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Abstract—Due to the limitations of unclear edges and fuzzy
features in image segmentation tasks, this study proposes an
enhanced U-Net semantic segmentation network utilizing the local
and global fusion attention module in response to the drawbacks
of fuzzy features and unclear edges in image segmentation tasks.
Firstly, a feature extraction module combining convolution and
Transformer is introduced in the bottleneck layer, so that the
network can fully simultaneously capture local and global
features, and effectively promote the fusion of local and global
features. Secondly, the CBAM attention module is added to the
skip connections between the encoder and decoder. Finally, the
output feature map is processed using the ASPP module to
enhance focus on target features and improve segmentation
performance. Experiments conducted on four animal husbandry
segmentation datasets show that the LCA_Net model proposed in
this study achieves an loU score of 90.19% and a Dice score of
94.83%, compared with U-Net and other mainstream
segmentation networks, it has improved. This study offers
effective technical support for advancing aquaculture status
monitoring and lays a foundation for further development in this
field.

Keywords—Machine vision; semantic segmentation; feature
fusion; attention mechanism

. INTRODUCTION

Image segmentation is the accurate extraction of target
regions of interest from an image, which refers to assigning each
pixel in the image to a different category in order to achieve
semantic understanding and region recognition of the image.
Traditional image segmentation techniques [1] have low
efficiency and some defects in the segmentation results, which
cannot achieve the expected results. The rapid improvement in
computer hardware performance encourages the rapid
development of deep learning technology. Deep learning-based
methods have achieved excellent results in image segmentation.
Its excellent feature extraction and expression ability improve
segmentation accuracy and speed, which is superior to
traditional machine learning and computer vision approaches

[2].

A convolutional neural network significantly enhances
image segmentation algorithms. Its end-to-end pixel-level
image segmentation networks have created applications in the
field of semantic segmentation. These networks can classify
images at the pixel-level [3]. Later research, such as SegNet [4],
improved the accuracy and precision of segmentation by
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decoding the feature index generated by the pooling layer, and
further promoted the development of semantic segmentation
technology. In 2015, the U-Net model was proposed [5], and its
unique symmetric structure and excellent performance were
quickly known. It has strong adaptability to medical image
segmentation tasks by retaining information at different levels
through skip-connections, and has been widely used in a variety
of different segmentation tasks. Subsequently, Zhou et al. [6]
optimized the U-Net as a UNet++ version and solved the
semantic gap problem caused by direct connections in the
original U-Net. Deeplab series [7-9] used hole convolution and
pooling modules with varying dilation rates to obtain more
contextual information and improved network performance.

In 2018, Zhou et al. [10] used the multi-scale watershed
segmentation algorithm to segment the sheep from the images
collected in the real and complex breeding environment. In
2020, Zhang [11] proposed a horse body segmentation method
based on YOLACT, and segmented the horse body edge contour
through edge detection. Qin et al. [12] focused on fish body
image segmentation technology, which is a method based on
object detection and edge assistance, and the method achieved
remarkable results in fish image segmentation. This method not
only significantly improves the accuracy of image segmentation,
but also provides important support for the development of
animal husbandry intelligent technology [13].

Singh et al. [14] proposed an improved DeepLabV3+ CNN
model, which demonstrated significant accuracy in cattle body
part segmentation. Feng et al. [15] introduced an improved
DeepLabV3+ network segmentation model, achieving higher
segmentation accuracy for cattle regions. Xie et al. [16]
proposed a multi-scale dual-attention U-Net method for
detecting sheep hind limb segmentation. These methods perform
well in segmentation tasks for specific livestock species.
However, all of these approaches focus on segmentation for a
single species. In contrast, our proposed network model is
capable of adapting to multiple livestock species, offering
greater versatility and broader application potential.

Although numerous image segmentation network models
exist, [17-21] traditional convolutional networks are limited by
their receptive field size when handling image segmentation
tasks with intricate details. This limitation reduces their ability
to effectively capture global information, making it challenging
to achieve optimal results. In addition, it also faces problems
such as occlusion caused by complex background, changes in
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lighting conditions, and overlap. This study proposes an image
semantic segmentation algorithm that improves the U-Net local-
global attention network. While individual components like
Transformers or attention mechanisms have been explored in
isolation, the novelty of our LCA_Net lies in the synergistic
integration strategy. We strategically position these modules to
address specific shortcomings of the U-Net at different stages of
the network, creating a cohesive pipeline that systematically
enhances both local-global context modeling and feature
refinement. On four different animal datasets, the experimental
results show that the network performs more accurately than
other popular network models, which is of some reference
significance for the research in image segmentation.

Il.  NETWORK ARCHITECTURE

Fig. 1 shows an improved network model based on the U-
Net proposed in this study, which has a symmetrical encoder-
decoder structure.

Three main reconstructions were carried out on the original
U-Net structure to form the LCA-Net structure proposed in this
study. First, in order to generate feature maps with varying
resolutions, the input image’s features are progressively
downsampled during the encoder stage, reducing spatial
resolution. A local global feature fusion module is designed into
the bottleneck layer of the encoder and decoder link, which
efficiently combines local and global information. In addition,
in order to reduce the redundancy of information between skip
connections, an attention mechanism module is filled in. In the
decoding phase, the high- and low-level features are spliced and
upsampled at the same time. Finally, the image pixels are
classified through the ASPP module and the Softmax activation
function to obtain the segmentation results.

Vol. 16, No. 11, 2025

The proposed LCA-Net’s design is grounded in three
principles: 1) Hierarchical feature interaction: CSWin captures
both local texture details and global shape context, overcoming
the U-Net’s limited receptive field; 2) Attention-guided fusion;
CBAM suppresses spatially redundant features before skip-
connections, mitigating semantic gaps; 3) Scale-aware
decoding: ASPP complements CSWin by explicitly modeling
multi-scale  object variations. This layered approach
fundamentally differs from prior works that apply these modules
in isolation.

A. Local Global Fusion Module

Accurately distinguishing the target pixel from the
background pixel in an image can be difficult, requiring
automatic segmentation and feature extraction at both local and
global scales to capture remote interactions. Therefore, the work
of this study focuses on adding a local-global attention fusion
module into the bottleneck layer of the U-Net architecture, and
uses convolution and Transformer to transfer different
information to the feature map, enabling the interaction and
fusion of local and global information. Fig. 2 illustrates the
structure of the local-global fusion module.

Downsampling is applied in one of the execution paths to
obtain the LGAF input features, and convolution is used to learn
the weights of the convolutional kernels. The local feature in the
input image X is extracted to obtain a local receptive field, and
then the convolution feature layer is normalized (LN) [22]. The
stability of the algorithm has been improved, and the scale
differences from different routes have been reduced. After the
above operations are performed in turn, the X, representing the
aggregated local detail feature is obtained, as shown in Eq. (1):

X, = LayerNorm(Conv (X)) (1)
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Up sampling
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Fig. 1. Architecture of the proposed LCA-Net.

ammm XL
LN

X— Conv ]—{ L }L LN
CSWin — LN

_) ol

Fig. 2. Local-global attention fusion module.
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where, the input feature is denoted by X, the convolution
operation by Conv, and the layer normalization by LayerNorm.

In another execution path, self-attention calculation is
performed using a convoluted feature map. The Cross-Window
converter block (CSWin block) allows for the perception and
interaction of global and non-local information [23]. Fig. 3
illustrates the structure of the CSWin block.

After processing previous information, the feature map Xg
obtained by this module has its extracted global receptive field,
and its specific calculation is shown in Eq. (2):

X; = LayerNorm(CSWin(Conv(X))) 2

The local-global attention module (as shown in Fig. 4)
simultaneously accepts and effectively fuses two types of
parameter information: one containing local information (X.)
and the other containing global information (Xg).

| £ QL
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Fig. 4. Local-global attention module.

To calculate attention scores, three vectors-query, keyword,
and value vector-with sequential features are calculated. The
CSWin-Transformer is employed to process the input features
XL and Xg, and the process is shown in Eq. (3):

X! = CSWin-Transformer(X,, X;) + X, (3)

Finally, the CSWin-Transformer operation is reapplied to
further enhance the global information. By strengthening the
global information fusion of the feature map, the capture
efficiency of long-distance dependency is improved, and the
overall contour and boundary of the object segmentation are
clearly recognized. Where V1 is given by X?, and Q and K are
transformed from Xg. Output Y is represented by Eq. (4):

Y = CSWin- Attention(X*, X;) + X, 4)

B. Convolutional Block Attention Module

Typically, during the feature fusion process of the traditional
U-Net model, simple cascade operation is involved, but there is
no clear selection and enhancement mechanism in the face of
key features. This may lead to the over dependence of irrelevant
features on the model, and thus the accuracy of segmentation
results is limited. Each encoder layer generates a feature map
comprising both valuable information and redundant or
irrelevant data. However, simple channel compression
techniques may lead to the loss of important channel-wise
information within these feature maps. To minimize the
influence of the background area and make the model focus
more on the target segmentation objects, the CBAM attention
mechanism [24] is introduced into the skip connection of the
network model designed in this study, which can dynamically
adjust the weight and filter the effective feature channel. As a
result, the model learns the relevant representations more
efficiently. Fig. 5 illustrates the CBAM attention module.

Channel attention (CA) and spatial attention mechanism
(SA), the two primary components of the CBAM module, are in
charge of capturing dependence of channel and space,
respectively. The channel and space feature weights can be
dynamically changed by combining the two.

In order to compress the feature information, the channel
attention module first applies the max pooling and average
pooling operations to each channel for the feature map with the
input shape of (B, C, H, W). This approach efficiently enlarges
the receptive field of the convolutional network while
preserving the number of feature channels, producing an output
tensor of shape (B, C, 1, 1). The multi-layer perceptron’s input
should then be the outcomes of the two pooling operations. The
multi-layer perceptron can increase the significance of a
particular channel by learning parameters and using the sigmoid
nonlinear activation function to assign corresponding feature
weights to each channel.

For the spatial attention mechanism, the weight assignment
methods of each channel are different. It only weights the local
part, and then performs the max pooling, average pooling, and a
7 x 7 convolution operation on the channels within the same
spatial area. Finally, the weights for each channel are obtained
through the nonlinear activation of Sigmoid.

The following are the steps in the CBAM module’s
calculation:

The input feature map first generates the characteristic layer
Fc with channel weight through the CA module, as shown in

Eq. (5):
Fc = o(MLP(AvgPool(F)) + MLP(MaxPool(F)))(5)
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Fig. 5. CBAM attention module.

where, ¢ denotes the Sigmoid activation function. The
number of multi-layer perceptrons is indicated by MLP.
Avgpool and Maxpool refer to the global average and max
pooling processes, respectively, and F represents the input
feature map.

F1 is formed by multiplying the input original feature map F
by the channel’s weight Fc, which is obtained by F through the
CA procedure, as shown in Eq. (6):

F,=FceF (6)

Spatial attention is applied to average pooling and max
pooling along the channel for the feature map with the input
shape of (B, C, H, W). It can compress the channel dimension
of the input tensor to 1, then the global channel information
integrates into a single channel characteristic graph that has the
shape of (B, 1, H, W), and effectively extracts the spatial
relationship. In order to allow information interaction between
different spatial descriptors, the spatial merged features are
connected. The Sigmoid activation function is then employed to
acquire the spatial features after the combined features have
been transformed into a spatial feature map using the
convolution layer Conv, as shown in Eq. (7):

Fs = o(Conv([SAavg + SAmax])) @)

where, SAavg and SAmax are the average and maximum
pooled spatial feature descriptors. Eq. (8) represents the CBAM
module’s final output Y.

Y =F o Fs ®)

The correlation of feature channels is greatly enhanced by
this advanced dual attention mechanism, allowing each channel

rate 6

to more effectively capture the most relevant features of its task.
Simultaneously, this approach notably improves feature
expression, which increases the model’s accuracy in
understanding and processing the input data. The CBAM
module of the skip connection part enhances the feature
interaction. The model’s accuracy and representational capacity
are enhanced by reducing the influence of noise and redundant
information through the combination of channel attention and
spatial attention.

C. ASPP Module

ASPP was first proposed by Chen et al. [7] in Deeplabv2. Its
idea comes from spatial pyramid pooling. Its purpose is to
enhance the recognition ability of the network for targets of
different scales through pooling operations of different scales.
ASPP is a combination of a cavity convolution and a spatial
pyramid pooling layer. Specifically, convolutions with different
dilation rates are applied within a single branch to extract
features. This approach enables the precise capture of multi-
scale contextual information through receptive fields of varying
sizes, which are subsequently fused to produce the final feature
map. It ensures that the receptive fields are increased while
maintaining the image resolution, avoiding the problem of a
large amount of calculation in traditional convolution.

To more effectively capture and preserve edge detail features
and enhance the model’s segmentation capability across various
target scales, this study uses 8, 12, and 16 as the hole
convolution of expansion coefficient, and removes the features
obtained by pooling branches. Fig. 6 displays the ASPP
structure, which has been optimized.

Z

Conv3x3
rate 12
rate 18

Input feature map

Output feature map

Fig. 6. ASPP module.
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I1l.  EXPERIMENTAL CONFIGURATION

A. Dataset

All data sets were collected in real animal husbandry
environments, including horses and pigeons in outdoor pastures
during the day, pigs and cattle in indoor pens. The original image
is collected at a resolution of 1920 x 1080 pixels, and then
adjusted to 256 x 256 for model input. The label uses LabelMe
software to label the target contour to ensure pixel-level
accuracy.

The experimental dataset used in this experiment is divided
into four parts, which are horse images, pigeon images, cattle
images, and pig images. Each image of the horse dataset has
been professionally labeled, including the precise contour
information of the horse, covering 327 high-resolution images.
There are three sections to the dataset: 209 training sets, 53
verification sets, and 65 test sets.

The public pigeon dataset contains 122 high-resolution
images and corresponding tags, including 78 training sets, 20
validation sets and 24 test sets. The cattle breeding dataset
contains 200 images and corresponding labels, including 128
training sets, 32 validation sets and 40 test sets. The pig farm
breeding dataset contains 501 images and corresponding
images, including 320 for training, 81 for verification and 100
for test.

B. Experimental Environment and Parameter Setting

The NVIDIA GeForce RTX 3080 Ti GPU, Windows 11
operating system, 16GB of RAM, and Pytorch2.0.1 framework
with Python 3.8 programming language constituted the deep
learning environment. To ensure the determinism and
reproducibility of our experiments, a fixed random seed was
used throughout the study for parameter initialization and data
shuffling. We employed the Dice loss function as our
segmentation loss during the experiment, with a batch size of 8.
For data augmentation, we applied a pipeline consisting of
random horizontal flip, random vertical flip, random rotation
within £15°, and random brightness/contrast adjustment during
the training phase. Additionally, Batch Normalization (BN) was
utilized after each convolutional layer and before the ReLU
activation function. Dropout was not employed in our
architecture.

In this study, all experiments under the same dataset use the
same loss function and parameter settings for training, in which
the initial learning rate for horse segmentation images is set to
0.0001, with 100 training epochs. For pigeon segmentation
images, the initial learning rate is 0.001, and the training consists
of 200 epochs. Pig and cattle breeding images have an initial
learning rate of 0.0001 and undergo 50 training epochs. Other
experimental parameters are consistent with those mentioned
above.

C. Evaluation Index

The evaluation indexes chosen for this study are Dice
Similarity Coefficient, Precision, Recall, and Intersection over
Union (loU).

The precision indicates the percentage of accurate prediction
pixel values in the total pixel values as well as the proportion of
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correct prediction results in the total predicted value. The
accuracy of correctly predicting pixel samples is assessed using
this standard, and the Eq. (9) is as follows:

TP
TP+FP

Pre = 9)

The percentage of the actual number of correct total pixel
samples that the model correctly predicted is known as Recall.
It mainly focuses on the proportion that the target pixel feature
is not correctly classified as positive, as shown in Eq. (10):

TP
Recall = ——
TP+FN

(10)

loU represents the union of the segmentation prediction
result and the intersection ratio of the real segmentation label, as
shown in Eq. (11):
IoU =—2—  (11)
FP+TP+FN
Two samples can be compared for similarity using a function
called the Dice similarity coefficient. The similarity between the
label image and the predicted image can be computed using it.
The value is between 0 and 1, as shown in Eq. (12):

Dice = —22F (12)

FP+2TP+FN

The positive sample is the target feature, and the negative
sample is the background. TP stands for true positive and
correctly predicts the target pixel. FP stands for false positive
and incorrectly predicts the background pixel as the target pixel.
TN stands for true negative and correctly predicts the
background pixels. FN stands for false negative, and the target
pixel is incorrectly predicted as the background pixel.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison of Segmentation Performance under Different
Networks

The method suggested in this study and the traditional
semantic segmentation algorithm are chosen for comparison
experiments in order to confirm the efficacy of this approach.
Using the same experimental configuration and the same
parameter settings, the comparative experiments with U-Net,
ResUnet [25], UNET++ DeeplLabv3+, and DCSAU_Net [26]
segmentation models are realized, respectively. The model’s
segmentation performance is assessed using the four datasets
listed in this study. The experiment uses four evaluation indexes:
Precision, Recall, loU, and Dice similarity coefficient.

The experimental findings for the dataset of horse image
segmentation are displayed in Table 1. Bold is the model score
that has the highest index. It is evident that the majority of this
method’s indicators outperform those of other semantic
segmentation techniques. The precision, loU, and Dice
similarity coefficients improved by 3.07%, 1.83%, and 1.09%,
respectively, in comparison to the traditional U-Net network
model.

Fig. 7 visualizes the original image, actual label, and
prediction results. The above models’ segmentation results are
presented in a more intuitive way.
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TABLE I. SEGMENTATION RESULTS OF DIFFERENT MODELS IN HORSE
SEGMENTATION DATASET
Method Pre Rec loU Dice
U-Net 0.9242 0.9566 0.8864 0.9385
ResUnet 0.9091 0.9157 0.8375 0.9079
Unet++ 0.9421 0.9526 0.8993 0.9458
DeepLabv3+ | 0.9386 0.9255 0.8734 0.9314
DCSAU_Net | 0.9090 0.9300 0.8488 0.9165
Ours 0.9549 0.9455 0.9047 0.9494

In Fig. 7, each row is the segmentation visualization results
of different original images and different models. The visual
analysis indicates an overall improvement in segmentation

(c) Ours (d) U-Net

Vol. 16, No. 11, 2025

accuracy. Comparing the segmentation results reveals that
ResUnet has the worst recognition effect on the background and
edge, and it can only roughly segment the horse area. For
example, in the results of the second and fourth lines, the horse
is under-segmented, and the last line is noticeably over-
segmented, making it impossible to accurately distinguish the
horse’s edge from the background. Both U-net and Unet++
achieve satisfactory segmentation of the horse’s body as a
whole, but lack the accuracy of edge segmentation. The
proposed approach performs better overall than other

comparison techniques, and the segmentation effect is nearly
identical to the label value. Not only the boundary is smooth and
accurate, but also there are a few cases of under segmentation
and over segmentation.

(e) ResUnet (f) Unet++ (g)DeepLabv3+

(h) DCSAU_Net

Fig. 7. Visualization effect of horse image segmentation under different networks.

The segmentation performance of the proposed method is
more effectively verified through the comparative experiments
on the other three datasets. Specifically, the data is showcased
in three separate tables, namely Table II, Table III, and Table IV,
which are designed to offer a comprehensive view of the various
aspects of the experiment.

In the three evaluation indexes of Recall, loU, and Dice,
Table IT demonstrates that the LCA_Net network suggested in
this study outperforms other networks. The Dice reached
84.62%, which was 0.71%, 1.72%, 0.58% 7.55% and 0.44%
higher than that of U-Net, ResUnet, SegNet, Unet++
DeepLabv3+and DCSAU_Net, respectively.

The segmentation results of different models in the pigeon
dataset are displayed as illustrated in Fig. 8. The third line shows
that when the contrast between the pigeon and the background
features is significant, all five models can effectively segment
the target features. When the contrast between background
features and the overall target is low, other experimental models

may experience under segmentation, boundary blurring, and
other phenomena. Notably, the model proposed in this study
exhibits superior segmentation performance, able to better
distinguish subtle pigeon edge features, and the segmentation
results are closer to real labels.

TABLE Il.  SEGMENTATION RESULTS OF DIFFERENT MODELS IN PIGEON
SEGMENTATION DATASET
Method Pre Rec loU Dice

U-Net 0.7862 0.9041 0.7257 0.8391

ResUnet 0.7774 0.9016 0.7139 0.8290

Unet++ 0.7774 0.9201 0.7291 0.8404

DeepLabv3+ | 0.6842 0.8983 0.6369 0.7707

DCSAU_Net | 0.7791 0.9194 0.7292 0.8418

Ours 0.7830 0.9243 0.7362 0.8462
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(d) U-Net

TABLE Ill.  SEGMENTATION RESULTS OF DIFFERENT MODELS IN CATTLE
FARM SEGMENTATION DATASET
Method Pre Rec loU Dice

U-Net 0.9066 0.9199 0.8403 0.9122
ResUnet 0.9206 0.9000 0.8345 0.9079
Unet++ 0.8826 0.9428 0.8372 0.9104
DeepLabv3+ | 0.8796 0.9212 0.8178 0.8989
DCSAU_Net | 0.8764 0.9124 0.8083 0.8926
Ours 0.9102 0.9230 0.8454 0.9151

(a) Image (b) GT (c) Ours (d) U-Net

Vol. 16, No. 11, 2025

-

(e) ResUnet (f) Unett+  (g) DeepLabv3+ (h) DCSAU_Net
Fig. 8. Visualization effect of pigeon image segmentation under different networks.

The segmentation and visualization outcomes of various
models in the cattle farm segmentation dataset are displayed in
Table 11T and Fig. 9, respectively. The experimental indicators
are improved compared with other models. It is evident from the
visualization results that the model in this study has a better
overall segmentation effect than other models, particularly when
it comes to the first line of the comparison image. Other models’
segmentation performance decreases when the scene’s lighting
impacts, but the model developed in this study is more in line
with the label graph, highlighting the benefits of the model’s
robustness and anti-interference.

(e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net

Fig. 9. Visualization effect of cattle image segmentation under different networks.
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The segmentation indexes and visualization outcomes of
various models in the pig farm segmentation dataset are
displayed in Table IV and Fig. 10, respectively. Three
performance indices show that the model suggested in this study
outperforms other models, and the segmentation effect in night
and strong light scenes is obviously superior to other models.

Vol. 16, No. 11, 2025

The LCA-Net network model proposed in this study
achieved more refined segmentation results through
comparative experiments with four datasets and visualization
results. These results substantiate the effectiveness of the
proposed model.

TABLE IV.  SEGMENTATION RESULTS OF DIFFERENT MODELS IN PIG FARM SEGMENTATION DATASET
Method Pre Rec loU Dice
U-Net 0.9490 0.9645 0.9184 0.9556
ResUnet 0.9522 0.9644 0.9209 0.9569
Unet++ 0.9510 0.9687 0.9252 0.9592
DeepLabv3+ 0.9399 0.9478 0.8947 0.9435
DCSAU_Net 0.9335 0.9243 0.8719 0.9269
Ours 0.9578 0.9635 0.9263 0.9602

(b) GT

(a) Image (c) Ours (d) U-Net

(e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net

Fig. 10. Visualization effect of pig image segmentation under different networks.

B. Ablation Experiment

Using the same loss function and parameter settings as the
comparative experiment for training, the ablation experiment
confirms the overall effect of innovative reconstruction on the
LCA_Net model. The method is to take U-Net as the baseline
and successively accumulate CSwin module, CBAM attention
module and ASPP module into it. Finally, ablation experiments
are performed on the horse body segmentation dataset using the
optimized LCA_Net network. Table V displays the
comprehensive study results.

TABLE V. TESTS OF ABLATION FOR DIFFERENT MODULES ON THE HORSE
SEGMENTATION DATASET

Method Pre Rec loU Dice
U-Net 0.9242 0.9566 0.8864 0.9385
CSwin 0.9378 0.9522 0.8955 0.9435
CBAM 0.9408 0.9571 0.9023 0.9477
ASPP 0.9402 0.9576 0.9020 0.9476
CSwin+CBAM+ASPP 0.9549 0.9455 0.9047 0.9494

As shown in Table V, when the CSwin module is introduced
alone, Precision and loU are improved by 1.36% and 0.91% over
the baseline, respectively, demonstrating its effectiveness in
deep feature extraction. However, Recall slightly decreases. The
CBAM module, when introduced alone, performs optimally,
with Precision, loU, and Dice increasing by 1.66%, 1.59%, and
0.92%, respectively, while Recall remains stable. This validates
that the attention mechanism helps suppress redundant features
and enhance critical areas. The performance of the ASPP
module alone is close to that of CBAM, indicating that multiple
modules can integrate multi-scale contextual information, but
the improvement in Precision is limited. After integrating all
three modules, Precision, loU, and Dice reach their optimal
values, improving by 3.07%, 1.83%, and 1.09%, respectively,
compared to the baseline. Although Recall slightly decreases,
the overall results show that the feature extraction capability of
CSwin, along with the refined optimization from CBAM and
ASPP, complement each other effectively, notably improving
the model’s segmentation accuracy and target localization. This
suggests that the feature extraction of CSwin, attention
enhancement from CBAM, and multi-scale fusion from ASPP
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form an effective synergy that drives the systematic
optimization of the model’s segmentation performance.

Each module’s efficacy can be confirmed by the ablation
experiment. Every module introduced in this study has the
capability to increase the precision and accuracy of
segmentation. The CSwin module in particular is essential for
enhancing segmentation performance.

V. DISCUSSION

However, there are still some limitations in this study,
including the relatively small size of the dataset and the fact that
cross-dataset generalization tests have not yet been conducted to
fully assess the model's adaptability. Future research directions
should prioritize addressing these limitations. Expanding the
diversity and volume of training data, implementing rigorous
cross-dataset benchmarking, and conducting more sophisticated
statistical testing will be essential steps toward strengthening the
validity and real-world impact of the LCA-Net framework.

VI. CONCLUSION

Aiming at the problem of edge blurring in image
segmentation, an improved U-Net network combining the
CSwin module and channel spatial attention mechanism is
proposed. Additionally, the ASPP module is introduced into the
decoder output which contributes in improving the quality
image segmentation accuracy. Moreover, the LCA-Net
proposed by ours is compared with U-Net, ResUnet, Unet++ and
Deeplabv3+ networks. On the test sets of four datasets, the
LCA-Net’s evaluation indexes are essentially superior to those
of other networks, achieving better results in segmentation
visualization. The LCA_Net network model can accurately
segment the target edge, provide a reliable technical means for
growth monitoring in the process of animal husbandry, and
provide a valuable reference for other similar segmentation
tasks.

The future work we will focus on the development of a
lightweight version of LCA-Net to provide a low-power and
high-efficiency solution for the farm mobile monitoring system.
At the same time, we will optimize the model architecture for
specific scenarios such as livestock individual identification and
health monitoring to ensure stable operation under complex
conditions.
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