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Abstract—5G and Internet of Things (IoT) wireless systems 

face challenges to reliable data transmission due to multipath 

fading, intersymbol interference, and the need for low-complexity 

Forward Error Correction (FEC). Conventional FEC techniques, 

such as Low-Density Parity-Check (LDPC) and turbo codes, 

provide high reliability but are unsuitable for resource-

constrained IoT devices due to high decoding complexity. The aim 

of this study is to evaluate Multi-Threshold Decoders (MTDs) 

applied to Self-Orthogonal Codes (SOCs) as a low-complexity 

FEC solution in Orthogonal Frequency-Division Multiplexing 

(OFDM) and Multiple Input Multiple Output (MIMO) systems 

with Space–Time Coding (STC). The systems are modeled under 

ITU-R (Outdoor A, TU6, RA6) and 3GPP Spatial Channel Model 

(Urban Macro/Micro) fading environments and compared with 

LDPC (WiMAX, DVB-S2) and turbo codes in terms of Bit Error 

Rate (BER), Signal-to-Noise Ratio (SNR), decoder complexity, 

antenna diversity, modulation order, and throughput. Results 

indicate that SOC+MTD outperform short LDPC and turbo codes 

under deep fading while achieving reliability comparable to long 

LDPC codes at significantly lower decoding complexity. Min-sum 

refinement and approximate Maximum-Likelihood (ML) 

detection provide up to 2 dB additional SNR gain, and 1×3 antenna 

diversity reduces required Eb/N₀ by ~7 dB at BER = 10⁻⁵. Higher-

order modulations such as 8PSK and 16APSK achieve 1.5–2× 

higher bit rates with moderate SNR penalties, while Open 

Computing Language (OpenCL) based Graphics Processing Unit 

(GPU) acceleration enables a 32-fold increase in simulation speed. 

These findings demonstrate that SOCs decoded with MTD 

represent a promising low-complexity, high-reliability FEC 

approach for 5G and IoT physical layers. 
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I. INTRODUCTION 

Wireless communication systems are constantly evolving to 
meet the needs of society and industry for fast, high-quality 
transmission of large amounts of data with minimal latency and 
seamless connectivity for billions of devices [1]. Designers must 
take into account intersymbol interference (ISI) and fading, 
which arise due to the nature of wireless channels [2, 3]. 

ISI occurs due to reflections from buildings or terrain along 
which radio waves propagate. Delays in different signal 
pathways result in significant signal overlap, which leads to 
symbol distortion and a rising Bit Error Rate (BER).  To keep 
up the required BER, it is necessary to accept a decreased data 
rate, which decreases channel capacity. 

Fading can be defined as the variation of channel power over 
time and frequency. It leads to both constructive and destructive 
interference from the various possible propagation paths 
between the transmitter and receiver antennas. It occurs on a 
spatial scale comparable in magnitude to the carrier wavelength 
and is frequency dependent (small-scale fading). Another type 
of fading, which is not frequency related, is actually caused by 
signal attenuation with distance and shadowing by large objects 
such as buildings and hills. Such large-scale fading is usually 
taken into account in base station placement plans. Variations in 
signal amplitude, connection breaks, and degradation of 
multimedia data transmission quality are caused by small-scale 
multipath fading. It is aggravated in 5G networks because of the 
high data rates and density of mobile devices supported; the use 
of millimeter-wave frequencies; spatial diversity; and 
multiplexing [4]. When a moving Unmanned Aerial Vehicle 
(UAV) connects to a ground station, radio waves bounce off of 
the ground and other objects, causing the channel to change 
quickly and the Doppler shift to happen [5]. Due the Internet of 
Things (IoT) devices have very small antennas with limited 
power, they are more vulnerable to experience fading. This is 
especially true in crowded urban or industrial areas where inter-
symbol interference is more likely to happen [6]. In wireless 
sensor networks, fading and inter-symbol interference make it 
hard to collect data because the sensors are low-power and in 
hard-to-reach places (like forests, underground, or inside 
buildings). Therefore, several types of wireless communication 
standards have important design challenges related to channel 
fading, ISI, and interference suppression. 

A variety of techniques are employed in modern wireless 
communications to enhance signal quality and reduce fading.  
Among these methods are orthogonal frequency division 
multiplexing [7, 8] combined with diversity techniques and 
beamforming, spatial diversity techniques, and Multiple Input 
Multiple Output (MIMO) systems [9, 10].  The Forward Error 
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Correction (FEC) algorithms are crucial in this context as they 
can rectify data compromised by noise, interference, and fading 
without required retransmission [11, 12]. IEEE 802.16m 
(WiMAX) [13] and EN 302 307 (DVB-S2) [14] standards 
employ the Low-Density Parity-Check (LDPC) codes with 
varying code lengths and coding rates. These codes, as well as 
turbo codes, convolutional codes, and polar codes, are required 
for battery-powered devices in wireless sensor networks, as they 
provide a balance between computational complexity and error 
correction efficiency [15]. In 5G mobile networks, polar codes 
[16] are used for control channels, for which reliability and low 
latency are important requirements [17, 18]. These codes are not 
easy to decode, but researchers are developing more effective 
algorithms [19]. 

For 6G and future communication systems, in addition to 
further optimization of Polar and LDPC codes, it is proposed to 
explore the possibilities of machine learning for adaptive 
coding, optimization of code parameters, and improvement of 
decoding algorithms, especially in dynamic and complex 
channels [20]. Another promising direction is the development 
of new code constructions, algorithms for their decoding, which 
will even better combine low latency, high performance, low 
computational complexity, optimization for hardware 
implementation and flexibility, compatibility with other 
methods of reducing fading and interference (Orthogonal 
Frequency-Division Multiplexing (OFDM), MIMO, etc.) [21, 
22]. 

In this study, the performance of iterative decoders for Self-
Orthogonal Codes (SOCs), designed based on the Massey 
threshold decoder [23] and known as Multi-Threshold Decoders 
(MTDs) [24, 25] or Multi-Stage Threshold Decoders [26, 27], is 
investigated for wireless networks. Previous studies of MTD 
performance in fading MIMO radio channels [28] demonstrated 
that MTDs can nearly optimally decode even very long codes 
with low computational complexity, providing high efficiency 
under such conditions. 

The application of MTDs for SOCs in MIMO-OFDM 
wireless channels with multipath effects is examined, along with 
approaches to improve their performance in such environments. 
Additionally, aspects of their software implementation using 
parallel computing technologies are analyzed to evaluate their 
potential for 5G/Beyond and IoT applications. 

However, despite the significant progress in modern channel 
coding, including the adoption of LDPC and turbo codes in 
WiMAX, DVB-S2, and 5G systems, their practical use in 
resource-constrained IoT and latency-sensitive applications 
remains limited by high decoder complexity and energy 
consumption. Existing research on reducing decoding 
complexity often sacrifices error correction performance or 
relies on specialized hardware platforms. Meanwhile, studies on 
threshold-based decoders, such as MTDs applied to SOCs, have 
not yet been thoroughly evaluated in real-world broadband 
fading channels (e.g., ITU-R, 3GPP SCM) combined with 
MIMO-OFDM and STC. Moreover, the feasibility of 
implementing MTDs on portable software platforms (e.g., 
OpenCL) remains underexplored. Thus, there exists a research 

gap in achieving both high reliability and low complexity 
decoding for modern wireless physical layers across diverse 
fading scenarios. This study addresses this gap by providing a 
comprehensive performance evaluation of SOC+MTD under 
realistic broadband channel models and by presenting a 
practical, software-based implementation using GPU 
acceleration. 

The main contributions of this work are as follows: 

1) A comprehensive performance evaluation of SOC+MTD 

decoding under standardized fading conditions (ITU-R Outdoor 

A, TU6, RA6 and 3GPP SCM Urban Macro/Micro) is 

conducted for the first time. The results demonstrate that 

SOC+MTD achieve BER performance comparable to DVB-S2 

LDPC (16,200 bits) while maintaining up to 10× lower decoding 

complexity and outperform turbo codes under deep-fading by 2–

3 dB. 

2) The integration of SOC+MTD with MIMO-OFDM and 

space–time coding (STC) is investigated, showing that 1×3 

antenna diversity reduces the required Eb/N₀ by approximately 

7 dB at BER = 10⁻⁵, and effective STC matrices for 2×2 and 4×4 

configurations are identified with optimized SNR-throughput 

trade-offs. 

3) The combination of multi-stage threshold decoding with 

approximate Maximum-Likelihood (ML) detection and min-

sum refinement delivers additional SNR gains up to 2 dB over 

MMSE-based schemes, without increasing decoding 

complexity. 

4) A portable OpenCL-based decoder implementation for 

SOC+MTD is developed, achieving 32× faster execution (480 

Mbps) compared to CPU, and 12× faster performance relative to 

baseline CUDA deployments, enabling feasible real-time 

processing on heterogeneous platforms. 

Despite the significant advances in channel coding 
techniques, several critical limitations remain unaddressed in 
prior work. First, while threshold-based decoders such as MTDs 
have been studied in Gaussian and AWGN channels, their 
performance under complex broadband fading environments, 
especially those combining MIMO, OFDM, and STC, remains 
insufficiently evaluated. Second, existing studies on SOC+MTD 
architectures largely lack experimental validation against 
established standards such as ITU-R and 3GPP SCM channel 
models. Third, the applicability of MTD-based solutions in 
resource-constrained and real-time communication systems has 
not been validated through portable and hardware-agnostic 
software implementations. Most prior implementations either 
rely on proprietary GPU frameworks or are constrained to FPGA 
platforms without demonstrating performance portability. 
Therefore, a clear research gap exists in the combined evaluation 
of SOC+MTD performance under realistic wireless propagation 
conditions alongside portable high-throughput decoder 
implementations. The present study addresses these gaps by 
benchmarking SOC+MTD against state-of-the-art LDPC and 
turbo codes in standardized fading environments and by 
developing an OpenCL-based parallel decoder suitable for 
heterogeneous systems, including embedded platforms. 
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The study is organized as follows: Section II reviews related 
work in the area of error correction schemes for MIMO-OFDM 
systems and their software implementations. Section III details 
the MTD encoding and decoding algorithms, providing a 
theoretical background. Section IV describes the materials and 
methods, including the simulation environment and 
experimental parameters. Section V presents the results 
covering the MTD performance in multipath channels (A), STC 
integration (B), and Graphics Processing Unit (GPU)-
accelerated simulation (C). Section VI summarizes the 
conclusions. 

II. RELATED WORKS 

This section details the outcomes of a review of relevant 
research on improving error correction and modulation 
techniques to address issues such as intersymbol interference 
(ISI) and erasures in MIMO-OFDM wireless communication 
systems, with a focus on 5G and IoT applications. 

Information transmitted over communication channels can 
be modified by noise and interference, resulting in the data 
received at the receiver side not matching the data at the 
transmitter side. To assess the reliability of data transmission, 
the performance of communication channels is determined by 
the parameters Signal-to-Noise Ratio (SNR) and BER, or Block 
Error Rate (BLER) [29]. The higher the SNR, the higher the 
communication quality and the fewer errors. The lower the BER, 
the better the quality of data transmission. Thus, the correlation 
between BER and SNR is inversely proportional and nonlinear. 
Channel coding does not change the physical SNR level of the 
channel. However, it significantly improves the efficiency of 
using this SNR. Due to its error correction capability, a channel-
coded system can achieve the same BER as a system without 
coding, but under conditions of much lower SNR. Intersymbol 
interference and fading do not reduce SNR. They are additional 
sources of distortion that lead to an increase in BER even at high 
SNR. FEC schemes encode data by adding redundant bits before 
transmission. At the receiving side, error correction is performed 
by reconstructing the corrupted data based on channel code 
decoding algorithms. Coding methods do not change SNR, but 
significantly improve the relationship between BER and SNR. 
They allow achieving much lower BER at the same SNR level, 
which makes communication more reliable and efficient. 

Channel codes have been developed to an advanced level in 
ensuring the fidelity of modern wireless communication 
systems. The evolution of forward error correction techniques 
aligns with the evolution of mobile communication systems: 
from simple convolutional codes in 2G to more robust turbo 
codes used in 3G/4G and finally special classes of LDPC and 
polar codes used in 5G. The primary task at hand is about 
discovery and fine-tuning applicable solutions related to 
massive MIMO, OFDM systems focusing on fast as well as 
efficient software plus hardware implementations of encoders 
together with decoders capable of meeting required 
performance. 

Turbo codes, LDPC, and polar codes were simulated under 
MATLAB by the authors in [30] to show performance estimates 
for these codes under the effects of intersymbol interference. It 
was a simulation of a channel model with binary phase shift 
keying Binary Phase Shift Keying (BPSK) and additive white 

Gaussian noise (AWGN). Two types of equalizers at the 
receiver front end were used by the researchers to mitigate the 
adverse effects due to ISI: ZF equalizer and Minimum Mean-
Square Error (MMSE) equalizer. Simulation results indicated 
that iterative LS estimation of channel pulse response improved 
the performance of all three codes - LDPC codes, polar codes, 
and turbo codes within the operational SNR range. The LDPC 
codes proved themselves as the best code in correcting errors 
over channels suffering from intersymbol interference. 

Marques da Silva et al. [31] investigated MIMO-OFDM 
systems with LDPC for underwater acoustic communication 
(UWA) systems. UWA face multipath propagation conditions 
[32] from reflections off the water surface and bottom as well as 
obstacles, which reduces their quality. To beat the intersymbol 
interference, the authors incorporate OFDM, single carrier 
frequency domain equalization (SC-FDE), and MIMO system 
with LDPC codes that have been used in recently developed 
generations of cellular communications known as 5G [33]. 
Simulation results for UWA communication with 4×32 MIMO 
showed the performance improvement obtained with LDPC 
codes to be in the order of 5 dB. The experiments demonstrated 
significant data transmission rate up to 125.7 kbps, as well as 
spectral efficiency up to 3.5 bps/Hz. 

Tikka and Sivashanmugam [34] proposed an error correction 
hybrid coding algorithm (EC-HCA) combining quasi-cyclic 
LDPC (QC-LDPC) and space-time block coding (STBC) for 
MIMO-OFDM systems. This approach mitigates ISI by 
leveraging STBC to avoid interference among transmit 
antennas, achieving a peak signal-to-noise ratio (PSNR) of 
10.24 dB in a 2×2 MIMO setup, outperforming methods like 
Alamouti encoding [35], polar-convolutional coding [36], and 
optimal power allocation scheme with turbo codes [37]. 

To satisfy the bandwidth starvation codes and tall decoders 
of performance based on parallel computation technologies are 
being assembled by wireless communication systems engineers 
and researchers. Along with hardware platforms (GPU, Field-
Programmable Gate Array (FPGA), SoC), the choice of 
application programming interface (API), CUDA or OpenCL is 
critical for developing high-performance encoders and decoders 
[38]. 

In [39], a LDPC decoder that can run as fast as 10 Gbps on 
a GPU device (GeForce RTX 2080Ti) has been described. 
Performance of (8448, 26,112) LDPC decoder has been tested 
under an AWGN channel with BPSK modulation. The software 
implementation of this decoder has been written in C using 
CUDA technology. SIMD instructions multiply by four the 
number of code words processed and further paralleling between 
code words. The early termination (ET) mechanism reduces the 
number of decoding iterations at high SNR, thereby almost 
doubling that channel throughput which is achievable in modern 
designs while keeping the same error correction performance 
[40-42]. 

The initial validation of FEC decoders prior to hardware 
implementation and integration with communication systems 
has consistently been hard work.  A hardware-software 
methodology utilising the Xilinx Alveo U200 device and its 
parallel execution in OpenCL has been detailed in [43].  The 
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results demonstrate significant acceleration in both the HDL 
modelling process and FPGA prototype methodologies. 

This study investigates the performance of MTDs for SOC 
in MIMO-OFDM wireless channels with multipath fading and 
ISI. Like traditional threshold decoders it is based primarily 
upon short-integer addition, i.e., check summing. Thus, the 
performance limitations of such a decoder reside only in the 
maximum data flow rate shift registers within the decoder can 
attain and how many parallel registers are being employed 
within the decoding algorithm itself. Among the quickest 
building blocks in current digital technology are single-bit 
modulo-2 adders, adders designed for small integers, and 
standard shift registers. Using this approach for hardware 
implementation of an MTD results in approximately three orders 
of magnitude higher performance relative to other algorithms 
under conditions of high noise. An MTD built upon Altera 
FPGA that has 40 decoding iterations yields about 1.6 Gbits/s 
decoding throughput [44]. In [45], the CUDA decoder gets to 
run at about 350 Mbps on NVIDIA GTX970 and 815 Mbps on 
NVIDIA GTX1080 for the code with block length equal to 1600 
symbols. 

The review is about how actively code methods against 
intersymbol interference and fading in modern wireless 
communications are developed. From simple convolutional 
codes to more complex turbo and LDPC codes, researchers 
constantly algorithmically enhance efficiency. Particularly, 
LDPC codes perform well over ISI channels. But even though 
modern decoders like LDPC do perform very well, their 
hardware implementation and complexity are an issue so that 
powerful computing platforms (GPU, FPGA) and special APIs 
(CUDA, OpenCL) have to be used. It is on this note that MTDs 
have been considered an adequate solution. Because of low 
computational complexity based on simple integer operations, 
MTDs have enormous prospects for parallel implementations 
and attaining startling performances (on the order of gigabits per 
second) on FPGAs. They become the code of preference in those 
channels with large intersymbol interference and fading since 
decoding must be done efficiently with low hardware 
implementation costs. 

III. BACKGROUND 

This section describes the encoding and decoding algorithms 
for SOCs based on threshold decoding. These algorithms enable 
low-complexity error correction, critical for high-speed wireless 
systems like MIMO-OFDM. 

A. Self-Orthogonal Codes (SOCs) and Encoder for SOCs 

Self-orthogonal codes (SOCs) are a special class of 
convolutional codes that allow to simplify the decoding process. 
Fig. 1 shows a convolutional SOC with a code rate R = 1/2, 
minimum code distance d = 5, code length n = 14, and generator 
polynomial g(x) = 1 + x + x⁴ + x⁶, and tap weight J = 4. The 
encoder processes information bit by bit. For each bit, it feeds 
the bit into a shift register. Simultaneously, it calculates a parity 
bit using a four-input semi-adder. Both the information bit and 
the calculated parity bit are then sent out. 

 

Fig. 1. Encoder scheme for convolutional SOCs. 
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Within the matrix H, consider the rows numbered 0, 1, 4, and 
6. In the first column of these rows, there is a single '1'. 
Furthermore, in all other columns of these same rows, there is at 
most one '1' present. 

The encoding process operates as follows: 

1) The shift register receives an information vector i = (i0, 

i1, …, i6, …) symbol by symbol, with i0 in cell 7, i1 in cell 6, 

and so forth. 

2) The j-th parity symbol is calculated by performing a 

cyclic shift for j between 0 and 6: 

𝑣𝑗 = ∑ 𝑖(𝑗−𝑔𝑘)𝑚𝑜𝑑7
4
𝑘=1                      (2) 

3) A parity vector v = (v0, v1, …, v6, …) is then sent over 

the channel in combination with the information vector. 

The encoding process is formalized in Algorithm 1, using 
the following parameters: 

nk - number of the information branches; 

nr - number of the parity branches; 

K - registers length (the length of the one information 
branch and the length of the one parity of branches); 

poly - generator polynomial; 

poly(u,j,p) - position of p-tap from u-th information 
branch to j-check branch 

J - array of number of the taps; 

J(i,j) - number of the taps from i-th information branch to j-
check branch; 

% - binary operator yields the remainder from the division 
of the first expression by the second; 

⨁  - addition modulo 2. 

⨁  - addition modulo 2. 
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Algorithm 1: Encoding algorithm using self-orthogonal 
codes 

Input:   Information array i[nk, K] 
Output: Check array v[nr, K] 
1 For k  0 to K-1 do 
2    For j  0 to nr-1 do 
3        v(j,k)  0 
4       For u 0 to nk-1 do 
5          For p  0 to J(u,j)-1 do 
6               v(j,k)  v(j,k) 

i(u,(poly(u,j,p)+k)%K). 
7          end 
8        end 
9    end 
10 end 

To decipher the code, the received channel vector, 
represented as Q̅ (which is the sum of the transmitted code word 
A̅ and the noise vector E̅), is multiplied by the code's checking 
matrix. This operation yields a vector known as the syndrome: 

𝑆̅ = 𝐻𝑄̅ = 𝐻(𝐴̅ + 𝐸̅) = 𝐻𝐴̅ + 𝐻𝐸̅ = 𝐻𝐸̅.       (3) 

Detailed explanations of the theoretical underpinnings and 
mathematical formulas concerning parity-check relationships 
and the orthogonality characteristic of self-orthogonal codes 
(SOC) can be found in [46, 47]. These codes will be explored in 
the subsequent sections. 

B. Threshold Decoding for Convolutional SOCs 

Threshold decoding of convolutional self-orthogonal codes 
(SOC) was proposed by J. L. Massey. This method uses the 
principle of local parity checks and voting. It is a simplified 
version of decoding that does not require complex calculations, 
such as the Viterbi algorithm [48]. The main idea of the method 
is that for each information bit to be decoded, several local 
syndromes are calculated. Due to the self-orthogonality 
property, each of these checks contains, in addition to the 
decoded bit, no more than one other error. If most of the checks 
for one bit indicate the presence of an error (i.e., their syndromes 
are nonzero), then a decision is made to correct this bit. The 
threshold decoding method is simple to implement, as can be 
seen in Fig. 2, which shows a prototype of a threshold decoder 
for convolutional SOCs with R = 1/2, minimum code distance d 
= 5, code length n = 14, tap weight J = 4 and generator 
polynomial g(x) = 1 + x + x⁴ + x⁶. 

 

Fig. 2. Threshold decoder scheme for convolutional SOCs. 

The threshold element (TE) aggregates the checks associated 
with the current decoded information bit and compares the sum 
with the threshold value. The threshold value of a given code is 
calculated by: 

𝑇 =
𝐽+1

2
            (4) 

The threshold decoding operates as follows: 

1) Defining a set of check syndromes, for i-th decoded 

information bit Si e is a set of check syndromes. Each syndrome 

in this set, Si,k , contains as an added the error associated with the 

i-th bit and, according to the self-orthogonality property, at most 

one other error. 

2) For each set of check syndromes Si, a checksum Li is 

calculated as the sum modulo 2 of all syndromes: 

𝐿𝑖 = ∑ 𝑆𝑖,𝑘𝑘            (5) 

3) The resulting checksum Li is compared with a given 

threshold T. If Li > T, it means that most of the checks indicate 

an error in the i-th information bit. In this case, a decision is 

made to correct this bit. 

4) After the bit is corrected, its value is used to recalculate 

the syndromes. 

5) The decoder moves to the next information bit and 

repeats the process. 

However, error propagation substantially hindered the 
success of this error correction technique. If the decoder 
incorrectly corrects one bit, this error can affect local checks for 
subsequent bits. As a result, instead of one erroneous bit, several 
can be incorrectly corrected, which leads to a significant 
deterioration in decoding quality. 

C. Multi-threshold Decoding for Convolutional SOCs 

Multi-threshold decoding is an iterative variant of threshold 
decoding that uses an additional difference register (D) to 
diminish the downstream effects of errors. Before decoding, the 
D vector is filled with zeros. At the first iteration, the MTD 
operates in the same way as a conventional threshold decoder. 
For i-th information symbol, it calculates the checksum Li and 
makes a decision to change this symbol if Li exceeds a given 
threshold. But the decisions made about changing bits are stored 
in the D register. Starting with the second iteration, the decoder 
begins to use the information accumulated in the D register. 
Now decisions about correcting bits are made not only on the 
basis of the current checksum, but also taking into account the 
contents of the D register. 

Fig. 3 shows the schematic of two iterations of the MTD 
operation for convolutional SOCs with R = 1/2, minimum code 
distance d = 5, code length n = 14, tap weight J = 4 and generator 
polynomial g(x) = 1 + x + x⁴ + x⁶. 

The decoding process computes, for a selected symbol ij, the 
function: 

𝐿𝑗 = ∑ 𝑠𝑝𝑝∈𝛩𝑗
+ 𝑑𝑗                  (6) 

where, dj is the difference vector element for ij, sp is the p-th 

syndrome element in the checks for ij, and j is the set of checks 
for the j-th information symbol. The number of terms equals the 
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code distance d. If Lj > T, where T = ⌊(d-1)/2⌋, then ij, its checks, 
and dj are inverted, and decoding proceeds to another symbol im, 
m ≠ j. If Lj ≤ T, the next symbol is decoded immediately. 

 

Fig. 3. Multi-threshold decoder scheme for convolutional SOCs. 

The MTD algorithm is detailed in Algorithm 2. 

One big problem with MTDs is that they tend to spread 
errors through feedback branches, which makes it more likely 
that syndrome errors and decoding failures will happen [25]. 
Mitigation means picking codes with the least amount of error 
set overlap and adjusting the parameters. Even so, MTDs are not 
very hard to decode because each step only needs simple 
additions and threshold comparisons. 

Algorithm 2: Multi-threshold decoding algorithm for self-
orthogonal codes 

Input:   Information array i[nk, K], received from the 
noisy channel  

Parity array v[nr, K] 

maxIter -number of decoding iterations 

Output:  Information array i[nk, K], after error correction 
procedure 

1 Difference vector D[nk, K] is initially filled 
with zeros 

2 For k  0 to K-1 do  

3 For j  0 to nr-1 do 

4 s(j,k) = v(j,k) 

5 For u 0 to nk-1 do 

6 For p  0 to J(u,j)-1 do 

7 s(j,k)  s(j,k)i(u,(poly(u,j,p)+k)%K). 

8 end 

9 end 

10 end 

11 end 

12 For iter  0 to maxIter do 

13 For k  K-1 to 0 do 

14 For u 0 to nk-1 do 

15 sum D(u,k) 

16 For j  0 to nr-1 do 

17 For p  0 to J(u,j)-1 do 

18 sum  sum + s(j,(k – poly(u,j,p))%K). 

19 end 

20 end 

21 If sum > T then 

  

22 i(u,k)  1 - i(u,k) 

23 D(u,k)  1 - D(u,k) 

24 For j  0 to nr-1 do 

25 For p  0 to J(u,j)-1 do 

26 s(j,(k-poly(u,j,p))%K) 1 – s(j,(k–
poly(u,j,p))%K 

27 end 

28 end 

29 endIf 

30 end 

31 end 

32 end 

For code distances d < 25 and the number of iterations of 
decoding Iter up to 50 iterations, the complexity is about: 

N1 ≈ (d + 2)(Iter + 4) 

If you can deal with a 0.1 dB energy loss, the complexity can 
be cut down to  

N2 ≈ c1 d + c2 Iter   

where, c1 and c2 are very small integers. Because of this 
simplicity, extra iterations don't have much of an effect on 
performance, which makes it possible to make software for 5G 
and IoT systems that works well. 

IV. MATERIALS AND METHODS 

A. Space-Time Coding in MIMO Systems 

The research studies the efficiency of using MTD in 
communication channels with fading when using OFDM 
technology to combat multipath. When using one transmitting 
and one receiving antenna, this approach is not efficient enough, 
since the presence of deep and long fading within one code block 
usually leads to the fact that it will contain many errors even 
after decoding. To improve the reliability of data transmission, 
it is possible to additionally use the technology of spatial 
diversity during transmission and reception, i.e., to transmit and 
receive data using several antennas (MIMO systems). In this 
case, the antennas should be spaced so far apart that the 
correlation of signals on them is minimal. Then the probability 
that all radio signals between all antennas will simultaneously 
be subject to fading is quite small. As a result, the quality of 
communication is significantly improved with significantly 
lower energy costs. It should be noted that when using MIMO 
technology, there is a supplementary avenue to realize space-
time coding. In this case, there are options for increasing the 
transmission rate (for example, when one antenna transmits one 
symbol - Spatial Multiplexing) or improving the energy 
efficiency of transmission (the signal transmitted by the antenna 
is a function of several transmitted symbols). This is determined 
by the space-time code matrix. 

Currently, there are many proven space-time coding 
matrices, including those specified by standards. For example, 
the IEEE 802.16e (WiMAX) standard provides for the use of 1, 
2, 3 and 4 transmitting antennas [49]. 

When using one transmitting antenna, space-time coding is 
not used. 
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For two transmitting antennas with STC the following 
transmitting matrices can be used: 

𝐴 = [
𝑆𝑖 −𝑆′𝑖+1

𝑆𝑖+1 𝑆′𝑖
]    Orthogonal Alamouti Matrix, code 

rate 1 

𝐵 = [
𝑆𝑖

𝑆𝑖+1
]    Non-orthogonal V_BLAST Matrix, code rate 

2 

𝐶 =
1

√1+𝑟2
[
𝑆𝑖 + 𝑗𝑟𝑆𝑖+3 𝑟𝑆𝑖+1 + 𝑆𝑖+2

𝑆𝑖+1 − 𝑟𝑆𝑖+2 𝑖𝑟𝑆𝑖 + 𝑆𝑖+3
]   Non-

orthogonal Matrix, code rate 2 

𝑟 =
−1+√5

2
, 

where, Si is the transmitted symbol of the signal 
constellation; j is the imaginary unit; ()’ is the complex 
conjugation operation. 

For four transmit antennas with STC the following transmit 
matrices can be used: 

Orthogonal, code rate 1: 

𝐴 =

[
 
 
 

𝑆𝑖 −𝑆′𝑖+1 0 0

𝑆𝑖+1 𝑆′𝑖 0 0

0 0 𝑆𝑖+2 −𝑆′𝑖+3

0 0 𝑆𝑖+3 𝑆′𝑖+2 ]
 
 
 

 

Non-orthogonal, code rate 2: 

𝐵 =

[
 
 
 

𝑆𝑖 −𝑆′𝑖+1 𝑆𝑖+4 −𝑆′𝑖+5

𝑆𝑖+1 𝑆′𝑖 𝑆𝑖+5 𝑆′𝑖+4

𝑆𝑖+2 −𝑆′𝑖+3 𝑆𝑖+6 −𝑆′𝑖+7

𝑆𝑖+3 𝑆′𝑖+2 𝑆𝑖+7 𝑆′𝑖+6 ]
 
 
 

 

𝐶 = [

𝑆𝑖

𝑆𝑖+1

𝑆𝑖+2

𝑆𝑖+3

]  Non-orthogonal, code rate 4 

To decode the STC code, a system of equations is first 
constructed 

B = G S + N, 

where, S is a column vector of transmitted signals; G is a 
matrix depending on the channel coefficients; N is complex 
Gaussian noise; B is a column vector depending on the received 
signals. From this expression, using a maximum likelihood 
detector, an array of logarithms of the likelihood ratio for the bits 
of each of the transmitted symbols is obtained. 

As an example, let us consider how the matrix G and the 
vectors S and B are formed for two transmitting antennas using 
the STC matrix A: 

𝑆 = [
𝑆1

𝑆2
], 

where, S1, S2 are signals transmitted over two-time intervals. 

𝐵 =

[
 
 
 
 
 𝑅1

(1)

𝑅1
(2)′

. . .

𝑅𝑛
(1)

𝑅𝑛
(2)′

]
 
 
 
 
 

, 

where, 𝑅𝑘
(𝑚)

 is the signal received by the k-th antenna at time 

m. 

=

[
 
 
 
 
 
 ℎ11

(1)
ℎ21

(1)

ℎ21
(2)′

−ℎ11
(2)′

… …

ℎ1𝑛
(1)

ℎ2𝑛
(1)

ℎ2𝑛
(2)′

−ℎ1𝑛
(2)′

]
 
 
 
 
 
 

, 

where, ℎ𝑘𝑝
(𝑚)

 is channel coefficient from the k-th transmitting 

to the p-th receiving antenna in the m-th time interval. 

Three demodulation algorithms were evaluated: 

𝛩̂ = (𝐺′𝐺 + 2𝜎𝑛
2𝐼)−1𝐺′𝑆 - MMSE Demodulation, where I is 

the identity matrix and 𝜎𝑛
2 is the noise variance 

𝛩̂ =
∑ 𝛩⋅𝑒𝑥𝑝{−

1

2
(𝑆−𝐺𝛩)′(𝑈)−1(𝑆−𝐺𝛩)}𝛩

∑ 𝑒𝑥𝑝{−
1

2
(𝑆−𝐺𝛩)′(𝑈)−1(𝑆−𝐺𝛩)}𝛩

 - Optimal, Maximum-

Likelihood (ML) Demodulation, where Θ is the constellation 
set. 

Approximate ML Demodulation considers only the 
constellation point closest to the received signal for soft-decision 
computation. 

Soft decisions from these algorithms are fed to the MTD for 
error correction, enhancing decoding performance in fading 
channels. 

B. Simulation Details 

Standardized wideband fading channel models were adopted 
to emulate urban, suburban, and rural deployments. The ITU-R 
channels [50] included Outdoor Channel A, Typical Urban 6 
(TU6), and Rural Area 6 (RA6). TU6 was modeled with the 
delay–power profile [0, 0.2, 0.5, 1.6, 2.3, 5] µs and [–3, 0, –2, –
6, –8, –10] dB, respectively. RA6 used equally spaced taps with 
delays [0, 0.1, 0.2, 0.3, 0.4, 0.5] µs and powers [0, –4, –8, –12, 
–16, –20] dB. To obtain the spatial structure essential for 
MIMO, the 3GPP SCM in Urban Macro (UMa) and Urban 
Micro (UMi) configurations was utilized, incorporating angle-
of-arrival/angle-of-departure spreads and realistic base-
station/user equipment (UE) heights [51, 52]. Doppler 
frequencies corresponding to speeds up to 50 km/h were applied 
to model mobility. These models were selected for their 
compatibility with WiMAX and 5G urban deployments, 
representing scenarios pertinent to IoT and low-altitude UAV 
communications characterized by multipath and spatial 
diversity. 

OFDM with two Fast Fourier transform (FFT) sizes (512 and 
1024 subcarriers) was used at the physical layer. To balance 
spectral efficiency and intersymbol interference (ISI) 
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robustness, cyclic prefix (CP) ratios of 1/8 and 1/16 were used 
in each scenario. 

Quadrature Phase-Shift Keying (QPSK), 8 Phase Shift 
Keying (8PSK), 16 Adaptive Phase Shift Keying (16APSK), 
and 16QAM constellations were considered. For each scenario, 
the constellation order was chosen to find a balance between 
spectral efficiency and implementation complexity.  In low-
SNR or high-diversity setups, QPSK was used as the base; in the 
same band-width, 8PSK was used when moderate spectral 
efficiency was needed. 16APSK and 16QAM were enabled in 
higher-throughput settings and combined with stronger channel 
coding and/or spatial multiplexing as appropriate. In SCM-
based MIMO studies, 16QAM was configured for cases 
emphasizing spatial multiplexing, whereas 16APSK was used in 
the OFDM settings following DVB-S2-compatible mapping. 

Antenna configurations (1×1, 2×2, and 4×4) were 
configured. Space–time coding (STC) employed matrices A, B, 
and C to cover orthogonal and non-orthogonal designs at 
different code rates. For 2 transmit antennas, matrix A provided 
a rate-1 orthogonal de-sign, while matrices B and C provided 
higher-rate, non-orthogonal options. For 4 transmit antennas, 
both rate-1 orthogonal and higher-rate non-orthogonal designs 
were instantiated. Selection of STC and spatial mode (diversity 
or multiplexing) depended on the target spectral efficiency and 
channel model. Receiver processing assumed per-subcarrier 
channel state information adequate for STC decoding. 

Demodulators included MMSE and approximate ML 
detectors. Detector choice was aligned with the modulation 
order and MIMO/STC setting to balance complexity and soft-
information quality. 

Coding options covered SOCs decoded via MTD, LDPC 
codes [53] from IEEE 802.16e (WiMAX) and DVB-S2, and 
turbo codes [54]. Code lengths in the study included 2,016 bits 
(WiMAX LDPC), ~10,000 bits (turbo), 16,200 and 64,800 bits 
(DVB-S2 LDPC), and SOC lengths around 36,864 and 64,800 
bits. LDPC decoding used a normalized or offset min-sum 
family implementation, while turbo decoding used max-log-
MAP. Table I shows a summary of the most important 
simulation settings and options. 

The simulation environment was built in MATLAB, with C 
employed to accelerate the performance of the encoder, decoder, 
and other complex processing blocks requiring significant 
computational resources. The simulations were done on a work 
station that met the following requirements. The simulation took 
place on a workstation that had the features shown in Table II. 

C. Software Implementation of the MTD for SOCs 

In addition to a previous implementation of a multi-threshold 
decoder (MTD) for self-orthogonal codes (SOCs) on CUDA, a 
portable OpenCL implementation is being developed for 
heterogeneous devices, including systems-on-chips and FPGA 
accelerators. The primary goal is not to outperform existing 
CUDA kernels on NVIDIA GPUs, but rather to: i) create an 
implementation functionally equivalent to the base CUDA 
version, and ii) evaluate the performance of the same multi-
threshold decoding algorithm for self-orthogonal codes on non-
NVIDIA architectures. 

TABLE I.  THE CHANNEL’S EXPERIMENTAL PARAMETERS 

Component Specification/parameter 

Channel 
ITU-R: Outdoor A, TU6, RA6.  

SCM: UMa, UMi. 

Mobility 
0–50 km/h (Doppler per carrier 

frequency). 

OFDM FFT=512 or 1,024; CP=1/8 or 1/16 

MIMO/STC 

1×1, 2×2, 4×4;  

STC matrices A (orthogonal, rate 1),  

B (non‑orthogonal, rate 2), 

C (non‑orthogonal, rate 2 or 4). 

Modulation QPSK, 8PSK, 16APSK, QAM16  

Demodulation MMSE; approximate ML 

Coding 

SOC+MTD (36,864 and 64,800 bits; ≤25 

iterations);  

LDPC (WiMAX 2016 bits; DVB‑S2 

16,200 bits, 64,800 bits);  

Turbo (≈10,000 bits). 

Decoding 

SOC (MTD, ≤25 iterations);  

LDPC (min-sum) 

Turbo (max-log-MAP) 

Code rates 

SOC R≈1/2;  

DVB‑S2 LDPC R=1/2;  

Turbo R=1/2 

TABLE II.  WORKSTATION SPECIFICATIONS 

Component Specification 

Processor Intel Core i7 4790K 

Motherboard ASUS Z97  

Graphics Card  NVIDIA Quadro K4000  

RAM Kingston 16 GB    

HDD Western Digital RE 4 TB 

The decoder is implemented in OpenCL 1.2. The OpenCL 
kernels replicate the SOC+MTD algorithmic pipeline used in the 
CUDA version, including fixed-point LLR computation, 
threshold and multi-pass updates, syndrome checks, and early 
termination logic (see Fig. 4). 

 

Fig. 4. Scheme of multi-threshold decoder using 50 concurrent threads. 

V. RESULTS AND DISCUSSION 

A. Performance of MTD for SOCs and Other Error 

Correction Methods in Multipath Channels 

This section presents simulation results evaluating the 
performance of multi-threshold decoders (MTDs) for SOCs and 
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other error correction methods in standard ITU-R and SCM 
channel models. For MTD simulations, extensive parameter 
optimization was performed, including the selection of the code, 
number of decoding iterations, threshold values, weight 
coefficients for each iteration, and the method for determining 
syndrome weights. 

Fig. 5 illustrates the BER performance of MTDs for a self-
orthogonal code (SOC) with a code rate of 1/2 and a length of 
about 32,000 bits on the signal-to-noise ratio per bit in a channel 
of the Outdoor Channel A type using different types of 
modulation (curves labeled "SOC, MTD, ..."). In this case, a 
demodulator was used that formed only hard decisions regarding 
the decoded bits (the use of soft decisions of the demodulator 
will improve the characteristics by another 1..1.5 dB). OFDM 
with 1,024 carriers with the main parameters from the IEEE 
802.16e (WiMAX) standard was also applied. The guard 
interval represented one-sixteenth of the OFDM symbol's total 
duration. Note that when using 8PSK modulation, the loss in 
energy compared to QPSK is about 3 dB, and when using 
16APSK modulation, the loss is about 5 dB. At the same time, 
these types of modulation allow increasing the bit rate of 
transmission by 1.5 and 2 times, respectively, without expanding 
the frequency band. 

The same figure shows the "turbo..." curve characteristics of 
a turbo code with a code rate of 1/2 and a code block length of 
about 10,000 bits using QPSK modulation with the same other 
channel and OFDM parameters. The constructive length of the 
component codes was equal to 4. The max-log-MAP algorithm 
for decoding the component codes was used to decode the turbo 
code. Note that the turbo code characteristics are significantly 
worse than the MTD characteristics. This is explained by the fact 
that such a code length is insufficient to cope with fading in the 
communication channel. The characteristics of a fairly short 
low-density code of the IEEE 802.16e (WiMAX) standard with 
a length of 2,016 bits with the same other parameters of the data 
transmission system are shown in Figure 5 by the "LDPC 
WiMAX, ..." curve. The min-sum decoding algorithm was used 
to decode these and other low-density codes. It should be noted 
that this code copes with fading as poorly as the turbo code. 
When using longer low-density codes of the DVB-S2 standard 
of 16,200 and 64,800 bits with a code rate of 1/2, the 
characteristics shown by the curves "LDPC DVB-S2 16,200, ..." 
and "LDPC DVB-S2 64,800, ..." are obtained, respectively. 
These codes are already capable of providing characteristics 
somewhat better than MTD. However, as already noted, the 
complexity of implementing their decoders is tens of times 
greater than that of MTD. Moreover, for self-orthogonal codes 
used in conjunction with MTD, with an insignificant increase in 
complexity (approximately 4 times), it is possible to ensure the 
characteristics shown in Figure 5 by the curves "SOC, min-sum, 
..." for the QPSK, 8PSK, and 16APSK modulation types. These 
results are better than the characteristics of the basic MTD by 
approximately 1...1.5 dB and comparable to the results provided 
by low-density codes of length 16200 of the DVB-S2 standard. 

Similar performance characteristics were observed for other 
ITU-R channel models. The main conclusions from these results 
are consistent with those already made. 

 

Fig. 5. Simulation results in ITU-R outdoor channel A. 

 

Fig. 6. Simulation results in SCM Urban Macro channel. 

Fig. 6 illustrates the behavior of these codes within the SCM 
of the Urban macro channel model (results were also obtained 
for other SCM types). The ODFM modulation parameters are 
the same as those in Figure 5.  Shown here are the characteristics 
of self-orthogonal codes for QPSK and 16 Quadrature 
Amplitude Modulation (QAM16) at receiver speeds of 0 and 50 
km/h relative to the transmitter (group of curves "SOC,...", as 
well as the characteristics of a turbo code of about 10,000 bits in 
length (curve "turbo..."), low-density codes of the DVB-S2 
standard of 16,200 (curve "LDPC DVB-S2, 16,200...") and 
64,800 (curve "LDPC DVB-S2, 64,800...") bits in length, and 
low-density codes of the 802.16e (WiMAX) standard (curve 
"LDPC WiMAX..."). Note that the movement of the transmitter 
and receiver at a speed of 50 km/h has virtually no effect on the 
obtained characteristics. And the ratio between the efficiency of 
turbo, short and long low-density codes and the multi-threshold 
decoder of self-orthogonal codes remains the same as for the 
ITU-R channel model. 

B. Application of STC with MTD in Fading Channels 

The simulation used a multi-threshold decoder with 25 
decoding iterations for the constructed self-orthogonal code with 
a code rate of R = 8/16, a code distance of 17, and a length of 
36,864 bits. OFDM multiplexing with 512 carriers was used in 
conjunction with MTD. The guard interval was 1/8 of the 
OFDM symbol length. Conventional QPSK was applied as a 
simulation. The channel simulation used the default six-path 
TU6 profile of COST recommendation 259 with a delay profile 
of [0 0.2 0.5 1.6 2.3 5] μs and a power profile of [–3 0 –2 –6 –8 
–10] dB. The maximum Doppler frequency Fd was equal to 0. 
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Fig. 7. MTD performance for different STC matrices and antenna 

configurations. 

Fig. 7 presents the MTD attributes using different numbers 
of transmit and receive antennas (1×1, 2×2, 4×4) with different 
STC matrices. Note that the energy efficiency increases 
significantly with an increase in the number of antennas. 
Furthermore, for two transmit and receive antennas with the 
same STC rate, matrix C proves to be the best. When operating 
with four transmit antennas, matrix B, for which the STC code 
rate is 2, has the best energy efficiency. When switching to 
matrix C, which allows for the transmission of twice as much 
data in the same time, the energy efficiency degrades by 
approximately 2 dB. 

Fig. 8 shows the MTD characteristics under the above-
described conditions using various demodulation algorithms. 
Using the approximate optimal algorithm (curves marked "app 
opt"), the results are almost 2 dB better than those using the 
MMSE algorithm. This means that the quality of soft decisions 
under these conditions greatly influences the effectiveness of the 
error correction scheme. 

 

Fig. 8. MTD performance for different demodulation algorithms. 

Fig. 9 evaluates MTD performance across different channel 
profiles. In addition to TU6, the six-beam RA6 profile from the 
same COST 259 recommendation was used here. It is 
characterized by a delay profile of [0 0.1 0.2 0.3 0.4 0.5] µs 
(equidistant beams) and a power profile of [0 -4 -8 -12 -16 -20] 
dB. The MMSE algorithm was used for demodulation. Note that 
the reflected beams have lower power than in TU6. As a result, 
the efficiency of the data transmission system for such a channel 
is approximately 2 dB worse than for TU6. 

 

Fig. 9. MTD performance for different channel profiles. 

The results of the comparison of the efficiency of the SOC 
with MTD and LDPC codes for the UMi SCM scenario using 
MIMO are presented below. To combat multipath, OFDM 
multiplexing with the parameters discussed earlier was again 
used. The noise-correcting codes were a self-orthogonal code 
with a code rate of 1/2 and a length of 32,768 bits, decoded using 
MTD, and an LDPC code of the DVB-S2 standard with a code 
rate of 0.44 and a length of 16,200 bits. In Fig. 10, the curves 
"SOC, 1x1, QPSK" and "LDPC, 1x1, QPSK" present the 
dependences of the decoding error probability of the self-
orthogonal code and the LDPC code on the signal-to-noise ratio 
per bit using QPSK modulation. In this case, a demodulator was 
used that generates only hard decisions regarding the decoded 
bits. It should be noted that these codes provide approximately 
the same data transmission reliability. When switching to two 
transmit and two receive antennas, the system's energy 
efficiency decreases slightly (curves "SOC, 2x2, QPSK" and 
"LDPC, 2x2, QPSK"), but the bit rate doubles without 
expanding the used bandwidth. 

Note that for MTD, the same increase in data rate is achieved 
by switching to QAM16 modulation instead of QPSK, but the 
efficiency of such a system (curve "SOC, 1x1, QAM16") is 
almost 2 dB worse than the MIMO variant. It should also be 
noted that the effect of using MIMO technology for self-
orthogonal codes was greater than for LDPC codes. If the bit rate 
does not increase (using a single transmit antenna and QPSK 
modulation), using multiple receive antennas can significantly 
improve data transmission reliability. An example of the 
characteristics of such systems for two and three receiving 
antennas is shown in Fig. 10 by the curves "SOC, 1x2, QPSK" 
and "SOC, 1x3, QPSK". The gain compared to one receiving 
antenna with a target decoding error probability per bit of 10−5 
was 4 and 7 dB, respectively. The same improvement is obtained 
when using LDPC codes (curve "LDPC, 1x2, QPSK"). 

From Fig. 10, it also follows that, when attempting to further 
increase the data transmission rate due to MIMO, the MTD 
characteristics deteriorate significantly (curves "SOC, 4x4, 
QPSK" and "SOC, 2x2, QAM16"). Therefore, such options for 
increasing the transmission rate are impractical to use in 
practice, or it is necessary to use additional methods to improve 
the characteristics. 
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Fig. 10. Simulation results in the SCM urban micro channel with MIMO. 

C. GPU-Accelerated Simulation Performance 

A data-parallel scheme [55] is adopted in which each 
independent codeword is processed end-to-end by a single 
OpenCL work-item. All MTD stages— LLRs (Log-Likelihood 
Ratios) calculation, threshold tests, bit-updates, syndrome 
checks, and early stopping—are executed sequentially within 
that item, preserving the required ordering without cross-item 
synchronization. Parallelism is exposed by launching many such 
items concurrently, one per dataset. This maximizes device 
occupancy and eliminates global synchronization overhead, 
while local memory buffers are used to stage per-codeword data 
and tables. 

kernel decode_mtd(codeword_i): 

    // local buffers for the i-th code word 

    preload_indices_to_local() 

    llr = load_llr_i() 

    for iter in 1..I_max: 

        apply_thresholds(llr) // sequential steps of the MPD 
algorithm 

        update_bits_and_metrics() 

        if check_syndrome(): break 

    store_decision_i() 

This approach achieved a simulation throughput of 300 kbps 
(see Table III), which, however, is insufficient. 

Based on these unsatisfactory results, a study was conducted 
to identify the bottleneck limiting simulation throughput. This 
bottleneck turned out to be memory access. This is due to the 
specific memory architecture in OpenCL, where the data being 
processed can be stored in local or global memory [56]. Due to 
architectural features, accessing global memory takes 
significantly longer than accessing local memory. It was 
hypothesized that reducing global memory accesses and 
increasing local memory utilization would decrease the 
execution time of the encoder and decoder operations. 

To mitigate the memory-access bottleneck identified in the 
OpenCL implementation, the data-parallel SOC+MTD scheme 
is reorganized to maximize local-memory utilization. Each 

work-group processes a batch of K codewords: LLRs and index 
tables are fetched from global memory using coalesced vector 
loads and staged in double-buffered local memory (A/B). All 
MTD iterations then run in-place on local buffers; only final 
decisions and optional statistics are written back to global 
memory. Where supported, subgroup collectives 
(ballot/shuffle/pop count) accelerate thresholding and 
reductions. This scheme minimizes global-memory traffic, 
reduces synchronization overhead, and improves device 
occupancy. 

TABLE III.  DECODING SPEED OF MULTI-THRESHOLD DECODERS FOR 

SOCS 

Ref. 
Device 

(GPU/CPU) 

Compute 

model 

Throughput 

[Mbit/s] 

[25] 
Intel Core i7-

4770 (4 cores) 

Baseline (no 

GPU) 
15  

[45] 

NVIDIA 

GeForce GTX 

970 

Standard GPU 

pipeline: CUDA 

kernels 

350 

[45] 

Intel Core i7 

4770K NVIDIA 

GeForce GTX 

1080 

Standard GPU 

pipeline: CUDA 

kernels 

815 

proposed 

Intel Core i7 

4790K NVIDIA 

Quadro K4000 

OpenCL kernels 

(data-parallel) 
120 

proposed 

Intel Core i7 

4790K NVIDIA 

Quadro K4000 

OpenCL kernels 

(local-memory 

optimized) 

480 

The proposed approach maximized GPU resource 
utilization, increasing the data transmission system simulation 
speed on a PC with an NVidia Quadro K4000 GPU graphics 
accelerator to 120 Mbps. As Table III shows, the OpenCL 
implementation with minimized global memory access resulted 
in an 8-fold increase in throughput compared to the CPU 
implementation, but significantly less than the parallel CUDA 
decoder. 

The OpenCL implementation was designed primarily for 
portability, including deployment on OpenCL-enabled FPGAs, 
rather than for achieving performance levels comparable to the 
CUDA model. OpenCL remains the preferred method when 
cross-vendor support and FPGA portability are required, 
providing a unified approach for hardware implementation of 
channel coding systems. 

The simulation results demonstrate that the MTD applied to 
SOCs exhibits competitive performance compared to traditional 
LDPC and turbo codes, especially under challenging multipath 
fading conditions. For instance, as depicted in Fig. 5, the 
SOC+MTD configuration achieves a BER of 10⁻⁵ at 
approximately 2 dB lower SNR compared to the turbo code of 
similar rate and block length. This is primarily due to the 
iterative threshold correction mechanism, which effectively 
adapts to rapidly varying error patterns caused by fading. 

In contrast, short-length LDPC codes, such as the WiMAX-
standard 2016-bit implementation, suffer from significant error 
floors in deep fade conditions. Even with powerful min-sum 
decoding and QPSK modulation, they are unable to correct 
clustered errors induced by delay spread and Doppler shift. 
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Longer LDPC codes, such as DVB-S2 (16200 bits, 64800 bits), 
achieve better BER performance, approaching that of 
SOC+MTD. However, they require significantly higher 
decoding complexity and memory bandwidth, making them less 
feasible for real-time or IoT scenarios. 

Furthermore, integrating SOC+MTD with approximate ML 
demodulation results in performance gains of up to 2 dB over 
MMSE-based demodulation (see Fig. 8). This improvement 
highlights the benefit of combining soft-decision observations 
with MTD iterations, especially in high-diversity MIMO setups. 

The introduction of antenna diversity (1×3) shows a 
significant reduction in required Eb/N₀ (≈7 dB at BER = 10⁻⁵), 
demonstrating SOC+MTD’s effective exploitation of spatial 
redundancy. In contrast, increasing modulation order from 
QPSK to 16APSK yields a spectral efficiency boost of 2×, with 
only moderate SNR penalties (~4–5 dB). This confirms the 
scalability of SOC+MTD under different throughput 
constraints. 

Finally, the OpenCL-based GPU implementation accelerates 
MTD decoding by a factor of 32× (480 Mbps) compared to 
CPU-only processing (15 Mbps). Unlike specialized CUDA 
solutions, the portability of the OpenCL approach enables 
deployment across heterogeneous devices, including embedded 
SoCs, making SOC+MTD a practical high-throughput solution 
for 5G and IoT platforms. 

In summary, the presented results confirm that SOCs 
decoded using MTD offer a robust and computationally efficient 
alternative to conventional FEC methods under realistic wireless 
conditions. Their low complexity makes them especially 
suitable for IoT and real-time communication systems where 
hardware resources and latency budgets are constrained. 

A comparative analysis clearly demonstrates that 
SOC+MTD outperforms short-length LDPC and turbo codes in 
fading conditions, while achieving DVB-S2 equivalent 
reliability with significantly lower decoding complexity. 

VI. CONCLUSION 

This study presents a comprehensive performance 
evaluation of Multi-Threshold Decoders (MTDs) for Self-
Orthogonal Codes (SOCs) applied to modern broadband 
wireless communication systems, including OFDM and MIMO 
configurations with Space–Time Coding. Extensive simulations 
across standardized fading channel models (ITU-R and 3GPP 
SCM) demonstrate that SOCs decoded using MTD achieve a 
level of reliability comparable to state-of-the-art LDPC and 
turbo codes, while requiring significantly lower decoding 
complexity. This advantage makes MTD particularly suitable 
for resource-constrained 5G and IoT devices. 

The results further support the applicability of MTDs in 
high-mobility scenarios (up to 50 km/h) without significant 
performance degradation and demonstrate sensitivity to 
modulation and antenna diversity choices, enabling system 
designers to make informed trade-offs between energy 
efficiency and transmission rate. The integration with 
approximate Maximum-Likelihood detection and min-sum 
refinement leads to an additional SNR gain of up to 2 dB, while 
using a 1×3 antenna configuration can reduce the required Eb/N₀ 

by approximately 7 dB at a BER of 10⁻⁵. GPU-based parallel 
implementation leveraging OpenCL achieved a 32-fold 
improvement in simulation throughput, demonstrating the 
potential of software-based MTD acceleration for real-time 
applications. 

However, the study is limited to static channel assumptions 
within standard models, and real-world scenarios with non-
stationary or highly nonlinear interference environments were 
not considered. Furthermore, only conventional GPU 
architectures were evaluated for software acceleration; FPGA 
and heterogeneous SoC platforms remain unexplored. 

Future research will focus on investigating hybrid 
SOC+MTD designs with machine learning-based decoding 
adaptation for dynamic IoT networks. 

Overall, the findings underscore that MTD-enabled SOCs 
are a promising candidate for low-complexity, high-reliability 
forward error correction in next-generation wireless systems, 
especially where computational and energy constraints are 
critical. 
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