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Abstract—In live-line work scenarios, it is essential for
workers to wear electric field shielding clothing to prevent fatal
accidents caused by electric shock. Accordingly, this study
developed an electric field shielding clothing detection system for
live-line working environments based on the YOLOvll
framework. Previous research has explored intelligent wearable
detection systems for personal protective equipment such as
safety helmets. However, compared to safety helmets, electric
field shielding clothing comes in more varieties and is more
challenging to identify. To address the challenges mentioned
above, this study constructed a dual-layer detection model for
operator detection and electric field shielding clothing detection
in live-line work scenarios. The first layer employs an improved
detection transformer (IDETR) to locate operators within the
environment. The second layer, based on the YOLOv1l
framework integrated with recursive gated convolution
(GnConv), is designed to classify three types of personal
protective equipment, including electric field shield clothing,
electric field shield masks, and electric field shield gloves. Finally,
the experimental results showed that compared with the DETR,
the accuracy of the IDETR-based worker localization model
improved by 2.29%. The accuracy of the GnConv-based
YOLOv11l framework in the electric field shielding clothing
detection task reaches 90.40%.

Keywords—Detection transformer; recursive gated convolution;
YOLOv11; personal protective equipment; live-line work scenarios

l. INTRODUCTION

Electric field shielding clothing (EFSC) protects workers
from high-voltage electric fields, induced currents, and
potential injuries caused by contact currents. In live-line
working environments, failure to use EFSC correctly or at all
can expose personnel to life-threatening risks. Therefore, the
development of a real-time monitoring system for EFSC can
effectively prevent workers who are not wearing or improperly
wearing the protective gear from entering hazardous areas or
performing high-risk operations [1]. In this study, the real-time
detection system for EFSC involves using visual cameras and
image recognition technology to detect whether workers in live
line work scenes are wearing EFSC in a standardized manner.
The system primarily consists of two modules: the staff
positioning and the EFSC wearing detection module. For the
staff positioning module, after the visual camera captures
images of the staff, this module functions to accurately identify
both personnel and the working environment. The EFSC
wearing detection module utilizes the output from the
positioning module to detect specific types of personal
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protective equipment, including electric field shield clothing,
masks, and gloves.

In the context of live-line maintenance, accurate detection
of personnel presents several challenges. First, complex
environmental backgrounds, such as interference from
transmission towers and other equipment, adversely affect
target localization. Second, the workers themselves, as the
targets of detection, exhibit considerable complexity. Their
postures are non-standard and highly dynamic, and they may
occlude one another [2]. The detection of EFSC is critical to
ensuring the safety of live-line work, yet this task also involves
numerous technical challenges in practical applications. Firstly,
the material of the EFSC has a metallic texture and typically
appears in silver or black. These colors are prone to strong
reflections or shadows under certain lighting conditions, which
can blur visual features such as the edges of the clothing. This
directly increases the difficulty of image segmentation and
feature extraction in the EFSC wearing detection module.
Moreover, some critical safety items, such as electric field
shielding gloves and protective eyewear, occupy only a small
area within captured images. Their subtle features are easily
overlooked during object recognition, leading to missed
detections or misidentification. Additionally, the cost of
acquiring real-world live-line maintenance images is high, and
it is challenging to accurately annotate boundaries of occluded
or reflective areas on EFSC in the images. This issue directly
impacts the performance of model training [3].

Currently, mainstream object detection methods include
transformer-based and convolutional neural network (CNN)-
based approaches. CNN-based methods for staff localization
require pre-defined anchor boxes of various sizes and aspect
ratios for all images in both the training and validation sets,
resulting in a more complex workflow. In contrast,
transformer-based object detection methods significantly
reduce the need for manual prior knowledge and tedious image
preprocessing [4]. In addition, compared to CNN-based
methods for worker localization, the transformer-based model
demonstrates superior performance in detecting occluded
objects [5]. Therefore, to address the object detection task in
live-line work scenarios, this study introduces an improved
version of the detection transformer (DETR) model, with the
aim of enhancing the detection of transmission line
maintenance workers in complex environments. However, the
DETR model also requires a substantial number of training
epochs to converge and exhibits poor performance in small
object detection due to its high sampling rate [6]. Therefore, for
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the task of classifying three types of personal protective
equipment, electric field shielding clothing, electric field
shielding masks, and electric field shielding gloves, an
improved YOLOv11 framework was developed.

In summary, this study proposes a dual-layer detection
model to enhance the safety management of operators during
live-line work. The first layer consists of a staff positioning
module based on an improved DETR model, while the second
layer comprises a personal protective equipment detection
module based on an enhanced YOLOV11 architecture tailored
for electric field shielding gear. Specifically, a deformable
attention (DA) module has been incorporated into the DETR
model to improve both its convergence speed and object
detection accuracy. Additionally, the recursive gated
convolution (GnConv) module has been integrated into the
YOLOv11 framework to boost its performance in detecting
small objects. The overall structure of the proposed dual-layer
safety management detection model for transmission line
maintenance operators is illustrated in Fig. 1. The main
contributions of this study are summarized as follows:

e A dual-layer detection model for safety management of
workers in live-line working scenarios has been
proposed, which effectively integrates the tasks of
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identifying electric field shielding equipment and
locating operators.

e The DA module is introduced into the DETR model to
improve the accuracy of target detection for operators in
live-line working scenarios.

e The GnConv module is embedded into the YOLOv11
architecture, aiming to improve the feature extraction
and classification capabilities of the YOLO architecture
for small target objects such as electric field shielding
clothing.

e Experiments were conducted based on image
information collected from real live-line working
scenarios, and the results showed that the improved
YOLOv11 framework achieved a detection accuracy of
92.61% in the electric field shielding clothing detection
task.

The remaining sections of this study are arranged as
follows: Section Il reviews the work related to personal
protective equipment testing. Section [1ll describes the
proposed object detection framework. Section 1V presents the
results and discussion. Finally, Section V provides a summary
of the entire study.
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Fig. 1. The proposed dual-layer detection model for operator safety management in live-line work.
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Il.  RELATED WORK

The double-layer target detection model proposed in this
study, designed for the safety management of workers in live-
working scenarios, comprises two main tasks: worker
positioning and electric field shielding equipment
identification. Accordingly, a review of related work has been
conducted, covering transformer-based image processing
models and object detection frameworks based on YOLO.

A. Detection Transformer

In [7], the authors reviewed transformer-based image
processing models. Specifically, it includes the basic
architecture, core mechanisms, and key improvements and
variations of transformer-based image processing models in
different image processing tasks. In addition, this study
comprehensively summarizes the benefits of transformers
compared to traditional CNNSs in processing visual data. In [8],
the authors improved the DETR model and designed a
lightweight transformer-based object detection model. In this
study, an encoder-free neck (EFN) architecture was designed to
reduce the computational overhead of traditional DETR models
during training. The experimental results show that the
proposed lightweight DETR model improves operational
efficiency through structural optimization while maintaining
end-to-end detection advantages, achieving a balance between
high efficiency and detection accuracy.

In [9], the authors improved the DETR object detection
framework to handle object detection tasks in pathological
images. In response to the challenges of small cell scales and
dense distribution in organizational images, this study
optimized the feature extraction and matching mechanism of
DETR, significantly improving the recall and robustness of
mitotic cell recognition. Choi et al. focused on object detection
in dense scenes and proposed a DETR model based on
recurrent [10]. This model enhances DETR's ability to
distinguish occluded targets by introducing a recursive
mechanism, and experiments were conducted on a typical
dense target dataset. The results showed that the DETR model
based on recurrent improved the detection accuracy of
traditional DETR models in high occlusion situations,
providing a foundation for the improvement of DETR models.

Ghahremani et al. proposed a Transformer-based organ
detection method aimed at improving the accuracy and
robustness of organ localization in medical images [11]. This
model introduces a deformable attention mechanism in the
DETR framework to enhance the feature capture ability of
classical DETR models for organs of different sizes and
shapes, solving the problem of low target localization accuracy
in traditional CNN-based detection methods in complex
medical images. In [12], the authors combine the Mamba
model with transformer for small object detection tasks, aiming
to leverage the efficiency advantage of Mamba in long
sequence modeling and enhance the ability to extract multi-
scale features of small objects. The final results indicate that
the Mamba-based transformer model significantly improves
detection accuracy while maintaining low computational
overhead. In [13], the authors proposed an end-to-end rotating
object detection transformer framework. This framework
overcomes the challenge of traditional horizontal detection
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boxes being sensitive to directional changes by designing an
angle aware query mechanism and a rotation box alignment
loss function.

In [14], the authors also improved the DETR model, aiming
to enhance the detector's discriminative ability in complex
backgrounds. The improved DETR model can more accurately
distinguish aircraft targets from background interference by
introducing a loss function of structural perception. In [15], the
authors studied the synchronization loss optimization problem
in rotation and orientation object detection based on the DETR
model. This study proposes a universal synchronization
optimization strategy to improve training stability. The
experimental results show that the proposed method effectively
alleviates the conflict between angle regression and
classification tasks by unifying different loss calculation
methods.

B. YOLO-Based Target Detection

In [16], the authors explore the application of YOLOV11 in
urban map drawing. This study introduces the advanced real-
time object detection model YOLOv11 into complex urban
environments, aiming to enhance the automatic recognition and
annotation capabilities of urban features. Perikamana
Narayanan et al. designed a face detection and counting system
based on YOLOV9, focusing on the confusion between human
and animal faces and the interference of complex imaging
environments on the accuracy of object detection models [17].
Finally, the experimental results demonstrate that the YOLOV9
model can maintain high recognition accuracy and robustness
under complex conditions. Alsabei et al. applied YOLOV9 to
the field of security, aiming to solve the real-time detection
task of abnormal pedestrian behavior [18]. This study focuses
on the characteristics of dense crowds and complex behavioral
patterns in high-risk scenarios, and uses YOLOV9 to detect
abnormal activities that may cause danger in real time. Khan et
al. utilized an optimized YOLOV9s model for real-time road
damage detection [19]. This study enhanced the performance
of YOLOV9s through optimization and fusion techniques of
object detection models, thereby achieving real-time detection
of defects such as road surface damage and cracks.

In [20], the authors proposed a small object detection
model in remote sensing images based on YOLOv10, aiming
to solve the problem of low resolution and weak features of
small objects in remote sensing images. This study
significantly improved the recognition accuracy and recall rate
of YOLOv10 for small objects in complex remote sensing
scenes by improving it. In [21], the authors propose an
intelligent psyllid monitoring system based on YOLOvV10,
which combines the YOLOv10 model with a visual
transformer for detecting small pest targets that are difficult to
detect in agricultural scenes. In [22], the authors proposed a
deep-sea fish detection model based on YOLOV10. This model
has the advantages of lightweight and high detection accuracy.
Overall, the model developed in this study effectively
addresses challenges such as dim lighting, complex
backgrounds, and diverse forms of fish targets in deep-sea
exploration. In [23], the authors developed a traffic police
gesture recognition framework based on the YOLO model.
Based on the latest YOLOv11l framework, the YOLOv1l
framework was improved to address the challenges of fast
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dynamic changes in traffic police gesture actions and high
background noise interference in traffic command scenarios.

In [24], the authors developed a method combining faster
region-based convolutional neural networks (Faster R-CNN)
with model driven clustering for special object detection
problems with large aspect ratios. This study effectively
addresses the challenge of poor detection performance of
general object detection models for unconventional shaped
objects. In [25], the authors integrate real-time DETR (RT-
DETR) and ByteTrack algorithm to construct a multi vehicle
tracking and counting framework for daily traffic flow survey.
This study demonstrates the application effectiveness of
Transformer based detectors in practical engineering. In [26],
the authors developed a precise reading algorithm for
substation pointer instruments based on RetinaNet. By
improving the RetinaNet detection network, it effectively
solved the reading difficulties caused by uneven lighting, dial
fouling, and small pointer shapes in actual industrial
environments.

Ill.  THE PROPOSED TARGET DETECTION MODEL

The proposed live-line work scenario operator security
management model mainly consists of two components. The
first component involves the use of the deformable attention-
based DETR (DA-DETR) for the operator localization task.
The second component integrates GnConv and YOLOv11,
aiming to detect whether workers are wearing electric field
shielding clothing according to standards.

A. The Deformable Attention-based DETR

Operator localization in live working scenarios is a
challenging object detection task. Specifically, the background
of live working sites is complex, with interferences such as
wires, insulators, and towers. In addition, the varying postures
of operators result in significant differences in target scale. To
address the above challenges, the DA mechanism has been
introduced into the DETR model, aiming to improve the
accuracy of object detection in classical DETR models. Fig. 2
illustrates the DA mechanism. The input data for the operator
positioning system based on DA-DETR is usually real-time
video streams collected by visual sensors from live work sites.
In the encoding stage, the Transformer encoder utilizes the DA
mechanism to enhance and extract the global features of live
working site images. In the decoding stage, a set of learnable
object queries interact with image features through the DA
mechanism, enabling them to adaptively focus on the most
informative key regions and accurately locate potential targets.

In the DA-DETR-based operator positioning system, the
DA mechanism uses a multi-head attention model and a
deformable attention model. The definition of the multi-head
attention model is as follows [see Eq. (1)]:

MHALen(T,,D,) = W, x| 2, Ave xWh D
heH eck (1)

where, I, is the i -th element of the feature matrix. D, is the

e -th vector of the input data. he H is the attention head. W,
andW, * are learnable weight parameters. A .. is the attention

weight.
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The constraint conditions of A ; , are defined as Eq. (2):

ZALLE :1 (2)

For a given feature map D, , generate a point B, as a unified

grid reference. The definition of deformable attention model is
as follows [see Eq. (3)]:

)=>w, X[ZAWXW *x(B, +ABh,e)}

heH eckE
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Fig. 2. The deformable attention (DA) mechanism.

B. The GnConv-Based YOLOv11

The electric field shielding clothing wearing detection
system uses a hybrid GnConv and YOLOv1ll (GnConv-
YOLOv11) framework, which embeds the GnConv module
into the architecture of YOLOv11. The advantage of GnConv
lies in its ability to establish global context dependencies based
on super large convolutional kernels, enabling CNN to detect
the global nature of images. The GnConv-YOLOv1l
framework can capture the subtle features of small targets such
as electric field shielding goggles and gloves, as well as their
correlation with live working environments, significantly
improving the ability to discover and identify small targets in
the context of live-line working. After the DA-DETR model
locates the workers, the electric field shielding clothing
wearing detection system uses a backbone convolutional
network embedded with GnConv to extract the features of the
electric field shielding clothing. Then, the neck network
integrates multi-scale features, and finally the detection head
outputs accurate classification results. Fig. 3 shows the
structure of GnConv.

The core operation of GnConv is gated Convolution, which
is defined as GOConv()) in this study. When the input feature is

L € R*“? the output y of GOConv(,) operation is defined as
Eq. (4):
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y= (poutput(Ul) € RO (4)

where, ¢,,,.() is a linear projection operation. U, is the

convolution result of the depth wise operation of the electric
field shielding clothing wearing detection system.

U, is defined in Eq. (5):
Uy = f(Ry) O Uy € RE? ()

where, f () is the depth-wise convolution operation. R,and
U, are the features of inputL € R“**%  and the calculation
equation is as follows [see Eq. (6)]:

[RO € RClXCZ,UO € RCGCZ] — ¢Ln(L) € RClXZCZ (6)
where, ¢, (.) is a linear projection operation.

Therefore, the definition of GOConv(,) operation is Eq. (7):

9 = GOConv(L € RE*?) (7
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Fig. 3. The structure of recursive gated convolution (GnConv).

IV. RESULTS AND DISCUSSION

The DA-DETR model is used for operator object detection
in live-line work scenarios. For the operator object detection
model, the operator image in the live-line work scenario is used
as input. 9100 images of operators in live-line work scenarios
were used as samples for the training and validation sets. The
epochs of the DA-DETR based operator object detection model
are set to 24, with 1000 steps per epoch. During the training
process, when the confidence level of the identified personnel
within the bounding box is greater than 70%, it is defined as a
successful detection of the personnel. The output of the

Vol. 16, No. 11, 2025
operator object detection model, the range of the bounding box,
is used as the input for the electric field shielding clothing
wearing detection system. The electric field shielding clothing
wearing detection model aims to detect three types of electric

field shielding equipment, as shown in Fig. 4. Table I
introduces three types of electric field shielding equipment.
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Fig. 4. Personal protective equipment in live-line work scenarios.

TABLE I. THREE TYPES OF ELECTRIC FIELD SHIELDING EQUIPMENT

Illustration Name Category
Fig.4. (a), (b), and (c) Electric field shield clothing 3
Fig.4. (d), (e), and (f) Electric field shield gloves 3
Fig.4. (9), (h), and (i) Electric field shield mask 3
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Fig. 5. The loss function curve of operator positioning model based on DA-
DETR.

Due to the fact that the training process of machine learning
is essentially random, in order to verify the robustness of the
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DA-DETR model and GnConv-YOLOv11 model, each model
was trained 15 times, separately. The loss functions of the DA-
DETR model and GnConv-YOLOv1l model during 15
training sessions are shown in Table II.

TABLE II. THE LOSs FUNCTIONS OF THE DA-DETR MODEL AND
GNCONV-YOLOV11 MODEL
Training loss Validation loss
Loss function
GnConv- GnConv-
DA-DETR | voLovi1 DA-DETR YOLOv11
Average 0.1762 0.1316 0.3415 0.2151
The upper bound
of 95% C.1I. 0.2278 0.1987 0.4130 0.2909
The lower bound
of 95% C.I. 0.1246 0.0643 0.2700 0.1349
—
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Fig. 6. The loss function values of the DA-DETR model recorded during 24
epochs of training.

Fig. 5 shows the loss function of the operator localization
model based on DA-DETR. Fig. 6 shows the average loss
function of the operator localization model based on DA-
DETR over 24 iteration cycles. To demonstrate the
effectiveness of the DA-DETR model in handling operator
localization problems, a comparison was made between the
DA-DETR model, R-CNN [24], and DETR model. Fig. 6 also
shows the comparison results.

Vol. 16, No. 11, 2025
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Fig. 7. The loss function curve of the GnConv-based YOLOv11.

Table 11 shows the results of DA-DETR, YOLOV9,
YOLOv7, Fast R-CNN, R-CNN, and DETR [14] models in
handling operator localization tasks in the context of live
working. Each model is evaluated from six perspectives,
including training loss, validation loss, recall rate, precision,
accuracy, and F1-Score. The training loss of the operator
localization model based on DA-DETR is 0.1763. The DA-
DETR model has the lowest loss, with a 2.54% reduction in
training loss compared to the YOLOvV9 model. The validation
loss of the operator positioning model based on DA-DETR is
0.3415, which is 3.53% lower than that of the YOLOV9 model.
This indicates that the DA-DETR-based operator localization
model learns most effectively from the training data, with its
internal parameters efficiently capturing features from images
of operators in live-line work scenarios. Moreover, the DA-
DETR model’s lower validation loss compared to all other
models demonstrates that it possesses the strongest
generalization capability. For the precision indicator, the
accuracy of the operator positioning model based on DA-
DETR is 0.9083, while the best-performing comparison model,
YOLOV7, is 0.9013. Compared with the YOLOV7 model, DA-
DETR achieved a performance improvement of 0.78% in
accuracy. This improvement indicates that DA-DETR has a
slight advantage in reducing false positives for operators in the
context of live working, and the prediction results of DA-
DETR are more reliable.

TABLE Ill.  THE RESULTS OF OPERATOR POSITIONING MODELS
Algorithm Training Loss Validation Loss Recall Precision Accuracy F1-Score
DA-DETR 0.1763 0.3415 0.9194 0.9083 0.9118 0.9118
YOLOV9 0.1809 0.3540 0.9080 0.9020 0.9050 0.9050
YOLOv7 0.1952 0.3785 0.8998 0.9013 0.9043 0.9043
Fast R-CNN 0.1829 0.3617 0.9050 0.8976 0.9013 0.9013
R-CNN 0.1967 0.3897 0.8955 0.8871 0.8913 0.8913
DETR 0.2132 0.3943 0.8902 0.8917 0.8909 0.8909
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Table 111 also shows the recall rate, accuracy, and F1-score.
In this study, the recall rate is the ratio of successful predictions
made by the operator localization model among all real
operator samples. A high recall rate means that the operator has
a low rate of missed detections in the localization model. The
recall rate of the operator positioning model based on DA-
DETR is 0.9194, and the recall rate of the second-ranked
YOLOV9 model is 0.9080. Compared with the YOLOvV9
model, the recall rate of the DA-DETR model has increased by
1.25%. Therefore, DA-DETR has the highest recall rate when
handling operator positioning tasks in the context of live
working, indicating its strongest ability to identify operators
and find more operators in the image. The Fl-score of DA-
DETR is 0.9118, and DA-DETR also achieved the highest F1-
score. This proves that the DA-DETR operator localization
model achieves the optimal balance between accuracy and
recall, achieving the best overall performance. Finally, the
accuracy of the DA-DETR model is 0.9118, which is 0.75%
higher than the YOLOV9 model. This indicates that the DA-
DETR operator localization model has achieved lower missed
detection rates (high recall rates) and lower false detection
rates (high accuracy rates). Therefore, the operator positioning
model based on DA-DETR can handle complex live working
backgrounds and effectively prevent misjudging transmission
lines, insulators, and trees as workers.

Fig. 7 shows the iterative loss function curve of the
GnConv-YOLOv11-based electric field shielding clothing
wearing detection model. Table 1V shows the application
results of the GnConv-YOLOv1l model, YOLOv1l [16]
model, YOLOv10 model, YOLOV9 [17] model, YOLOv8
model, YOLOv7 model, RT-DETRv2 model, RT-DETR [25]

Vol. 16, No. 11, 2025

model, and RetinaNet [26] model in the problem of electric
field shielding clothing wearing detection. Fig. 8 shows the
recognition results of some electric field shielding clothing
detection models.

Gn-Conv-YOLOv1 |

YOLOvII

YOLOv10

RetinaNet

RT-DETR

RT-DETRV2

Identification results of electric field shielding clothing detection
models.

Fig. 8.

TABLE IV.  THE RESULTS OF THE ELECTRIC FIELD SHIELDING CLOTHING DETECTION MODELS
Algorithm Training Loss Validation Loss Macro-Recall Macro-Precision Accuracy
GnConv-YOLOv11 0.1316 0.2151 0.9157 0.8963 0.9040
YOLOv11 0.1795 0.2676 0.9019 0.8780 0.8931
YOLOvV10 0.1978 0.2975 0.8854 0.8840 0.8831
YOLOV9 0.2143 0.3213 0.8784 0.8770 0.8777
YOLOvV8 0.2382 0.3346 0.8623 0.8610 0.8584
YOLOv7 0.2479 0.3564 0.8556 0.8544 0.8550
RT-DETRv2 0.1872 0.2996 0.8816 0.8802 0.8812
RT-DETR 0.2214 0.3314 0.8646 0.8632 0.8639
RetinaNet 0.2526 0.3587 0.8512 0.8498 0.8505

In Table 1V, five metrics including training loss, validation
loss, macro-recall, macro-precision, and accuracy were used to
evaluate all electric field shielding clothing wearing detection
models. Firstly, the training loss of the GnConv-YOLOv11
model is 0.1316, which is lower than the other 8 models and
reduces the training loss by about 26.7% compared to the
benchmark YOLOv1l1. This indicates that the newly
introduced GnConv-YOLOv11l model greatly enhances the
learning ability of the electric field shielding clothing wearing
detection model, enabling it to extract features more accurately
from training data. The validation loss of the GnConv-

YOLOv11-based electric field shielding clothing wearing
detection model is 0.2151, which is about 19.6% lower than the
second ranked YOLOv1l model. The GnConv-YOLOv1l
model achieved an accuracy of 0.9040, which is higher than
that of all eight other compared models for detecting the
wearing of electric field shielding clothing, representing a
1.22% improvement over YOLOv1l. Furthermore, the
GnConv-YOLOv11-based model for detecting the wearing of
electric field shielding clothing also achieved optimal
performance in both macro-precision and macro-recall.
Specifically, it exhibited a 2.08% improvement in macro-
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precision and a 1.53% increase in macro-recall compared to the
YOLOv11 model.

In addition, compared to the other eight electric field
shielding clothing detection models, the GnConv-YOLOv11
model achieved an average reduction of 36.5% in training loss
and 30.4% in validation loss. Meanwhile, it improved macro
recall, macro precision, and accuracy by an average of 4.11%,
2.83%, and 3.44%, respectively. These results demonstrate that
GnConv-YOLOvV11 achieves comprehensive performance
improvements across all metrics when compared to the other
eight algorithms. It is also worth noting that the RT-DETR
model performs similarly to YOLOv9 and YOLOvI10,
suggesting that CNN-based architectures remain highly
competitive in the field of small object detection.

V. CONCLUSION

This study designed a dual-layer detection system for
intelligent detection of electric field shielding clothing to meet
the high-risk operational requirements in live-line work
scenarios in the power industry. The system achieves accurate
recognition of workers and their electric field shielding
clothing by constructing an operator positioning model based
on DA-DETR and a classification model that integrates
GnConv and YOLOvV11. Experimental results have shown that
the DE-DETR model improves the accuracy of worker
localization tasks by 2.29% compared to traditional DETR
models. The electric field shielding clothing classification
model based on GnConv-YOLOv1l achieved a detection
accuracy of 92.61%, significantly better than mainstream
detection models such as the YOLOv1l model, RT-DETR
model, and RetinaNet model.

In addition, GnConv-YOLOv1l achieves the best
performance across four key aspects: validation loss, macro
recall, macro precision, and accuracy. Compared to the average
of all benchmark models, it shows significant improvements in
five major metrics: a 36.5% reduction in training loss, a 30.4%
reduction in validation loss, a 4.11% increase in macro recall, a
2.83% improvement in macro precision, and a 3.44% gain in
accuracy. Therefore, the proposed double-layer detection
framework effectively tackles the challenges posed by the high
diversity and difficulty of recognizing electric field shielding
clothing in live-line work environments, offering a reliable
technical basis for intelligent safety monitoring in such
scenarios. The system proposed in this study has not been
deployed in the real world. In future work, the developed
electric field shielding clothing detection system will be
deployed on unmanned aerial vehicles (UAVs) for real-world
applications.
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