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Abstract—Data-driven models depend on extensive datasets 

for precise predictions; yet, acquiring adequate labeled data for 

training these models is a challenge, especially with medical 

datasets that are constrained by privacy considerations, resulting 

in a deficiency of labeled data. Active Learning (AL) has developed 

as a cost-effective strategy that minimizes the quantity of labeled 

data required for training by selecting the most informative 

samples. The performance of active learning methods is 

significantly influenced by data quality characteristics, and due to 

a lack of direction in selecting the most suitable active learning 

approach.  The study presents a data-driven selection approach 

that suggests appropriate active learning methods based on 

dataset characteristics.  The study examines the characteristics of 

the dataset and their impact on active learning performance, 

revealing significant correlations between data quality issues and 

the efficacy of active learning approaches.  A rule-based selection 

model is subsequently constructed and verified by experiments 

and case studies across various datasets. The findings 

demonstrated consistent alignment between suggested and 

practically effective techniques.  Statistical analysis verifies that 

the data-driven selection model exhibits reliability exceeding 

chance agreement, indicating its robustness and practical 

application in recommending AL techniques selection. 

Keywords—Data-driven models; selection model; data quality 

characteristics; active learning 

I. INTRODUCTION 

Data-driven models are widely used in various domains, 
such as finance, healthcare, and marketing, to make data-driven 
decisions. These models often require large volumes of labeled 
data and statistical methods to determine the most appropriate 
machine learning methods for a given data set and prediction 
problem [1]. These models embedded optimization techniques 
to enable quick forecasting by using relevant information during 
model training, contributing to their popularity in predictive 
tasks [2]. This approach can help overcome the limitations of 
traditional model selection methods, which rely on 
predetermined formulas rather than empirical data [3], [4]. 

Data-driven models learn from actual datasets, identifying 
patterns and relationships inherent in the data. However, the 
performance of data-driven models is highly dependent on data 
quality, as they require large volumes of high-quality labeled 
data. Issues such as limited data availability, biased samples, and 
high dimensionality can significantly impair model 
effectiveness. These challenges are critical as inconsistent data 
can severely affect a model’s generalizability and predictive 
accuracy [5], [6]. 

To mitigate these drawbacks, Active Learning (AL) has 
emerged as a promising solution that reduces the need for 
extensive labeled datasets by iteratively selecting the most 

informative samples for annotation, thereby enhancing model 
performance with fewer labeled instances. This method is 
valuable in domains such as medical research, where accurate 
data selection is crucial and labeling is costly [6]. AL is also 
vulnerable to data quality issues, including excessive 
dimensionality, sample bias, and insufficient data, which can 
diminish its effectiveness [7], [8]. 

Selecting appropriate AL methods is important in building 
an effective predictive model because it can significantly 
improve the efficiency and accuracy of the learning process. AL 
involves iteratively selecting the most informative samples from 
a large unlabeled dataset to be labeled by an expert and using 
these labeled samples to train a predictive model [9], [10]. There 
are many different types of active learning methods, each with 
its own strengths and weaknesses, and the choice of method can 
have a significant impact on the accuracy and generalizability of 
the resulting predictive model [11]. 

 However, there is currently no validated approach that can 
recommend the best method for any type of dataset, as the 
optimal choice of active learning depends on several factors, 
including the size and complexity of the dataset, the 
characteristics of the input and output variables, and the specific 
domain of the prediction model. In addition, the performance of 
a predictive model may be influenced by other factors, such as 
the quality of the data, the choice of hyperparameters, and the 
specific implementation of the AL method [12], [13], [14]. 

Building a predictive model with AL methods without 
analyzing the domain and characteristics of the dataset may 
result in lower prediction performance [15]. This problem 
occurs because some active learning methods may not select the 
most informative or representative data for labeling if the data 
preprocessing techniques used do not effectively represent the 
data or do not consider the unique features and patterns of the 
data [16][10]. For example, if the data preprocessing techniques 
used do not effectively represent the data, the active learning 
method may not be able to select the most informative samples 
for labeling. 

Previous studies have reported that not all AL methods are 
able to make accurate predictions for different characteristics of 
datasets [8], [17], [18]. Research has shown that experimental 
studies that use active learning methods without analyzing the 
characteristics of the dataset and the domain of the dataset result 
in unpredictable performance of prediction model [8], [19], [20]. 
While some of the commonly used learning methods have been 
proposed, one problem that has not received the attention it 
deserves is determining appropriate AL methods for a given 
dataset and domain characteristics. This motivates the 
development of a data-driven selection model that recommends 
active learning methods based on dataset characteristics.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

268 | P a g e  

www.ijacsa.thesai.org 

The study is structured as follows: Section II reviews related 
work, Section III describes the methodology, Section IV 
presents the results and discussion, and Section V concludes 
with key findings and future directions. 

II. RELATED WORK 

Adoption of data-driven selection models is increasing due 
to their effectiveness in producing accurate and efficient 
machine learning predictions. The optimization techniques 
embedded within these models enable quick forecasting by 
using relevant information during training, which contributes to 
their popularity in predictive tasks [2]. This contrasts with 
model-driven approaches, which rely on predetermined 
formulas or abstract theoretical constructs rather than empirical 
data. Data-driven models learn directly from actual data, 
identifying patterns such as regularities, trends, or structures and 
relationships inherent in the dataset. This fundamental 
difference accounts for the observed variations in both 
computational efficiency and predictive accuracy between the 
two approaches [21]. 

Bernhardt et al. propose a data-driven strategy, called "active 
label cleaning", to prioritize samples for re-annotation [22]. The 
proposed approach involves ranking instances based on 
estimated label correctness and labeling difficulty, and a 
simulation framework is introduced to assess relabeling 
efficacy. The experiments conducted on natural images and a 
medical imaging benchmark created specifically for the research 
demonstrate that cleaning noisy labels can reduce their negative 
impact on model training, evaluation, and selection. 

Mahapatra et al. applied Interpretability-Driven Sample 
Selection (IDEAL), a self-supervised learning-based approach 
to train a classifier that identifies the most informative sample in 
a given batch of images [23]. IDEAL is demonstrated in an 
active learning setup for lung disease classification and 
histopathology image segmentation. The results show that the 
proposed self-supervised approach outperforms other methods 
for selecting informative samples, leading to state-of-the-art 
performance with fewer samples. 

In healthcare practices, the outcome of a data-driven 
prediction model highly relies on the data that it learns. 
However, if the quality of the medical data that it learns is 
imbalanced, then the biased model can make such a 
classification error [24]. Hence, diagnosing a medical condition 
can create a false alarm result where patients are incorrectly 
diagnosed, but the patient actually has a negative result, or 
worse, the other way around. This is undoubtedly true in real-
life situations where the outcome of medical diagnostics 
determines patients' lives and deaths [25]. 

For building a disease prediction model, choosing a reliable 
active learning method is one of the critical challenges due to 
various factors influencing the selection process, particularly the 
variability characteristics of the dataset. Previous studies have 
assessed various active learning methods for disease prediction 
and discovered that for different types of datasets, the 
performance of the prediction methods also varies [17], [26]. 
These studies considered outliers and noise characteristics of the 
medical datasets and investigated the performance of the active 
learning methods [24]. 

Many studies have compared different active learning 
methods for prediction problems and found that characteristics 
of the dataset have a strong impact on the performance of the 
prediction model in different domains. The active learning 
method that performs best for a particular dataset may perform 
poorly for another dataset [27], [28]. Similarly, in healthcare, 
many studies have evaluated different active learning methods 
for disease prediction and found that prediction performance 
also varies for different types of datasets. This suggests that 
there is no single best method that can be used with any type of 
dataset for disease prediction [12]. 

One possible reason for the unpredictable performance of the 
prediction is that most studies have used active learning as a 
black box without analyzing the domain and the characteristics 
of the dataset. The prediction model can perform best if 
appropriate learning methods are selected for the right 
characteristics of the dataset. The research gap is that it is not 
clear to what extent the characteristics of the dataset affect the 
performance of the learning methods and how to select the 
appropriate method for an improved prediction process [12], 
[24]. This raises the need for a data-driven selection model that 
can suggest active learning methods for building an effective 
prediction model based on the characteristics of the dataset. 

III. METHODOLOGY 

This study has constructed a workflow for developing a data-
driven selection model, as illustrated in Fig. 1. The workflow of 
model development has three main phases: Elements 
Identification, Model Construction, and Model Evaluation. 

 
Fig. 1. Workflow of model development. 

Phase 1 focuses on determining the dataset characteristics 
and active learning methods from the literature and datasets 
collection. The study performed a systematic mapping study to 
elicit the various characteristics of the dataset and the 
appropriateness of the active learning algorithms for the 
identified dataset characteristics from the existing studies. The 
study also determines the most potential active learning methods 
used in existing studies for building a prediction model. This 
phase establishes the essential elements required to formulate a 
model that aligns dataset properties with suitable active learning 
methods. 

Phase 2 aims to construct a data-driven selection model for 
recommending active learning methods to build prediction 
model. This phase identified eight datasets that are commonly 
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used with five selected active learning methods. This phase 
starts with dataset pre-processing, which includes data cleaning, 
normalization, and feature selection to ensure data quality. Then, 
the study conducted model training using selected active 
learning methods with selected datasets. To ensure proper 
evaluation, the datasets were separated into independent training 
and testing stages: active learning models were trained on the 
labeled subset generated during AL iterations, while the 
remaining unseen data were reserved for testing. In the process 
formulation, the identified elements in Phase 1 are tabulated in 
a matrix table to show the association and relationship between 
elements. The process formulation then defines the operational 
process based on a recommender approach that links dataset 
characteristics with active learning methods, forming a coherent 
mechanism for developing a data-driven selection model. 

Phase 3 focuses on the evaluation of the effectiveness of a 
data-driven selection model using an experimental study. This 
experimental study aims to establish the suitability of the 
different active learning methods for the different values of the 
datasets characteristics. The study also utilizes case studies to 
establish the effectiveness of the proposed model by comparing 
the recommendation of the proposed active learning methods 
from the proposed model with the results from the 
corresponding experimental studies. Based on experimental 
studies, the Cohen’s Kappa analysis is used to measure inter-
rater agreement between case studies and experimental results. 
While alternative metrics like accuracy or F1-score are useful 
for evaluating classification performance, they do not account 
for chance agreement. The high kappa values would indicate 
strong agreement between the case studies and experimental 
results in recommending active learning methods, and this 
would suggest the reliability of the model. 

IV. RESULTS AND DISCUSSION 

This study aims to construct a data-driven selection model to 

facilitate the selection of the most reliable active learning 

methods in developing prediction models that are able to 

provide practitioners with an accurate decision support tool. 

The study determines the dataset characteristics that correlate 

with the active learning methods to build a prediction model. 

The study also evaluates the effectiveness of the proposed data-

driven selection model using Cohen’s Kappa analysis to ensure 

the agreement between case studies and experimental results. 

A. Data-Driven Selection Model 

The development of the data-driven selection model 
employs a recommendation approach to automate the 
identification of suitable active learning strategies for a certain 
dataset. Fig. 2 shows the conceptual framework for the data-
driven selection model. The framework consists of two major 
components: Dataset Analysis and Active Learning Strategy 
Recommender. In the Dataset Analysis stage, data quality issues 
such as missing data, imbalance, high dimensionality, 
redundancy, and outliers are identified. These identified issues 
are then passed as inputs to the Data Driven Selection Model, 
which maps specific data quality characteristics to appropriate 
active learning strategies. In the Active Learning Strategy 
Recommender stage, the most suitable active learning methods 
are suggested based on the mapping results. This conceptual 
framework demonstrates the logical flow from dataset quality 

assessment to strategy recommendation, emphasizing a 
systematic and data-driven approach for optimizing active 
learning performance. 

 
Fig. 2. Conceptual framework of the data-driven active learning strategy 

selection model. 

B. Prototype of Data-Driven Selection Model 

This study developed a prototype, Active Learning Strategy 
Recommender, to demonstrate the practical implementation of 
the proposed data-driven selection model. The prototype serves 
as a decision-support tool that recommends suitable active 
learning strategies based on data quality issues detected within a 
given dataset. It operates the conceptual framework by 
integrating data quality analysis, rule-based mapping, and 
strategy recommendations into a prototype. Fig. 3 shows the 
main user interface for the prototype. 

 
Fig. 3.  Main user interface of the prototype. 

As shown in Fig. 3, the main user interface allows users to 
begin by uploading a dataset file. Once the dataset is uploaded, 
the prototype conducts a data quality assessment to identify 
potential issues such as missing data, class imbalance, high 
dimensionality, redundancy and outliers. These assessments are 
performed according to the data quality characteristics. Users 
can initiate the analysis process by clicking the Run Analysis 
button, prompting the prototype to analyses the dataset and 
display the detected quality issues. 
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The prototype then applies the data-driven selection model 
to map the detected data quality issues to the most suitable active 
learning strategies. The recommended strategies’ results are 
shown in Table I, displaying the recommended strategy 
consistent with the dataset’s characteristics. The prototype also 
displays the alternative strategies that are listed according to 
their relevance based on the findings of this study. 

TABLE I.  RECOMMENDED ACTIVE LEARNING STRATEGY 

Strategy Score Reason 

UNC 1 Missing Value 

QBC 0.993 Missing Value 

DIV 0.949 Missing Value 

C. Model Training 

The performance results of the active learning strategies 
across medical datasets are summarized in Table II. Each dataset 
was evaluated under five data quality issues: high 
dimensionality (HD), imbalance, missing values, outliers, and 
redundancy. The active learning strategies compared are 
Uncertainty Sampling (UNC), Query by Committee (QBC), 
Diversity Sampling (DV), Density Sampling (DS), and Cluster-
based Sampling (CS). The results show the classification 
accuracy achieved by each strategy for the respective data 
quality issues. 

Table II illustrates the performance of active learning 
strategies applied to selected data quality issues. The active 
learning strategies that are Uncertainty sampling (UNC) and 
query-by-committee (QBC) indicate consistent performance 
(typically >0.90) for high-dimensional (HD), imbalanced, and 
redundant data. This shows that these strategies are reliable 
active learning methods for the common medical data 
challenges. However, both strategies show significant 
limitations when handling outliers, with performance often 
dropping below 0.50. Diversity-based sampling performs 
comparably to UNC and QBC in most scenarios while showing 
slightly better adaptability to missing data. 

Cluster and density-based strategies were excluded from 
further consideration due to their inconsistent and often poor 
performance across multiple data characteristics. While these 
approaches occasionally showed adequate results in specific 
scenarios, as shown in the results where density-based sampling 
achieved 0.96 for the asthma dataset in the high dimensionality 
variant. Their overall performance was distinctly inferior to 
UNC, QBC, and diversity-based methods. From the results in 
Table I, it can be seen that cluster and density methods often 
obtained below 0.30, indicating these methods are unreliable for 
practical applications. This performance gap justifies focusing 
on the more robust UNC, QBC, and diversity-based strategies. 

These findings suggest several practical recommendations: 
1) UNC and QBC should be prioritized for HD, imbalance, or 
redundant medical data, given their consistently high accuracy. 
2) Diversity-based sampling presents a viable alternative, 
particularly for datasets with missing values, where it sometimes 
outperforms other methods. 3) Future research should explore 
hybrid methods that combine the strengths of these top-
performing strategies, especially to address challenging cases 
like outliers, where current methods still underperform. 

TABLE II.  MODEL TRAINING RESULTS 

Dataset 

Dataset 

quality 

issues 

UNC QBC DV DS CS 

Alzheimer HD 0.90 0.97 1.00 0.67 0.63 

 Imbalance 0.94 0.98 0.95 0.66 0.61 

 Missing 0.86 0.91 0.95 0.69 0.62 

 Outlier 0.44 0.75 0.47 0.30 0.26 

 Redundancy 0.93 0.96 0.97 0.69 0.63 

Asthma HD 1.00 1.00 1.00 0.96 0.95 

 Imbalance 0.95 0.95 0.95 0.92 0.95 

 Missing 0.95 0.96 0.95 0.96 0.95 

 Outlier 0.47 0.72 0.47 0.49 0.40 

 Redundancy 0.96 0.95 0.96 0.96 0.95 

Cancer HD 1.00 1.00 1.00 0.57 0.81 

 Imbalance 0.92 0.88 0.89 0.56 0.66 

 Missing 0.71 0.74 0.68 0.58 0.56 

 Outlier 0.42 0.53 0.40 0.08 0.24 

 Redundancy 0.94 0.89 0.92 0.56 0.64 

Diabetes HD 0.83 0.83 0.75 0.59 0.67 

 Imbalance 0.83 0.80 0.73 0.67 0.69 

 Missing 0.75 0.77 0.69 0.59 0.66 

 Outlier 0.36 0.59 0.33 0.31 0.27 

 Redundancy 0.85 0.82 0.79 0.67 0.67 

Fetal 

Health 
HD 0.96 0.95 1.00 0.79 0.86 

 Imbalance 0.98 0.95 1.00 0.58 0.78 

 Missing 0.91 0.80 0.52 0.53 0.49 

 Outlier 0.96 0.94 1.00 0.79 0.85 

 Redundancy 0.96 0.93 1.00 0.72 0.85 

Heart 

Failure 
HD 1.00 0.98 1.00 0.64 0.76 

 Imbalance 0.92 0.89 0.90 0.87 0.74 

 Missing 0.84 0.84 0.72 0.67 0.68 

 Outlier 0.45 0.71 0.40 0.31 0.28 

 Redundancy 0.93 0.91 0.89 0.71 0.76 

Lung 

Cancer 
HD 0.92 1.00 0.88 0.46 0.61 

 Imbalance 0.94 0.99 0.97 0.74 0.80 

 Missing 0.85 0.90 0.65 0.29 0.72 

 Outlier 0.73 0.76 0.58 0.36 0.68 

 Redundancy 0.96 0.99 0.97 0.46 0.99 

Mental 

Health 
HD 0.49 0.71 0.45 0.44 0.52 

 Imbalance 0.81 0.77 0.64 0.75 0.64 

 Missing 0.51 0.75 0.48 0.44 0.55 

 Outlier 0.50 0.76 0.46 0.37 0.49 

 Redundancy 0.63 0.74 0.55 0.54 0.59 
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D. Model Evaluation 

The model evaluation performed experimental studies for 8 
datasets. The study compares the results for the actual best 
strategy based on model training with the best strategy 
recommended by the prototype model, as shown in Table III. 
The prototype model is able to recommend the actual active 
learning strategy for 7 out of 8 datasets. This indicates that the 
recommender model is accurate, correctly predicting the optimal 
active learning strategy for most datasets. 

TABLE III.  ACTUAL BEST STRATEGY VS BEST STRATEGY RECOMMENDED 

Dataset 
Strategy recommended 

by the prototype model 

Actual best strategy based 

on experimental study 

Alzheimer Diversity sampling Diversity Sampling 

Asthma QBC QBC 

Cancer Uncertainty Sampling Uncertainty sampling 

Diabetes QBC QBC 

Fetal Health QBC QBC 

Heart Failure Diversity sampling QBC 

Lung Cancer QBC QBC 

Mental Health QBC QBC 

Table IV shows the summary metrics for how many times 
each actual best strategy was correctly or incorrectly 
recommended for the 8 datasets. 

TABLE IV.  ACTIVE LEARNING RECOMMENDER METRICS 

 

Strategy recommended by the prototype 

model 

UNC QBC DIVERSITY TOTAL 

Actual 

Best 

strategy 

UNC 1   1 

QBC  5  5 

DIVERSITY  1 1 2 

TOTAL  1 6 1 8 

The study further evaluates the agreement between the 
prototype model recommended strategy and the actual best 
strategy, illustrated in Table IV matrix using Cohen’s Kappa. 
The observed agreement, agreement of chance, and Cohen’s 
Kappa formula were implemented as below: 

Step 1: Calculate Observed Agreement (𝑃𝑜) 

Sum the diagonal elements (where both raters agree) and 
divide by the total number of observations [see Eq. (1)]. 

𝑃𝑜 =
1+5+1

8
=  0.875                            (1) 

Step 2: Calculate Expected Agreement (Pe) 

For each category, compute the product of the row and 
column totals, then sum these and divide by the total squared 
[see Eq. (2)]: 

𝑝𝑒 =
(1∗1)+(5∗6)+(2∗1)

82 =
33

64
≈  0.5156               (2) 

Step 3: Compute Cohen's Kappa (κ) 

Use the equation: 

𝐾 =
(𝑃𝑂−𝑃𝑒)

(1−𝑃𝑒)
 =  

(0.875−0.5156)

(1−0.5156)
=  

0.3594

0.4844
 ≈ 0.742     (3) 

Based on the result obtained in Eq. (3), Cohen’s Kappa value 
of 0.742 indicates a substantial agreement according to the 
commonly used interpretation scale, where values between 0.61 
and 0.80 suggest substantial agreement, and values above 0.80 
suggest almost perfect agreement. This implies that Cohen’s 
Kappa result used in the study is reliable and not the result of 
random agreement. This level of agreement is important in the 
context of active learning strategies, which rely on iterative data 
selection and labeling. A high Kappa score (κ = 0.742) confirms 
the consistency and trustworthiness of the labeling process, 
ensuring that the performance of each strategy is based on 
reliable and ground truth data. 

Given that medical datasets often suffer from data quality 
issues such as missing data and redundancy, reliable label 
consistency strengthens the validity of the training results. 
Specifically, the high accuracy observed for UNC and QBC 
methods (typically >0.90) across high-dimensional and 
imbalanced datasets is supported by the underlying agreement 
in labeling. Furthermore, it provides a sound justification for 
excluding cluster and density-based methods, whose poor and 
inconsistent performance may be exacerbated by sensitivity to 
labeling errors. 

The obtained Cohen’s Kappa results align with established 
findings on inter-rater reliability in medical and active learning 
settings. For example, McHugh et al. categorized kappa values 
between 0.61 and 0.80 as indicating substantial agreement, 
supporting the interpretation that a kappa of 0.742 reflects an 
acceptable level of reliability [29]. Similarly, Harmsen et al. 
demonstrated that Cohen’s Kappa values exceeding 0.70 in 
active learning frameworks applied to medical literature 
screening correspond to reliable human annotation, even under 
noisy and incomplete label conditions [30]. These studies 
collectively affirm that the observed kappa value indicates 
robust inter-rater agreement and supports the reliability of the 
active learning evaluations conducted in this study. 

V. CONCLUSION AND FUTURE WORK 

This study examined the correlation between dataset 
characteristics and the efficacy of active learning strategies in 
predictive modelling. The research identified actual connections 
by analyzing critical data quality issues such as class imbalance, 
high dimensionality, missing values, redundancy, and outliers, 
which guide the optimal selection of active learning methods.  A 
data-driven selection model was developed to identify suitable 
active learning strategies based on dataset characteristics, 
providing a systematic and evidence-based method to improve 
predictive accuracy and learning efficiency. Experimental 
validation across various healthcare datasets exhibited 
significant model reliability, with considerable concordance 
between anticipated and actual strategies. This study addresses 
a fundamental limitation in the AL literature by converting 
strategy selection from intuitive selections to a systematic, data-
driven approach, hence enhancing the field's practical relevance 
in real-world context. 
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The study concentrated on foundational active learning 
strategies and specific healthcare datasets. Subsequent research 
should broaden the framework to include sophisticated, hybrid, 
and domain-specific methodologies, along with comprehensive 
performance metrics like interpretability, scalability, and 
computational efficiency.  Incorporating multi-modal and real-
world data, together with validation from domain experts, will 
significantly improve model generalizability.  The suggested 
approach offers a pragmatic and theoretically substantiated 
contribution to the selection of adaptive, data-driven active 
learning strategies. 
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