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Abstract—In live-line work scenarios, it is essential for 

workers to wear electric field shielding clothing to prevent fatal 

accidents caused by electric shock. Accordingly, this study 

developed an electric field shielding clothing detection system for 

live-line working environments based on the YOLOv11 

framework. Previous research has explored intelligent wearable 

detection systems for personal protective equipment such as 

safety helmets. However, compared to safety helmets, electric 

field shielding clothing comes in more varieties and is more 

challenging to identify. To address the challenges mentioned 

above, this study constructed a dual-layer detection model for 

operator detection and electric field shielding clothing detection 

in live-line work scenarios. The first layer employs an improved 

detection transformer (IDETR) to locate operators within the 

environment. The second layer, based on the YOLOv11 

framework integrated with recursive gated convolution 

(GnConv), is designed to classify three types of personal 

protective equipment, including electric field shield clothing, 

electric field shield masks, and electric field shield gloves. Finally, 

the experimental results showed that compared with the DETR, 

the accuracy of the IDETR-based worker localization model 

improved by 2.29%. The accuracy of the GnConv-based 

YOLOv11 framework in the electric field shielding clothing 

detection task reaches 90.40%. 

Keywords—Detection transformer; recursive gated convolution; 

YOLOv11; personal protective equipment; live-line work scenarios 

I. INTRODUCTION 

Electric field shielding clothing (EFSC) protects workers 
from high-voltage electric fields, induced currents, and 
potential injuries caused by contact currents. In live-line 
working environments, failure to use EFSC correctly or at all 
can expose personnel to life-threatening risks. Therefore, the 
development of a real-time monitoring system for EFSC can 
effectively prevent workers who are not wearing or improperly 
wearing the protective gear from entering hazardous areas or 
performing high-risk operations [1]. In this study, the real-time 
detection system for EFSC involves using visual cameras and 
image recognition technology to detect whether workers in live 
line work scenes are wearing EFSC in a standardized manner. 
The system primarily consists of two modules: the staff 
positioning and the EFSC wearing detection module. For the 
staff positioning module, after the visual camera captures 
images of the staff, this module functions to accurately identify 
both personnel and the working environment. The EFSC 
wearing detection module utilizes the output from the 
positioning module to detect specific types of personal 

protective equipment, including electric field shield clothing, 
masks, and gloves. 

In the context of live-line maintenance, accurate detection 
of personnel presents several challenges. First, complex 
environmental backgrounds, such as interference from 
transmission towers and other equipment, adversely affect 
target localization. Second, the workers themselves, as the 
targets of detection, exhibit considerable complexity. Their 
postures are non-standard and highly dynamic, and they may 
occlude one another [2]. The detection of EFSC is critical to 
ensuring the safety of live-line work, yet this task also involves 
numerous technical challenges in practical applications. Firstly, 
the material of the EFSC has a metallic texture and typically 
appears in silver or black. These colors are prone to strong 
reflections or shadows under certain lighting conditions, which 
can blur visual features such as the edges of the clothing. This 
directly increases the difficulty of image segmentation and 
feature extraction in the EFSC wearing detection module. 
Moreover, some critical safety items, such as electric field 
shielding gloves and protective eyewear, occupy only a small 
area within captured images. Their subtle features are easily 
overlooked during object recognition, leading to missed 
detections or misidentification. Additionally, the cost of 
acquiring real-world live-line maintenance images is high, and 
it is challenging to accurately annotate boundaries of occluded 
or reflective areas on EFSC in the images. This issue directly 
impacts the performance of model training [3]. 

Currently, mainstream object detection methods include 
transformer-based and convolutional neural network (CNN)-
based approaches. CNN-based methods for staff localization 
require pre-defined anchor boxes of various sizes and aspect 
ratios for all images in both the training and validation sets, 
resulting in a more complex workflow. In contrast, 
transformer-based object detection methods significantly 
reduce the need for manual prior knowledge and tedious image 
preprocessing [4]. In addition, compared to CNN-based 
methods for worker localization, the transformer-based model 
demonstrates superior performance in detecting occluded 
objects [5]. Therefore, to address the object detection task in 
live-line work scenarios, this study introduces an improved 
version of the detection transformer (DETR) model, with the 
aim of enhancing the detection of transmission line 
maintenance workers in complex environments. However, the 
DETR model also requires a substantial number of training 
epochs to converge and exhibits poor performance in small 
object detection due to its high sampling rate [6]. Therefore, for 
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the task of classifying three types of personal protective 
equipment, electric field shielding clothing, electric field 
shielding masks, and electric field shielding gloves, an 
improved YOLOv11 framework was developed. 

In summary, this study proposes a dual-layer detection 
model to enhance the safety management of operators during 
live-line work. The first layer consists of a staff positioning 
module based on an improved DETR model, while the second 
layer comprises a personal protective equipment detection 
module based on an enhanced YOLOv11 architecture tailored 
for electric field shielding gear. Specifically, a deformable 
attention (DA) module has been incorporated into the DETR 
model to improve both its convergence speed and object 
detection accuracy. Additionally, the recursive gated 
convolution (GnConv) module has been integrated into the 
YOLOv11 framework to boost its performance in detecting 
small objects. The overall structure of the proposed dual-layer 
safety management detection model for transmission line 
maintenance operators is illustrated in Fig. 1. The main 
contributions of this study are summarized as follows: 

 A dual-layer detection model for safety management of 
workers in live-line working scenarios has been 
proposed, which effectively integrates the tasks of 

identifying electric field shielding equipment and 
locating operators. 

 The DA module is introduced into the DETR model to 
improve the accuracy of target detection for operators in 
live-line working scenarios. 

 The GnConv module is embedded into the YOLOv11 
architecture, aiming to improve the feature extraction 
and classification capabilities of the YOLO architecture 
for small target objects such as electric field shielding 
clothing. 

 Experiments were conducted based on image 
information collected from real live-line working 
scenarios, and the results showed that the improved 
YOLOv11 framework achieved a detection accuracy of 
92.61% in the electric field shielding clothing detection 
task. 

The remaining sections of this study are arranged as 
follows: Section II reviews the work related to personal 
protective equipment testing. Section III describes the 
proposed object detection framework. Section IV presents the 
results and discussion. Finally, Section V provides a summary 
of the entire study. 

 

Fig. 1. The proposed dual-layer detection model for operator safety management in live-line work. 
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II. RELATED WORK 

The double-layer target detection model proposed in this 
study, designed for the safety management of workers in live-
working scenarios, comprises two main tasks: worker 
positioning and electric field shielding equipment 
identification. Accordingly, a review of related work has been 
conducted, covering transformer-based image processing 
models and object detection frameworks based on YOLO. 

A. Detection Transformer 

In [7], the authors reviewed transformer-based image 
processing models. Specifically, it includes the basic 
architecture, core mechanisms, and key improvements and 
variations of transformer-based image processing models in 
different image processing tasks. In addition, this study 
comprehensively summarizes the benefits of transformers 
compared to traditional CNNs in processing visual data. In [8], 
the authors improved the DETR model and designed a 
lightweight transformer-based object detection model. In this 
study, an encoder-free neck (EFN) architecture was designed to 
reduce the computational overhead of traditional DETR models 
during training. The experimental results show that the 
proposed lightweight DETR model improves operational 
efficiency through structural optimization while maintaining 
end-to-end detection advantages, achieving a balance between 
high efficiency and detection accuracy. 

In [9], the authors improved the DETR object detection 
framework to handle object detection tasks in pathological 
images. In response to the challenges of small cell scales and 
dense distribution in organizational images, this study 
optimized the feature extraction and matching mechanism of 
DETR, significantly improving the recall and robustness of 
mitotic cell recognition. Choi et al. focused on object detection 
in dense scenes and proposed a DETR model based on 
recurrent [10]. This model enhances DETR's ability to 
distinguish occluded targets by introducing a recursive 
mechanism, and experiments were conducted on a typical 
dense target dataset. The results showed that the DETR model 
based on recurrent improved the detection accuracy of 
traditional DETR models in high occlusion situations, 
providing a foundation for the improvement of DETR models. 

Ghahremani et al. proposed a Transformer-based organ 
detection method aimed at improving the accuracy and 
robustness of organ localization in medical images [11]. This 
model introduces a deformable attention mechanism in the 
DETR framework to enhance the feature capture ability of 
classical DETR models for organs of different sizes and 
shapes, solving the problem of low target localization accuracy 
in traditional CNN-based detection methods in complex 
medical images. In [12], the authors combine the Mamba 
model with transformer for small object detection tasks, aiming 
to leverage the efficiency advantage of Mamba in long 
sequence modeling and enhance the ability to extract multi-
scale features of small objects. The final results indicate that 
the Mamba-based transformer model significantly improves 
detection accuracy while maintaining low computational 
overhead. In [13], the authors proposed an end-to-end rotating 
object detection transformer framework. This framework 
overcomes the challenge of traditional horizontal detection 

boxes being sensitive to directional changes by designing an 
angle aware query mechanism and a rotation box alignment 
loss function. 

In [14], the authors also improved the DETR model, aiming 
to enhance the detector's discriminative ability in complex 
backgrounds. The improved DETR model can more accurately 
distinguish aircraft targets from background interference by 
introducing a loss function of structural perception. In [15], the 
authors studied the synchronization loss optimization problem 
in rotation and orientation object detection based on the DETR 
model. This study proposes a universal synchronization 
optimization strategy to improve training stability. The 
experimental results show that the proposed method effectively 
alleviates the conflict between angle regression and 
classification tasks by unifying different loss calculation 
methods. 

B. YOLO-Based Target Detection 

In [16], the authors explore the application of YOLOv11 in 
urban map drawing. This study introduces the advanced real-
time object detection model YOLOv11 into complex urban 
environments, aiming to enhance the automatic recognition and 
annotation capabilities of urban features. Perikamana 
Narayanan et al. designed a face detection and counting system 
based on YOLOv9, focusing on the confusion between human 
and animal faces and the interference of complex imaging 
environments on the accuracy of object detection models [17]. 
Finally, the experimental results demonstrate that the YOLOv9 
model can maintain high recognition accuracy and robustness 
under complex conditions. Alsabei et al. applied YOLOv9 to 
the field of security, aiming to solve the real-time detection 
task of abnormal pedestrian behavior [18]. This study focuses 
on the characteristics of dense crowds and complex behavioral 
patterns in high-risk scenarios, and uses YOLOv9 to detect 
abnormal activities that may cause danger in real time. Khan et 
al. utilized an optimized YOLOv9s model for real-time road 
damage detection [19]. This study enhanced the performance 
of YOLOv9s through optimization and fusion techniques of 
object detection models, thereby achieving real-time detection 
of defects such as road surface damage and cracks. 

In [20], the authors proposed a small object detection 
model in remote sensing images based on YOLOv10, aiming 
to solve the problem of low resolution and weak features of 
small objects in remote sensing images. This study 
significantly improved the recognition accuracy and recall rate 
of YOLOv10 for small objects in complex remote sensing 
scenes by improving it. In [21], the authors propose an 
intelligent psyllid monitoring system based on YOLOv10, 
which combines the YOLOv10 model with a visual 
transformer for detecting small pest targets that are difficult to 
detect in agricultural scenes. In [22], the authors proposed a 
deep-sea fish detection model based on YOLOv10. This model 
has the advantages of lightweight and high detection accuracy. 
Overall, the model developed in this study effectively 
addresses challenges such as dim lighting, complex 
backgrounds, and diverse forms of fish targets in deep-sea 
exploration. In [23], the authors developed a traffic police 
gesture recognition framework based on the YOLO model. 
Based on the latest YOLOv11 framework, the YOLOv11 
framework was improved to address the challenges of fast 
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dynamic changes in traffic police gesture actions and high 
background noise interference in traffic command scenarios. 

In [24], the authors developed a method combining faster 
region-based convolutional neural networks (Faster R-CNN) 
with model driven clustering for special object detection 
problems with large aspect ratios. This study effectively 
addresses the challenge of poor detection performance of 
general object detection models for unconventional shaped 
objects. In [25], the authors integrate real-time DETR (RT-
DETR) and ByteTrack algorithm to construct a multi vehicle 
tracking and counting framework for daily traffic flow survey. 
This study demonstrates the application effectiveness of 
Transformer based detectors in practical engineering. In [26], 
the authors developed a precise reading algorithm for 
substation pointer instruments based on RetinaNet. By 
improving the RetinaNet detection network, it effectively 
solved the reading difficulties caused by uneven lighting, dial 
fouling, and small pointer shapes in actual industrial 
environments. 

III. THE PROPOSED TARGET DETECTION MODEL 

The proposed live-line work scenario operator security 
management model mainly consists of two components. The 
first component involves the use of the deformable attention-
based DETR (DA-DETR) for the operator localization task. 
The second component integrates GnConv and YOLOv11, 
aiming to detect whether workers are wearing electric field 
shielding clothing according to standards. 

A. The Deformable Attention-based DETR 

Operator localization in live working scenarios is a 
challenging object detection task. Specifically, the background 
of live working sites is complex, with interferences such as 
wires, insulators, and towers. In addition, the varying postures 
of operators result in significant differences in target scale. To 
address the above challenges, the DA mechanism has been 
introduced into the DETR model, aiming to improve the 
accuracy of object detection in classical DETR models. Fig. 2 
illustrates the DA mechanism. The input data for the operator 
positioning system based on DA-DETR is usually real-time 
video streams collected by visual sensors from live work sites. 
In the encoding stage, the Transformer encoder utilizes the DA 
mechanism to enhance and extract the global features of live 
working site images. In the decoding stage, a set of learnable 
object queries interact with image features through the DA 
mechanism, enabling them to adaptively focus on the most 
informative key regions and accurately locate potential targets. 

In the DA-DETR-based operator positioning system, the 
DA mechanism uses a multi-head attention model and a 
deformable attention model. The definition of the multi-head 
attention model is as follows [see Eq. (1)]: 

  , , *, h i e h e
i e h

e E
h H

A W DMHAtten D W




    
  


      (1) 

where, i is the i -th element of the feature matrix. eD is the

e -th vector of the input data. h H is the attention head. hW

and *hW are learnable weight parameters. 
, ,h i eA is the attention 

weight. 

The constraint conditions of
, ,h i eA are defined as Eq. (2): 

, , 1h i eA         (2) 

For a given feature map eD , generate a point eB as a unified 

grid reference. The definition of deformable attention model is 
as follows [see Eq. (3)]: 
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where,
, ,h i eB is the offset of point eB . 

 

Fig. 2. The deformable attention (DA) mechanism. 

B. The GnConv-Based YOLOv11 

The electric field shielding clothing wearing detection 
system uses a hybrid GnConv and YOLOv11 (GnConv-
YOLOv11) framework, which embeds the GnConv module 
into the architecture of YOLOv11. The advantage of GnConv 
lies in its ability to establish global context dependencies based 
on super large convolutional kernels, enabling CNN to detect 
the global nature of images. The GnConv-YOLOv11 
framework can capture the subtle features of small targets such 
as electric field shielding goggles and gloves, as well as their 
correlation with live working environments, significantly 
improving the ability to discover and identify small targets in 
the context of live-line working. After the DA-DETR model 
locates the workers, the electric field shielding clothing 
wearing detection system uses a backbone convolutional 
network embedded with GnConv to extract the features of the 
electric field shielding clothing. Then, the neck network 
integrates multi-scale features, and finally the detection head 
outputs accurate classification results. Fig. 3 shows the 
structure of GnConv. 

The core operation of GnConv is gated Convolution, which 
is defined as  .GOConv in this study. When the input feature is 

𝐿 ∈ ℝ𝐶1×𝐶2, the output y of  .GOConv operation is defined as 

Eq. (4): 
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𝑦̂ = 𝜙𝑜𝑢𝑡𝑝𝑢𝑡(𝑈1) ∈ ℝ𝐶1×𝐶2                           (4) 

where,  .output is a linear projection operation. 1U is the 

convolution result of the depth wise operation of the electric 
field shielding clothing wearing detection system. 

1U is defined in Eq. (5): 

𝑈1 = 𝑓(𝑅0) ⊙ 𝑈0 ∈ ℝ𝐶1×𝐶2                  (5) 

where,  .f is the depth-wise convolution operation. 0R and

0U are the features of input𝐿 ∈ ℝ𝐶1×𝐶2 , and the calculation 

equation is as follows [see Eq. (6)]: 

[𝑅0 ∈ ℝ𝐶1×𝐶2, 𝑈0 ∈ ℝ𝐶1×𝐶2] = 𝜙𝑖𝑛(𝐿) ∈ ℝ𝐶1×2𝐶2      (6) 

where,  .in is a linear projection operation. 

Therefore, the definition of  .GOConv operation is Eq. (7): 

𝑦̂ = 𝐺𝑂𝐶𝑜𝑛𝑣(𝐿 ∈ ℝ𝐶1×𝐶2)                          (7) 

 

Fig. 3. The structure of recursive gated convolution (GnConv). 

IV. RESULTS AND DISCUSSION 

The DA-DETR model is used for operator object detection 
in live-line work scenarios. For the operator object detection 
model, the operator image in the live-line work scenario is used 
as input. 9100 images of operators in live-line work scenarios 
were used as samples for the training and validation sets. The 
epochs of the DA-DETR based operator object detection model 
are set to 24, with 1000 steps per epoch. During the training 
process, when the confidence level of the identified personnel 
within the bounding box is greater than 70%, it is defined as a 
successful detection of the personnel. The output of the 

operator object detection model, the range of the bounding box, 
is used as the input for the electric field shielding clothing 
wearing detection system. The electric field shielding clothing 
wearing detection model aims to detect three types of electric 
field shielding equipment, as shown in Fig. 4. Table I 
introduces three types of electric field shielding equipment. 

 

Fig. 4. Personal protective equipment in live-line work scenarios. 

TABLE I.  THREE TYPES OF ELECTRIC FIELD SHIELDING EQUIPMENT 

Illustration Name Category 

Fig.4. (a), (b), and (c) Electric field shield clothing 3 

Fig.4. (d), (e), and (f) Electric field shield gloves 3 

Fig.4. (g), (h), and (i) Electric field shield mask 3 

 

Fig. 5. The loss function curve of operator positioning model based on DA-

DETR. 

Due to the fact that the training process of machine learning 
is essentially random, in order to verify the robustness of the 
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DA-DETR model and GnConv-YOLOv11 model, each model 
was trained 15 times, separately. The loss functions of the DA-
DETR model and GnConv-YOLOv11 model during 15 
training sessions are shown in Table II. 

TABLE II.  THE LOSS FUNCTIONS OF THE DA-DETR MODEL AND 

GNCONV-YOLOV11 MODEL 

Loss function 
Training loss Validation loss 

DA-DETR 
GnConv-

YOLOv11 
DA-DETR 

GnConv-

YOLOv11 

Average 0.1762 0.1316 0.3415 0.2151 

The upper bound 

of 95% C.I. 
0.2278 0.1987 0.4130 0.2909 

The lower bound 

of 95% C.I. 
0.1246 0.0643 0.2700 0.1349 

 

Fig. 6. The loss function values of the DA-DETR model recorded during 24 

epochs of training. 

Fig. 5 shows the loss function of the operator localization 
model based on DA-DETR. Fig. 6 shows the average loss 
function of the operator localization model based on DA-
DETR over 24 iteration cycles. To demonstrate the 
effectiveness of the DA-DETR model in handling operator 
localization problems, a comparison was made between the 
DA-DETR model, R-CNN [24], and DETR model. Fig. 6 also 
shows the comparison results. 

 

Fig. 7. The loss function curve of the GnConv-based YOLOv11. 

Table III shows the results of DA-DETR, YOLOv9, 
YOLOv7, Fast R-CNN, R-CNN, and DETR [14] models in 
handling operator localization tasks in the context of live 
working. Each model is evaluated from six perspectives, 
including training loss, validation loss, recall rate, precision, 
accuracy, and F1-Score. The training loss of the operator 
localization model based on DA-DETR is 0.1763. The DA-
DETR model has the lowest loss, with a 2.54% reduction in 
training loss compared to the YOLOv9 model. The validation 
loss of the operator positioning model based on DA-DETR is 
0.3415, which is 3.53% lower than that of the YOLOv9 model. 
This indicates that the DA-DETR-based operator localization 
model learns most effectively from the training data, with its 
internal parameters efficiently capturing features from images 
of operators in live-line work scenarios. Moreover, the DA-
DETR model’s lower validation loss compared to all other 
models demonstrates that it possesses the strongest 
generalization capability. For the precision indicator, the 
accuracy of the operator positioning model based on DA-
DETR is 0.9083, while the best-performing comparison model, 
YOLOv7, is 0.9013. Compared with the YOLOv7 model, DA-
DETR achieved a performance improvement of 0.78% in 
accuracy. This improvement indicates that DA-DETR has a 
slight advantage in reducing false positives for operators in the 
context of live working, and the prediction results of DA-
DETR are more reliable. 

TABLE III.  THE RESULTS OF OPERATOR POSITIONING MODELS 

Algorithm Training Loss Validation Loss Recall Precision Accuracy F1-Score 

DA-DETR 0.1763 0.3415 0.9194 0.9083 0.9118 0.9118 

YOLOv9 0.1809 0.3540 0.9080 0.9020 0.9050 0.9050 

YOLOv7 0.1952 0.3785 0.8998 0.9013 0.9043 0.9043 

Fast R-CNN 0.1829 0.3617 0.9050 0.8976 0.9013 0.9013 

R-CNN 0.1967 0.3897 0.8955 0.8871 0.8913 0.8913 

DETR 0.2132 0.3943 0.8902 0.8917 0.8909 0.8909 
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Table III also shows the recall rate, accuracy, and F1-score. 
In this study, the recall rate is the ratio of successful predictions 
made by the operator localization model among all real 
operator samples. A high recall rate means that the operator has 
a low rate of missed detections in the localization model. The 
recall rate of the operator positioning model based on DA-
DETR is 0.9194, and the recall rate of the second-ranked 
YOLOv9 model is 0.9080. Compared with the YOLOv9 
model, the recall rate of the DA-DETR model has increased by 
1.25%. Therefore, DA-DETR has the highest recall rate when 
handling operator positioning tasks in the context of live 
working, indicating its strongest ability to identify operators 
and find more operators in the image. The F1-score of DA-
DETR is 0.9118, and DA-DETR also achieved the highest F1-
score. This proves that the DA-DETR operator localization 
model achieves the optimal balance between accuracy and 
recall, achieving the best overall performance. Finally, the 
accuracy of the DA-DETR model is 0.9118, which is 0.75% 
higher than the YOLOv9 model. This indicates that the DA-
DETR operator localization model has achieved lower missed 
detection rates (high recall rates) and lower false detection 
rates (high accuracy rates). Therefore, the operator positioning 
model based on DA-DETR can handle complex live working 
backgrounds and effectively prevent misjudging transmission 
lines, insulators, and trees as workers. 

Fig. 7 shows the iterative loss function curve of the 
GnConv-YOLOv11-based electric field shielding clothing 
wearing detection model. Table IV shows the application 
results of the GnConv-YOLOv11 model, YOLOv11 [16] 
model, YOLOv10 model, YOLOv9 [17] model, YOLOv8 
model, YOLOv7 model, RT-DETRv2 model, RT-DETR [25] 

model, and RetinaNet [26] model in the problem of electric 
field shielding clothing wearing detection. Fig. 8 shows the 
recognition results of some electric field shielding clothing 
detection models. 

 

Fig. 8. Identification results of electric field shielding clothing detection 

models. 

TABLE IV.  THE RESULTS OF THE ELECTRIC FIELD SHIELDING CLOTHING DETECTION MODELS 

Algorithm Training Loss Validation Loss Macro-Recall Macro-Precision Accuracy 

GnConv-YOLOv11 0.1316 0.2151 0.9157 0.8963 0.9040 

YOLOv11 0.1795 0.2676 0.9019 0.8780 0.8931 

YOLOv10 0.1978 0.2975 0.8854 0.8840 0.8831 

YOLOv9 0.2143 0.3213 0.8784 0.8770 0.8777 

YOLOv8 0.2382 0.3346 0.8623 0.8610 0.8584 

YOLOv7 0.2479 0.3564 0.8556 0.8544 0.8550 

RT-DETRv2 0.1872 0.2996 0.8816 0.8802 0.8812 

RT-DETR 0.2214 0.3314 0.8646 0.8632 0.8639 

RetinaNet 0.2526 0.3587 0.8512 0.8498 0.8505 

In Table IV, five metrics including training loss, validation 
loss, macro-recall, macro-precision, and accuracy were used to 
evaluate all electric field shielding clothing wearing detection 
models. Firstly, the training loss of the GnConv-YOLOv11 
model is 0.1316, which is lower than the other 8 models and 
reduces the training loss by about 26.7% compared to the 
benchmark YOLOv11. This indicates that the newly 
introduced GnConv-YOLOv11 model greatly enhances the 
learning ability of the electric field shielding clothing wearing 
detection model, enabling it to extract features more accurately 
from training data. The validation loss of the GnConv-

YOLOv11-based electric field shielding clothing wearing 
detection model is 0.2151, which is about 19.6% lower than the 
second ranked YOLOv11 model. The GnConv-YOLOv11 
model achieved an accuracy of 0.9040, which is higher than 
that of all eight other compared models for detecting the 
wearing of electric field shielding clothing, representing a 
1.22% improvement over YOLOv11. Furthermore, the 
GnConv-YOLOv11-based model for detecting the wearing of 
electric field shielding clothing also achieved optimal 
performance in both macro-precision and macro-recall. 
Specifically, it exhibited a 2.08% improvement in macro-
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precision and a 1.53% increase in macro-recall compared to the 
YOLOv11 model. 

In addition, compared to the other eight electric field 
shielding clothing detection models, the GnConv-YOLOv11 
model achieved an average reduction of 36.5% in training loss 
and 30.4% in validation loss. Meanwhile, it improved macro 
recall, macro precision, and accuracy by an average of 4.11%, 
2.83%, and 3.44%, respectively. These results demonstrate that 
GnConv-YOLOv11 achieves comprehensive performance 
improvements across all metrics when compared to the other 
eight algorithms. It is also worth noting that the RT-DETR 
model performs similarly to YOLOv9 and YOLOv10, 
suggesting that CNN-based architectures remain highly 
competitive in the field of small object detection. 

V. CONCLUSION 

This study designed a dual-layer detection system for 
intelligent detection of electric field shielding clothing to meet 
the high-risk operational requirements in live-line work 
scenarios in the power industry. The system achieves accurate 
recognition of workers and their electric field shielding 
clothing by constructing an operator positioning model based 
on DA-DETR and a classification model that integrates 
GnConv and YOLOv11. Experimental results have shown that 
the DE-DETR model improves the accuracy of worker 
localization tasks by 2.29% compared to traditional DETR 
models. The electric field shielding clothing classification 
model based on GnConv-YOLOv11 achieved a detection 
accuracy of 92.61%, significantly better than mainstream 
detection models such as the YOLOv11 model, RT-DETR 
model, and RetinaNet model. 

In addition, GnConv-YOLOv11 achieves the best 
performance across four key aspects: validation loss, macro 
recall, macro precision, and accuracy. Compared to the average 
of all benchmark models, it shows significant improvements in 
five major metrics: a 36.5% reduction in training loss, a 30.4% 
reduction in validation loss, a 4.11% increase in macro recall, a 
2.83% improvement in macro precision, and a 3.44% gain in 
accuracy. Therefore, the proposed double-layer detection 
framework effectively tackles the challenges posed by the high 
diversity and difficulty of recognizing electric field shielding 
clothing in live-line work environments, offering a reliable 
technical basis for intelligent safety monitoring in such 
scenarios. The system proposed in this study has not been 
deployed in the real world. In future work, the developed 
electric field shielding clothing detection system will be 
deployed on unmanned aerial vehicles (UAVs) for real-world 
applications. 
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