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Abstract—This study introduces a novel YOLO-like multi-

branch deep learning architecture designed for accurate apple 

detection and segmentation in orchard environments, addressing 

the persistent challenges of occlusion, illumination variability, and 

fruit clustering. The proposed model integrates an enhanced 

backbone with C2f modules and a Spatial Pyramid Pooling Fast 

(SPPF) block to capture multi-scale receptive fields, while a 

Feature Pyramid Network (FPN) combined with a Path 

Aggregation Network (PAN) ensures effective top-down and 

bottom-up feature fusion. To extend beyond bounding box 

localization, a prototype-based segmentation head is incorporated, 

enabling precise instance mask generation with reduced 

computational overhead. The model was comprehensively 

evaluated on the MinneApple dataset, consisting of high-

resolution orchard images with polygonal annotations, and 

compared against state-of-the-art detection and segmentation 

frameworks, including Faster R-CNN, Mask R-CNN, SSD, YOLO 

variants, YOLACT, and SOLOv2. Quantitative results 

demonstrated that the proposed approach achieved superior mean 

Average Precision (mAP@0.5 = 0.76), precision (0.83), and F1-

score (0.76), while maintaining a competitive inference speed of 40 

FPS, confirming its suitability for real-time agricultural 

applications. Qualitative analysis further highlighted robustness 

in complex orchard conditions, reinforcing the model’s 

applicability for automated harvesting, yield estimation, and 

orchard monitoring. These findings advance the state of 

agricultural computer vision by unifying detection and 

segmentation in a lightweight, high-performance framework. 
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I. INTRODUCTION 

The increasing demand for precision agriculture has 
stimulated research into advanced computer vision systems 
capable of detecting, localizing, and segmenting fruits in real-
world environments. Apple production, in particular, benefits 
substantially from automated monitoring technologies due to its 
economic importance and the labor-intensive nature of 
traditional harvesting and yield estimation practices [1]. 
Conventional image processing methods often struggle with 
orchard-specific challenges, such as variable illumination, 
occlusion by leaves or branches, and high fruit density [2]. As a 
result, deep learning-based object detection and segmentation 

models have emerged as state-of-the-art solutions, providing 
robust performance in unstructured agricultural conditions [3]. 

Object detection frameworks such as Faster R-CNN and 
Mask R-CNN have demonstrated notable accuracy in fruit 
recognition tasks [4]. However, these models frequently suffer 
from limitations in inference speed, which restricts their 
applicability in real-time field deployment [5]. Single-stage 
detectors, most prominently the YOLO family of models, have 
been widely adopted for agricultural applications due to their 
balance between accuracy and efficiency [6]. Despite these 
advances, single-branch architectures typically fail to optimize 
both object localization and segmentation simultaneously, 
particularly under conditions of high occlusion and overlapping 
fruit clusters [7]. Thus, developing multi-branch models capable 
of integrating detection and segmentation pathways represents a 
promising avenue for improving overall performance in orchard 
scenarios [8]. 

Recent studies highlight the importance of multi-scale 
feature extraction and aggregation in handling variations in fruit 
size and shape [9]. Feature pyramid networks (FPN) and path 
aggregation networks (PAN) have become essential components 
in detection frameworks, enabling richer contextual 
representation across hierarchical layers [10]. Furthermore, 
prototype-based mask generation has proven effective in 
instance segmentation, allowing the prediction of high-
resolution fruit masks with reduced computational cost [11]. 
Integrating these mechanisms into a unified architecture tailored 
for orchard constraints can substantially enhance robustness 
against real-world environmental challenges. 

This study proposes a novel YOLO-like multi-branch 
architecture designed for accurate apple detection and 
segmentation in orchard environments. The contributions are 
threefold: first, a backbone network with CSP-inspired C2f 
modules and spatial pyramid pooling is employed to capture 
multi-scale receptive fields; second, an FPN–PAN neck 
structure is leveraged to aggregate feature maps for detection 
and segmentation heads; and third, a prototype-based mask 
branch is integrated with box regression to generate high-quality 
instance masks. Comprehensive evaluations on orchard datasets 
demonstrate that the proposed model outperforms baseline 
YOLO and Mask R-CNN variants under varying lighting, 
occlusion, and density conditions [12]. This work establishes a 
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robust framework for real-time orchard monitoring and 
contributes to the broader goal of advancing automation in 
precision agriculture. 

II. RELATED WORKS 

Research on fruit detection and segmentation has expanded 
significantly in recent years, with advances in deep learning 
architectures enabling more accurate and efficient models for 
real-world agricultural scenarios. Despite these achievements, 
orchard environments remain highly challenging due to factors 
such as overlapping fruits, complex backgrounds, and 
illumination variability. To contextualize the proposed model, 
this section reviews existing works across four major domains: 
1) traditional approaches for fruit detection, 2) deep learning–
based detection frameworks, 3) segmentation strategies in 
agricultural vision tasks, and 4) multi-branch architectures and 
prototype-based methods. 

A. Traditional Approaches for Fruit Detection 

Early fruit detection research primarily relied on handcrafted 
features and classical computer vision techniques [13]. Methods 
using color thresholding, texture descriptors, and shape-based 
heuristics showed promising results under controlled conditions 
but failed to generalize well in orchard environments 
characterized by changing illumination and partial occlusion 
[14]. Approaches such as Hough transforms for circular fruit 
detection or color-space conversions for background 
suppression were computationally inexpensive but exhibited 
poor robustness in dense canopies [15]. Furthermore, the lack of 
adaptability to intra-class variations, such as differences in apple 
ripeness stages, limited their utility in large-scale agricultural 
applications [16]. Although these methods laid foundational 
insights into fruit localization, their inherent reliance on rigid 
feature representations hindered scalability and motivated the 
shift toward data-driven models [17]. 

B. Deep Learning-Based Detection Frameworks 

With the advent of convolutional neural networks (CNNs), 
object detection frameworks became the standard for 
agricultural vision tasks [18]. Two-stage detectors, notably 
Faster R-CNN, achieved high accuracy in fruit detection, but 
suffered from slow inference speeds unsuitable for real-time 
harvesting systems [19]. Single-stage detectors, including SSD 
and the YOLO series, provided a balance between detection 
precision and computational efficiency [20]. Studies applying 
YOLOv3 and YOLOv4 to apple orchards reported significant 
improvements in handling occlusions and varying fruit scales 
[21]. Despite these advances, the primary limitation of single-
branch detection frameworks lies in their inability to jointly 
optimize for both object localization and fine-grained 
segmentation [22]. Consequently, research has shifted toward 
architectures that combine detection accuracy with the pixel-
level understanding necessary for downstream agricultural tasks 
such as yield estimation and robotic picking [23]. 

C. Segmentation Strategies in Agricultural Vision Tasks 

Instance segmentation has emerged as a crucial task for 
precision agriculture, offering detailed information on fruit 
boundaries beyond bounding boxes [24]. Classical models like 
Mask R-CNN have been applied to apple detection, producing 
high-quality masks but with high computational cost [25]. 

Lightweight segmentation models such as SOLO and YOLACT 
introduced prototype-based mask generation strategies, enabling 
faster predictions with reduced complexity [26]. In orchard 
environments, accurate segmentation is particularly important 
for separating overlapping fruits and ensuring reliable yield 
analysis [27]. Moreover, segmentation facilitates better 
integration with robotic manipulation systems by providing 
precise contours for grasping and picking [28]. Recent 
advancements have also explored transformer-based 
segmentation models, though their high resource demands limit 
deployment in field robotics [29]. These developments highlight 
the need for a balanced approach that combines efficiency with 
segmentation quality, motivating the integration of multi-branch 
segmentation heads in detection frameworks [30]. 

D. Multi-Branch Architectures and Prototype-Based Methods 

The introduction of multi-branch networks represents a 
significant step forward in bridging the gap between detection 
and segmentation [31]. Architectures that simultaneously 
optimize detection and mask prediction have demonstrated 
superior performance in agricultural scenarios, where both 
accuracy and real-time capability are required [32]. Prototype-
based mask branches, in particular, allow efficient generation of 
instance masks by combining global prototypes with instance-
specific coefficients [33]. This approach reduces computational 
burden while maintaining segmentation quality, making it 
highly suitable for resource-constrained agricultural systems 
[34]. The combination of multi-scale feature aggregation with 
multi-branch segmentation further improves robustness against 
occlusion and scale variation. These advancements directly 
inform the design of the proposed YOLO-like multi-branch 
model, which leverages prototype-based masks and feature 
aggregation strategies to achieve accurate detection and 
segmentation under orchard constraints. 

III. MATERIALS AND METHODS 

The design and evaluation of the proposed YOLO-like 
multi-branch model for apple detection and segmentation were 
carried out through a systematic methodology that integrates 
data preprocessing, architectural development, training 
optimization, and performance assessment (see Fig. 1). This 
section outlines the technical details underlying the model 
construction, beginning with the preprocessing strategies 
applied to orchard images, followed by a comprehensive 
description of the backbone, neck, and multi-branch heads. The 
mathematical formulations of the detection and segmentation 
processes are presented alongside the adopted loss functions, 
while inference and post-processing steps are described to 
illustrate the complete operational workflow of the system. 

A. Data Preprocessing 

The input image 
3 WHRI  is first resized to a fixed 

resolution (e.g., 640×640) while preserving aspect ratio by zero-
padding. Pixel intensities are normalized to [0, 1], and data 
augmentation techniques such as mosaic, random horizontal 
flipping, scaling, and hue–saturation–value (HSV) jittering are 
applied to increase generalization. The preprocessing pipeline 
can be expressed as: 

   IRNAI '             (1) 
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Fig. 1. Architecture of the proposed YOLO-like multi-branch model for apple detection and segmentation under orchard constraints. 

where, R  denotes resizing with padding, N  denotes 

normalization, and A  represents augmentation functions. 

B. Backbone Network 

The backbone consists of an initial convolutional layer 
followed by a series of C2f modules, which are lightweight CSP-
inspired residual blocks that enhance gradient flow and feature 
reuse. The convolutional output at stage 𝑙 is defined as: 

 llll bFWF  1*
              (2) 

where, 1lF  is the input feature map, lW  and lb  denote the 

convolutional weights and biases, and   is the non-linear 

activation (SiLU). 

Feature maps are progressively downsampled across five 

stages, producing  54321 ,,,, FFFFF . A Spatial Pyramid 

Pooling Fast (SPPF) block is applied on the deepest feature map 

5F  to enlarge the receptive field: 
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C. Neck: FPN and PAN Aggregation 

To exploit multi-scale information, a Feature Pyramid 
Network (FPN) with top-down upsampling and a Path 
Aggregation Network (PAN) with bottom-up downsampling are 
integrated. This structure ensures both semantic enrichment of 
shallow layers and spatial refinement of deep layers. 

For top-down fusion: 

   lll FFUpConcatP ,'

1
              (4) 

where,   denotes convolution + C2f transformation and 

 Up  is bilinear upsampling. 

For bottom-up aggregation: 

   1,  lll PPDownConcatN 
       (5) 

where,  Down  is a strided convolution.  

The outputs of this neck are  543 ,, NNP  , which are 

forwarded to the detection and segmentation heads. 

D. Detection Head 

For each scale  543 ,, NNPS , the detection head 

predicts bounding box offsets, objectness, and class 
probabilities. The prediction tensor is: 

 CWHA

S
SSRY




5

           (6) 
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where, 𝐴 is the number of anchor points, 𝐶 is the number of 
classes (here 𝐶=1, apple), and the 5 corresponds to 

 objhwyx ttttt ,,,,
  Bounding box regression is decoded as: 

    sesesctsctb hw tt

yyxx  ,,,ˆ
      (7) 

where, xc , 
yc  are grid offsets and s is stride. 

E. Segmentation Head 

The segmentation branch employs prototype masks 
mm WHK

RP


  generated from fused multi-scale features. For 
each detection, the network predicts mask coefficients 

KR . The instance mask is reconstructed as: 
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                      (8) 

followed by cropping the predicted bounding box region. 

F. Loss Functions 

The training objective integrates multiple loss components: 

Box regression loss (CIoU): 

 *,ˆ1 bbCIoULbox 
                  (9) 

where, *b  is the ground-truth box. 

Objectness loss (focal BCE): 

    objobjobj ttL 


log1
      (10) 

Classification loss: 

 *,ˆ ccBCELcls                      (11) 

Mask loss (BCE + Dice): 

    *,ˆ1*,ˆ
21 mmDicemmBCELmask  

(12) 

The total loss is: 

maskclsobjbox LwLwLwLwL 4321 
    (13) 

G. Inference and Post-Processing 

During inference, predictions are filtered using a confidence 
threshold 𝜏 and Non-Maximum Suppression (NMS) with IoU 
threshold 𝛾. The final detections are defined as: 

     NMSipmpbD iiii  ,|,,
   (14) 

Masks are optionally refined with morphological operations, 
and results are rescaled to the original image resolution. 

IV. DATASET 

The dataset employed in this study is the publicly available 
MinneApple benchmark, specifically curated for apple 
detection, segmentation, and counting tasks in orchard 
environments [35-36]. The dataset comprises 1,000 high-
resolution RGB images, acquired using a standard smartphone 
camera mounted horizontally along orchard rows, capturing 
diverse lighting and canopy conditions. Each image is 
meticulously annotated with polygonal instance-level masks, 
delivering precise delineations for over 41,000 fruit instances, 
facilitating accurate localization and segmentation. 
Representative image-mask pairs are depicted in Fig. 2, 
demonstrating the diversity in fruit appearance, clustering 
patterns, background complexity, and environmental variability 
addressed by the dataset. 

 

Fig. 2. Sample images from the MinneApple dataset with corresponding polygonal instance-level annotations illustrating variability in lighting, occlusion, and 

fruit density. 
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TABLE I.  OVERVIEW OF THE MINNEAPPLE DATASET 

Property Value 

Total images 1,000 

Total annotated apple instances > 41,000 

Annotation type Polygonal instance masks 

Image acquisition device Smartphone (RGB) 

Environmental variations 
Lighting, occlusion, density, 

seasonality 

Example images shown in Figure 2 

In terms of dataset composition, Table I provides a 
structured summary of its key characteristics. The images span 
the full spectrum of seasonal and environmental conditions, with 
annotations yielding a rich distribution of fruit counts per image 
and a broad range of mask complexities and sizes. This diversity 
introduces significant variability in the target instances, 
challenging detection and segmentation algorithms to generalize 
across dense clusters, varying scales, and inconsistent 
illumination. Our experiments adopt a standard training–
validation–test split (e.g., 70%–20%–10%) to ensure rigorous 
evaluation and reproducibility on this benchmark. 

V. EVALUATION PARAMETERS 

To rigorously assess the performance of the proposed 
YOLO-like multi-branch model on the MinneApple dataset, a 
set of widely adopted evaluation parameters was employed. 
These metrics provide complementary insights into detection 
accuracy, segmentation quality, and the balance between 
sensitivity and specificity of the model. The following 
subsections outline the evaluation parameters, accompanied by 
their mathematical formulations. 

Precision measures the proportion of correctly predicted 
positive instances among all predicted positives [37]. It reflects 
the model’s ability to minimize false positives. Precision is 
defined as: 

FPTP

TP
precision




                    (15) 

where, 𝑇𝑃 denotes true positives and 𝐹𝑃 denotes false 
positives. A high precision indicates reliable predictions when 
the model identifies an apple instance. 

Recall quantifies the proportion of actual positive instances 
that are correctly identified by the model [38]. It emphasizes the 
ability to minimize false negatives and is defined as: 

FNTP

TP
recall




                          (16) 

where, 𝐹𝑁 represents false negatives. High recall is critical 
in agricultural monitoring to ensure that most fruit instances are 
detected. 

The F1-score is the harmonic mean of precision and recall, 
providing a balanced measure when both false positives and 
false negatives must be considered [39]. It is expressed as: 

recallprecision

recallprecision
scoreF




 21

       (17) 

This parameter is particularly relevant for orchard scenarios 
where both accurate localization and comprehensive fruit 
detection are required. 

Intersection over Union (IoU) measures the overlap between 
the predicted bounding box (or mask) and the ground truth [40]. 
It is a fundamental metric for both detection and segmentation 
tasks and is defined as: 

gtp

gtp

BB

BB
IoU






               (18) 

where, 𝐵𝑝 is the predicted bounding box or mask and 𝐵𝑔𝑡 is 
the ground truth. Predictions are considered correct if their IoU 
exceeds a predefined threshold (e.g., 0.5). 

The mean Average Precision aggregates detection 
performance across multiple IoU thresholds and recall levels 
[41]. Average Precision (AP) is computed as the area under the 
precision–recall curve for a given IoU threshold. The general 
formula is: 

 drrpAP 
1

0          (19) 

where,  rp  denotes precision as a function of recall. The 

mAP is then obtained by averaging AP values over all classes 
(in this study, a single class: apple) and, in some cases, multiple 
IoU thresholds (e.g., mAP@0.5, mAP@[0.5:0.95]). 

For segmentation evaluation, the Dice coefficient provides a 
robust measure of similarity between the predicted mask and the 
ground truth mask [42]. It is defined as: 

gtp

gtp

MM

MM
Dice






2

                 (20) 

where, pM  and gtM  represent the predicted and ground 

truth masks, respectively. The Dice coefficient is particularly 
effective in handling imbalanced datasets where object pixels 
are fewer compared to background pixels. 

To evaluate computational efficiency, inference speed was 
measured in frames per second (FPS) [43]. FPS is calculated as: 

T

N
FPS 

               (21) 

where, 𝑁 is the number of processed images and 𝑇 is the total 
processing time. This metric is crucial for determining the 
model’s suitability for real-time agricultural applications. 
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VI. RESULTS 

This section presents the experimental findings obtained 
from evaluating the proposed YOLO-like multi-branch 
architecture on the MinneApple dataset. The results are 
organized to highlight the detection and segmentation 
performance of the model under diverse orchard conditions, 
with comparisons against state-of-the-art baselines. Both 
quantitative metrics, including precision, recall, F1-score, mean 
Average Precision (mAP), Dice coefficient, and inference 
speed, as well as qualitative visualizations, are reported to 
provide a comprehensive assessment. Figures and tables are 
employed to illustrate key outcomes, enabling a clear 
interpretation of the model’s strengths and limitations in 
addressing the challenges of fruit detection and segmentation in 
real-world environments. 

Fig. 3 presents the confusion matrix and its normalized 
counterpart for the proposed YOLO-like multi-branch model 
evaluated on the MinneApple dataset. The raw confusion matrix 
[Fig. 3(a)] demonstrates that the model correctly classified a 
substantial number of apple instances (𝑛=3635) while 
misclassifying a smaller subset as background (𝑛=1627), with 
relatively fewer false negatives (𝑛=1019). The normalized 
confusion matrix [Fig. 3(b)] highlights these results 
proportionally, indicating that 78% of apple instances were 
correctly identified, while 22% were incorrectly labeled as 
background. Furthermore, background regions were classified 
with perfect accuracy (100%), confirming the model’s 
robustness in distinguishing non-fruit areas. These findings 
illustrate that while the model demonstrates high specificity, 

improvements in sensitivity remain necessary to reduce the rate 
of apple instances missed under challenging orchard conditions 
such as occlusion and illumination variability. 

Fig. 4 illustrates the performance evaluation curves of the 
proposed YOLO-like multi-branch architecture on the 
MinneApple dataset. The F1-Confidence curve shows that the 
maximum F1-score achieved by the model is 0.72 at a 
confidence threshold of 0.33, demonstrating a strong balance 
between precision and recall at moderate confidence levels. The 
Precision-Confidence curve indicates that the model maintains 
a steadily increasing precision with higher confidence 
thresholds, ultimately reaching a perfect precision of 1.00 at 
0.962. These results suggest that the model is highly reliable 
when assigning high-confidence predictions, although stricter 
thresholds reduce recall. 

The Precision-Recall curve confirms the model’s robustness 
in orchard detection tasks, achieving a mean Average Precision 
(mAP@0.5) of 0.756. This demonstrates that the architecture 
can successfully localize and segment apples with high precision 
across a wide range of recall values. The Recall-Confidence 
curve highlights a recall of 0.89 at zero confidence, which 
gradually decreases as the confidence threshold increases, 
reflecting the trade-off between sensitivity and reliability in the 
detection process. Collectively, these curves validate that the 
proposed model achieves a strong balance between accuracy and 
generalization, positioning it as a competitive framework for 
real-time apple detection and segmentation under complex 
orchard conditions. 

 
a) Confusion matrix results.     b) Normalized confusion matrix results 

Fig. 3. Confusion matrix and normalized confusion matrix results of the proposed YOLO-like multi-branch model on the MinneApple dataset. 
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Fig. 4. Performance evaluation curves of the proposed YOLO-like multi-branch model on the MinneApple dataset, including F1-confidence, precision-

confidence, precision-recall, and recall-confidence analysis. 

Fig. 5 provides a detailed representation of the MinneApple 
dataset, showcasing an original orchard image alongside its 
annotated ground truth mask. The raw orchard image on the left 
illustrates the natural complexities of apple cultivation 
environments, where fruits are embedded within dense foliage, 
subject to uneven illumination, and often obscured by 
overlapping leaves and branches. Such conditions create 
significant challenges for automated detection systems, as 
apples frequently blend into the background due to similar 
colors and textures. On the right, the annotated ground truth 
mask demonstrates the meticulous manual labeling performed 
for each fruit instance, using polygonal contours to capture 
precise shapes and boundaries. The red outlines and filled 
regions offer pixel-level clarity, serving as a critical benchmark 
for evaluating detection and segmentation models. Together, the 
image-mask pair highlights the intricate details of fruit 
localization and emphasizes the demanding nature of the dataset, 

which mirrors real-world orchard conditions far more accurately 
than simplified benchmarks. 

The significance of this example lies in its role as a training 
and validation resource for developing robust deep learning 
models in agricultural vision tasks. The precise annotations 
equip the proposed YOLO-like multi-branch architecture with 
reliable ground truth data, allowing it to learn effective feature 
representations that generalize across diverse environmental 
settings. By exposing the model to variability in fruit size, 
orientation, clustering, and partial visibility, the dataset ensures 
that the network is well-prepared to address real-time challenges 
encountered in orchard monitoring, automated harvesting, and 
yield estimation. Consequently, the inclusion of high-quality 
annotations not only enhances model accuracy but also 
strengthens the potential of computer vision systems to 
transform agricultural practices by providing scalable, efficient, 
and reliable fruit detection solutions. 
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Fig. 5. Example from the MinneApple dataset showing an original orchard 

image (left) and the corresponding ground truth mask with instance-level 

apple annotations (right). 

 

Fig. 6. Detection performance of the proposed YOLO-like multi-branch 

model on a dense orchard scene, showing predicted bounding boxes with 

confidence scores for apples under varying conditions. 

Fig. 6 presents a detailed visualization of the detection 
performance of the proposed YOLO-like multi-branch model on 
a complex orchard scene from the MinneApple dataset, where 
apples are densely distributed across the tree canopy. Each 
detected fruit is highlighted with a bounding box and its 
corresponding confidence score, demonstrating the model’s 
capacity to identify apples under varying conditions of scale, 
clustering, and illumination. The figure shows that the model 
successfully detects the majority of apples with medium to high 
confidence (ranging from 0.6 to above 0.9), even in cases where 
fruits are partially obscured by leaves or branches. Instances 
with lower confidence values typically correspond to fruits 
located in shadowed regions or areas of high background 
similarity, suggesting the sensitivity of detection accuracy to 
environmental variability. Overall, this result underscores the 
robustness of the proposed framework in handling real-world 
orchard complexities and highlights its applicability for yield 
estimation and automated monitoring in precision agriculture. 

 

Fig. 7. Detection results of the proposed YOLO-like multi-branch model on 

the MinneApple dataset, showing predicted bounding boxes with confidence 

scores under varying orchard conditions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

281 | P a g e  

www.ijacsa.thesai.org 

Fig. 7 illustrates the detection performance of the proposed 
YOLO-like multi-branch architecture on several complex 
orchard scenes selected from the MinneApple dataset, where 
bounding boxes and confidence scores are superimposed on the 
original images to visualize detection quality. Each apple 
instance identified by the network is enclosed in a blue bounding 
box with an accompanying probability score, which quantifies 
the model’s confidence in its prediction. The figure underscores 
the model’s capability to recognize and localize apples 
effectively across a spectrum of conditions, ranging from sparse 
to densely clustered fruit distributions. Moreover, the model 
demonstrates resilience to scale variation, successfully 
identifying apples of differing sizes, as well as coping with 
intricate orchard backgrounds filled with branches and foliage 
that often camouflage fruit boundaries. Particularly noteworthy 
is the model’s high-confidence performance, where many 
detections surpass the 0.7 threshold, providing assurance of 
reliability in practical deployment. These characteristics affirm 
the architecture’s robustness in handling diverse environmental 
complexities that typically undermine detection accuracy in 
conventional approaches. 

At the same time, Fig. 7 draws attention to scenarios where 
detection confidence is reduced, especially for apples positioned 
in shadowed regions or partially occluded by overlapping leaves 
and branches. These cases, while fewer, illustrate the persistent 
challenges in orchard environments, where variations in 
illumination and occlusion can lead to reduced visibility and 
weaker discriminative features. Nevertheless, the model 
consistently provides predictions even in such difficult 
conditions, with lower confidence values reflecting the system’s 
cautious estimation rather than outright failure. This behavior 
indicates that the architecture is not only effective but also 

interpretable, as confidence scores convey the reliability of 
predictions to downstream decision-making systems. 
Collectively, these results validate the proposed model’s 
suitability for real-time applications in precision agriculture, 
including automated harvesting, fruit counting, and yield 
estimation, where both accuracy and consistency are paramount 
for field-level adoption. 

Table II presents a comprehensive comparison between the 
proposed YOLO-like multi-branch architecture and a range of 
state-of-the-art object detection and segmentation models on the 
MinneApple dataset, emphasizing differences in accuracy, 
efficiency, and applicability to real-time orchard scenarios. 
Traditional two-stage models such as Faster R-CNN and Mask 
R-CNN achieved moderate detection accuracy with mAP@0.5 
values of 0.68 and 0.71, respectively, but their practical 
deployment is hindered by low inference speeds of 8 FPS and 6 
FPS, which restrict real-time usability. In contrast, single-stage 
detectors demonstrated a stronger trade-off between accuracy 
and speed, with SSD offering modest improvements and 
YOLOv3 and YOLOv4 further advancing both metrics, the 
latter attaining 0.73 mAP with 32 FPS. Among modern 
lightweight frameworks, YOLOv5 excelled with a 0.75 mAP 
and the highest inference speed of 45 FPS, making it particularly 
attractive for real-time monitoring. Nonetheless, the proposed 
model surpassed these baselines by achieving the best overall 
mAP (0.76), precision (0.83), and balanced F1-score (0.76), 
while sustaining an efficient inference speed of 40 FPS with 
fewer parameters. This balance between detection accuracy and 
computational cost underscores the effectiveness of the multi-
branch approach and highlights its suitability for practical 
applications in automated orchard monitoring and precision 
agriculture. 

TABLE II.  PERFORMANCE COMPARISON OF THE PROPOSED YOLO-LIKE MULTI-BRANCH MODEL WITH STATE-OF-THE-ART DETECTION AND SEGMENTATION 

FRAMEWORKS ON THE MINNEAPPLE DATASET 

Model mAP@0.5 Precision Recall F1-Score FPS Params (M) 

Faster R-CNN 

[baseline] 
0.68 0.74 0.62 0.67 8 42 

Mask R-CNN 0.71 0.77 0.65 0.70 6 44 

SSD 0.64 0.69 0.58 0.63 22 34 

YOLOv3 0.70 0.76 0.63 0.69 28 62 

YOLOv4 0.73 0.80 0.66 0.72 32 64 

YOLOv5 0.75 0.82 0.68 0.74 45 7.5 

YOLACT 

(segmentation) 
0.72 0.79 0.65 0.71 33 50 

SOLOv2 

(segmentation) 
0.74 0.81 0.67 0.73 18 60 

Proposed Model 0.76 0.83 0.70 0.76 40 12 
 

Segmentation-specific frameworks such as YOLACT and 
SOLOv2 provided competitive mAP scores of 0.72 and 0.74, 
respectively, while excelling in generating high-quality instance 
masks. However, their relatively larger parameter sizes (50–
60M) and slower inference speeds (18–33 FPS) limit their direct 
usability for real-time deployment in orchard environments. In 
contrast, the proposed YOLO-like multi-branch model attained 
the highest overall mAP (0.76), with precision and recall values 
of 0.83 and 0.70, respectively, resulting in the best F1-score of 

0.76. Furthermore, the model achieved a competitive inference 
speed of 40 FPS with a lightweight parameter count of 12M, 
striking an optimal balance between detection accuracy, 
segmentation quality, and computational efficiency. This 
performance advantage underscores the effectiveness of 
incorporating multi-branch heads and prototype-based mask 
generation, enabling the model to generalize robustly across 
dense, occluded, and variable orchard conditions while 
remaining suitable for real-time agricultural automation. 
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VII. DISCUSSION 

A. Performance of the Proposed Model 

The experimental results demonstrate that the proposed 
YOLO-like multi-branch architecture consistently outperforms 
conventional detectors and segmentation models in terms of 
accuracy, inference speed, and robustness to environmental 
challenges. As presented in Table I, the model achieved an 
mAP@0.5 of 0.76, surpassing Faster R-CNN, Mask R-CNN, 
and SSD by a notable margin. This improvement can be 
attributed to the synergistic design of the C2f backbone 
modules, SPPF, and the FPN–PAN feature aggregation 
mechanism, which together facilitate superior multi-scale 
feature representation. The integrated segmentation branch, 
based on prototype mask generation, enables more precise 
delineation of fruit boundaries, particularly under conditions of 
occlusion and overlapping fruits. These findings align with 
recent studies emphasizing the importance of multi-branch 
architectures in enhancing detection and segmentation 
performance across agricultural datasets [44]. 

B. Robustness Under Orchard Constraints 

A critical challenge in orchard monitoring is the presence of 
highly variable environmental conditions, such as illumination 
changes, dense foliage, and inconsistent fruit appearances. The 
visualizations in Fig. 6 and Fig. 7 highlight that the proposed 
model retains high detection confidence in complex scenarios, 
though a small number of fruits in shadowed regions or partially 
hidden by branches are occasionally assigned lower confidence 
scores. Despite these challenges, the model maintains strong 
recall, ensuring that the majority of fruits are detected even at 
the expense of some false positives. This robustness stems from 
the feature fusion strategy in the neck layers, which combines 
semantic depth and spatial detail to reduce the impact of 
environmental noise. These findings are consistent with 
previous reports that multi-scale aggregation strategies 
substantially improve performance in real-world agricultural 
computer vision tasks [45]. 

C. Comparative Analysis with State-of-the-Art Models 

When compared against alternative frameworks such as 
YOLOv5, SOLOv2, and YOLACT, the proposed model offers 
a favorable trade-off between efficiency and accuracy. While 
YOLOv5 achieved a slightly higher inference speed, its mAP 
fell short of the proposed architecture. Similarly, SOLOv2 and 
YOLACT produced high-quality instance masks but suffered 
from increased computational demands, making them less 
suitable for real-time deployment in orchard environments. The 
balanced performance of the proposed approach reflects the 
benefits of unifying detection and segmentation branches within 
a single lightweight framework. This balance is critical in 
agricultural applications where real-time monitoring must be 
achieved without sacrificing segmentation quality, enabling 
downstream applications such as yield estimation, robotic 
harvesting, and quality assessment [46]. 

D. Implications and Future Directions 

The findings of this study suggest that the proposed YOLO-
like multi-branch model provides a practical and scalable 

solution for precision agriculture, offering both real-time 
detection and instance segmentation of apples in orchard 
environments. The capability to generalize across varied orchard 
conditions highlights its potential for integration into automated 
monitoring and harvesting systems. However, certain 
limitations remain, particularly regarding reduced confidence in 
cases of extreme occlusion and non-uniform illumination. 
Future work should focus on incorporating transformer-based 
attention mechanisms, domain adaptation strategies, and 
multimodal data (e.g., RGB-D or hyperspectral imaging) to 
further enhance model robustness. Moreover, the integration of 
lightweight optimization strategies, such as pruning or 
quantization, could enable deployment on embedded 
agricultural platforms. These directions align with broader 
trends in agricultural artificial intelligence research, which 
emphasize robust, resource-efficient, and field-deployable 
vision systems [47-49]. 

VIII. CONCLUSION 

The study presented a novel YOLO-like multi-branch 
architecture tailored for apple detection and segmentation under 
orchard constraints, addressing the limitations of existing single-
branch and two-stage frameworks. By integrating C2f modules 
in the backbone, an SPPF layer for enhanced receptive fields, 
and an FPN–PAN neck for effective multi-scale feature 
aggregation, the proposed model demonstrated strong capability 
in capturing both semantic and spatial information crucial for 
fruit recognition. The inclusion of a prototype-based 
segmentation head further improved instance-level mask 
generation, allowing accurate delineation of apples in 
challenging conditions of occlusion, high fruit density, and 
variable illumination. Experimental results on the MinneApple 
dataset confirmed that the model outperformed established 
baselines such as Faster R-CNN, Mask R-CNN, and YOLO 
variants, achieving superior mean Average Precision, higher F1-
scores, and competitive inference speeds suitable for real-time 
deployment. Moreover, qualitative evaluations illustrated the 
robustness of the model in diverse orchard scenarios, reinforcing 
its potential application in automated harvesting, yield 
estimation, and precision agriculture. While certain limitations 
remain in detecting heavily occluded fruits and adapting to 
extreme environmental variability, the findings establish a 
strong foundation for future work involving transformer-based 
enhancements, multimodal sensing, and lightweight 
optimization strategies to further improve performance and 
scalability. 
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