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Abstract—For economically developed small geographic
regions, population forecasting serves as a vital tool for achieving
refined regional management. However, due to relying on the
subjective experience of experts, traditional methods for
predicting birth rates have shortcomings in accuracy, resulting in
unreliable results. To address this limitation, this study
introduces deep learning (DL) models into the domain of birth
rate prediction. Specifically, a hybrid TCN-Bi-LSTM model is
proposed, integrating a Temporal Convolutional Network (TCN)
with a Bi-directional Long Short-Term Memory (Bi-LSTM)
network to predict birth populations in small regions. The
proposed hybrid model effectively leverages the strengths of the
TCN and Bi-LSTM to capture both local temporal patterns and
long-term hidden dependencies within birth rate time series data.
The proposed birth rate prediction model not only incorporates
historical data on regional birth rates but also accounts for the
influence of factors such as divorce rates, consumption levels,
and population size. Furthermore, an enhanced meta-heuristic
algorithm is designed to optimize the hyperparameters of the
hybrid TCN-Bi-LSTM model, with the aim of increasing its
prediction accuracy. The hippopotamus position update strategy
was introduced into the Newton-Raphson-Based Optimizer
(NRBO), and an improved NRBO (INRBO) algorithm was
developed. Finally, the performance of the proposed birth rate
prediction model was validated using a dataset from three
regions or countries. The prediction results demonstrate that,
compared to the other four models, the proposed INRBO-TCN-
Bi-LSTM model achieves the best performance, with an average
reduction of 95% in training loss.

Keywords—Temporal Convolutional Network; Bi-directional
Long Short-Term Memory; prediction model; birth rate; meta-
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I.  INTRODUCTION

For some economically developed small regions, the birth
rate is of significant importance in assessing the fiscal
sustainability of the social welfare system. At the same time,
the number of births plays a crucial role in the rational
allocation of public service resources such as education and
healthcare [1]. As a result, predicting the birth population or
birth rate has long been a major focus for demographers and
policymakers. However, birth rates are easily influenced by
factors such as economic growth, divorce rates, and regional
population size, which pose challenges to the accuracy of birth
rate prediction models [2]. An accurate birth rate prediction
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model can provide a decision-making basis for the formulation
of social welfare, healthcare, and education policies.
Traditional population forecasting models often rely heavily on
the expertise of demographers, which can lead to limitations in
accuracy. With advances in deep leaming (DL) and machine
learning (ML), recent studies have begun to apply DL and ML
models to population prediction and birth rate forecasting tasks

[3].

Predicting birth rates is a classic time series forecasting
problem. The most popular solutions for solving such problems
currently are prediction models based on Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN), such
as the classic TCN [4] and Long Short-Term Memory (LSTM)
networks [5]. The TCN and LSTM networks are capable of
capturing local information and hidden information of the
long-term dimension in time series data, respectively.
However, current deep learning-based birth rate prediction
models still rely on manual hyperparameter tuning to improve
their accuracy. To address this issue, Huang et al. employed the
particle swarm optimization (PSO) algorithm to optimize the
hyperparameters of the CNN, with the goal of identifying the
optimal hyperparameter configuration for the CNN model [6].
Although CNN and LSTM networks have been widely applied
in various prediction problems, DL based birth rate prediction
models face the following challenges:

e Birth rate data has obvious low-frequency
characteristics and scarcity, and the available sample
size is very limited, which is a huge challenge for DL
models thatrequire a large amount of data for training.

e There are scale differences and multicollinearity among
multiple socio-economic indicators, such as economic
growth rate, divorce rate, and population size within the
region, which pose difficulties for feature fusion.

e TCN is extremely sensitive to hyperparameters, and the
birth rate is strongly influenced by sudden external
factors such as policy adjustments and major events.
These factors make accurate prediction of birth rates
difficult.

To solve the above problems, this study proposes an
INBRO-TCN-Bi-LSTM model. The proposed model leverages
both TCN and Bi-LSTM architectures to extract different types
of key features from birth rate-related time series data. Liao et
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al. used the output of TCN as the input of LSTM and designed
CNN-LSTM for predicting earthquake probability [7].
Differently, the proposed hybrid model employs the output of
the Bi-LSTM, carrying rich contextual information, as an
enhanced feature input to the fully connected layer of the TCN.
This enables the prediction model to incorporate not only the
local patterns extracted through TCN convolution but also the
long-term bidirectional dependencies captured by the Bi-
LSTM. Furthermore, to enhance the prediction accuracy, an
improved metaheuristic algorithm was applied to optimize both
the hyperparameters and the structure of the TCN-Bi-LSTM
model. The overall architecture of the proposed model is
illustrated in Fig. 1. The main contributions of this study are
summarized as follows:

e A birth rate prediction model based on TCN and Bi-
LSTM was proposed. The input of the proposed birth
rate model includes not only historical birth rate data
but also various socioeconomic indicators such as
consumption level, divorce rate, and total population,
with the aim of capturing the complex factors
influencing birth rates.

e The feature vector of the birth rate prediction results
output by the Bi-LSTM network is used as an enhanced
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feature input to the TCN fully connected layer. This
integration enables the birth rate to better understand
the relationship between changes in socio-economic
indicators and birth rates.

e The hippopotamus position update strategy has been
introduced into the NRBO algorithm, and an improved
NRBO (INRBO) algorithm has been designed to
optimize the hyperparameters of TCN and Bi-LSTM
models.

e Finally, the INRBO-TCN-Bi-LSTM model was
validated using birth rate datasets from Singapore,
Macau, and Luxembourg. The experimental results
show that compared with the other four population
prediction models, the proposed model reduces the
training loss by an average of 95%.

The remaining content of this study is arranged as follows:
In Section II of the manuscript, work related to birth rate
prediction is reviewed. Section III introduces the proposed
INBRO-TCN-Bi-LSTM model. Section IV presents the
application results of the proposed model in the problem of
birth rate prediction. Finally, Section V summarizes the entire
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Fig. 1. The structure of the TCN-Bi-LSTM model.

II. RELATED WORK

A. The Prediction Models Based on Deep Learning

For learning based birth rate prediction methods, some
studies have explored the application of LSTM in birth rate
prediction problems. Alemayehu et al. used a DL model to
predict the birth rate trend in Ethiopia [8]. This study is based
on population data from Ethiopia from 2000 to 2019, and
evaluates the applicability of these methods in the field of birth
population prediction by comparing the predictive performance
of different models. Tzitirididou-Chatzopoulou et al. conducted
research on birth rate prediction in Scotland and designed an
adaptive machine leaming algorithm [9]. The adaptive birth
rate prediction framework developed in this study can
continuously optimize prediction accuracy by dynamically

adjusting model parameters, thereby capturing subtle changes
in socio-economic and environmental factors and the complex
relationship between reproductive behaviors.

In response to the challenges of large errors and slow
inference speed in traditional autoregressive models, Weber et
al. developed an improved RNN architecture for multi-output
prediction tasks of unmanned aerial vehicle angular velocity.
The improved RNN framework has a dual-layer prediction
structure, and experimental results show that the dual-layer
prediction structure effectively improves the accuracy of UAV
flight attitude prediction [10]. Regarding the dynamic
frequency prediction problem in wireless communication
networks, Zhang et al. designed a hybrid RNN model based on
Graph Convolutional Network (GCN), RNN, and attention
mechanism [11]. Unlike classical RNN models, the hybrid
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RNN models utilize GCN to capture correlations between
predicted objects and dynamically adjust the weights of output
hidden states through attention mechanisms. Finally, this study
validated the improved hybrid RNN architecture based on real
wireless communication spectrum prediction tasks. Ghazi et al.
proposed an autoregressive RNN model for predicting time
series with irregular time intervals. The improved RNN model
introduces an adaptive time embedding architecture, which
enables accurate prediction of irregular time interval data [12].

Outliers have a significant impact on traditional RNN
prediction frameworks, and the occurrence of outliers in birth
rates due to policy adjustments or unexpected events can lead
to a decrease in the accuracy of RNN prediction results.
Therefore, improving the prediction accuracy of RNN models
is a new problem faced by learning-based birth rate prediction
models. Kim et al. proposed a prediction framework based on
an improved RNN by integrating RNN and statistical methods
[13]. The results indicate that the framework effectively
reduces the interference of outliers on prediction accuracy by
integrating robust statistical methods with LSTM networks. In
[14], the authors proposed a reinforcement learning based RNN
architecture and successfully applied it to the problem of
predicting public opinion information diffusion. The
experimental results show that compared with traditional RNN
frameworks, the reinforcement learmning based RNN
architecture has higher accuracy in predicting explosive
propagation events. In [15], the authors used Bi-LSTM for
predicting the remaining life of aircraft engines. This study
effectively fused the forward and backward temporal features
of sensor data by stacking a Bi-LSTM and introducing a Gate
Recurrent Unit (GRU). The experimental results indicate that
the proposed prediction framework is more robust in handling
high-dimensional, noisy sensor data. In [16], the authors apply
the RNN model to user behavior analysis tasks and verify the
potential of RNN in user behavior analysis.

In recent years, with the advancement of deep learning
technology, the practical applications of CNN in fields such as
healthcare, industry, and biology have been expanded. For
example, Yousif et al. proposed a quantum CNN (QCNN)
framework for medical image classification tasks, aiming to
solve the problem of long training time for traditional CNNs in
medical image processing tasks [17]. This study designed an
improved strategy based on quantum superposition and
entanglement characteristics. The experimental results showed
that the improved strategy improved the feature extraction
efficiency of the traditional CNN and reduced the training time
of the model. In addition, Chen et al. proposed an improved
multimodal fusion CNN framework for mechanical fault
diagnosis based on multi-source sensor data [18]. This
improved framework can dynamically adjust the weights of
different modalities, aiming to alleviate the modal conflict
problem caused by traditional hard label training. In [19], the
authors combine deep leaming techniques with time series
discretization techniques to address the challenge of manually
labeling a large number of classification features in traditional
classification tasks.

In [20], the authors also designed a machine learning
prediction framework aimed at using interpretable machine
learning methods to predict financial risks of enterprises. In
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[21], the authors propose a hybrid optimization method
combining machine leamning and swarm intelligence
algorithms for antenna design problems. In this study, machine
learning models were used to learn the features of the search
space and predict the potential positions of candidate solutions,
thereby guiding swarm intelligence optimization algorithms to
converge faster to the target area and solving antenna
optimization problems containing continuous variables.

B. Meta-Heuristic Optimization Algorithm

As an important technology in the field of intelligent
computing, metaheuristic optimization algorithms are applied
to solve problems such as robot allocation, antenna design,
delivery path planning, and hyperparameter optimization of
machine learning models. Akopov designed an improved
genetic algorithm (GA) aimed at solving optimization
problems in trade interaction problems [22]. Bouali and Alamri
conducted research on the modeling problem of photovoltaic
systems, aiming to extract the parameters of diodes in
photovoltaic cells based on flood algorithms [23]. In [24], the
authors designed a starfish optimization algorithm (SFOA) to
solve the symmetric traveling salesman problem (TSP). In this
study, a discrete SFOA algorithm was designed by defining
continuous operators for starfish movement, foraging, and
reproduction, providing a new and effective metaheuristic
method for solving TSP.

Abdulaziz et al. designed optimization algorithms for
collaborative optimization of smart grids to optimize the
configuration of components such as electric vehicles (EVs)
and distributed static synchronous compensators. In this study,
the Hippopotamus Optimization (HO) Algorithm was used to
optimize the configuration of these components, aiming to
improve the energy efficiency, voltage stability, and economic
efficiency of the power grid operation [25]. In [26], the authors
propose a novel metaheuristic algorithm, Newton-Raphson-
Based Optimizer (NRBO), and the performance of the NRBO
algorithm was validated on a standardized optimization test set.
Overall, the above research provides a foundation for
optimizing the hyperparameters of the TCN-Bi-LSTM model
using metaheuristic algorithms.

III. PROPOSED SYSTEM OVERVIEW

Fig. 1 shows the architecture of the proposed hybrid TCN-
Bi-LSTM model. The proposed framework takes the historical
data of the population bomn in the region, consumption level,
divorce rate, and total population as input features for the
mixed TCN-Bi-LSTM model. The historical birth rate within
the region is the core time series data and the basic data for
birth rate prediction. The consumption level within a region
represents the economic situation within the region, and this
indicator is usually related to the ability and willingness of
families to raise children. The divorce rate represents the
stability of the family structure and is one of the important
social factors affecting family fertility decisions. The total
population provides macro demographic background data.

During the training process of the hybrid TCN-Bi-LSTM
model, the input data is simultaneously fed into two parallel
neural network modules. Among them, the TCN module uses a
series of causal convolutions and dilation convolutions to
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efficiently capture local feature patterns and long-term trends
in time series. The bidirectional structure of the Bi-LSTM
module enables it to fully understand the meaning of each time
point in its complete context, thereby capturing long-term
dependencies. After obtaining the outputs of TCN and Bi-
LSTM, the proposed framework concatenates the output
feature vectors V., and ¥, ,,, of TCN and Bi-LSTM at the

feature fusion layer. The fused joint feature vector V, is fed

into multiple fully connected layers to learn the nonlinear
relationship between TCN features and Bi-LSTM features, and
ultimately mapped to the birth rate prediction target.

A. The TCN-Bi-LSTM Framework

The residual blocks of the TCN model can improve the
training efficiency of TCN. In this study, the residual block of
the TCN model used Parametric Rectified Linear Unit
(PReLU) as the activation function, aiming to improve the
prediction accuracy and expressive ability of the TCN model.
The definition of the PReLU activation function is as follows

[Eq. (D]:

1l ,output

x, if x>0

axx, if x<0

PReLU(x)z{ (D

where, a is the slope on the negative interval. x is the input
value.

The proposed hybrid TCN-Bi-LSTM model requires multi-
layer convolution operations of the TCN module on the input
during the training process. The output of the last convolutional
layer of the TCN module in the birth rate prediction model is a
sequence V., . The definition of sequence V., is as follows

[Eq. (2)]:

Vien = f‘TCNfConv (%)

= PRe LU (DilatedCasual _ Conv(;c,q )+ 3) X0 )

where, x, is the input variable sequence of time step 7 .
DilatedCasual _Conv() is a dilated and causal convolution
calculation operation that relies on historical data related to
birth rates. d is the output layer bias.

In Eq. (3), expansion and causal convolution calculation
operations are defined.

DilatedCasual _Conv(x.-1) = pr X Xia 3)
P

where, {wp,VpeP} is a filter. P is the filter size.a is a
constant.

In the Bi-LSTM module, the input vector is processed by
both forward LSTM and backward LSTM simultaneously.

After processing the entire input time series, the last hidden
state VA, of the forward LSTM and the last hidden state VA, ' of

the backward LSTM are generated. The definitions of hidden
states Vh, and Vh,' are as follows [Eq. (4) and Eq. (5)]:

Vh, = Q, O tanh(L,) (4)
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Vh,'=Q, O tanh(L,") (%)
where, L, and L,' are the cell states of forward LSTM and

backward LSTM at the #th time step, respectively. O, andQ,’'

are the output vectors of the forward LSTM and backward
LSTM at the output gate, respectively.

After the input vector is processed through multiple layers
of residual blocks and convolutional blocks, the output of the
last time step is generated by the TCN module, and a feature
vector V., that combines local and long-term trends is

obtained. For the Bi-LSTM module, the feature vectors /4, and
Vh'of the hidden state of the forward LSTM and backward

LSTM are generated at the last time step, respectively. The
final output vector V, ,.,, of Bi-LSTM is obtained by

concatenating two hidden states V%, and V%' . The output vector
vV,

Bi—LSTM contextual

includes the complete bidirectional

information of the input sequence.

Fig. 2 shows the structure of the feature fusion layer
designed in this study. In the feature fusion layer, the output
vector V., of the TCN module and the output vectorV;, ., of

the Bi-LSTM module are concatenated along the feature
dimension of vector V., to generate a more informative joint

feature vectorV The definition of V is as follows

all output * all ,output
[Eq. (6)]:
V;H,uutput = Concatenate([VTCN’ Vai_rsmua ]) (6)
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Fig.2. The structure of the feature vector fusion layer.

After the joint feature vector V, is generated in the

1l ,output
feature fusion layer,V,, ,,, is input into the fully connected
layer of the TCN-Bi-LSTM model to weight and combine all
the features inV and calculate the final predicted birth

all output >
rate. The calculation method for the fully connected layer of
TCN-Bi-LSTM is defined in Eq. (7):

Vreorae = O-(W'X Vit o +d ') (7

where, w'is the weight matrix of the fully connected layer.
d'is the bias vector of the fully connected layer. o(-) is the
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activation function. J, .. 1is the output variable of the
proposed TCN-Bi-LSTM model.

To demonstrate the performance of the designed hybrid
TCN-Bi-LSTM framework, the loss function L, , of the

TCN-Bi-LSTM model is defined as follows [Eq. (8)]:

1 G 2 1 G-1 . 2

LLassiF = a‘_z(yg _yg) +ﬁ._z(yg+l _yg)
G4 G-14

(®)

where, @ and g are weight coefficients. G is the size of the

testset, Vg€ G . y, is the truevalue, j, isthe predicted value.

In addition, Root Mean Square Error (RMSE) is also used
to evaluate the performance of the proposed hybrid TCN-Bi-
LSTM model. The definition of RMSE is as follows [Eq. (9)]:

RSE = [E 330, 5] ®
g=1

B. The Improved NRBO (INRBO) Algorithm
Based on the work [26], the hyperparameter optimization

module designed in this study using the INRBO algorithm is as
follows.

1) Initialize the population: In the initialization stage of
INRBO, the convolution kernel size, expansion factor, number
of residual blocks, regularization parameters, and initial
learning rate of TCN and Bi-LSTM are mapped to the
decision vectors of the INRBO algorithm. Further, generate a
decision matrix based on the population size 7 . Fig. 3
shows the mapping relationship between the hyperparameters
of TCN and Bi-LSTM and decision vectors, as well as
decision matrices.

Number ol
Residual
Blocks
T

Learning Weight Dropout Dilation
Rate Decay Rate Rate

]rw.\

© © O O O |

Fig. 3. The mapping relationship between the hyperparameters of TCN and
Bi-LSTM and decision vectors.

The decision matrix DM _INRBO s defined in Eq. (10):

B ll B 2l o B dlim
B B ... RB?
DM INRBO = K 2 . dim (10)
Bl Bl B

where, B} is the decision vector. dim is the dimension of

the vector. I, is the size of the population.
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2) Calculate the value of the objective function: Calculate
the objective function for each individual based on the
decision matrix DM _INRBO in each iteration. The INRBO
algorithm proposed in this study aims to optimize the
parameters of TCN and LSTM, so the objective function
Jovrso 1 mainly determined by the accuracy of prediction. In
this study, the objective function is composed of two parts, the
loss function L, . and the RMSE, which are defined as
follows [Eq. (11)]:

Snwso=h XRMSE+A, <L, (11)

where, 4 and A, are weight coefficients, respectively.

3) Newton-Raphson search strategy: In the process of
updating the decision matrix in INRBO, the position of the
optimal solution is also updated. Therefore, each iteration of
INRBO generates a new set of hyperparameters for TCN and
Bi-LSTM. The process of updating the INRBO decision
matrix is as follows. Firstly, generate a random number H
within the [-1,1] interval. If >0, execute the Newton-
Raphson search strategy. The definition of Newton-Raphson
search strategy is as follows [Eq. (12)]:

B! _new=B, - ¢x(Bl,-B2) (12)

J

where, B, newis the updated decision variable. Bl and

B2',are the decision variables for the optimal and suboptimal

solutions generated during the current iteration process,
respectively. ¢ is the Newton-Raphson search coefficients.

4) Hippopotamus foraging search strategy: If H<O0 ,
execute the hippopotamus foraging search strategy. The
definition of the hippopotamus foraging search strategy is as
follows [Eq. (13)]:

B, _new= B +rand x Birand;.—B;.| (13)

J

where, rand is a random number on the [0,1] interval.
B_rand; is a decision variable randomly selected from the
decision matrix.

IV. RESULTS AND DISCUSSION

In order to evaluate the application effectiveness of the
proposed INRBO-based hybrid TCN-Bi-LSTM (INRBO-TCN-
Bi-LSTM) framework of birth rate prediction in a small area,
the proposed INRBO-TCN-Bi-LSTM framework was
validated based on historical data from three countries or
regions: Singapore, Macau, and Luxembourg. Fig. 4 displays
historical data on birth rates in Singapore, Macau, and
Luxembourg. To demonstrate the benefits of the INRBO-TCN-
Bi-LSTM framework in predicting birth rates, the TCN-Bi-
LSTM model, TCN model, Bi-LSTM model, and GRU model
were trained separately to compare with the INRBO-TCN-Bi-
LSTM model. Table I shows the relevant parameters of the
above models during the training process [27]-[28]. A training
set was generated using birth rate data from Singapore, Macau,
and Luxembourg for the period 1959 to 2011. Three test sets
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were formed based on birth rate data from Singapore, Macau,
and Luxembourg from 2012 to 2023, and each test set was
tested separately to validate the performance of the birth rate
prediction model. In [29], the authors proposed using a Monte
Carlo-based machine leaming model to predict birth rates and
evaluated the model based on the difference between the
predicted birth rate values and the true values. Differently, in
this study, RMSE, sum of squared errors (SSE), mean squared
error (MSE), and mean absolute percentage error (MAPE)
were used to evaluate the birth rate prediction model.
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Fig. 4. The historical data on birth rates in Singapore, Macau, and
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This indicates that the hippopotamus serving search strategy
effectively improves the convergence accuracy of the NRBO
algorithm.

To demonstrate the robustness of the proposed birth rate
prediction model, the INRBO-TCN-Bi-LSTM model, TCN-Bi-
LSTM model, TCN model, Bi-LSTM model, and GRU model
were independently trained 15 times, with each training session
lasting 50 epochs. Fig. 5 shows the loss function curves of
different birth rate prediction models. Table III shows the
training losses of different birth rate prediction models.

.5
045

0.4

Training Loss
IS
i
G

. . I
0 5 10 15 20 25 30 35 40 45 50
Training Epochs

Fig. 5. The loss function curves of different birth rate prediction models.

Luxembourg.
TABLE I. TRAINING PARAMETERS FOR BIRTH RATE PREDICTION
MODELS
Parameter Value
Training Epochs 50
Batch Size 30
Time Steps 6
Features 4

In addition, to demonstrate the optimization effect of
INBRO on the hyperparameters of the TCN-Bi-LSTM
framework, GA [22], SFOA [24], HO [25], and NRBO [26]
algorithms were compared with the INRBO algorithm. Table II
shows the fitness function values for optimizing the TCN-Bi-
LSTM framework using different metaheuristic algorithms.

TABLE III. THE TRAINING LOSSES OF DIFFERENT BIRTH RATE
PREDICTION MODELS
Predictive Model Training Epochs Training Loss
INRBO-TCN-Bi-LSTM 50 0.001149
TCN-Bi-LSTM 50 0.011808
TCN 50 0.033568
Bi-LSTM 50 0.025266
GRU 50 0.050274

TABLE II. THE FITNESS FUNCTION VALUES OF DIFFERENT
METAHEURISTIC ALGORITHMS
Algorithm POp;l;eﬁon ]I)I;:i;:ri::;l:; Fitness Function
GA 70 5 0.0536
SFOA 70 5 0.0497
HO 70 5 0.0517
NRBO 70 5 0.0451
INRBO 70 5 0.0433

From Table II, it can be seen that the fitness function value
corresponding to INRBO in optimizing the TCN-Bi-LSTM
model is 0.0433. Compared with GA, SFOA, HO, and NRBO
algorithms, INRBO has the smallest fitness function value.

From Table III, it can be seen that the GRU model has the
highest training loss, indicating that GRU has the weakest
ability to capture temporal dependencies in birth rate prediction
problems. TCN and Bi-LSTM, as more complex structures,
perform better than GRU models. The training loss of the
TCN-Bi-LSTM model is 0.011808, which is one order of
magnitude lower than the classical TCN and Bi-LSTM models.
The training loss of the INRBO-TCN-Bi-LSTM model is
0.001149, which is one order of magnitude lower than the
second-ranked TCN-Bi-LSTM model and outperforms all
other models. Therefore, the INRBO algorithm effectively
optimized the parameters of the TCN-Bi-LSTM hybrid model
during the training process. In summary, compared to the
TCN-Bi-LSTM  model, INRBO-TCN-Bi-LSTM reduces
training loss by 90.3%. Compared to the GRU model, the
training loss of INRBO-TCN-Bi-LSTM has been reduced by
approximately 97.7%.

Fig. 6 shows the birth rate prediction results of the INRBO-
TCN-Bi-LSTM model. Fig. 7 shows the birth rate prediction
results of the TCN model. Fig. 8 shows the birth rate prediction
results of the Bi-LSTM model. Table IV shows the RMSE,
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SSE, MSE, and MAPE indicators of different birth rate
prediction models. Fig. 9 shows the MAPE indicators of
different birth rate prediction models in three tests. In addition,
Table V shows the birth rate prediction values of INRBO-
TCN-Bi-LSTM. Table VI shows the birth rate prediction
values of TCN model. Table VII shows the birth rate prediction
values of Bi-LSTM mode.
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Fig. 6. The birth rate prediction results of the INRBO-TCN-Bi-LSTM
model.
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Fig. 7. The birth rate prediction results of the TCN model.

From Table IV, it can be seen that in the three tests,
compared with the other four models, the INRBO-TCN-Bi-
LSTM model performed the best in the RMSE metric, while
the classical GRU model performed the worst. When
predicting Singapore's birth rate, the INRBO-TCN-Bi-LSTM
model has the lowest RMSE of 0.0722 and MAPE of 5.47%.
Compared with the other four models, the INBRO-TCN-RNN

Vol. 16, No. 11, 2025

model achieved the highest prediction accuracy. In addition,
compared with the RMSE index of the TCN-Bi-LSTM model,
the RMSE of the INRBO-TCN-Bi-LSTM model decreased by
15.56%.
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Fig. 8. The birth rate prediction results of the Bi-LSTM model.

TABLEIV. THE INDICATORS OF DIFFERENT BIRTH RATE PREDICTION
MODELS

Prlf,lc:)i;glv ¢ Ré%ilf:;;" RMSE | SSE MSE MAPE
INRBO. | Singapore 00722 | 0.0722 | 0.0052 5.47%

TCN-Bi- | Macau 0.1442 | 02494 | 0.0207 12.51%
LST™M Luxembourg | 0.0502 | 0.0302 | 0.00252 | 2.84%
Singapore 0.0855 | 0.0877 | 0.0073 6.03%

Egg\f " [ Macau 0.1646 | 03312 | 0.0471 13.60%
Luxembourg | 0.0537 | 0.0346 | 0.0155 3.17%
Singapore 0.0898 | 0.0967 | 0.0081 7.44%

TCN Macau 0.1952 | 04574 | 0.0381 16.35%
Luxembourg | 0.0579 | 0.0403 | 0.00336 | 3.38%
Singapore 0.1062 | 0.1354 | 0.0112 6.29%

BiLSTM | Macau 0.1488 | 02658 | 0.0221 11.48%
Luxembourg | 0.0619 | 0.0460 | 0.00383 | 3.43%
Singapore 02030 | 0.1675 | 0.0140 | 7.34%

GRU Macau 02030 | 0.4943 | 0.0412 19.79%
Luxembourg | 0.0710 | 0.0605 | 0.0050 | 4.92%

Among the three tests, all five birth rate prediction models
had the highest error values when predicting the birth rate in
Macau. The MAPE of INRBO-TCN-Bi-LSTM is 12.51%,
which is better than the TCN-Bi-LSTM, TCN, and GRU
models. The performance of Bi-LSTM is better than that of the
more complex TCN-Bi-LSTM, indicating that the Bi-LSTM
model may have overfitting. When predicting the birth rate in
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Luxembourg, the MAPE of the INRBO-TCN-Bi-LSTM model
is 2.84%. Compared with the TCN-Bi-LSTM model, the

Vol. 16, No. 11, 2025

INRBO-TCN-Bi-LSTM model has decreased RMSE and
MAPE by 6.52% and 10.42%, respectively.

TABLE V. THE BIRTH RATE PREDICTION VALUES IN SINGAPORE
Years 2012 | 2013 | 2014 | 2015 ‘ 2016 | 2017 | 2018 | 2019 ‘ 2020 | 2021 | 2022 | 2023
Prediction Models The Birth Rate
True Values 1.29 1.19 1.25 1.24 1.20 1.16 1.14 1.14 1.10 1.12 1.04 0.97
INRBO-TCN-Bi-
LSTM 1.18 1.25 1.22 121 122 1.20 1.16 1.13 1.13 1.10 1.09 1.05
TCN 1.24 131 1.25 1.26 127 1.23 1.19 1.18 1.17 1.14 1.14 1.09
Bi-LSTM 1.13 1.16 1.15 1.16 1.17 1.16 1.14 1.09 1.05 1.03 1.01 0.99
TABLE VI. THE BIRTH RATE PREDICTION VALUES IN MACAU
Years 2012 | 2013 | 2014 | 2015 ‘ 2016 | 2017 | 2018 | 2019 ‘ 2020 | 2021 | 2022 | 2023
Prediction Models The Birth Rate
True Values 1.36 1.15 1.22 1.14 1.14 1.02 0.92 0.90 0.84 1.09 0.68 0.59
INRBO-TCN-Bi- 1.20 1.32 1.18 1.12 1.16 1.12 1.02 0.88 0.90 0.83 0.97 0.72
LSTM
TCN 1.28 143 1.28 1.18 1.23 1.24 1.07 0.90 0.94 0.94 1.06 0.80
Bi-LSTM 1.02 1.13 121 1.14 1.05 0.97 0.88 0.78 0.71 0.69 0.75 0.76
TABLE VII. THE BIRTH RATE PREDICTION VALUES IN LUXEMBOURG
Years 2012 | 2013 | 2014 | 2015 ‘ 2016 | 2017 | 2018 | 2019 ‘ 2020 ‘ 2021 | 2022 | 2023
Prediction Models The Birth Rate
True Values 1.57 1.55 15 1.47 141 1.39 1.38 1.34 1.36 1.38 131 125
INRBO-TCN-Bi- 1.47 145 1.47 1.44 1.42 137 136 134 133 137 135 132
LSTM
TCN 1.46 147 1.46 1.44 142 1.38 1.38 1.38 1.40 1.36 145 136
Bi-LSTM 147 1.46 1.44 142 142 1.41 1.40 1.35 1.35 1.34 136 137
1: S ' accuracy of the birth rate prediction model. The results showed
[ Macao . .
= that in the three tests, the INRBO-TCN-Bi-LSTM model
s 1 showed an average reduction of 11.49% and 9.24% in RMSE
fu and MAPE, respectively, compared to the TCN-Bi-LSTM
2T 1 model. In summary, the proposed INRBO-TCN-Bi-LSTM
2 8 4 . . . .
i, = model has improved the accuracy of birth rate prediction
3 within a small area. The proposed INRBO-TCN-Bi-LSTM

Fig.9. The MAPE indicators of different birth rate prediction models in
three tests.
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V. CONCLUSION

This study constructs a birth rate prediction model for small
regions based on the TCN-Bi-LSTM hybrid architecture. In
addition, the proposed birth rate prediction model introduces
three input vectors, including regional consumption level,
population size, and divorce rate, aiming to improve the
adaptability of the prediction model to policy or economic
fluctuations, and make the birth rate prediction results closer to
the trend of real birth rates. At the same time, an INRBO
algorithm was designed to optimize the hyperparameters of the
TCN-Bi-LSTM model, aiming to improve the prediction

model has limitations regarding interpretability and a lack of
validation of its generalization capability across diverse time-
series forecasting tasks. Future work will focus on addressing
these limitations. To this end, we will enhance model
interpretability using methods such as feature importance
analysis and attention weight visualization. We will also
systematically evaluate the model's predictive performance on
diverse time series data to verify its robustness.
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