developed in this study can 
continuously optimize prediction accuracy by dynamically 

adjusting model parameters, thereby capturing subtle changes 
in socio-economic and environmental factors and the complex 
relationship between reproductive behaviors. 

In response to the challenges of large errors and slow 
inference speed in traditional autoregressive models, Weber et 
al. developed an improved RNN architecture for multi-output 
prediction tasks of unmanned aerial vehicle angular velocity. 
The improved RNN framework has a dual-layer prediction 
structure, and experimental results show that the dual-layer 
prediction structure effectively improves the accuracy of UAV 
flight attitude prediction [10]. Regarding the dynamic 
frequency prediction problem in wireless communication 
networks, Zhang et al. designed a hybrid RNN model based on 
Graph Convolutional Network (GCN), RNN, and attention 
mechanism [11]. Unlike classical RNN models, the hybrid 
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RNN models utilize GCN to capture correlations between 
predicted objects and dynamically adjust the weights of output 
hidden states through attention mechanisms. Finally, this study 
validated the improved hybrid RNN architecture based on real 
wireless communication spectrum prediction tasks. Ghazi et al. 
proposed an autoregressive RNN model for predicting time 
series with irregular time intervals. The improved RNN model 
introduces an adaptive time embedding architecture, which 
enables accurate prediction of irregular time interval data [12]. 

Outliers have a significant impact on traditional RNN 
prediction frameworks, and the occurrence of outliers in birth 
rates due to policy adjustments or unexpected events can lead 
to a decrease in the accuracy of RNN prediction results. 
Therefore, improving the prediction accuracy of RNN models 
is a new problem faced by learning-based birth rate prediction 
models. Kim et al. proposed a prediction framework based on 
an improved RNN by integrating RNN and statistical methods 
[13]. The results indicate that the framework effectively 
reduces the interference of outliers on prediction accuracy by 
integrating robust statistical methods with LSTM networks. In 
[14], the authors proposed a reinforcement learning based RNN 
architecture and successfully applied it to the problem of 
predicting public opinion information diffusion. The 
experimental results show that compared with traditional RNN 
frameworks, the reinforcement learning based RNN 
architecture has higher accuracy in predicting explosive 
propagation events. In [15], the authors used Bi-LSTM for 
predicting the remaining life of aircraft engines. This study 
effectively fused the forward and backward temporal features 
of sensor data by stacking a Bi-LSTM and introducing a Gate 
Recurrent Unit (GRU). The experimental results indicate that 
the proposed prediction framework is more robust in handling 
high-dimensional, noisy sensor data. In [16], the authors apply 
the RNN model to user behavior analysis tasks and verify the 
potential of RNN in user behavior analysis. 

In recent years, with the advancement of deep learning 
technology, the practical applications of CNN in fields such as 
healthcare, industry, and biology have been expanded. For 
example, Yousif et al. proposed a quantum CNN (QCNN) 
framework for medical image classification tasks, aiming to 
solve the problem of long training time for traditional CNNs in 
medical image processing tasks [17]. This study designed an 
improved strategy based on quantum superposition and 
entanglement characteristics. The experimental results showed 
that the improved strategy improved the feature extraction 
efficiency of the traditional CNN and reduced the training time 
of the model. In addition, Chen et al. proposed an improved 
multimodal fusion CNN framework for mechanical fault 
diagnosis based on multi-source sensor data [18]. This 
improved framework can dynamically adjust the weights of 
different modalities, aiming to alleviate the modal conflict 
problem caused by traditional hard label training. In [19], the 
authors combine deep learning techniques with time series 
discretization techniques to address the challenge of manually 
labeling a large number of classification features in traditional 
classification tasks. 

In [20], the authors also designed a machine learning 
prediction framework aimed at using interpretable machine 
learning methods to predict financial risks of enterprises. In 

[21], the authors propose a hybrid optimization method 
combining machine learning and swarm intelligence 
algorithms for antenna design problems. In this study, machine 
learning models were used to learn the features of the search 
space and predict the potential positions of candidate solutions, 
thereby guiding swarm intelligence optimization algorithms to 
converge faster to the target area and solving antenna 
optimization problems containing continuous variables. 

B. Meta-Heuristic Optimization Algorithm 

As an important technology in the field of intelligent 
computing, metaheuristic optimization algorithms are applied 
to solve problems such as robot allocation, antenna design, 
delivery path planning, and hyperparameter optimization of 
machine learning models. Akopov designed an improved 
genetic algorithm (GA) aimed at solving optimization 
problems in trade interaction problems [22]. Bouali and Alamri 
conducted research on the modeling problem of photovoltaic 
systems, aiming to extract the parameters of diodes in 
photovoltaic cells based on flood algorithms [23]. In [24], the 
authors designed a starfish optimization algorithm (SFOA) to 
solve the symmetric traveling salesman problem (TSP). In this 
study, a discrete SFOA algorithm was designed by defining 
continuous operators for starfish movement, foraging, and 
reproduction, providing a new and effective metaheuristic 
method for solving TSP. 

Abdulaziz et al. designed optimization algorithms for 
collaborative optimization of smart grids to optimize the 
configuration of components such as electric vehicles (EVs) 
and distributed static synchronous compensators. In this study, 
the Hippopotamus Optimization (HO) Algorithm was used to 
optimize the configuration of these components, aiming to 
improve the energy efficiency, voltage stability, and economic 
efficiency of the power grid operation [25]. In [26], the authors 
propose a novel metaheuristic algorithm, Newton-Raphson-
Based Optimizer (NRBO), and the performance of the NRBO 
algorithm was validated on a standardized optimization test set. 
Overall, the above research provides a foundation for 
optimizing the hyperparameters of the TCN-Bi-LSTM model 
using metaheuristic algorithms. 

III. PROPOSED SYSTEM OVERVIEW 

Fig. 1 shows the architecture of the proposed hybrid TCN-
Bi-LSTM model. The proposed framework takes the historical 
data of the population born in the region, consumption level, 
divorce rate, and total population as input features for the 
mixed TCN-Bi-LSTM model. The historical birth rate within 
the region is the core time series data and the basic data for 
birth rate prediction. The consumption level within a region 
represents the economic situation within the region, and this 
indicator is usually related to the ability and willingness of 
families to raise children. The divorce rate represents the 
stability of the family structure and is one of the important 
social factors affecting family fertility decisions. The total 
population provides macro demographic background data. 

During the training process of the hybrid TCN-Bi-LSTM 
model, the input data is simultaneously fed into two parallel 
neural network modules. Among them, the TCN module uses a 
series of causal convolutions and dilation convolutions to 
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efficiently capture local feature patterns and long-term trends 
in time series. The bidirectional structure of the Bi-LSTM 
module enables it to fully understand the meaning of each time 
point in its complete context, thereby capturing long-term 
dependencies. After obtaining the outputs of TCN and Bi-
LSTM, the proposed framework concatenates the output 
feature vectors

TCNV and
Bi LSTMV −

of TCN and Bi-LSTM at the 

feature fusion layer. The fused joint feature vector
,all outputV is fed 

into multiple fully connected layers to learn the nonlinear 
relationship between TCN features and Bi-LSTM features, and 
ultimately mapped to the birth rate prediction target. 

A. The TCN-Bi-LSTM Framework 

The residual blocks of the TCN model can improve the 
training efficiency of TCN. In this study, the residual block of 
the TCN model used Parametric Rectified Linear Unit 
(PReLU) as the activation function, aiming to improve the 
prediction accuracy and expressive ability of the TCN model. 
The definition of the PReLU activation function is as follows 
[Eq. (1)]: 

,     0
Re ( )

,     0

x if x
P LU x

a x if x


= 

 
                      () 

where, a is the slope on the negative interval. x is the input 

value. 

The proposed hybrid TCN-Bi-LSTM model requires multi-
layer convolution operations of the TCN module on the input 
during the training process. The output of the last convolutional 
layer of the TCN module in the birth rate prediction model is a 

sequence TCNV . The definition of sequence TCNV is as follows 

[Eq. (2)]: 

_

1

( )

        Re ( _ ( ) )

TCN

t t

TCN ConvV f x

P LU DilatedCasual Conv x d x−

=

= + +





      () 

where, tx


is the input variable sequence of time step t .

_ ( )DilatedCasual Conv  is a dilated and causal convolution 

calculation operation that relies on historical data related to 

birth rates. d


is the output layer bias. 

In Eq. (3), expansion and causal convolution calculation 
operations are defined. 

1_ ( )t tp

p

DilatedCasual Conv x w x − −= 


             () 

where,  ,pw p P  is a filter. P is the filter size.  is a 

constant. 

In the Bi-LSTM module, the input vector is processed by 
both forward LSTM and backward LSTM simultaneously. 
After processing the entire input time series, the last hidden 
state tVh of the forward LSTM and the last hidden state 'tVh of 

the backward LSTM are generated. The definitions of hidden 
states tVh and 'tVh are as follows [Eq. (4) and Eq. (5)]: 

𝑉ℎ𝑡 = 𝑄𝑡 ⊙𝑡𝑎𝑛ℎ(𝐿𝑡)                            () 

𝑉ℎ𝑡′ = 𝑄𝑡 ′ ⊙ 𝑡𝑎𝑛ℎ(𝐿𝑡′)                           () 

where,
tL and 'tL are the cell states of forward LSTM and 

backward LSTM at the t-th time step, respectively. 
tQ and 'tQ

are the output vectors of the forward LSTM and backward 
LSTM at the output gate, respectively. 

After the input vector is processed through multiple layers 
of residual blocks and convolutional blocks, the output of the 
last time step is generated by the TCN module, and a feature 
vector

TCNV that combines local and long-term trends is 

obtained. For the Bi-LSTM module, the feature vectors
tVh and

'tVh of the hidden state of the forward LSTM and backward 

LSTM are generated at the last time step, respectively. The 
final output vector

Bi LSTMV −
of Bi-LSTM is obtained by 

concatenating two hidden states
tVh and 'tVh . The output vector

Bi LSTMV − includes the complete bidirectional contextual 

information of the input sequence. 

Fig. 2 shows the structure of the feature fusion layer 
designed in this study. In the feature fusion layer, the output 
vector TCNV of the TCN module and the output vector Bi LSTMV − of 

the Bi-LSTM module are concatenated along the feature 
dimension of vector TCNV to generate a more informative joint 

feature vector
,all outputV . The definition of 

,all outputV is as follows 

[Eq. (6)]: 

 ( ), ,all output TCN Bi LSTMConcateV Vte Vna −=
           () 

 
Fig. 2. The structure of the feature vector fusion layer. 

After the joint feature vector ,all outputV is generated in the 

feature fusion layer, ,all outputV is input into the fully connected 

layer of the TCN-Bi-LSTM model to weight and combine all 

the features in ,all outputV , and calculate the final predicted birth 

rate. The calculation method for the fully connected layer of 
TCN-Bi-LSTM is defined in Eq. (7): 

 ( ),
ˆ ' ' aPeo ll outRat pue ty Vw d=  +                     () 

where, 'w is the weight matrix of the fully connected layer. 

'd is the bias vector of the fully connected layer. ( )  is the 
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activation function. ˆ
PeoRatey  is the output variable of the 

proposed TCN-Bi-LSTM model. 

To demonstrate the performance of the designed hybrid 

TCN-Bi-LSTM framework, the loss function
_Loss FL of the 

TCN-Bi-LSTM model is defined as follows [Eq. (8)]: 
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1 1
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where, and  are weight coefficients. G is the size of the 

test set, g G  .
gy is the true value, ˆ

gy is the predicted value. 

In addition, Root Mean Square Error (RMSE) is also used 
to evaluate the performance of the proposed hybrid TCN-Bi-
LSTM model. The definition of RMSE is as follows [Eq. (9)]: 

 ( )
2

1

1
ˆRMSE

G

g

g

g
G

y y
=

= −                         () 

B. The Improved NRBO (INRBO) Algorithm 

Based on the work [26], the hyperparameter optimization 
module designed in this study using the INRBO algorithm is as 
follows. 

1) Initialize the population: In the initialization stage of 

INRBO, the convolution kernel size, expansion factor, number 

of residual blocks, regularization parameters, and initial 

learning rate of TCN and Bi-LSTM are mapped to the 

decision vectors of the INRBO algorithm. Further, generate a 

decision matrix based on the population size maxI . Fig. 3 

shows the mapping relationship between the hyperparameters 

of TCN and Bi-LSTM and decision vectors, as well as 

decision matrices. 

 
Fig. 3. The mapping relationship between the hyperparameters of TCN and 

Bi-LSTM and decision vectors. 

The decision matrix _DM INRBO is defined in Eq. (10): 

max max max

1 1 1

1 2 dim

2 2 2

1 2 dim
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_

I I I

B B B
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 
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







              () 

where, i

jB is the decision vector. dim is the dimension of 

the vector. maxI is the size of the population. 

2) Calculate the value of the objective function: Calculate 

the objective function for each individual based on the 

decision matrix _DM INRBO in each iteration. The INRBO 

algorithm proposed in this study aims to optimize the 

parameters of TCN and LSTM, so the objective function

INRBOf is mainly determined by the accuracy of prediction. In 

this study, the objective function is composed of two parts, the 

loss function
_Loss FL and the RMSE, which are defined as 

follows [Eq. (11)]: 

2 _1= RMSE+ Loss FINRBOf   L                      () 

where, 
1 and

2 are weight coefficients, respectively. 

3) Newton-Raphson search strategy: In the process of 

updating the decision matrix in INRBO, the position of the 

optimal solution is also updated. Therefore, each iteration of 

INRBO generates a new set of hyperparameters for TCN and 

Bi-LSTM. The process of updating the INRBO decision 

matrix is as follows. Firstly, generate a random number H

within the [-1,1] interval. If 0H  , execute the Newton-

Raphson search strategy. The definition of Newton-Raphson 

search strategy is as follows [Eq. (12)]: 

( )_ 1 2i i i i

j j j jB new B B B= −  −                    () 

where, _i

jB new is the updated decision variable. 1i

jB and 

2i

jB are the decision variables for the optimal and suboptimal 

solutions generated during the current iteration process, 
respectively. is the Newton-Raphson search coefficients. 

4) Hippopotamus foraging search strategy: If 0H  , 

execute the hippopotamus foraging search strategy. The 

definition of the hippopotamus foraging search strategy is as 

follows [Eq. (13)]: 

_ _i i i i

j j j jB new B rand B rand B= +  −              () 

where, rand is a random number on the [0,1] interval. 

_ i

jB rand is a decision variable randomly selected from the 

decision matrix. 

IV. RESULTS AND DISCUSSION 

In order to evaluate the application effectiveness of the 
proposed INRBO-based hybrid TCN-Bi-LSTM (INRBO-TCN-
Bi-LSTM) framework of birth rate prediction in a small area, 
the proposed INRBO-TCN-Bi-LSTM framework was 
validated based on historical data from three countries or 
regions: Singapore, Macau, and Luxembourg. Fig. 4 displays 
historical data on birth rates in Singapore, Macau, and 
Luxembourg. To demonstrate the benefits of the INRBO-TCN-
Bi-LSTM framework in predicting birth rates, the TCN-Bi-
LSTM model, TCN model, Bi-LSTM model, and GRU model 
were trained separately to compare with the INRBO-TCN-Bi-
LSTM model. Table I shows the relevant parameters of the 
above models during the training process [27]-[28]. A training 
set was generated using birth rate data from Singapore, Macau, 
and Luxembourg for the period 1959 to 2011. Three test sets 
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were formed based on birth rate data from Singapore, Macau, 
and Luxembourg from 2012 to 2023, and each test set was 
tested separately to validate the performance of the birth rate 
prediction model. In [29], the authors proposed using a Monte 
Carlo-based machine learning model to predict birth rates and 
evaluated the model based on the difference between the 
predicted birth rate values and the true values. Differently, in 
this study, RMSE, sum of squared errors (SSE), mean squared 
error (MSE), and mean absolute percentage error (MAPE) 
were used to evaluate the birth rate prediction model. 

 
Fig. 4. The historical data on birth rates in Singapore, Macau, and 

Luxembourg. 

TABLE I.  TRAINING PARAMETERS FOR BIRTH RATE PREDICTION 

MODELS 

Parameter Value 

Training Epochs 50 

Batch Size 30 

Time Steps 6 

Features 4 

In addition, to demonstrate the optimization effect of 
INBRO on the hyperparameters of the TCN-Bi-LSTM 
framework, GA [22], SFOA [24], HO [25], and NRBO [26] 
algorithms were compared with the INRBO algorithm. Table II 
shows the fitness function values for optimizing the TCN-Bi-
LSTM framework using different metaheuristic algorithms. 

TABLE II.  THE FITNESS FUNCTION VALUES OF DIFFERENT 

METAHEURISTIC ALGORITHMS 

Algorithm 
Population 

Size 

Individual 

Dimension 
Fitness Function 

GA 70 5 0.0536 

SFOA 70 5 0.0497 

HO 70 5 0.0517 

NRBO 70 5 0.0451 

INRBO 70 5 0.0433 

From Table II, it can be seen that the fitness function value 
corresponding to INRBO in optimizing the TCN-Bi-LSTM 
model is 0.0433. Compared with GA, SFOA, HO, and NRBO 
algorithms, INRBO has the smallest fitness function value. 

This indicates that the hippopotamus serving search strategy 
effectively improves the convergence accuracy of the NRBO 
algorithm. 

To demonstrate the robustness of the proposed birth rate 
prediction model, the INRBO-TCN-Bi-LSTM model, TCN-Bi-
LSTM model, TCN model, Bi-LSTM model, and GRU model 
were independently trained 15 times, with each training session 
lasting 50 epochs. Fig. 5 shows the loss function curves of 
different birth rate prediction models. Table III shows the 
training losses of different birth rate prediction models. 

 
Fig. 5. The loss function curves of different birth rate prediction models. 

TABLE III.  THE TRAINING LOSSES OF DIFFERENT BIRTH RATE 

PREDICTION MODELS 

Predictive Model Training Epochs Training Loss 

INRBO-TCN-Bi-LSTM 50 0.001149 

TCN-Bi-LSTM 50 0.011808 

TCN 50 0.033568 

Bi-LSTM 50 0.025266 

GRU 50 0.050274 

From Table III, it can be seen that the GRU model has the 
highest training loss, indicating that GRU has the weakest 
ability to capture temporal dependencies in birth rate prediction 
problems. TCN and Bi-LSTM, as more complex structures, 
perform better than GRU models. The training loss of the 
TCN-Bi-LSTM model is 0.011808, which is one order of 
magnitude lower than the classical TCN and Bi-LSTM models. 
The training loss of the INRBO-TCN-Bi-LSTM model is 
0.001149, which is one order of magnitude lower than the 
second-ranked TCN-Bi-LSTM model and outperforms all 
other models. Therefore, the INRBO algorithm effectively 
optimized the parameters of the TCN-Bi-LSTM hybrid model 
during the training process. In summary, compared to the 
TCN-Bi-LSTM model, INRBO-TCN-Bi-LSTM reduces 
training loss by 90.3%. Compared to the GRU model, the 
training loss of INRBO-TCN-Bi-LSTM has been reduced by 
approximately 97.7%. 

Fig. 6 shows the birth rate prediction results of the INRBO-
TCN-Bi-LSTM model. Fig. 7 shows the birth rate prediction 
results of the TCN model. Fig. 8 shows the birth rate prediction 
results of the Bi-LSTM model. Table IV shows the RMSE, 
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SSE, MSE, and MAPE indicators of different birth rate 
prediction models. Fig. 9 shows the MAPE indicators of 
different birth rate prediction models in three tests. In addition, 
Table V shows the birth rate prediction values of INRBO-
TCN-Bi-LSTM. Table VI shows the birth rate prediction 
values of TCN model. Table VII shows the birth rate prediction 
values of Bi-LSTM mode. 

 
Fig. 6. The birth rate prediction results of the INRBO-TCN-Bi-LSTM 

model. 

 
Fig. 7. The birth rate prediction results of the TCN model. 

From Table IV, it can be seen that in the three tests, 
compared with the other four models, the INRBO-TCN-Bi-
LSTM model performed the best in the RMSE metric, while 
the classical GRU model performed the worst. When 
predicting Singapore's birth rate, the INRBO-TCN-Bi-LSTM 
model has the lowest RMSE of 0.0722 and MAPE of 5.47%. 
Compared with the other four models, the INBRO-TCN-RNN 

model achieved the highest prediction accuracy. In addition, 
compared with the RMSE index of the TCN-Bi-LSTM model, 
the RMSE of the INRBO-TCN-Bi-LSTM model decreased by 
15.56%. 

 
Fig. 8. The birth rate prediction results of the Bi-LSTM model. 

TABLE IV.  THE INDICATORS OF DIFFERENT BIRTH RATE PREDICTION 

MODELS 

Predictive 

Model 

Regions or 

Country 
RMSE SSE MSE MAPE 

INRBO-

TCN-Bi-

LSTM 

Singapore 0.0722 0.0722 0.0052 5.47% 

Macau 0.1442 0.2494 0.0207 12.51% 

Luxembourg 0.0502 0.0302 0.00252 2.84% 

TCN-Bi-

LSTM 

Singapore 0.0855 0.0877 0.0073 6.03% 

Macau 0.1646 0.3312 0.0471 13.60% 

Luxembourg 0.0537 0.0346 0.0155 3.17% 

TCN 

Singapore 0.0898 0.0967 0.0081 7.44% 

Macau 0.1952 0.4574 0.0381 16.35% 

Luxembourg 0.0579 0.0403 0.00336 3.38% 

Bi-LSTM 

Singapore 0.1062 0.1354 0.0112 6.29% 

Macau 0.1488 0.2658 0.0221 11.48% 

Luxembourg 0.0619 0.0460 0.00383 3.43% 

GRU 

Singapore 0.2030 0.1675 0.0140 7.34% 

Macau 0.2030 0.4943 0.0412 19.79% 

Luxembourg 0.0710 0.0605 0.0050 4.92% 

Among the three tests, all five birth rate prediction models 
had the highest error values when predicting the birth rate in 
Macau. The MAPE of INRBO-TCN-Bi-LSTM is 12.51%, 
which is better than the TCN-Bi-LSTM, TCN, and GRU 
models. The performance of Bi-LSTM is better than that of the 
more complex TCN-Bi-LSTM, indicating that the Bi-LSTM 
model may have overfitting. When predicting the birth rate in 
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Luxembourg, the MAPE of the INRBO-TCN-Bi-LSTM model 
is 2.84%. Compared with the TCN-Bi-LSTM model, the 

INRBO-TCN-Bi-LSTM model has decreased RMSE and 
MAPE by 6.52% and 10.42%, respectively. 

TABLE V.  THE BIRTH RATE PREDICTION VALUES IN SINGAPORE 

Years 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Prediction Models The Birth Rate 

True Values 1.29 1.19 1.25 1.24 1.20 1.16 1.14 1.14 1.10 1.12 1.04 0.97 

INRBO-TCN-Bi-

LSTM 
1.18 1.25 1.22 1.21 1.22 1.20 1.16 1.13 1.13 1.10 1.09 1.05 

TCN 1.24 1.31 1.25 1.26 1.27 1.23 1.19 1.18 1.17 1.14 1.14 1.09 

Bi-LSTM 1.13 1.16 1.15 1.16 1.17 1.16 1.14 1.09 1.05 1.03 1.01 0.99 

TABLE VI.  THE BIRTH RATE PREDICTION VALUES IN MACAU 

Years 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Prediction Models The Birth Rate 

True Values 1.36 1.15 1.22 1.14 1.14 1.02 0.92 0.90 0.84 1.09 0.68 0.59 

INRBO-TCN-Bi-

LSTM 
1.20 1.32 1.18 1.12 1.16 1.12 1.02 0.88 0.90 0.83 0.97 0.72 

TCN 1.28 1.43 1.28 1.18 1.23 1.24 1.07 0.90 0.94 0.94 1.06 0.80 

Bi-LSTM 1.02 1.13 1.21 1.14 1.05 0.97 0.88 0.78 0.71 0.69 0.75 0.76 

TABLE VII.  THE BIRTH RATE PREDICTION VALUES IN LUXEMBOURG 

Years 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

Prediction Models The Birth Rate 

True Values 1.57 1.55 1.5 1.47 1.41 1.39 1.38 1.34 1.36 1.38 1.31 1.25 

INRBO-TCN-Bi-

LSTM 
1.47 1.45 1.47 1.44 1.42 1.37 1.36 1.34 1.33 1.37 1.35 1.32 

TCN 1.46 1.47 1.46 1.44 1.42 1.38 1.38 1.38 1.40 1.36 1.45 1.36 

Bi-LSTM 1.47 1.46 1.44 1.42 1.42 1.41 1.40 1.35 1.35 1.34 1.36 1.37 
 

 
Fig. 9. The MAPE indicators of different birth rate prediction models in 

three tests. 

V. CONCLUSION 

This study constructs a birth rate prediction model for small 
regions based on the TCN-Bi-LSTM hybrid architecture. In 
addition, the proposed birth rate prediction model introduces 
three input vectors, including regional consumption level, 
population size, and divorce rate, aiming to improve the 
adaptability of the prediction model to policy or economic 
fluctuations, and make the birth rate prediction results closer to 
the trend of real birth rates. At the same time, an INRBO 
algorithm was designed to optimize the hyperparameters of the 
TCN-Bi-LSTM model, aiming to improve the prediction 

accuracy of the birth rate prediction model. The results showed 
that in the three tests, the INRBO-TCN-Bi-LSTM model 
showed an average reduction of 11.49% and 9.24% in RMSE 
and MAPE, respectively, compared to the TCN-Bi-LSTM 
model. In summary, the proposed INRBO-TCN-Bi-LSTM 
model has improved the accuracy of birth rate prediction 
within a small area. The proposed INRBO-TCN-Bi-LSTM 
model has limitations regarding interpretability and a lack of 
validation of its generalization capability across diverse time-
series forecasting tasks. Future work will focus on addressing 
these limitations. To this end, we will enhance model 
interpretability using methods such as feature importance 
analysis and attention weight visualization. We will also 
systematically evaluate the model's predictive performance on 
diverse time series data to verify its robustness. 
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