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Abstract—Data-driven models depend on extensive datasets
for precise predictions; yet, acquiring adequate labeled data for
training these models is a challenge, especially with medical
datasets that are constrained by privacy considerations, resulting
in a deficiency of labeled data. Active Learning (AL) has developed
as a cost-effective strategy that minimizes the quantity of labeled
data required for training by selecting the most informative
samples. The performance of active learning methods is
significantly influenced by data quality characteristics, and due to
a lack of direction in selecting the most suitable active learning
approach. The study presents a data-driven selection approach
that suggests appropriate active learning methods based on
dataset characteristics. The study examines the characteristics of
the dataset and their impact on active learning performance,
revealing significant correlations between data quality issues and
the efficacy of active learning approaches. A rule-based selection
model is subsequently constructed and verified by experiments
and case studies across various datasets. The findings
demonstrated consistent alignment between suggested and
practically effective techniques. Statistical analysis verifies that
the data-driven selection model exhibits reliability exceeding
chance agreement, indicating its robustness and practical
application in recommending AL techniques selection.

Keywords—Data-driven models; selection model; data quality
characteristics; active learning

l. INTRODUCTION

Data-driven models are widely used in various domains,
such as finance, healthcare, and marketing, to make data-driven
decisions. These models often require large volumes of labeled
data and statistical methods to determine the most appropriate
machine learning methods for a given data set and prediction
problem [1]. These models embedded optimization techniques
to enable quick forecasting by using relevant information during
model training, contributing to their popularity in predictive
tasks [2]. This approach can help overcome the limitations of
traditional model selection methods, which rely on
predetermined formulas rather than empirical data [3], [4].

Data-driven models learn from actual datasets, identifying
patterns and relationships inherent in the data. However, the
performance of data-driven models is highly dependent on data
quality, as they require large volumes of high-quality labeled
data. Issues such as limited data availability, biased samples, and
high  dimensionality can significantly impair model
effectiveness. These challenges are critical as inconsistent data
can severely affect a model’s generalizability and predictive
accuracy [5], [6].

To mitigate these drawbacks, Active Learning (AL) has
emerged as a promising solution that reduces the need for
extensive labeled datasets by iteratively selecting the most

informative samples for annotation, thereby enhancing model
performance with fewer labeled instances. This method is
valuable in domains such as medical research, where accurate
data selection is crucial and labeling is costly [6]. AL is also
vulnerable to data quality issues, including excessive
dimensionality, sample bias, and insufficient data, which can
diminish its effectiveness [7], [8].

Selecting appropriate AL methods is important in building
an effective predictive model because it can significantly
improve the efficiency and accuracy of the learning process. AL
involves iteratively selecting the most informative samples from
a large unlabeled dataset to be labeled by an expert and using
these labeled samples to train a predictive model [9], [10]. There
are many different types of active learning methods, each with
its own strengths and weaknesses, and the choice of method can
have a significant impact on the accuracy and generalizability of
the resulting predictive model [11].

However, there is currently no validated approach that can
recommend the best method for any type of dataset, as the
optimal choice of active learning depends on several factors,
including the size and complexity of the dataset, the
characteristics of the input and output variables, and the specific
domain of the prediction model. In addition, the performance of
a predictive model may be influenced by other factors, such as
the quality of the data, the choice of hyperparameters, and the
specific implementation of the AL method [12], [13], [14].

Building a predictive model with AL methods without
analyzing the domain and characteristics of the dataset may
result in lower prediction performance [15]. This problem
occurs because some active learning methods may not select the
most informative or representative data for labeling if the data
preprocessing techniques used do not effectively represent the
data or do not consider the unique features and patterns of the
data [16][10]. For example, if the data preprocessing techniques
used do not effectively represent the data, the active learning
method may not be able to select the most informative samples
for labeling.

Previous studies have reported that not all AL methods are
able to make accurate predictions for different characteristics of
datasets [8], [17], [18]. Research has shown that experimental
studies that use active learning methods without analyzing the
characteristics of the dataset and the domain of the dataset result
in unpredictable performance of prediction model [8], [19], [20].
While some of the commonly used learning methods have been
proposed, one problem that has not received the attention it
deserves is determining appropriate AL methods for a given
dataset and domain characteristics. This motivates the
development of a data-driven selection model that recommends
active learning methods based on dataset characteristics.
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The study is structured as follows: Section 11 reviews related
work, Section Il describes the methodology, Section IV
presents the results and discussion, and Section V concludes
with key findings and future directions.

Il.  RELATED WORK

Adoption of data-driven selection models is increasing due
to their effectiveness in producing accurate and efficient
machine learning predictions. The optimization techniques
embedded within these models enable quick forecasting by
using relevant information during training, which contributes to
their popularity in predictive tasks [2]. This contrasts with
model-driven approaches, which rely on predetermined
formulas or abstract theoretical constructs rather than empirical
data. Data-driven models learn directly from actual data,
identifying patterns such as regularities, trends, or structures and
relationships inherent in the dataset. This fundamental
difference accounts for the observed variations in both
computational efficiency and predictive accuracy between the
two approaches [21].

Bernhardt et al. propose a data-driven strategy, called "active
label cleaning", to prioritize samples for re-annotation [22]. The
proposed approach involves ranking instances based on
estimated label correctness and labeling difficulty, and a
simulation framework is introduced to assess relabeling
efficacy. The experiments conducted on natural images and a
medical imaging benchmark created specifically for the research
demonstrate that cleaning noisy labels can reduce their negative
impact on model training, evaluation, and selection.

Mahapatra et al. applied Interpretability-Driven Sample
Selection (IDEAL), a self-supervised learning-based approach
to train a classifier that identifies the most informative sample in
a given batch of images [23]. IDEAL is demonstrated in an
active learning setup for lung disease classification and
histopathology image segmentation. The results show that the
proposed self-supervised approach outperforms other methods
for selecting informative samples, leading to state-of-the-art
performance with fewer samples.

In healthcare practices, the outcome of a data-driven
prediction model highly relies on the data that it learns.
However, if the quality of the medical data that it learns is
imbalanced, then the biased model can make such a
classification error [24]. Hence, diagnosing a medical condition
can create a false alarm result where patients are incorrectly
diagnosed, but the patient actually has a negative result, or
worse, the other way around. This is undoubtedly true in real-
life situations where the outcome of medical diagnostics
determines patients' lives and deaths [25].

For building a disease prediction model, choosing a reliable
active learning method is one of the critical challenges due to
various factors influencing the selection process, particularly the
variability characteristics of the dataset. Previous studies have
assessed various active learning methods for disease prediction
and discovered that for different types of datasets, the
performance of the prediction methods also varies [17], [26].
These studies considered outliers and noise characteristics of the
medical datasets and investigated the performance of the active
learning methods [24].
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Many studies have compared different active learning
methods for prediction problems and found that characteristics
of the dataset have a strong impact on the performance of the
prediction model in different domains. The active learning
method that performs best for a particular dataset may perform
poorly for another dataset [27], [28]. Similarly, in healthcare,
many studies have evaluated different active learning methods
for disease prediction and found that prediction performance
also varies for different types of datasets. This suggests that
there is no single best method that can be used with any type of
dataset for disease prediction [12].

One possible reason for the unpredictable performance of the
prediction is that most studies have used active learning as a
black box without analyzing the domain and the characteristics
of the dataset. The prediction model can perform best if
appropriate learning methods are selected for the right
characteristics of the dataset. The research gap is that it is not
clear to what extent the characteristics of the dataset affect the
performance of the learning methods and how to select the
appropriate method for an improved prediction process [12],
[24]. This raises the need for a data-driven selection model that
can suggest active learning methods for building an effective
prediction model based on the characteristics of the dataset.

I, METHODOLOGY

This study has constructed a workflow for developing a data-
driven selection model, as illustrated in Fig. 1. The workflow of
model development has three main phases: Elements
Identification, Model Construction, and Model Evaluation.

Phase 1 Phase 2 Phase 3

Dataset Data Pre-Processing

characteristics Experimental Study

Model Training

Active learning i Cohen Ka_ppa
methods Process Formulation Analysis

Fig. 1. Workflow of model development.

Phase 1 focuses on determining the dataset characteristics
and active learning methods from the literature and datasets
collection. The study performed a systematic mapping study to
elicit the various characteristics of the dataset and the
appropriateness of the active learning algorithms for the
identified dataset characteristics from the existing studies. The
study also determines the most potential active learning methods
used in existing studies for building a prediction model. This
phase establishes the essential elements required to formulate a
model that aligns dataset properties with suitable active learning
methods.

Phase 2 aims to construct a data-driven selection model for
recommending active learning methods to build prediction
model. This phase identified eight datasets that are commonly
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used with five selected active learning methods. This phase
starts with dataset pre-processing, which includes data cleaning,
normalization, and feature selection to ensure data quality. Then,
the study conducted model training using selected active
learning methods with selected datasets. To ensure proper
evaluation, the datasets were separated into independent training
and testing stages: active learning models were trained on the
labeled subset generated during AL iterations, while the
remaining unseen data were reserved for testing. In the process
formulation, the identified elements in Phase 1 are tabulated in
a matrix table to show the association and relationship between
elements. The process formulation then defines the operational
process based on a recommender approach that links dataset
characteristics with active learning methods, forming a coherent
mechanism for developing a data-driven selection model.

Phase 3 focuses on the evaluation of the effectiveness of a
data-driven selection model using an experimental study. This
experimental study aims to establish the suitability of the
different active learning methods for the different values of the
datasets characteristics. The study also utilizes case studies to
establish the effectiveness of the proposed model by comparing
the recommendation of the proposed active learning methods
from the proposed model with the results from the
corresponding experimental studies. Based on experimental
studies, the Cohen’s Kappa analysis is used to measure inter-
rater agreement between case studies and experimental results.
While alternative metrics like accuracy or F1-score are useful
for evaluating classification performance, they do not account
for chance agreement. The high kappa values would indicate
strong agreement between the case studies and experimental
results in recommending active learning methods, and this
would suggest the reliability of the model.

IV. RESULTS AND DISCUSSION

This study aims to construct a data-driven selection model to
facilitate the selection of the most reliable active learning
methods in developing prediction models that are able to
provide practitioners with an accurate decision support tool.
The study determines the dataset characteristics that correlate
with the active learning methods to build a prediction model.
The study also evaluates the effectiveness of the proposed data-
driven selection model using Cohen’s Kappa analysis to ensure
the agreement between case studies and experimental results.

A. Data-Driven Selection Model

The development of the data-driven selection model
employs a recommendation approach to automate the
identification of suitable active learning strategies for a certain
dataset. Fig. 2 shows the conceptual framework for the data-
driven selection model. The framework consists of two major
components: Dataset Analysis and Active Learning Strategy
Recommender. In the Dataset Analysis stage, data quality issues
such as missing data, imbalance, high dimensionality,
redundancy, and outliers are identified. These identified issues
are then passed as inputs to the Data Driven Selection Model,
which maps specific data quality characteristics to appropriate
active learning strategies. In the Active Learning Strategy
Recommender stage, the most suitable active learning methods
are suggested based on the mapping results. This conceptual
framework demonstrates the logical flow from dataset quality
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assessment to strategy recommendation, emphasizing a
systematic and data-driven approach for optimizing active
learning performance.

CHECK FOR
—» REDUNDANT
DATA

CHECK FOR
MISSING DATA

CHECK FOR
IMBALANCE DATA

CHECK FOR HIGH
DIMENSIONALITY

DATA QUALITY l

IDENTIFIED
CHECK FOR
OUTLIER

DATASET ANALYSIS

SEND DATA QUALITY
ISSUE AS INPUT

DATA-DRIVEN SELECTION

MAP DATA
QUALITY ISSUE
TOACTIVE
LEARNING
STRATEGY

RECOMMEND
ACTIVE

LEARNING
STRATEGY

RECOMMENDER

I

ig. 2. Conceptual framework of the data-driven active learning strategy
selection model.

B. Prototype of Data-Driven Selection Model

This study developed a prototype, Active Learning Strategy
Recommender, to demonstrate the practical implementation of
the proposed data-driven selection model. The prototype serves
as a decision-support tool that recommends suitable active
learning strategies based on data quality issues detected within a
given dataset. It operates the conceptual framework by
integrating data quality analysis, rule-based mapping, and
strategy recommendations into a prototype. Fig. 3 shows the
main user interface for the prototype.

e Learning Strategy Recommender

Fig. 3. Main user interface of the prototype.

As shown in Fig. 3, the main user interface allows users to
begin by uploading a dataset file. Once the dataset is uploaded,
the prototype conducts a data quality assessment to identify
potential issues such as missing data, class imbalance, high
dimensionality, redundancy and outliers. These assessments are
performed according to the data quality characteristics. Users
can initiate the analysis process by clicking the Run Analysis
button, prompting the prototype to analyses the dataset and
display the detected quality issues.
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The prototype then applies the data-driven selection model TABLEII.  MODEL TRAINING RESULTS
to map the detected data quality issues to the most suitable active Dataset
learning strategies. The recommended strategies’ results are Dataset quality UNC QBC DV DS Cs
shown in Table I, displaying the recommended strategy issues
consistent with the dataset’s characteristics. The prototype also Alzheimer HD 0.90 0.97 100 067 063

displays the alternative strategies that are listed according to

X I . Imbalance 0.94 0.98 0.95 0.66 0.61
their relevance based on the findings of this study.

Missing 0.86 0.91 095 069 062

TABLE I RECOMMENDED ACTIVE LEARNING STRATEGY Outlier 0.44 0.75 0.47 0.30 0.26

Strategy Score Reason Redundancy  0.93 0.96 0.97 0.69 0.63

UNC 1 Missing Value Asthma HD 1.00 1.00 1.00 096  0.95

QBC 0.993 Missing Value Imbalance 095 095 095 092 095
DIV 0.949 Missing Value

Missing 0.95 0.96 095 09 095

C. Model Training Outlier 047 072 047 049 040

The performance results of the active learning strategies

. A Redundancy  0.96 0.95 096 096 095
across medical datasets are summarized in Table Il. Each dataset y

was evaluated under five data quality issues: high Cancer HD 100 100 100 057 081
dimensionality (HD), imbalance, missing values, outliers, and Imbalance  0.92 088 089 056  0.66
redundancy. The active learning strategies compared are —
. ; . M 071 074 068 058 056
Uncertainty Sampling (UNC), Query by Committee (QBC), 'Ss_mg
Diversity Sampling (DV), Density Sampling (DS), and Cluster- Outlier 042 053 040 008 024
based Sampling (CS). The results show the class_ification Redundancy  0.94 0.89 092 056 064
accuracy achieved by each strategy for the respective data Dibetes  HD 083 083 075 059 067
quality issues.
. . . Imbalance 083 080 073 067  0.69
Table 1l illustrates the performance of active learning —
strategies applied to selected data quality issues. The active Missing 075 077 069 059 066
learning strategies that are Uncertainty sampling (UNC) and Outlier 0.36 059 033 031 027
query-by-committee (QBC) indicate consistent performance Redundancy 0.85 082 079 067 067
(typically >0.90) for high-dimensional (HD), imbalanced, and Fotal
redundant data. This shows that these strategies are reliable Health HD 0% 095 100 079 086
active learning methods for the common medl_cal_ _data Imbalance 0,98 0.95 100 058 078
challenges. However, both strategies show significant —
limitations when handling outliers, with performance often Missing 091 080 052 053 049
dropping below 0.50. Diversity-based sampling performs Outlier 0.96 0.94 100 079 085
cqmparably to UNC an(_j QBC in most scenarios while showing Redundancy  0.96 0.93 100 072 085
slightly better adaptability to missing data. ot
. ) ear HD 100 098 100 064 076
Cluster and density-based strategies were excluded from Failure
further consideration due to their inconsistent and often poor Imbalance 092 089 090 087 074
performance across multiple data characteristics. While these Missing 084 08 072 067 068
approaches occasionally showed adequate results in specific ; . - . 1 .
scenarios, as shown in the results where density-based sampling Outlier 045 0. 040 03 0.28
achieved 0.96 for the asthma dataset in the high dimensionality Redundancy 093 091 089 071 076
variant. Their overall performance was distinctly inferior to Lung
T E - HD 92 1. . 4 61
UNC, QBC, and diversity-based methods. From the results in Cancer 09 00 088 046 06
Table I, it can be seen that cluster and density methods often Imbalance ~ 0.94 0.99 097 074 080
obtamed beIO\_N 0.30, |nd|qat|ng these methods are _u_nrellable _for Missing 0.85 0.90 065 029 072
practical applications. This performance gap justifies focusing -
on the more robust UNC, QBC, and diversity-based strategies. Outlier 073 076 058 036 068

. . . Redundancy 096  0.99 097 046 099
These findings suggest several practical recommendations: u y

1) UNC and QBC should be prioritized for HD, imbalance, or M::Iif]' HD 049 071 045 044 052
redundant medical data, given their consistently high accuracy.

2) Diversity-based sampling presents a viable alternative, —
p;rticularlyt¥ordatasets wri)th r%isging values, where it sometimes Missing 051 075 048 044 055
outperforms other methods. 3) Future research should explore Outlier 050 076 046 037 049
hybrid methods that combine the strengths of these top- Redundancy 063 074 055 054 059
performing strategies, especially to address challenging cases

like outliers, where current methods still underperform.

Imbalance 0.81 0.77 0.64 0.75 0.64
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D. Model Evaluation

The model evaluation performed experimental studies for 8
datasets. The study compares the results for the actual best
strategy based on model training with the best strategy
recommended by the prototype model, as shown in Table IlI.
The prototype model is able to recommend the actual active
learning strategy for 7 out of 8 datasets. This indicates that the
recommender model is accurate, correctly predicting the optimal
active learning strategy for most datasets.

TABLE Ill.  ACTUAL BEST STRATEGY VS BEST STRATEGY RECOMMENDED
Dataset Strategy recommended | Actual bes’g strategy based
by the prototype model on experimental study

Alzheimer Diversity sampling Diversity Sampling

Asthma QBC QBC

Cancer Uncertainty Sampling Uncertainty sampling
Diabetes QBC QBC

Fetal Health QBC QBC

Heart Failure Diversity sampling QBC

Lung Cancer QBC QBC

Mental Health | QBC QBC

Table IV shows the summary metrics for how many times
each actual best strategy was correctly or incorrectly
recommended for the 8 datasets.

TABLE IV.  ACTIVE LEARNING RECOMMENDER METRICS

Strategy recommended by the prototype
model
UNC QBC DIVERSITY | TOTAL
UNC 1 1

Actual
Best QBC 5 5
statedy | pivERSITY 1 1 2
TOTAL 1 6 1 8

The study further evaluates the agreement between the
prototype model recommended strategy and the actual best
strategy, illustrated in Table IV matrix using Cohen’s Kappa.
The observed agreement, agreement of chance, and Cohen’s
Kappa formula were implemented as below:

Step 1: Calculate Observed Agreement (P,)

Sum the diagonal elements (where both raters agree) and
divide by the total number of observations [see Eq. (1)].

_ 14541 _

P, = =2 = 0.875 1)

Step 2: Calculate Expected Agreement (Pe)

For each category, compute the product of the row and
column totals, then sum these and divide by the total squared
[see Eq. (2)]:

_ (1x1)+(5%6)+(2%1) _ 33

2~ 05156 @)

€ 82 6

Step 3: Compute Cohen's Kappa (k)
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Use the equation:

_ (Po—Pe) _ (0.875-0.5156) _ 0.3594
T (-P;)  (1-05156)  0.4844

Based on the result obtained in Eq. (3), Cohen’s Kappa value
of 0.742 indicates a substantial agreement according to the
commonly used interpretation scale, where values between 0.61
and 0.80 suggest substantial agreement, and values above 0.80
suggest almost perfect agreement. This implies that Cohen’s
Kappa result used in the study is reliable and not the result of
random agreement. This level of agreement is important in the
context of active learning strategies, which rely on iterative data
selection and labeling. A high Kappa score (k = 0.742) confirms
the consistency and trustworthiness of the labeling process,
ensuring that the performance of each strategy is based on
reliable and ground truth data.

~ 0742 (3)

Given that medical datasets often suffer from data quality
issues such as missing data and redundancy, reliable label
consistency strengthens the validity of the training results.
Specifically, the high accuracy observed for UNC and QBC
methods (typically >0.90) across high-dimensional and
imbalanced datasets is supported by the underlying agreement
in labeling. Furthermore, it provides a sound justification for
excluding cluster and density-based methods, whose poor and
inconsistent performance may be exacerbated by sensitivity to
labeling errors.

The obtained Cohen’s Kappa results align with established
findings on inter-rater reliability in medical and active learning
settings. For example, McHugh et al. categorized kappa values
between 0.61 and 0.80 as indicating substantial agreement,
supporting the interpretation that a kappa of 0.742 reflects an
acceptable level of reliability [29]. Similarly, Harmsen et al.
demonstrated that Cohen’s Kappa values exceeding 0.70 in
active learning frameworks applied to medical literature
screening correspond to reliable human annotation, even under
noisy and incomplete label conditions [30]. These studies
collectively affirm that the observed kappa value indicates
robust inter-rater agreement and supports the reliability of the
active learning evaluations conducted in this study.

V. CONCLUSION AND FUTURE WORK

This study examined the correlation between dataset
characteristics and the efficacy of active learning strategies in
predictive modelling. The research identified actual connections
by analyzing critical data quality issues such as class imbalance,
high dimensionality, missing values, redundancy, and outliers,
which guide the optimal selection of active learning methods. A
data-driven selection model was developed to identify suitable
active learning strategies based on dataset characteristics,
providing a systematic and evidence-based method to improve
predictive accuracy and learning efficiency. Experimental
validation across various healthcare datasets exhibited
significant model reliability, with considerable concordance
between anticipated and actual strategies. This study addresses
a fundamental limitation in the AL literature by converting
strategy selection from intuitive selections to a systematic, data-
driven approach, hence enhancing the field's practical relevance
in real-world context.
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The study concentrated on foundational active learning
strategies and specific healthcare datasets. Subsequent research
should broaden the framework to include sophisticated, hybrid,
and domain-specific methodologies, along with comprehensive
performance metrics like interpretability, scalability, and
computational efficiency. Incorporating multi-modal and real-
world data, together with validation from domain experts, will
significantly improve model generalizability. The suggested
approach offers a pragmatic and theoretically substantiated
contribution to the selection of adaptive, data-driven active
learning strategies.
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