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Abstract—Software defect prediction (SDP) plays a key role in
improving software quality by identifying defect-prone modules
early in the development cycle. While within-project prediction
has been widely studied, cross-project defect prediction (CPDP)
remains challenging due to differences in datasets, high feature
dimensionality, and poor model generalization. To address these
challenges, this study enhances the Transformation and Feature
Selection (TFS) approach by integrating ensemble learning
techniques. Three methods, Gradient Boosting Machine (GBM),
stacking, and hybridization, were explored to evaluate their
effectiveness in improving CPDP performance. Experiments were
conducted using the AEEEM datasets, with preprocessing steps
including normalization, feature reduction, and the Synthetic
Minority Oversampling Technique (SMOTE) to handle data
imbalance. The models were trained on source projects and tested
on separate target projects, with the F1 score used as the main
evaluation metric. Results show that the TFS x Stacking model
achieved the highest overall performance, with a mean F1 score of
0.963, outperforming both TFS x GBM (0.958) and TFS x
Hybridization (0.920). Compared to the original TFS x Random
Forest method, the stacking approach consistently provided
significant improvements across all project pairs. These findings
highlight the potential of combining TFS with ensemble learning
to enhance defect prediction in projects with limited or no
historical data. This work not only advances CPDP research but
also offers practical value to software teams by enabling more
accurate identification of defect-prone modules and better
allocation of testing resources.
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l. INTRODUCTION

Delivering high-quality software is one of the biggest
challenges in software engineering [1]. A huge amount of time
and money goes into testing and debugging, yet defects often
slip through and cause failures in real-world systems [2]. These
failures can be costly, damage user trust, and reduce the overall
reliability of the software. To address this, researchers and
practitioners have turned to software defect prediction (SDP),
which uses historical project data and code metrics to identify
parts of the system that are most likely to contain bugs. By
highlighting defect-prone modules early, teams can focus their
testing and maintenance where it matters most, saving both time
and resources.

Traditional SDP models are usually built with supervised
machine learning techniques that learn from past projects [3-4].
They look for patterns in features such as lines of code,
complexity, and other process metrics that often signal potential
defects. While these models have proven useful, they depend
heavily on having high-quality labeled data from the project
being developed. Unfortunately, many new projects lack this
data, making it difficult to train reliable models.

This is where cross-project defect prediction (CPDP)
becomes important. CPDP allows models to be trained using
data from other projects and then applied to a new project with
little or no labeled data [5]. In theory, this makes defect
prediction more widely usable. In practice, however, CPDP
faces major hurdles: the source and target projects often differ
in their features and distributions, data is high-dimensional, and
models trained on one project often perform poorly when
applied to another.

To tackle these problems, researchers have explored
techniques such as feature transformation and feature selection.
Transformation methods reduce differences between projects,
while feature selection eliminates irrelevant or redundant data to
make models simpler and more accurate. The Transformation
and Feature Selection (TFS) approach has shown promise in this
regard, but it still struggles with complex, non-linear patterns
and imbalanced datasets.

Recently, ensemble learning has emerged as a powerful way
to improve prediction models. Instead of relying on a single
learner, ensemble methods combine multiple models to produce
more accurate and robust results [6-7]. Gradient Boosting
Machine (GBM), stacking, and hybridization are three such
techniques that have been particularly effective. GBM is strong
at capturing complex relationships and handling imbalanced
data; stacking leverages the strengths of diverse models through
a meta-learner; and hybridization blends models to capture both
linear and non-linear dependencies.

Building on these observations, this study proposes an
improved CPDP framework by integrating TFS with GBM,
stacking, and hybridization. The goal is to investigate whether
combining these methods can lead to better generalization
across heterogeneous projects. The F1 score is used to measure
predictive performance, with the goal of identifying which
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ensemble approach works best with TFS for cross-project defect
prediction.

By doing so, this study not only contributes to the academic
field of defect prediction but also offers practical benefits.
Development teams working on new projects, especially those
with little labeled data, can use these enhanced models to predict
software defects more reliably and make better decisions about
where to direct testing efforts.

Il.  RELATED WORK

Software defect prediction (SDP) is widely recognized as an
important technique for improving software quality, as it helps
identify components that are likely to contain bugs before a
system is released [8]. Traditional SDP approaches largely
depend on within-project defect prediction (WPDP), where a
model is trained and tested using data from the same project.
However, WPDP requires a large amount of labeled defect data,
something that new or early-stage projects typically do not have
[9]. This limitation has encouraged researchers to explore cross-
project defect prediction (CPDP), where models trained on one
project are applied to another project that has little or no
historical defect data [10].

Over the years, CPDP research has proposed various
strategies to address challenges such as data inconsistency, high
dimensionality, and differences in metric distributions across
projects. However, many studies address these issues in
isolation, focusing on either feature transformation, feature
selection, or ensemble learning without examining how these
techniques can be combined and jointly optimized to improve
cross-project transfer performance.

A. Feature Transformation Approaches

Feature transformation has been widely used to reduce the
differences between source and target datasets. For example,
Zhao et al. [11] introduced a manifold-based transformation
method that projects data into a shared feature space, increasing
similarity between datasets and improving prediction
performance. Although their work showed the value of aligning
data distributions, it did not consider how ensemble learning or
feature selection could be integrated to further reduce noise and
redundancy.

Similarly, Shekhawat et al. [12] proposed the Binary SALp
Swarm Algorithm (BSSA), which performs both data
transformation and feature selection. While the method
improved computational efficiency, it was mainly evaluated in
WPDP settings and did not examine its potential in CPDP
contexts, where the domain differences are more substantial.

B. Feature Selection Methods

Feature selection techniques reduce dimensionality by
eliminating irrelevant or redundant metrics. Ali et al. [13]
compared several feature selection methods and demonstrated
that removing unstable features can significantly improve
prediction accuracy. However, their analysis treated feature
selection as a standalone step and did not explore its interaction
with feature transformation or ensemble learning.

Pandey et al. [14] proposed a hybrid method that combines
data transformation with the Binary Binomial Cuckoo Search

Vol. 16, No. 11, 2025

algorithm for feature selection. Although effective, the approach
emphasized heuristic optimization and did not investigate
ensemble-based improvements or its suitability for cross-project
scenarios.

C. Ensemble Learning in Defect Prediction

Ensemble learning methods such as Random Forest,
Gradient Boosting, and stacking have become increasingly
popular due to their robustness and ability to capture complex,
nonlinear patterns in defect datasets. Matloob et al. [15]
conducted a systematic review showing the advantages of
ensemble learning, particularly improvements in recall and
performance on imbalanced data. However, their work did not
examine how ensemble techniques might interact with feature
transformation in CPDP environments.

Tang et al. [16] introduced an adaptive ensemble algorithm
based on the Sparrow Search Algorithm, showing strong results
on imbalanced datasets. Nonetheless, their method required
extensive dataset-specific tuning, limiting its generalizability
across projects.

Hybrid approaches that combine gradient boosting and deep
learning models, such as those examined by [17], [18], and [19],
have also demonstrated improved accuracy by leveraging both
linear and nonlinear learners. Yet, these approaches do not
incorporate feature selection specifically tailored for cross-
project prediction, leaving a gap in understanding how
transformation, feature reduction, and ensemble learning can
work together within CPDP.

D. Gap in Existing Literature

From the reviewed literature, a clear gap emerges: most
CPDP studies evaluate feature transformation, feature selection,
and ensemble learning separately. There is no unified
framework that systematically integrates these techniques or
examines how their combination provides conceptual or
technical benefits beyond existing hybrid models.

E. Contribution of this Study

This study addresses that gap by proposing an integrated
framework that combines Transformation and Feature Selection
(TFS) with multiple ensemble learning strategies, including
Gradient Boosting Machines (GBM), stacking, and hybrid
ensemble models, and evaluates their cross-project
transferability using diverse datasets. The contribution lies not
only in the integration itself but also in analyzing how each
ensemble approach utilizes TFS outputs to improve robustness
against domain divergence in CPDP.

I1l.  METHODOLOGY

The methodology focuses on improving the Transformation
and Feature Selection (TFS) approach proposed [7] by
integrating advanced machine learning ensemble techniques for
cross-project defect prediction (CPDP). Specifically, this
research evaluates three ensemble methods, such as stacking,
hybridization, and Gradient Boosting Machine (GBM), to
determine which approach best enhances the performance of
TFS.

The main challenges addressed include high-dimensional
feature spaces, poor generalization across projects, and

215|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

imbalanced datasets. Our proposed approach mitigates these
limitations by applying feature transformation, feature selection,
and ensemble learning techniques.

In the proposed solution, the performance of the TFS model
is enhanced through the application of ensemble learning. Three
methods are implemented for comparison:

1) Stacking Model, which combines predictions from
multiple base learners using a meta-learner.

2) Hybridization Model, which integrates different models
to capture both linear and nonlinear patterns.

3) Gradient Boosting Machine (GBM), which builds
sequential decision trees that iteratively correct errors.

The most widely adopted evaluation metric, the F1 score, is
used to assess model performance due to its effectiveness in
handling imbalanced datasets. The experiments are conducted to
identify the best-performing ensemble method when combined
with TFS for CPDP.

B. Datasets

The AEEEM datasets are some of the open-source datasets
commonly used in SDP studies [3]. Table | shows the datasets
that contain features gathered from previous software projects,
which represent various aspects of software modules, such as
lines of code, complexity measures, and fault labels. All the
datasets contain defective data from a few software projects,
labeled as either “Defective” or “Non-Defective”.

TABLE I. CHARACTERISTICS OF DATASETS
Project No. Of No. Of No. Of Defect
Name Module Features Defect Ratio
EQ 324 61 129 39.81%
JDT 997 61 206 20.66%
LC 691 61 64 9.26%
ML 1862 61 245 13.16%
PDE 1497 61 209 13.96%

C. Feature Selection

There are 61 features across all datasets. Only the top ten
features, determined by significance scores, were chosen for
training before the evaluation to reduce dimensionality and
improve model interpretability. The mean and standard
deviation of feature values were used to get the relative
relevance score. Calculate the average and standard deviation for
each characteristic. Determine the difference between the feature
mean and the overall dataset mean. Order the features according
to their deviation scores or other computed metrics, with lower
deviations suggesting greater importance. The relevant features
are extracted from every dataset.

D. Evaluation Metrics

The F1 score is the main evaluation metric for machine
learning models in this study. This metric is especially useful for
imbalanced datasets since it provides a balanced evaluation by
merging precision and recall into a harmonic mean [20-21]. By
accounting for both false positives and false negatives, the F1
score ensures that the model's prediction capabilities are
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thoroughly evaluated. The F1 score, which is commonly
employed in binary and multi-class classification problems,
combines precision and recall, providing a reliable measure of
the model's overall performance, making it an important
criterion for this study.

Precision: An indicator of a machine learning model's
performance — the accuracy of its positive predictions.

Precision = Q)

Recall: A quantitative measure that assesses the frequency
with which a machine learning model accurately detects positive
occurrences.

TP+FP

Recall = ——— )
TP+FN

F1-score: A measure of the harmonic mean of precision and
recall.

2 * Precisi Recall
Fl_score: * Precision * Reca

©)

Precision+ Recall

E. Implementation

The implementation of the proposed approach consists of
four major phases: data preprocessing, feature transformation
and selection (TFS), model training, and evaluation, as shown in
Fig. 1. First, datasets from multiple software projects (AEEEM)
were collected and preprocessed to ensure consistency.
Preprocessing included handling missing values, normalizing
feature values, and addressing class imbalance using the
Synthetic Minority Oversampling Technique (SMOTE).

Next, the TFS was applied to reduce dimensionality and
improve the quality of the feature space. Feature scaling and
selection techniques were used to identify the most relevant
metrics, allowing the models to focus on the most influential
predictors.

Three ensemble learning techniques were then implemented
to enhance the performance of TFS for cross-project defect
prediction (CPDP):

1) TFS x GBM: Gradient Boosting Machine was integrated
with TFSM to capture complex non-linear relationships by
iteratively correcting errors through sequential decision trees.

2) TFS x Stacking: Multiple base learners (e.g., Random
Forest and GBM) were combined, with a Logistic Regression
meta-learner integrating their predictions to optimize decision
boundaries.

3) TFS x Hybridization: A hybrid voting-based approach
was used to integrate Random Forest and GBM, capturing both
linear and non-linear dependencies for more balanced
performance.

The models were trained on source projects and tested on
distinct target projects to simulate realistic CPDP scenarios. For
each source—target pair, the F1 score was computed as the
primary performance metric, as it balances precision and recall
and is particularly suitable for imbalanced datasets.
Comparative experiments across stacking, hybridization, and
GBM identified the best-performing ensemble method when
integrated with TFS.
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F. Data Preprocessing

Preprocessing the dataset is an important step for ensuring
the GBM model’s quality and applicability [22]. Preprocessing
tasks included correcting class imbalances, scaling numerical
characteristics, encoding categorical variables, and handling
missing data. Under- and oversampling techniques, notably the
Synthetic Minority Oversampling Technique (SMOTE), were
utilized to address class imbalances induced by skewed
distributions of defect labels. These metrics were required for
the model to efficiently analyze the dataset and provide reliable
training and testing.

Fig. 1. Cross-project defect prediction workflow.

IV. RESULTS AND DISCUSSION

This section describes the outcomes of integrating TFS and
GBM in cross-project defect prediction settings. The stacking
model combines the predictive power of Gradient Boosting and
Random Forest as base learners, with Logistic Regression
serving as the meta-model. This section evaluates the model's
performance using its F1 score, which is a weighted statistic that
accounts for class imbalances in the dataset. The results are
analyzed to evaluate how efficient the stacking model method is
in comparison to other methods.

A. Evaluation of TFS x GBM, TFS x Stacking and TFS x

Hybridization

Table 1l compares the performance of three ensemble
approaches (Stacking Model, Sequential Model, and
Hybridization Model) using F1 scores across multiple cross-
project software defect prediction scenarios. The models were
evaluated by training on one source project (e.g., EQ) and testing
on another target project (e.g., JDT).
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TABLE Il.  COMPARISON OF THREE ENSEMBLE METHODS
Source > Stack Sequentially I\/_IOQeI )
Target Model Hybridization
EQ>JIDT 0.85 0.91 0.90
EQ>ML 0.88 0.92 0.81
EQ>PDE 0.85 0.86 0.82
EQ>LC 0.94 0.92 0.90
JDT>EQ 0.97 0.95 0.90
JDT>LC 0.95 0.94 0.91
JDT > ML 0.97 0.95 0.91
JDT > PDE 0.98 0.94 0.91
LC>EQ 0.99 1.00 1.00
LC>JDT 0.98 1.00 0.98
LC>ML 0.99 0.99 0.98
LC > PDE 0.99 0.99 1.00
ML > EQ 0.98 0.96 0.91
ML > JDT 0.98 0.96 0.91
ML>LC 0.98 0.97 0.92
ML > PDE 0.98 0.94 0.90
PDE > EQ 1.00 1.00 0.93
PDE > JDT 1.00 0.98 0.96
PDE > LC 1.00 0.99 0.91
PDE > ML 1.00 0.98 0.94
Mean 0.963 0.958 0.920

The Stacking Model achieves the highest mean F1 score
(0.963), indicating its robustness and generalizability across
different project pairs. It performs exceptionally well in
scenarios such as PDE > EQ, PDE > LC, and PDE > ML, with
perfect F1 scores of 1.00. This demonstrates that combining
multiple models through stacking improves the utilization of
decision boundaries, resulting in higher prediction accuracy.

The Sequential Model follows closely with an average F1
score of 0.958. In some cases, it even outperforms the Stacking
Model, such as LC > EQ and LC > JDT, where it achieves
flawless F1 scores (1.00). This approach leverages the
probabilistic outputs of one model (Random Forest) as inputs to
another (Gradient Boosting), which proves highly effective in
certain scenarios.

The Hybridization Model lags slightly behind, with an
average F1 score of 0.920. While it achieves reasonable results
overall, its performance is less consistent. For example, lower
F1 scores in scenarios such as EQ > ML (0.81) and EQ > PDE
(0.82) highlight its limited ability to generalize across different
project pairs.

The results demonstrate that the Stack Model regularly has
the greatest mean F1 score (0.963), exceeding both the
Sequential Model (0.958) and the Hybridization Model (0.920).
However, the Sequential Model performs competitively,
occasionally outperforming the Stack Model in select
circumstances, such as LC > EQ and LC > JDT. The
Hybridization Model consistently underperforms the other two,
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implying that it may be less effective in handling cross-project
defect prediction jobs. Overall, the Stack Model shows higher
robustness in all cases

B. Evaluation of TFS x Stacking Against Original Method

From Table Il below, we can see that the TFS x Stacking
Model consistently outperforms the TFS x RF Model across all
source-target pairs, with a mean F1 score of 0.963 for the
stacking model and 0.791 for the RF. Additionally, the stacking
model performs well in pairs like EQ > LC and LC > EQ, with
F1 scores of 0.94 and 0.99, respectively, compared to RF's 0.5
and 0.72. This demonstrates a significant improvement,
particularly for specific source-target pairings. Furthermore, the
PDE > EQ and PDE > JDT couples have flawless F1 scores of
1.00, demonstrating the outstanding performance of the TFS x
GBM model.

The stacking detects complicated patterns and relationships
in data, whereas the Random Forest ensures robustness and
reduces overfitting. By merging various models, the stacking
approach minimizes bias and instability, resulting in the
improvement of prediction performance. Particularly, the stack
model performs better than the stand-alone model, RF in
combinations such as EQ > LC (0.94 vs. 0.5) and PDE > LC
(1.00 vs. 0.87), implying that stacking better manages data
dependencies and correlations. Furthermore, the stacked model
performs consistently well across several domains, with high F1
scores in combinations such as LC > ML, ML > PDE, and JDT
> ML, demonstrating its great ability to generalize and
robustness in defect prediction across various software projects.

TABLE Ill.  COMPARISON BETWEEN ENHANCED AND ORIGINAL MODEL
Source > Target TFSM x Stacking TFSM x RF
EQ>JDT 0.85 0.71
EQ> ML 0.88 0.81
EQ>PDE 0.85 0.65
EQ>LC 0.94 05
JDT > EQ 0.97 0.71
JDT>LC 0.95 0.74
JDT > ML 0.97 0.81
JDT > PDE 0.98 0.85
LC>EQ 0.99 0.72
LC >JDT 0.98 0.86
LC>ML 0.99 0.85
LC >PDE 0.99 0.87
ML > EQ 0.98 0.74
ML > JDT 0.98 0.86
ML >LC 0.98 0.89
ML > PDE 0.98 0.87
PDE > EQ 1.00 0.74
PDE > JDT 1.00 0.85
PDE>LC 1.00 0.92
PDE > ML 1.00 0.86
Mean 0.963 0.791

Vol. 16, No. 11, 2025

C. Advantages Over Previous Approaches

A major strength of this study lies in the integrated TFS +
Ensemble framework, which performs better than previous
CPDP methods evaluated in earlier studies. Unlike earlier CPDP
approaches that applied feature transformation, feature
selection, or ensemble techniques independently, the proposed
method unifies these processes to more comprehensively
address dataset heterogeneity. This integrated structure reduces
noise, improves feature stability, and enhances the ability of
ensemble models to learn cross-project patterns.

V. CONCLUSION

In this study, we set out to improve cross-project software
defect prediction (CPDP) by combining Transformation and
Feature Selection (TFS) with three ensemble learning
techniques: Gradient Boosting Machine (GBM), stacking, and
hybridization. The results show that using ensemble learning
with TFS makes defect prediction more accurate and reliable by
reducing issues such as high dimensionality, imbalance in the
datasets, and weak generalization across projects. Of the three
approaches, the TFS x Stacking model performed best,
achieving the highest mean F1 score (0.963). This confirms that
stacking, which combines the strengths of different base learners
through a meta-learner, is particularly effective for capturing
complex defect patterns. GBM and hybridization also showed
good performance, but stacking consistently provided more
robust results. When compared to the original TFS x Random
Forest method, the ensemble-based models, especially stacking,
showed significant improvements across all project
combinations.

In real-world settings where labeled data is scarce or
unavailable, common in early project phases, the proposed
approach provides a practically viable defect prediction
mechanism.

Despite its promising results, the study has several
limitations. First, the experiments are limited to five datasets
from the AEEEM repository, which may not represent the full
diversity of real-world software systems. Second, the feature
selection method used is relatively simple and may not capture
deeper relationships among metrics. Third, the ensemble
learners used were standard implementations; more advanced or
domain-specific variations were not explored. Finally, the study
does not evaluate the computational cost of the integrated
pipeline, which may be a concern in large-scale industrial
settings

Looking ahead, future research could build on this work by
incorporating transfer learning or domain adaptation techniques
to reduce distributional discrepancies more systematically.
Another potential area is the integration of deep learning models
or graph-based neural architectures to capture structural
relationships within software components. Additionally, more
sophisticated feature selection or feature synthesis techniques,
such as metaheuristic optimization or automated feature
engineering, could be integrated into the TFS pipeline.
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