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Abstract—This study introduces a novel YOLO-like multi-
branch deep learning architecture designed for accurate apple
detection and segmentation in orchard environments, addressing
the persistent challenges of occlusion, illumination variability, and
fruit clustering. The proposed model integrates an enhanced
backbone with C2f modules and a Spatial Pyramid Pooling Fast
(SPPF) block to capture multi-scale receptive fields, while a
Feature Pyramid Network (FPN) combined with a Path
Aggregation Network (PAN) ensures effective top-down and
bottom-up feature fusion. To extend beyond bounding box
localization, a prototype-based segmentation head is incorporated,
enabling precise instance mask generation with reduced
computational overhead. The model was comprehensively
evaluated on the MinneApple dataset, consisting of high-
resolution orchard images with polygonal annotations, and
compared against state-of-the-art detection and segmentation
frameworks, including Faster R-CNN, Mask R-CNN, SSD, YOLO
variants, YOLACT, and SOLOv2. Quantitative results
demonstrated that the proposed approach achieved superior mean
Average Precision (mMAP@0.5 = 0.76), precision (0.83), and F1-
score (0.76), while maintaining a competitive inference speed of 40
FPS, confirming its suitability for real-time agricultural
applications. Qualitative analysis further highlighted robustness
in complex orchard conditions, reinforcing the model’s
applicability for automated harvesting, yield estimation, and
orchard monitoring. These findings advance the state of
agricultural computer vision by unifying detection and
segmentation in a lightweight, high-performance framework.
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l. INTRODUCTION

The increasing demand for precision agriculture has
stimulated research into advanced computer vision systems
capable of detecting, localizing, and segmenting fruits in real-
world environments. Apple production, in particular, benefits
substantially from automated monitoring technologies due to its
economic importance and the labor-intensive nature of
traditional harvesting and yield estimation practices [1].
Conventional image processing methods often struggle with
orchard-specific challenges, such as variable illumination,
occlusion by leaves or branches, and high fruit density [2]. As a
result, deep learning-based object detection and segmentation

models have emerged as state-of-the-art solutions, providing
robust performance in unstructured agricultural conditions [3].

Object detection frameworks such as Faster R-CNN and
Mask R-CNN have demonstrated notable accuracy in fruit
recognition tasks [4]. However, these models frequently suffer
from limitations in inference speed, which restricts their
applicability in real-time field deployment [5]. Single-stage
detectors, most prominently the YOLO family of models, have
been widely adopted for agricultural applications due to their
balance between accuracy and efficiency [6]. Despite these
advances, single-branch architectures typically fail to optimize
both object localization and segmentation simultaneously,
particularly under conditions of high occlusion and overlapping
fruit clusters [7]. Thus, developing multi-branch models capable
of integrating detection and segmentation pathways represents a
promising avenue for improving overall performance in orchard
scenarios [8].

Recent studies highlight the importance of multi-scale
feature extraction and aggregation in handling variations in fruit
size and shape [9]. Feature pyramid networks (FPN) and path
aggregation networks (PAN) have become essential components
in  detection frameworks, enabling richer contextual
representation across hierarchical layers [10]. Furthermore,
prototype-based mask generation has proven effective in
instance segmentation, allowing the prediction of high-
resolution fruit masks with reduced computational cost [11].
Integrating these mechanisms into a unified architecture tailored
for orchard constraints can substantially enhance robustness
against real-world environmental challenges.

This study proposes a novel YOLO-like multi-branch
architecture designed for accurate apple detection and
segmentation in orchard environments. The contributions are
threefold: first, a backbone network with CSP-inspired C2f
modules and spatial pyramid pooling is employed to capture
multi-scale receptive fields; second, an FPN-PAN neck
structure is leveraged to aggregate feature maps for detection
and segmentation heads; and third, a prototype-based mask
branch is integrated with box regression to generate high-quality
instance masks. Comprehensive evaluations on orchard datasets
demonstrate that the proposed model outperforms baseline
YOLO and Mask R-CNN variants under varying lighting,
occlusion, and density conditions [12]. This work establishes a
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robust framework for real-time orchard monitoring and
contributes to the broader goal of advancing automation in
precision agriculture.

Il.  RELATED WORKS

Research on fruit detection and segmentation has expanded
significantly in recent years, with advances in deep learning
architectures enabling more accurate and efficient models for
real-world agricultural scenarios. Despite these achievements,
orchard environments remain highly challenging due to factors
such as overlapping fruits, complex backgrounds, and
illumination variability. To contextualize the proposed model,
this section reviews existing works across four major domains:
1) traditional approaches for fruit detection, 2) deep learning—
based detection frameworks, 3) segmentation strategies in
agricultural vision tasks, and 4) multi-branch architectures and
prototype-based methods.

A. Traditional Approaches for Fruit Detection

Early fruit detection research primarily relied on handcrafted
features and classical computer vision techniques [13]. Methods
using color thresholding, texture descriptors, and shape-based
heuristics showed promising results under controlled conditions
but failed to generalize well in orchard environments
characterized by changing illumination and partial occlusion
[14]. Approaches such as Hough transforms for circular fruit
detection or color-space conversions for background
suppression were computationally inexpensive but exhibited
poor robustness in dense canopies [15]. Furthermore, the lack of
adaptability to intra-class variations, such as differences in apple
ripeness stages, limited their utility in large-scale agricultural
applications [16]. Although these methods laid foundational
insights into fruit localization, their inherent reliance on rigid
feature representations hindered scalability and motivated the
shift toward data-driven models [17].

B. Deep Learning-Based Detection Frameworks

With the advent of convolutional neural networks (CNNSs),
object detection frameworks became the standard for
agricultural vision tasks [18]. Two-stage detectors, notably
Faster R-CNN, achieved high accuracy in fruit detection, but
suffered from slow inference speeds unsuitable for real-time
harvesting systems [19]. Single-stage detectors, including SSD
and the YOLO series, provided a balance between detection
precision and computational efficiency [20]. Studies applying
YOLOvV3 and YOLOV4 to apple orchards reported significant
improvements in handling occlusions and varying fruit scales
[21]. Despite these advances, the primary limitation of single-
branch detection frameworks lies in their inability to jointly
optimize for both object localization and fine-grained
segmentation [22]. Consequently, research has shifted toward
architectures that combine detection accuracy with the pixel-
level understanding necessary for downstream agricultural tasks
such as yield estimation and robotic picking [23].

C. Segmentation Strategies in Agricultural Vision Tasks

Instance segmentation has emerged as a crucial task for
precision agriculture, offering detailed information on fruit
boundaries beyond bounding boxes [24]. Classical models like
Mask R-CNN have been applied to apple detection, producing
high-quality masks but with high computational cost [25].

Vol. 16, No. 11, 2025

Lightweight segmentation models such as SOLO and YOLACT
introduced prototype-based mask generation strategies, enabling
faster predictions with reduced complexity [26]. In orchard
environments, accurate segmentation is particularly important
for separating overlapping fruits and ensuring reliable yield
analysis [27]. Moreover, segmentation facilitates better
integration with robotic manipulation systems by providing
precise contours for grasping and picking [28]. Recent
advancements have also explored transformer-based
segmentation models, though their high resource demands limit
deployment in field robotics [29]. These developments highlight
the need for a balanced approach that combines efficiency with
segmentation quality, motivating the integration of multi-branch
segmentation heads in detection frameworks [30].

D. Multi-Branch Architectures and Prototype-Based Methods

The introduction of multi-branch networks represents a
significant step forward in bridging the gap between detection
and segmentation [31]. Architectures that simultaneously
optimize detection and mask prediction have demonstrated
superior performance in agricultural scenarios, where both
accuracy and real-time capability are required [32]. Prototype-
based mask branches, in particular, allow efficient generation of
instance masks by combining global prototypes with instance-
specific coefficients [33]. This approach reduces computational
burden while maintaining segmentation quality, making it
highly suitable for resource-constrained agricultural systems
[34]. The combination of multi-scale feature aggregation with
multi-branch segmentation further improves robustness against
occlusion and scale variation. These advancements directly
inform the design of the proposed YOLO-like multi-branch
model, which leverages prototype-based masks and feature
aggregation strategies to achieve accurate detection and
segmentation under orchard constraints.

I1l. MATERIALS AND METHODS

The design and evaluation of the proposed YOLO-like
multi-branch model for apple detection and segmentation were
carried out through a systematic methodology that integrates
data preprocessing, architectural development, training
optimization, and performance assessment (see Fig. 1). This
section outlines the technical details underlying the model
construction, beginning with the preprocessing strategies
applied to orchard images, followed by a comprehensive
description of the backbone, neck, and multi-branch heads. The
mathematical formulations of the detection and segmentation
processes are presented alongside the adopted loss functions,
while inference and post-processing steps are described to
illustrate the complete operational workflow of the system.

A. Data Preprocessing

The input image | € R s first resized to a fixed
resolution (e.g., 640x640) while preserving aspect ratio by zero-
padding. Pixel intensities are normalized to [0, 1], and data
augmentation techniques such as mosaic, random horizontal
flipping, scaling, and hue—saturation-value (HSV) jittering are
applied to increase generalization. The preprocessing pipeline

can be expressed as:
I'= AIN(R(1)) @
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Fig. 1. Architecture of the proposed YOLO-like multi-branch model for apple detection and segmentation under orchard constraints.

where, R denotes resizing with padding, N denotes
normalization, and A represents augmentation functions.
B. Backbone Network

The backbone consists of an initial convolutional layer
followed by a series of C2f modules, which are lightweight CSP-
inspired residual blocks that enhance gradient flow and feature
reuse. The convolutional output at stage [ is defined as:

F =o(W, *F +b) @)

where, F,_, is the input feature map, W, and b, denote the

convolutional weights and biases, and o is the non-linear
activation (SiLU).

Feature maps are progressively downsampled across five
stages, producing {Fl,FZ,F3,F4,F5}. A Spatial Pyramid
Pooling Fast (SPPF) block is applied on the deepest feature map
F to enlarge the receptive field:

MaxPool, (F;),
MaxPool, (F;),
MaxPool, (F;)
F5

F, = Concat

@)

C. Neck: FPN and PAN Aggregation

To exploit multi-scale information, a Feature Pyramid
Network (FPN) with top-down upsampling and a Path
Aggregation Network (PAN) with bottom-up downsampling are
integrated. This structure ensures both semantic enrichment of
shallow layers and spatial refinement of deep layers.

For top-down fusion:
R :¢(Concat(Up(F|+l), F )) )
where, ¢ denotes convolution + C2f transformation and
Up(-) is bilinear upsampling.
For bottom-up aggregation:

N, = ¢(Concat(Down(P, ), P.., )) ©)

where, Down(-) is a strided convolution.

The outputs of this neck are {Ps, N,, N5} , which are
forwarded to the detection and segmentation heads.
D. Detection Head

For each scale S € {P3, N,, NS} , the detection head

predicts bounding box offsets, objectness, and class
probabilities. The prediction tensor is:
AxHgxWgx(5+C)
Y eR ©)
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where, A is the number of anchor points, C is the number of

classes (here C=1, apple), and the 5 corresponds to
t.,t,,t,,t, 0, . L
(X y?wr=he tobj /- Bounding box regression is decoded as:

b=(t, +c,)-s.t, +c,)-s.e* -s,.ets) 0

where, C,, C, are grid offsets and s is stride.
E. Segmentation Head

The segmentation branch employs prototype masks

P e R<Hmdn generated from fused multi-scale features. For
each detection, the network predicts mask coefficients

«a € R . The instance mask is reconstructed as:
K
M=o Zak P,
k=1

followed by cropping the predicted bounding box region.

®)

F. Loss Functions
The training objective integrates multiple loss components:

Box regression loss (CloU):

Ly, =1-CloU (,b*]

9)
where, D™ is the ground-truth box.
Objectness loss (focal BCE):

Loy =1 (1_ G(tobj ))7 log G(t‘)bj ) (10)

Classification loss:
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L, = BCE(¢,c*) )

Mask loss (BCE + Dice):
Lvas = 4 - BCE(,m*)+ 4, - (1— Dice(h, m*))

mask —

(12)
The total loss is:

L=wlL,, +w, LObj +w,L, +w,L

mask (13)

G. Inference and Post-Processing

During inference, predictions are filtered using a confidence
threshold T and Non-Maximum Suppression (NMS) with loU
threshold y. The final detections are defined as:

D={b, p.m)Ip; >7i € NMS(y)}

Masks are optionally refined with morphological operations,
and results are rescaled to the original image resolution.

IV. DATASET

The dataset employed in this study is the publicly available
MinneApple benchmark, specifically curated for apple
detection, segmentation, and counting tasks in orchard
environments [35-36]. The dataset comprises 1,000 high-
resolution RGB images, acquired using a standard smartphone
camera mounted horizontally along orchard rows, capturing
diverse lighting and canopy conditions. Each image is
meticulously annotated with polygonal instance-level masks,
delivering precise delineations for over 41,000 fruit instances,
facilitating  accurate  localization and  segmentation.
Representative image-mask pairs are depicted in Fig. 2,
demonstrating the diversity in fruit appearance, clustering
patterns, background complexity, and environmental variability
addressed by the dataset.

Fig. 2. Sample images from the MinneApple dataset with corresponding polygonal instance-level annotations illustrating variability in lighting, occlusion, and
fruit density.
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TABLE I. OVERVIEW OF THE MINNEAPPLE DATASET

Property Value

Total images 1,000

Total annotated apple instances > 41,000

Annotation type Polygonal instance masks

Image acquisition device Smartphone (RGB)

Environmental variations nghtlng_, occlusion, density,
seasonality

Example images shown in Figure 2

In terms of dataset composition, Table | provides a
structured summary of its key characteristics. The images span
the full spectrum of seasonal and environmental conditions, with
annotations yielding a rich distribution of fruit counts per image
and a broad range of mask complexities and sizes. This diversity
introduces significant variability in the target instances,
challenging detection and segmentation algorithms to generalize
across dense clusters, varying scales, and inconsistent
illumination. Our experiments adopt a standard training—
validation—test split (e.g., 70%-20%-10%) to ensure rigorous
evaluation and reproducibility on this benchmark.

V. EVALUATION PARAMETERS

To rigorously assess the performance of the proposed
YOLO-like multi-branch model on the MinneApple dataset, a
set of widely adopted evaluation parameters was employed.
These metrics provide complementary insights into detection
accuracy, segmentation quality, and the balance between
sensitivity and specificity of the model. The following
subsections outline the evaluation parameters, accompanied by
their mathematical formulations.

Precision measures the proportion of correctly predicted
positive instances among all predicted positives [37]. It reflects
the model’s ability to minimize false positives. Precision is
defined as:

precision = ————
TP+ FP (15)

where, TP denotes true positives and FP denotes false
positives. A high precision indicates reliable predictions when
the model identifies an apple instance.

Recall quantifies the proportion of actual positive instances
that are correctly identified by the model [38]. It emphasizes the
ability to minimize false negatives and is defined as:

TP
TP+ FN (16)

where, FN represents false negatives. High recall is critical
in agricultural monitoring to ensure that most fruit instances are
detected.

The F1-score is the harmonic mean of precision and recall,
providing a balanced measure when both false positives and
false negatives must be considered [39]. It is expressed as:

recall =

Vol. 16, No. 11, 2025

5 precision - recall
precision + recall (17)

F1-score =

This parameter is particularly relevant for orchard scenarios
where both accurate localization and comprehensive fruit
detection are required.

Intersection over Union (loU) measures the overlap between
the predicted bounding box (or mask) and the ground truth [40].
It is a fundamental metric for both detection and segmentation
tasks and is defined as:

) \Bp mBgt‘

B, UB,| -

where, Bp is the predicted bounding box or mask and Bgt is
the ground truth. Predictions are considered correct if their loU
exceeds a predefined threshold (e.g., 0.5).

loU

The mean Average Precision aggregates detection
performance across multiple loU thresholds and recall levels
[41]. Average Precision (AP) is computed as the area under the
precision—recall curve for a given loU threshold. The general
formulais:

AP = [ p(r)r

° (19)

where, p(r) denotes precision as a function of recall. The

MAP is then obtained by averaging AP values over all classes
(in this study, a single class: apple) and, in some cases, multiple
loU thresholds (e.g., mMAP@0.5, mAP@[0.5:0.95]).

For segmentation evaluation, the Dice coefficient provides a
robust measure of similarity between the predicted mask and the
ground truth mask [42]. It is defined as:

Dice =—2.‘M » My
‘MP‘+‘M9t‘ (20)

where, M b and M gt represent the predicted and ground

truth masks, respectively. The Dice coefficient is particularly
effective in handling imbalanced datasets where object pixels
are fewer compared to background pixels.

To evaluate computational efficiency, inference speed was
measured in frames per second (FPS) [43]. FPS is calculated as:

FPS =
T

(21)

where, N is the number of processed images and T is the total
processing time. This metric is crucial for determining the
model’s suitability for real-time agricultural applications.
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VI. RESULTS

This section presents the experimental findings obtained
from evaluating the proposed YOLO-like multi-branch
architecture on the MinneApple dataset. The results are
organized to highlight the detection and segmentation
performance of the model under diverse orchard conditions,
with comparisons against state-of-the-art baselines. Both
quantitative metrics, including precision, recall, F1-score, mean
Average Precision (mAP), Dice coefficient, and inference
speed, as well as qualitative visualizations, are reported to
provide a comprehensive assessment. Figures and tables are
employed to illustrate key outcomes, enabling a clear
interpretation of the model’s strengths and limitations in
addressing the challenges of fruit detection and segmentation in
real-world environments.

Fig. 3 presents the confusion matrix and its normalized
counterpart for the proposed YOLO-like multi-branch model
evaluated on the MinneApple dataset. The raw confusion matrix
[Fig. 3(a)] demonstrates that the model correctly classified a
substantial number of apple instances (n=3635) while
misclassifying a smaller subset as background (n=1627), with
relatively fewer false negatives (n=1019). The normalized
confusion matrix [Fig. 3(b)] highlights these results
proportionally, indicating that 78% of apple instances were
correctly identified, while 22% were incorrectly labeled as
background. Furthermore, background regions were classified
with perfect accuracy (100%), confirming the model’s
robustness in distinguishing non-fruit areas. These findings
illustrate that while the model demonstrates high specificity,

Confusion Matrix
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apple 1627
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Predicted

- 1500

- 1000
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.
o
a
©

background -
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background -

True

a) Confusion matrix results.

Predicted
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improvements in sensitivity remain necessary to reduce the rate
of apple instances missed under challenging orchard conditions
such as occlusion and illumination variability.

Fig. 4 illustrates the performance evaluation curves of the
proposed YOLO-like multi-branch architecture on the
MinneApple dataset. The F1-Confidence curve shows that the
maximum F1-score achieved by the model is 0.72 at a
confidence threshold of 0.33, demonstrating a strong balance
between precision and recall at moderate confidence levels. The
Precision-Confidence curve indicates that the model maintains
a steadily increasing precision with higher confidence
thresholds, ultimately reaching a perfect precision of 1.00 at
0.962. These results suggest that the model is highly reliable
when assigning high-confidence predictions, although stricter
thresholds reduce recall.

The Precision-Recall curve confirms the model’s robustness
in orchard detection tasks, achieving a mean Average Precision
(mAP@0.5) of 0.756. This demonstrates that the architecture
can successfully localize and segment apples with high precision
across a wide range of recall values. The Recall-Confidence
curve highlights a recall of 0.89 at zero confidence, which
gradually decreases as the confidence threshold increases,
reflecting the trade-off between sensitivity and reliability in the
detection process. Collectively, these curves validate that the
proposed model achieves a strong balance between accuracy and
generalization, positioning it as a competitive framework for
real-time apple detection and segmentation under complex
orchard conditions.

Confusion Matrix Normalized

1.0

apple

-0.4

background -
-0.2

-0.0

apple -

background -

True

b) Normalized confusion matrix results

Fig. 3. Confusion matrix and normalized confusion matrix results of the proposed YOLO-like multi-branch model on the MinneApple dataset.
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Fig. 4. Performance evaluation curves of the proposed YOLO-like multi-branch model on the MinneApple dataset, including F1-confidence, precision-
confidence, precision-recall, and recall-confidence analysis.

Fig. 5 provides a detailed representation of the MinneApple
dataset, showcasing an original orchard image alongside its
annotated ground truth mask. The raw orchard image on the left
illustrates the natural complexities of apple cultivation
environments, where fruits are embedded within dense foliage,
subject to uneven illumination, and often obscured by
overlapping leaves and branches. Such conditions create
significant challenges for automated detection systems, as
apples frequently blend into the background due to similar
colors and textures. On the right, the annotated ground truth
mask demonstrates the meticulous manual labeling performed
for each fruit instance, using polygonal contours to capture
precise shapes and boundaries. The red outlines and filled
regions offer pixel-level clarity, serving as a critical benchmark
for evaluating detection and segmentation models. Together, the
image-mask pair highlights the intricate details of fruit
localization and emphasizes the demanding nature of the dataset,

which mirrors real-world orchard conditions far more accurately
than simplified benchmarks.

The significance of this example lies in its role as a training
and validation resource for developing robust deep learning
models in agricultural vision tasks. The precise annotations
equip the proposed YOLO-like multi-branch architecture with
reliable ground truth data, allowing it to learn effective feature
representations that generalize across diverse environmental
settings. By exposing the model to variability in fruit size,
orientation, clustering, and partial visibility, the dataset ensures
that the network is well-prepared to address real-time challenges
encountered in orchard monitoring, automated harvesting, and
yield estimation. Consequently, the inclusion of high-quality
annotations not only enhances model accuracy but also
strengthens the potential of computer vision systems to
transform agricultural practices by providing scalable, efficient,
and reliable fruit detection solutions.
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True Mask

Original Image

Fig. 5. Example from the MinneApple dataset showing an original orchard
image (left) and the corresponding ground truth mask with instance-level
apple annotations (right).
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Fig. 6. Detection performance of the proposed YOLO-like multi-branch
model on a dense orchard scene, showing predicted bounding boxes with
confidence scores for apples under varying conditions.
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Fig. 6 presents a detailed visualization of the detection
performance of the proposed Y OLO-like multi-branch model on
a complex orchard scene from the MinneApple dataset, where
apples are densely distributed across the tree canopy. Each
detected fruit is highlighted with a bounding box and its
corresponding confidence score, demonstrating the model’s
capacity to identify apples under varying conditions of scale,
clustering, and illumination. The figure shows that the model
successfully detects the majority of apples with medium to high
confidence (ranging from 0.6 to above 0.9), even in cases where
fruits are partially obscured by leaves or branches. Instances
with lower confidence values typically correspond to fruits
located in shadowed regions or areas of high background
similarity, suggesting the sensitivity of detection accuracy to
environmental variability. Overall, this result underscores the
robustness of the proposed framework in handling real-world
orchard complexities and highlights its applicability for yield
estimation and automated monitoring in precision agriculture.
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Fig. 7. Detection results of the proposed YOLO-like multi-branch model on
the MinneApple dataset, showing predicted bounding boxes with confidence
scores under varying orchard conditions.
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Fig. 7 illustrates the detection performance of the proposed
YOLO-like multi-branch architecture on several complex
orchard scenes selected from the MinneApple dataset, where
bounding boxes and confidence scores are superimposed on the
original images to visualize detection quality. Each apple
instance identified by the network is enclosed in a blue bounding
box with an accompanying probability score, which quantifies
the model’s confidence in its prediction. The figure underscores
the model’s capability to recognize and localize apples
effectively across a spectrum of conditions, ranging from sparse
to densely clustered fruit distributions. Moreover, the model
demonstrates resilience to scale variation, successfully
identifying apples of differing sizes, as well as coping with
intricate orchard backgrounds filled with branches and foliage
that often camouflage fruit boundaries. Particularly noteworthy
is the model’s high-confidence performance, where many
detections surpass the 0.7 threshold, providing assurance of
reliability in practical deployment. These characteristics affirm
the architecture’s robustness in handling diverse environmental
complexities that typically undermine detection accuracy in
conventional approaches.

At the same time, Fig. 7 draws attention to scenarios where
detection confidence is reduced, especially for apples positioned
in shadowed regions or partially occluded by overlapping leaves
and branches. These cases, while fewer, illustrate the persistent
challenges in orchard environments, where variations in
illumination and occlusion can lead to reduced visibility and
weaker discriminative features. Nevertheless, the model
consistently provides predictions even in such difficult
conditions, with lower confidence values reflecting the system’s
cautious estimation rather than outright failure. This behavior
indicates that the architecture is not only effective but also
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interpretable, as confidence scores convey the reliability of
predictions to downstream decision-making  systems.
Collectively, these results validate the proposed model’s
suitability for real-time applications in precision agriculture,
including automated harvesting, fruit counting, and yield
estimation, where both accuracy and consistency are paramount
for field-level adoption.

Table Il presents a comprehensive comparison between the
proposed YOLO-like multi-branch architecture and a range of
state-of-the-art object detection and segmentation models on the
MinneApple dataset, emphasizing differences in accuracy,
efficiency, and applicability to real-time orchard scenarios.
Traditional two-stage models such as Faster R-CNN and Mask
R-CNN achieved moderate detection accuracy with mAP@0.5
values of 0.68 and 0.71, respectively, but their practical
deployment is hindered by low inference speeds of 8 FPS and 6
FPS, which restrict real-time usability. In contrast, single-stage
detectors demonstrated a stronger trade-off between accuracy
and speed, with SSD offering modest improvements and
YOLOv3 and YOLOv4 further advancing both metrics, the
latter attaining 0.73 mAP with 32 FPS. Among modern
lightweight frameworks, YOLOV5 excelled with a 0.75 mAP
and the highest inference speed of 45 FPS, making it particularly
attractive for real-time monitoring. Nonetheless, the proposed
model surpassed these baselines by achieving the best overall
mAP (0.76), precision (0.83), and balanced F1-score (0.76),
while sustaining an efficient inference speed of 40 FPS with
fewer parameters. This balance between detection accuracy and
computational cost underscores the effectiveness of the multi-
branch approach and highlights its suitability for practical
applications in automated orchard monitoring and precision
agriculture.

TABLE II. PERFORMANCE COMPARISON OF THE PROPOSED YOLO-LIKE MULTI-BRANCH MODEL WITH STATE-OF-THE-ART DETECTION AND SEGMENTATION
FRAMEWORKS ON THE MINNEAPPLE DATASET
Model mAP@0.5 Precision Recall F1-Score FPS Params (M)

Faster R-CNN 0.68 0.74 0.62 0.67 8 42

[baseline]

Mask R-CNN 0.71 0.77 0.65 0.70 6 44

SSD 0.64 0.69 0.58 0.63 22 34

YOLOV3 0.70 0.76 0.63 0.69 28 62

YOLOv4 0.73 0.80 0.66 0.72 32 64

YOLOvV5 0.75 0.82 0.68 0.74 45 75

YOLACT 0.72 0.79 0.65 0.71 33 50
(segmentation)

SOLOv2 0.74 0.81 0.67 0.73 18 60
(segmentation)

Proposed Model 0.76 0.83 0.70 0.76 40 12

Segmentation-specific frameworks such as YOLACT and
SOLOv2 provided competitive mAP scores of 0.72 and 0.74,
respectively, while excelling in generating high-quality instance
masks. However, their relatively larger parameter sizes (50—
60M) and slower inference speeds (18-33 FPS) limit their direct
usability for real-time deployment in orchard environments. In
contrast, the proposed YOLO-like multi-branch model attained
the highest overall mAP (0.76), with precision and recall values
of 0.83 and 0.70, respectively, resulting in the best F1-score of

0.76. Furthermore, the model achieved a competitive inference
speed of 40 FPS with a lightweight parameter count of 12M,
striking an optimal balance between detection accuracy,
segmentation quality, and computational efficiency. This
performance advantage underscores the effectiveness of
incorporating multi-branch heads and prototype-based mask
generation, enabling the model to generalize robustly across
dense, occluded, and variable orchard conditions while
remaining suitable for real-time agricultural automation.
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VII. DIsCcusSION

A. Performance of the Proposed Model

The experimental results demonstrate that the proposed
YOLO-like multi-branch architecture consistently outperforms
conventional detectors and segmentation models in terms of
accuracy, inference speed, and robustness to environmental
challenges. As presented in Table I, the model achieved an
MAP@0.5 of 0.76, surpassing Faster R-CNN, Mask R-CNN,
and SSD by a notable margin. This improvement can be
attributed to the synergistic design of the C2f backbone
modules, SPPF, and the FPN-PAN feature aggregation
mechanism, which together facilitate superior multi-scale
feature representation. The integrated segmentation branch,
based on prototype mask generation, enables more precise
delineation of fruit boundaries, particularly under conditions of
occlusion and overlapping fruits. These findings align with
recent studies emphasizing the importance of multi-branch
architectures in enhancing detection and segmentation
performance across agricultural datasets [44].

B. Robustness Under Orchard Constraints

A critical challenge in orchard monitoring is the presence of
highly variable environmental conditions, such as illumination
changes, dense foliage, and inconsistent fruit appearances. The
visualizations in Fig. 6 and Fig. 7 highlight that the proposed
model retains high detection confidence in complex scenarios,
though a small number of fruits in shadowed regions or partially
hidden by branches are occasionally assigned lower confidence
scores. Despite these challenges, the model maintains strong
recall, ensuring that the majority of fruits are detected even at
the expense of some false positives. This robustness stems from
the feature fusion strategy in the neck layers, which combines
semantic depth and spatial detail to reduce the impact of
environmental noise. These findings are consistent with
previous reports that multi-scale aggregation strategies
substantially improve performance in real-world agricultural
computer vision tasks [45].

C. Comparative Analysis with State-of-the-Art Models

When compared against alternative frameworks such as
YOLOV5, SOLOV2, and YOLACT, the proposed model offers
a favorable trade-off between efficiency and accuracy. While
YOLOVS5 achieved a slightly higher inference speed, its mAP
fell short of the proposed architecture. Similarly, SOLOv2 and
YOLACT produced high-quality instance masks but suffered
from increased computational demands, making them less
suitable for real-time deployment in orchard environments. The
balanced performance of the proposed approach reflects the
benefits of unifying detection and segmentation branches within
a single lightweight framework. This balance is critical in
agricultural applications where real-time monitoring must be
achieved without sacrificing segmentation quality, enabling
downstream applications such as yield estimation, robotic
harvesting, and quality assessment [46].

D. Implications and Future Directions

The findings of this study suggest that the proposed YOLO-
like multi-branch model provides a practical and scalable
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solution for precision agriculture, offering both real-time
detection and instance segmentation of apples in orchard
environments. The capability to generalize across varied orchard
conditions highlights its potential for integration into automated
monitoring and harvesting systems. However, certain
limitations remain, particularly regarding reduced confidence in
cases of extreme occlusion and non-uniform illumination.
Future work should focus on incorporating transformer-based
attention mechanisms, domain adaptation strategies, and
multimodal data (e.g., RGB-D or hyperspectral imaging) to
further enhance model robustness. Moreover, the integration of
lightweight optimization strategies, such as pruning or
guantization, could enable deployment on embedded
agricultural platforms. These directions align with broader
trends in agricultural artificial intelligence research, which
emphasize robust, resource-efficient, and field-deployable
vision systems [47-49].

VIII. CONCLUSION

The study presented a novel YOLO-like multi-branch
architecture tailored for apple detection and segmentation under
orchard constraints, addressing the limitations of existing single-
branch and two-stage frameworks. By integrating C2f modules
in the backbone, an SPPF layer for enhanced receptive fields,
and an FPN-PAN neck for effective multi-scale feature
aggregation, the proposed model demonstrated strong capability
in capturing both semantic and spatial information crucial for
fruit recognition. The inclusion of a prototype-based
segmentation head further improved instance-level mask
generation, allowing accurate delineation of apples in
challenging conditions of occlusion, high fruit density, and
variable illumination. Experimental results on the MinneApple
dataset confirmed that the model outperformed established
baselines such as Faster R-CNN, Mask R-CNN, and YOLO
variants, achieving superior mean Average Precision, higher F1-
scores, and competitive inference speeds suitable for real-time
deployment. Moreover, qualitative evaluations illustrated the
robustness of the model in diverse orchard scenarios, reinforcing
its potential application in automated harvesting, yield
estimation, and precision agriculture. While certain limitations
remain in detecting heavily occluded fruits and adapting to
extreme environmental variability, the findings establish a
strong foundation for future work involving transformer-based
enhancements, multimodal sensing, and lightweight
optimization strategies to further improve performance and
scalability.
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