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Abstract—Software defect prediction (SDP) plays a key role in 

improving software quality by identifying defect-prone modules 

early in the development cycle. While within-project prediction 

has been widely studied, cross-project defect prediction (CPDP) 

remains challenging due to differences in datasets, high feature 

dimensionality, and poor model generalization. To address these 

challenges, this study enhances the Transformation and Feature 

Selection (TFS) approach by integrating ensemble learning 

techniques. Three methods, Gradient Boosting Machine (GBM), 

stacking, and hybridization, were explored to evaluate their 

effectiveness in improving CPDP performance. Experiments were 

conducted using the AEEEM datasets, with preprocessing steps 

including normalization, feature reduction, and the Synthetic 

Minority Oversampling Technique (SMOTE) to handle data 

imbalance. The models were trained on source projects and tested 

on separate target projects, with the F1 score used as the main 

evaluation metric. Results show that the TFS × Stacking model 

achieved the highest overall performance, with a mean F1 score of 

0.963, outperforming both TFS × GBM (0.958) and TFS × 

Hybridization (0.920). Compared to the original TFS × Random 

Forest method, the stacking approach consistently provided 

significant improvements across all project pairs. These findings 

highlight the potential of combining TFS with ensemble learning 

to enhance defect prediction in projects with limited or no 

historical data. This work not only advances CPDP research but 

also offers practical value to software teams by enabling more 

accurate identification of defect-prone modules and better 

allocation of testing resources. 
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I. INTRODUCTION 

Delivering high-quality software is one of the biggest 
challenges in software engineering [1]. A huge amount of time 
and money goes into testing and debugging, yet defects often 
slip through and cause failures in real-world systems [2]. These 
failures can be costly, damage user trust, and reduce the overall 
reliability of the software. To address this, researchers and 
practitioners have turned to software defect prediction (SDP), 
which uses historical project data and code metrics to identify 
parts of the system that are most likely to contain bugs. By 
highlighting defect-prone modules early, teams can focus their 
testing and maintenance where it matters most, saving both time 
and resources. 

Traditional SDP models are usually built with supervised 
machine learning techniques that learn from past projects [3-4]. 
They look for patterns in features such as lines of code, 
complexity, and other process metrics that often signal potential 
defects. While these models have proven useful, they depend 
heavily on having high-quality labeled data from the project 
being developed. Unfortunately, many new projects lack this 
data, making it difficult to train reliable models. 

This is where cross-project defect prediction (CPDP) 
becomes important. CPDP allows models to be trained using 
data from other projects and then applied to a new project with 
little or no labeled data [5]. In theory, this makes defect 
prediction more widely usable. In practice, however, CPDP 
faces major hurdles: the source and target projects often differ 
in their features and distributions, data is high-dimensional, and 
models trained on one project often perform poorly when 
applied to another. 

To tackle these problems, researchers have explored 
techniques such as feature transformation and feature selection. 
Transformation methods reduce differences between projects, 
while feature selection eliminates irrelevant or redundant data to 
make models simpler and more accurate. The Transformation 
and Feature Selection (TFS) approach has shown promise in this 
regard, but it still struggles with complex, non-linear patterns 
and imbalanced datasets. 

Recently, ensemble learning has emerged as a powerful way 
to improve prediction models. Instead of relying on a single 
learner, ensemble methods combine multiple models to produce 
more accurate and robust results [6-7]. Gradient Boosting 
Machine (GBM), stacking, and hybridization are three such 
techniques that have been particularly effective. GBM is strong 
at capturing complex relationships and handling imbalanced 
data; stacking leverages the strengths of diverse models through 
a meta-learner; and hybridization blends models to capture both 
linear and non-linear dependencies. 

Building on these observations, this study proposes an 
improved CPDP framework by integrating TFS with GBM, 
stacking, and hybridization. The goal is to investigate whether 
combining these methods can lead to better generalization 
across heterogeneous projects. The F1 score is used to measure 
predictive performance, with the goal of identifying which 
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ensemble approach works best with TFS for cross-project defect 
prediction. 

By doing so, this study not only contributes to the academic 
field of defect prediction but also offers practical benefits. 
Development teams working on new projects, especially those 
with little labeled data, can use these enhanced models to predict 
software defects more reliably and make better decisions about 
where to direct testing efforts. 

II. RELATED WORK 

Software defect prediction (SDP) is widely recognized as an 
important technique for improving software quality, as it helps 
identify components that are likely to contain bugs before a 
system is released [8]. Traditional SDP approaches largely 
depend on within-project defect prediction (WPDP), where a 
model is trained and tested using data from the same project. 
However, WPDP requires a large amount of labeled defect data, 
something that new or early-stage projects typically do not have 
[9]. This limitation has encouraged researchers to explore cross-
project defect prediction (CPDP), where models trained on one 
project are applied to another project that has little or no 
historical defect data [10]. 

Over the years, CPDP research has proposed various 
strategies to address challenges such as data inconsistency, high 
dimensionality, and differences in metric distributions across 
projects. However, many studies address these issues in 
isolation, focusing on either feature transformation, feature 
selection, or ensemble learning without examining how these 
techniques can be combined and jointly optimized to improve 
cross-project transfer performance. 

A. Feature Transformation Approaches 

Feature transformation has been widely used to reduce the 
differences between source and target datasets. For example, 
Zhao et al. [11] introduced a manifold-based transformation 
method that projects data into a shared feature space, increasing 
similarity between datasets and improving prediction 
performance. Although their work showed the value of aligning 
data distributions, it did not consider how ensemble learning or 
feature selection could be integrated to further reduce noise and 
redundancy. 

Similarly, Shekhawat et al. [12] proposed the Binary SALp 
Swarm Algorithm (BSSA), which performs both data 
transformation and feature selection. While the method 
improved computational efficiency, it was mainly evaluated in 
WPDP settings and did not examine its potential in CPDP 
contexts, where the domain differences are more substantial. 

B. Feature Selection Methods 

Feature selection techniques reduce dimensionality by 
eliminating irrelevant or redundant metrics. Ali et al. [13] 
compared several feature selection methods and demonstrated 
that removing unstable features can significantly improve 
prediction accuracy. However, their analysis treated feature 
selection as a standalone step and did not explore its interaction 
with feature transformation or ensemble learning. 

Pandey et al. [14] proposed a hybrid method that combines 
data transformation with the Binary Binomial Cuckoo Search 

algorithm for feature selection. Although effective, the approach 
emphasized heuristic optimization and did not investigate 
ensemble-based improvements or its suitability for cross-project 
scenarios. 

C. Ensemble Learning in Defect Prediction 

Ensemble learning methods such as Random Forest, 
Gradient Boosting, and stacking have become increasingly 
popular due to their robustness and ability to capture complex, 
nonlinear patterns in defect datasets. Matloob et al. [15] 
conducted a systematic review showing the advantages of 
ensemble learning, particularly improvements in recall and 
performance on imbalanced data. However, their work did not 
examine how ensemble techniques might interact with feature 
transformation in CPDP environments. 

Tang et al. [16] introduced an adaptive ensemble algorithm 
based on the Sparrow Search Algorithm, showing strong results 
on imbalanced datasets. Nonetheless, their method required 
extensive dataset-specific tuning, limiting its generalizability 
across projects. 

Hybrid approaches that combine gradient boosting and deep 
learning models, such as those examined by [17], [18], and [19], 
have also demonstrated improved accuracy by leveraging both 
linear and nonlinear learners. Yet, these approaches do not 
incorporate feature selection specifically tailored for cross-
project prediction, leaving a gap in understanding how 
transformation, feature reduction, and ensemble learning can 
work together within CPDP. 

D. Gap in Existing Literature 

From the reviewed literature, a clear gap emerges: most 
CPDP studies evaluate feature transformation, feature selection, 
and ensemble learning separately. There is no unified 
framework that systematically integrates these techniques or 
examines how their combination provides conceptual or 
technical benefits beyond existing hybrid models. 

E. Contribution of this Study 

This study addresses that gap by proposing an integrated 
framework that combines Transformation and Feature Selection 
(TFS) with multiple ensemble learning strategies, including 
Gradient Boosting Machines (GBM), stacking, and hybrid 
ensemble models, and evaluates their cross-project 
transferability using diverse datasets. The contribution lies not 
only in the integration itself but also in analyzing how each 
ensemble approach utilizes TFS outputs to improve robustness 
against domain divergence in CPDP. 

III. METHODOLOGY 

The methodology focuses on improving the Transformation 
and Feature Selection (TFS) approach proposed [7] by 
integrating advanced machine learning ensemble techniques for 
cross-project defect prediction (CPDP). Specifically, this 
research evaluates three ensemble methods, such as stacking, 
hybridization, and Gradient Boosting Machine (GBM), to 
determine which approach best enhances the performance of 
TFS. 

The main challenges addressed include high-dimensional 
feature spaces, poor generalization across projects, and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

216 | P a g e  

www.ijacsa.thesai.org 

imbalanced datasets. Our proposed approach mitigates these 
limitations by applying feature transformation, feature selection, 
and ensemble learning techniques. 

In the proposed solution, the performance of the TFS model 
is enhanced through the application of ensemble learning. Three 
methods are implemented for comparison: 

1) Stacking Model, which combines predictions from 

multiple base learners using a meta-learner. 

2) Hybridization Model, which integrates different models 

to capture both linear and nonlinear patterns. 

3) Gradient Boosting Machine (GBM), which builds 

sequential decision trees that iteratively correct errors. 

The most widely adopted evaluation metric, the F1 score, is 
used to assess model performance due to its effectiveness in 
handling imbalanced datasets. The experiments are conducted to 
identify the best-performing ensemble method when combined 
with TFS for CPDP. 

B. Datasets 

The AEEEM datasets are some of the open-source datasets 
commonly used in SDP studies [3]. Table I shows the datasets 
that contain features gathered from previous software projects, 
which represent various aspects of software modules, such as 
lines of code, complexity measures, and fault labels. All the 
datasets contain defective data from a few software projects, 
labeled as either “Defective” or “Non-Defective”. 

TABLE I. CHARACTERISTICS OF DATASETS 

Project 

Name 

No. Of 

Module 

No. Of 

Features 

No. Of 

Defect 

Defect 

Ratio 

EQ 324 61 129 39.81% 

JDT 997 61 206 20.66% 

LC 691 61 64 9.26% 

ML 1862 61 245 13.16% 

PDE 1497 61 209 13.96% 

C. Feature Selection 

There are 61 features across all datasets. Only the top ten 
features, determined by significance scores, were chosen for 
training before the evaluation to reduce dimensionality and 
improve model interpretability. The mean and standard 
deviation of feature values were used to get the relative 
relevance score. Calculate the average and standard deviation for 
each characteristic. Determine the difference between the feature 
mean and the overall dataset mean. Order the features according 
to their deviation scores or other computed metrics, with lower 
deviations suggesting greater importance. The relevant features 
are extracted from every dataset. 

D. Evaluation Metrics 

The F1 score is the main evaluation metric for machine 
learning models in this study. This metric is especially useful for 
imbalanced datasets since it provides a balanced evaluation by 
merging precision and recall into a harmonic mean [20-21]. By 
accounting for both false positives and false negatives, the F1 
score ensures that the model's prediction capabilities are 

thoroughly evaluated. The F1 score, which is commonly 
employed in binary and multi-class classification problems, 
combines precision and recall, providing a reliable measure of 
the model's overall performance, making it an important 
criterion for this study. 

Precision: An indicator of a machine learning model's 
performance – the accuracy of its positive predictions. 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (1) 

Recall: A quantitative measure that assesses the frequency 
with which a machine learning model accurately detects positive 
occurrences. 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (2) 

F1-score: A measure of the harmonic mean of precision and 
recall. 

F1_score =  
2 ∗ Precision ∗ Recall

Precision+ Recall
               (3) 

E. Implementation 

The implementation of the proposed approach consists of 
four major phases: data preprocessing, feature transformation 
and selection (TFS), model training, and evaluation, as shown in 
Fig. 1. First, datasets from multiple software projects (AEEEM) 
were collected and preprocessed to ensure consistency. 
Preprocessing included handling missing values, normalizing 
feature values, and addressing class imbalance using the 
Synthetic Minority Oversampling Technique (SMOTE). 

Next, the TFS was applied to reduce dimensionality and 
improve the quality of the feature space. Feature scaling and 
selection techniques were used to identify the most relevant 
metrics, allowing the models to focus on the most influential 
predictors. 

Three ensemble learning techniques were then implemented 
to enhance the performance of TFS for cross-project defect 
prediction (CPDP): 

1) TFS × GBM: Gradient Boosting Machine was integrated 

with TFSM to capture complex non-linear relationships by 

iteratively correcting errors through sequential decision trees. 

2) TFS × Stacking: Multiple base learners (e.g., Random 

Forest and GBM) were combined, with a Logistic Regression 

meta-learner integrating their predictions to optimize decision 

boundaries. 

3) TFS × Hybridization: A hybrid voting-based approach 

was used to integrate Random Forest and GBM, capturing both 

linear and non-linear dependencies for more balanced 

performance. 

The models were trained on source projects and tested on 
distinct target projects to simulate realistic CPDP scenarios. For 
each source–target pair, the F1 score was computed as the 
primary performance metric, as it balances precision and recall 
and is particularly suitable for imbalanced datasets. 
Comparative experiments across stacking, hybridization, and 
GBM identified the best-performing ensemble method when 
integrated with TFS. 
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F. Data Preprocessing 

Preprocessing the dataset is an important step for ensuring 
the GBM model’s quality and applicability [22]. Preprocessing 
tasks included correcting class imbalances, scaling numerical 
characteristics, encoding categorical variables, and handling 
missing data. Under- and oversampling techniques, notably the 
Synthetic Minority Oversampling Technique (SMOTE), were 
utilized to address class imbalances induced by skewed 
distributions of defect labels. These metrics were required for 
the model to efficiently analyze the dataset and provide reliable 
training and testing. 

 
Fig. 1. Cross-project defect prediction workflow. 

IV. RESULTS AND DISCUSSION 

This section describes the outcomes of integrating TFS and 
GBM in cross-project defect prediction settings. The stacking 
model combines the predictive power of Gradient Boosting and 
Random Forest as base learners, with Logistic Regression 
serving as the meta-model. This section evaluates the model's 
performance using its F1 score, which is a weighted statistic that 
accounts for class imbalances in the dataset. The results are 
analyzed to evaluate how efficient the stacking model method is 
in comparison to other methods. 

A. Evaluation of TFS x GBM, TFS x Stacking and TFS x 

Hybridization 

Table II compares the performance of three ensemble 
approaches (Stacking Model, Sequential Model, and 
Hybridization Model) using F1 scores across multiple cross-
project software defect prediction scenarios. The models were 
evaluated by training on one source project (e.g., EQ) and testing 
on another target project (e.g., JDT). 

TABLE II. COMPARISON OF THREE ENSEMBLE METHODS 

Source > 

Target 

Stack 

Model 
Sequentially 

Model 

Hybridization 

EQ > JDT 0.85 0.91 0.90 

EQ > ML 0.88 0.92 0.81 

EQ > PDE 0.85 0.86 0.82 

EQ > LC 0.94 0.92 0.90 

JDT > EQ 0.97 0.95 0.90 

JDT > LC 0.95 0.94 0.91 

JDT > ML 0.97 0.95 0.91 

JDT > PDE 0.98 0.94 0.91 

LC > EQ 0.99 1.00 1.00 

LC > JDT 0.98 1.00 0.98 

LC > ML 0.99 0.99 0.98 

LC > PDE 0.99 0.99 1.00 

ML > EQ 0.98 0.96 0.91 

ML > JDT 0.98 0.96 0.91 

ML > LC 0.98 0.97 0.92 

ML > PDE 0.98 0.94 0.90 

PDE > EQ 1.00 1.00 0.93 

PDE > JDT 1.00 0.98 0.96 

PDE > LC 1.00 0.99 0.91 

PDE > ML 1.00 0.98 0.94 

Mean 0.963 0.958 0.920 

The Stacking Model achieves the highest mean F1 score 
(0.963), indicating its robustness and generalizability across 
different project pairs. It performs exceptionally well in 
scenarios such as PDE > EQ, PDE > LC, and PDE > ML, with 
perfect F1 scores of 1.00. This demonstrates that combining 
multiple models through stacking improves the utilization of 
decision boundaries, resulting in higher prediction accuracy. 

The Sequential Model follows closely with an average F1 
score of 0.958. In some cases, it even outperforms the Stacking 
Model, such as LC > EQ and LC > JDT, where it achieves 
flawless F1 scores (1.00). This approach leverages the 
probabilistic outputs of one model (Random Forest) as inputs to 
another (Gradient Boosting), which proves highly effective in 
certain scenarios. 

The Hybridization Model lags slightly behind, with an 
average F1 score of 0.920. While it achieves reasonable results 
overall, its performance is less consistent. For example, lower 
F1 scores in scenarios such as EQ > ML (0.81) and EQ > PDE 
(0.82) highlight its limited ability to generalize across different 
project pairs. 

The results demonstrate that the Stack Model regularly has 
the greatest mean F1 score (0.963), exceeding both the 
Sequential Model (0.958) and the Hybridization Model (0.920). 
However, the Sequential Model performs competitively, 
occasionally outperforming the Stack Model in select 
circumstances, such as LC > EQ and LC > JDT. The 
Hybridization Model consistently underperforms the other two, 
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implying that it may be less effective in handling cross-project 
defect prediction jobs. Overall, the Stack Model shows higher 
robustness in all cases 

B. Evaluation of TFS x Stacking Against Original Method 

From Table III below, we can see that the TFS x Stacking 
Model consistently outperforms the TFS x RF Model across all 
source-target pairs, with a mean F1 score of 0.963 for the 
stacking model and 0.791 for the RF. Additionally, the stacking 
model performs well in pairs like EQ > LC and LC > EQ, with 
F1 scores of 0.94 and 0.99, respectively, compared to RF's 0.5 
and 0.72. This demonstrates a significant improvement, 
particularly for specific source-target pairings. Furthermore, the 
PDE > EQ and PDE > JDT couples have flawless F1 scores of 
1.00, demonstrating the outstanding performance of the TFS x 
GBM model. 

The stacking detects complicated patterns and relationships 
in data, whereas the Random Forest ensures robustness and 
reduces overfitting. By merging various models, the stacking 
approach minimizes bias and instability, resulting in the 
improvement of prediction performance. Particularly, the stack 
model performs better than the stand-alone model, RF in 
combinations such as EQ > LC (0.94 vs. 0.5) and PDE > LC 
(1.00 vs. 0.87), implying that stacking better manages data 
dependencies and correlations. Furthermore, the stacked model 
performs consistently well across several domains, with high F1 
scores in combinations such as LC > ML, ML > PDE, and JDT 
> ML, demonstrating its great ability to generalize and 
robustness in defect prediction across various software projects. 

TABLE III. COMPARISON BETWEEN ENHANCED AND ORIGINAL MODEL 

Source > Target TFSM x Stacking TFSM x RF 

EQ > JDT 0.85 0.71 

EQ > ML 0.88 0.81 

EQ > PDE 0.85 0.65 

EQ > LC 0.94 0.5 

JDT > EQ 0.97 0.71 

JDT > LC 0.95 0.74 

JDT > ML 0.97 0.81 

JDT > PDE 0.98 0.85 

LC > EQ 0.99 0.72 

LC > JDT 0.98 0.86 

LC > ML 0.99 0.85 

LC > PDE 0.99 0.87 

ML > EQ 0.98 0.74 

ML > JDT 0.98 0.86 

ML > LC 0.98 0.89 

ML > PDE 0.98 0.87 

PDE > EQ 1.00 0.74 

PDE > JDT 1.00 0.85 

PDE > LC 1.00 0.92 

PDE > ML 1.00 0.86 

Mean 0.963 0.791 

C. Advantages Over Previous Approaches 

A major strength of this study lies in the integrated TFS + 
Ensemble framework, which performs better than previous 
CPDP methods evaluated in earlier studies. Unlike earlier CPDP 
approaches that applied feature transformation, feature 
selection, or ensemble techniques independently, the proposed 
method unifies these processes to more comprehensively 
address dataset heterogeneity. This integrated structure reduces 
noise, improves feature stability, and enhances the ability of 
ensemble models to learn cross-project patterns. 

V. CONCLUSION 

In this study, we set out to improve cross-project software 
defect prediction (CPDP) by combining Transformation and 
Feature Selection (TFS) with three ensemble learning 
techniques: Gradient Boosting Machine (GBM), stacking, and 
hybridization. The results show that using ensemble learning 
with TFS makes defect prediction more accurate and reliable by 
reducing issues such as high dimensionality, imbalance in the 
datasets, and weak generalization across projects. Of the three 
approaches, the TFS × Stacking model performed best, 
achieving the highest mean F1 score (0.963). This confirms that 
stacking, which combines the strengths of different base learners 
through a meta-learner, is particularly effective for capturing 
complex defect patterns. GBM and hybridization also showed 
good performance, but stacking consistently provided more 
robust results. When compared to the original TFS × Random 
Forest method, the ensemble-based models, especially stacking, 
showed significant improvements across all project 
combinations. 

In real-world settings where labeled data is scarce or 
unavailable, common in early project phases, the proposed 
approach provides a practically viable defect prediction 
mechanism. 

Despite its promising results, the study has several 
limitations. First, the experiments are limited to five datasets 
from the AEEEM repository, which may not represent the full 
diversity of real-world software systems. Second, the feature 
selection method used is relatively simple and may not capture 
deeper relationships among metrics. Third, the ensemble 
learners used were standard implementations; more advanced or 
domain-specific variations were not explored. Finally, the study 
does not evaluate the computational cost of the integrated 
pipeline, which may be a concern in large-scale industrial 
settings 

Looking ahead, future research could build on this work by 
incorporating transfer learning or domain adaptation techniques 
to reduce distributional discrepancies more systematically. 
Another potential area is the integration of deep learning models 
or graph-based neural architectures to capture structural 
relationships within software components. Additionally, more 
sophisticated feature selection or feature synthesis techniques, 
such as metaheuristic optimization or automated feature 
engineering, could be integrated into the TFS pipeline. 
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