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Abstract—Due to the limitations of unclear edges and fuzzy 

features in image segmentation tasks, this study proposes an 

enhanced U⁃Net semantic segmentation network utilizing the local 

and global fusion attention module in response to the drawbacks 

of fuzzy features and unclear edges in image segmentation tasks. 

Firstly, a feature extraction module combining convolution and 

Transformer is introduced in the bottleneck layer, so that the 

network can fully simultaneously capture local and global 

features, and effectively promote the fusion of local and global 

features. Secondly, the CBAM attention module is added to the 

skip connections between the encoder and decoder. Finally, the 

output feature map is processed using the ASPP module to 

enhance focus on target features and improve segmentation 

performance. Experiments conducted on four animal husbandry 

segmentation datasets show that the LCA_Net model proposed in 

this study achieves an IoU score of 90.19% and a Dice score of 

94.83%, compared with U-Net and other mainstream 

segmentation networks, it has improved. This study offers 

effective technical support for advancing aquaculture status 

monitoring and lays a foundation for further development in this 

field. 
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I. INTRODUCTION 

Image segmentation is the accurate extraction of target 
regions of interest from an image, which refers to assigning each 
pixel in the image to a different category in order to achieve 
semantic understanding and region recognition of the image. 
Traditional image segmentation techniques [1] have low 
efficiency and some defects in the segmentation results, which 
cannot achieve the expected results. The rapid improvement in 
computer hardware performance encourages the rapid 
development of deep learning technology. Deep learning-based 
methods have achieved excellent results in image segmentation. 
Its excellent feature extraction and expression ability improve 
segmentation accuracy and speed, which is superior to 
traditional machine learning and computer vision approaches 
[2]. 

A convolutional neural network significantly enhances 
image segmentation algorithms. Its end-to-end pixel-level 
image segmentation networks have created applications in the 
field of semantic segmentation. These networks can classify 
images at the pixel-level [3]. Later research, such as SegNet [4], 
improved the accuracy and precision of segmentation by 

decoding the feature index generated by the pooling layer, and 
further promoted the development of semantic segmentation 
technology. In 2015, the U-Net model was proposed [5], and its 
unique symmetric structure and excellent performance were 
quickly known. It has strong adaptability to medical image 
segmentation tasks by retaining information at different levels 
through skip-connections, and has been widely used in a variety 
of different segmentation tasks. Subsequently, Zhou et al. [6] 
optimized the U-Net as a UNet++ version and solved the 
semantic gap problem caused by direct connections in the 
original U-Net. Deeplab series [7-9] used hole convolution and 
pooling modules with varying dilation rates to obtain more 
contextual information and improved network performance. 

In 2018, Zhou et al. [10] used the multi-scale watershed 
segmentation algorithm to segment the sheep from the images 
collected in the real and complex breeding environment. In 
2020, Zhang [11] proposed a horse body segmentation method 
based on YOLACT, and segmented the horse body edge contour 
through edge detection. Qin et al. [12] focused on fish body 
image segmentation technology, which is a method based on 
object detection and edge assistance, and the method achieved 
remarkable results in fish image segmentation. This method not 
only significantly improves the accuracy of image segmentation, 
but also provides important support for the development of 
animal husbandry intelligent technology [13]. 

Singh et al. [14] proposed an improved DeepLabV3+ CNN 
model, which demonstrated significant accuracy in cattle body 
part segmentation. Feng et al. [15] introduced an improved 
DeepLabV3+ network segmentation model, achieving higher 
segmentation accuracy for cattle regions. Xie et al. [16] 
proposed a multi-scale dual-attention U-Net method for 
detecting sheep hind limb segmentation. These methods perform 
well in segmentation tasks for specific livestock species. 
However, all of these approaches focus on segmentation for a 
single species. In contrast, our proposed network model is 
capable of adapting to multiple livestock species, offering 
greater versatility and broader application potential. 

Although numerous image segmentation network models 
exist, [17-21] traditional convolutional networks are limited by 
their receptive field size when handling image segmentation 
tasks with intricate details. This limitation reduces their ability 
to effectively capture global information, making it challenging 
to achieve optimal results. In addition, it also faces problems 
such as occlusion caused by complex background, changes in 
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lighting conditions, and overlap. This study proposes an image 
semantic segmentation algorithm that improves the U-Net local-
global attention network. While individual components like 
Transformers or attention mechanisms have been explored in 
isolation, the novelty of our LCA_Net lies in the synergistic 
integration strategy. We strategically position these modules to 
address specific shortcomings of the U-Net at different stages of 
the network, creating a cohesive pipeline that systematically 
enhances both local-global context modeling and feature 
refinement. On four different animal datasets, the experimental 
results show that the network performs more accurately than 
other popular network models, which is of some reference 
significance for the research in image segmentation. 

II. NETWORK ARCHITECTURE 

Fig. 1 shows an improved network model based on the U-
Net proposed in this study, which has a symmetrical encoder-
decoder structure. 

Three main reconstructions were carried out on the original 
U-Net structure to form the LCA-Net structure proposed in this 
study. First, in order to generate feature maps with varying 
resolutions, the input image’s features are progressively 
downsampled during the encoder stage, reducing spatial 
resolution. A local global feature fusion module is designed into 
the bottleneck layer of the encoder and decoder link, which 
efficiently combines local and global information. In addition, 
in order to reduce the redundancy of information between skip 
connections, an attention mechanism module is filled in. In the 
decoding phase, the high- and low-level features are spliced and 
upsampled at the same time. Finally, the image pixels are 
classified through the ASPP module and the Softmax activation 
function to obtain the segmentation results. 

The proposed LCA-Net’s design is grounded in three 
principles: 1) Hierarchical feature interaction: CSWin captures 
both local texture details and global shape context, overcoming 
the U-Net’s limited receptive field; 2) Attention-guided fusion: 
CBAM suppresses spatially redundant features before skip-
connections, mitigating semantic gaps; 3) Scale-aware 
decoding: ASPP complements CSWin by explicitly modeling 
multi-scale object variations. This layered approach 
fundamentally differs from prior works that apply these modules 
in isolation. 

A. Local Global Fusion Module 

Accurately distinguishing the target pixel from the 
background pixel in an image can be difficult, requiring 
automatic segmentation and feature extraction at both local and 
global scales to capture remote interactions. Therefore, the work 
of this study focuses on adding a local-global attention fusion 
module into the bottleneck layer of the U-Net architecture, and 
uses convolution and Transformer to transfer different 
information to the feature map, enabling the interaction and 
fusion of local and global information. Fig. 2 illustrates the 
structure of the local-global fusion module. 

Downsampling is applied in one of the execution paths to 
obtain the LGAF input features, and convolution is used to learn 
the weights of the convolutional kernels. The local feature in the 
input image x is extracted to obtain a local receptive field, and 
then the convolution feature layer is normalized (LN) [22]. The 
stability of the algorithm has been improved, and the scale 
differences from different routes have been reduced. After the 
above operations are performed in turn, the XL representing the 
aggregated local detail feature is obtained, as shown in Eq. (1): 

 𝑋𝐿 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣(𝑋)) (1) 

 
Fig. 1. Architecture of the proposed LCA-Net. 

 
Fig. 2. Local-global attention fusion module. 
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where, the input feature is denoted by X, the convolution 
operation by Conv, and the layer normalization by LayerNorm. 

In another execution path, self-attention calculation is 
performed using a convoluted feature map. The Cross-Window 
converter block (CSWin block) allows for the perception and 
interaction of global and non-local information [23]. Fig. 3 
illustrates the structure of the CSWin block. 

After processing previous information, the feature map XG 
obtained by this module has its extracted global receptive field, 
and its specific calculation is shown in Eq. (2): 

 𝑋𝐺 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝑆𝑊𝑖𝑛(𝐶𝑜𝑛𝑣(𝑋))) (2) 

The local-global attention module (as shown in Fig. 4) 
simultaneously accepts and effectively fuses two types of 
parameter information: one containing local information (XL) 
and the other containing global information (XG). 

 
Fig. 3. CSWin module structure. 

 
Fig. 4. Local-global attention module. 

To calculate attention scores, three vectors-query, keyword, 
and value vector-with sequential features are calculated. The 
CSWin‐Transformer is employed to process the input features 
XL and XG, and the process is shown in Eq. (3): 

 𝑋1 = 𝐶𝑆𝑊𝑖𝑛‐ 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑋𝐿, 𝑋𝐺) + 𝑋𝐿 (3) 

Finally, the CSWin-Transformer operation is reapplied to 
further enhance the global information. By strengthening the 
global information fusion of the feature map, the capture 
efficiency of long-distance dependency is improved, and the 
overall contour and boundary of the object segmentation are 
clearly recognized. Where V1 is given by X1, and Q and K are 
transformed from XG. Output Y is represented by Eq. (4): 

 𝑌 = 𝐶𝑆𝑊𝑖𝑛‐ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋1, 𝑋𝐺) + 𝑋𝐺 (4) 

B. Convolutional Block Attention Module 

Typically, during the feature fusion process of the traditional 
U-Net model, simple cascade operation is involved, but there is 
no clear selection and enhancement mechanism in the face of 
key features. This may lead to the over dependence of irrelevant 
features on the model, and thus the accuracy of segmentation 

results is limited. Each encoder layer generates a feature map 
comprising both valuable information and redundant or 
irrelevant data. However, simple channel compression 
techniques may lead to the loss of important channel-wise 
information within these feature maps. To minimize the 
influence of the background area and make the model focus 
more on the target segmentation objects, the CBAM attention 
mechanism [24] is introduced into the skip connection of the 
network model designed in this study, which can dynamically 
adjust the weight and filter the effective feature channel. As a 

result, the model learns the relevant representations more 
efficiently. Fig. 5 illustrates the CBAM attention module. 

Channel attention (CA) and spatial attention mechanism 
(SA), the two primary components of the CBAM module, are in 
charge of capturing dependence of channel and space, 
respectively. The channel and space feature weights can be 
dynamically changed by combining the two. 

In order to compress the feature information, the channel 
attention module first applies the max pooling and average 
pooling operations to each channel for the feature map with the 
input shape of (B, C, H, W). This approach efficiently enlarges 
the receptive field of the convolutional network while 
preserving the number of feature channels, producing an output 
tensor of shape (B, C, 1, 1). The multi-layer perceptron’s input 
should then be the outcomes of the two pooling operations. The 
multi-layer perceptron can increase the significance of a 
particular channel by learning parameters and using the sigmoid 
nonlinear activation function to assign corresponding feature 
weights to each channel. 

For the spatial attention mechanism, the weight assignment 
methods of each channel are different. It only weights the local 
part, and then performs the max pooling, average pooling, and a 
7 × 7 convolution operation on the channels within the same 
spatial area. Finally, the weights for each channel are obtained 
through the nonlinear activation of Sigmoid. 

The following are the steps in the CBAM module’s 
calculation: 

The input feature map first generates the characteristic layer 
FC with channel weight through the CA module, as shown in 
Eq. (5): 

𝐹𝑐 = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (5) 
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Fig. 5. CBAM attention module. 

where, σ denotes the Sigmoid activation function. The 
number of multi-layer perceptrons is indicated by MLP. 
Avgpool and Maxpool refer to the global average and max 
pooling processes, respectively, and F represents the input 
feature map. 

F1 is formed by multiplying the input original feature map F 
by the channel’s weight FC, which is obtained by F through the 
CA procedure, as shown in Eq. (6): 

 𝐹1 = 𝐹𝐶 • 𝐹      (6) 

Spatial attention is applied to average pooling and max 
pooling along the channel for the feature map with the input 
shape of (B, C, H, W). It can compress the channel dimension 
of the input tensor to 1, then the global channel information 
integrates into a single channel characteristic graph that has the 
shape of (B, 1, H, W), and effectively extracts the spatial 
relationship. In order to allow information interaction between 
different spatial descriptors, the spatial merged features are 
connected. The Sigmoid activation function is then employed to 
acquire the spatial features after the combined features have 
been transformed into a spatial feature map using the 
convolution layer Conv, as shown in Eq. (7): 

 𝐹𝑆 = 𝜎(𝐶𝑜𝑛𝑣([𝑆𝐴𝑎𝑣𝑔 + 𝑆𝐴𝑚𝑎𝑥]))            (7) 

where, SAavg and SAmax are the average and maximum 
pooled spatial feature descriptors. Eq. (8) represents the CBAM 
module’s final output Y. 

 𝑌 = 𝐹1 • 𝐹𝑆                       (8) 

The correlation of feature channels is greatly enhanced by 
this advanced dual attention mechanism, allowing each channel 

to more effectively capture the most relevant features of its task. 
Simultaneously, this approach notably improves feature 
expression, which increases the model’s accuracy in 
understanding and processing the input data. The CBAM 
module of the skip connection part enhances the feature 
interaction. The model’s accuracy and representational capacity 
are enhanced by reducing the influence of noise and redundant 
information through the combination of channel attention and 
spatial attention. 

C. ASPP Module 

ASPP was first proposed by Chen et al. [7] in Deeplabv2. Its 
idea comes from spatial pyramid pooling. Its purpose is to 
enhance the recognition ability of the network for targets of 
different scales through pooling operations of different scales. 
ASPP is a combination of a cavity convolution and a spatial 
pyramid pooling layer. Specifically, convolutions with different 
dilation rates are applied within a single branch to extract 
features. This approach enables the precise capture of multi-
scale contextual information through receptive fields of varying 
sizes, which are subsequently fused to produce the final feature 
map. It ensures that the receptive fields are increased while 
maintaining the image resolution, avoiding the problem of a 
large amount of calculation in traditional convolution. 

To more effectively capture and preserve edge detail features 
and enhance the model’s segmentation capability across various 
target scales, this study uses 8, 12, and 16 as the hole 
convolution of expansion coefficient, and removes the features 
obtained by pooling branches. Fig. 6 displays the ASPP 
structure, which has been optimized. 

 
Fig. 6. ASPP module. 
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III. EXPERIMENTAL CONFIGURATION 

A. Dataset 

All data sets were collected in real animal husbandry 
environments, including horses and pigeons in outdoor pastures 
during the day, pigs and cattle in indoor pens. The original image 
is collected at a resolution of 1920 × 1080 pixels, and then 
adjusted to 256 × 256 for model input. The label uses LabelMe 
software to label the target contour to ensure pixel-level 
accuracy. 

The experimental dataset used in this experiment is divided 
into four parts, which are horse images, pigeon images, cattle 
images, and pig images. Each image of the horse dataset has 
been professionally labeled, including the precise contour 
information of the horse, covering 327 high-resolution images. 
There are three sections to the dataset: 209 training sets, 53 
verification sets, and 65 test sets. 

The public pigeon dataset contains 122 high-resolution 
images and corresponding tags, including 78 training sets, 20 
validation sets and 24 test sets. The cattle breeding dataset 
contains 200 images and corresponding labels, including 128 
training sets, 32 validation sets and 40 test sets. The pig farm 
breeding dataset contains 501 images and corresponding 
images, including 320 for training, 81 for verification and 100 
for test. 

B. Experimental Environment and Parameter Setting 

The NVIDIA GeForce RTX 3080 Ti GPU, Windows 11 
operating system, 16GB of RAM, and Pytorch2.0.1 framework 
with Python 3.8 programming language constituted the deep 
learning environment. To ensure the determinism and 
reproducibility of our experiments, a fixed random seed was 
used throughout the study for parameter initialization and data 
shuffling. We employed the Dice loss function as our 
segmentation loss during the experiment, with a batch size of 8. 
For data augmentation, we applied a pipeline consisting of 
random horizontal flip, random vertical flip, random rotation 
within ±15°, and random brightness/contrast adjustment during 
the training phase. Additionally, Batch Normalization (BN) was 
utilized after each convolutional layer and before the ReLU 
activation function. Dropout was not employed in our 
architecture. 

In this study, all experiments under the same dataset use the 
same loss function and parameter settings for training, in which 
the initial learning rate for horse segmentation images is set to 
0.0001, with 100 training epochs. For pigeon segmentation 
images, the initial learning rate is 0.001, and the training consists 
of 200 epochs. Pig and cattle breeding images have an initial 
learning rate of 0.0001 and undergo 50 training epochs. Other 
experimental parameters are consistent with those mentioned 
above. 

C. Evaluation Index 

The evaluation indexes chosen for this study are Dice 
Similarity Coefficient, Precision, Recall, and Intersection over 
Union (IoU). 

The precision indicates the percentage of accurate prediction 
pixel values in the total pixel values as well as the proportion of 

correct prediction results in the total predicted value. The 
accuracy of correctly predicting pixel samples is assessed using 
this standard, and the Eq. (9) is as follows: 

 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

The percentage of the actual number of correct total pixel 
samples that the model correctly predicted is known as Recall. 
It mainly focuses on the proportion that the target pixel feature 
is not correctly classified as positive, as shown in Eq. (10): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

IoU represents the union of the segmentation prediction 
result and the intersection ratio of the real segmentation label, as 
shown in Eq. (11): 

 𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑃+𝑇𝑃+𝐹𝑁
 (11) 

Two samples can be compared for similarity using a function 
called the Dice similarity coefficient. The similarity between the 
label image and the predicted image can be computed using it. 
The value is between 0 and 1, as shown in Eq. (12): 

 𝐷𝑖𝑐𝑒 =
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
 (12) 

The positive sample is the target feature, and the negative 
sample is the background. TP stands for true positive and 
correctly predicts the target pixel. FP stands for false positive 
and incorrectly predicts the background pixel as the target pixel. 
TN stands for true negative and correctly predicts the 
background pixels. FN stands for false negative, and the target 
pixel is incorrectly predicted as the background pixel. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Comparison of Segmentation Performance under Different 

Networks 

The method suggested in this study and the traditional 
semantic segmentation algorithm are chosen for comparison 
experiments in order to confirm the efficacy of this approach. 
Using the same experimental configuration and the same 
parameter settings, the comparative experiments with U-Net, 
ResUnet [25], UNET++ DeepLabv3+, and DCSAU_Net [26] 
segmentation models are realized, respectively. The model’s 
segmentation performance is assessed using the four datasets 
listed in this study. The experiment uses four evaluation indexes: 
Precision, Recall, IoU, and Dice similarity coefficient. 

The experimental findings for the dataset of horse image 
segmentation are displayed in Table Ⅰ. Bold is the model score 
that has the highest index. It is evident that the majority of this 
method’s indicators outperform those of other semantic 
segmentation techniques. The precision, IoU, and Dice 
similarity coefficients improved by 3.07%, 1.83%, and 1.09%, 
respectively, in comparison to the traditional U-Net network 
model. 

Fig. 7 visualizes the original image, actual label, and 
prediction results. The above models’ segmentation results are 
presented in a more intuitive way. 
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TABLE I. SEGMENTATION RESULTS OF DIFFERENT MODELS IN HORSE 

SEGMENTATION DATASET 

Method Pre Rec IoU Dice 

U-Net 0.9242 0.9566 0.8864 0.9385 

ResUnet 0.9091 0.9157 0.8375 0.9079 

Unet++ 0.9421 0.9526 0.8993 0.9458 

DeepLabv3+ 0.9386 0.9255 0.8734 0.9314 

DCSAU_Net 0.9090 0.9300 0.8488 0.9165 

Ours 0.9549 0.9455 0.9047 0.9494 

In Fig. 7, each row is the segmentation visualization results 
of different original images and different models. The visual 
analysis indicates an overall improvement in segmentation 

accuracy. Comparing the segmentation results reveals that 
ResUnet has the worst recognition effect on the background and 
edge, and it can only roughly segment the horse area. For 
example, in the results of the second and fourth lines, the horse 
is under-segmented, and the last line is noticeably over-
segmented, making it impossible to accurately distinguish the 
horse’s edge from the background. Both U-net and Unet++ 
achieve satisfactory segmentation of the horse’s body as a 
whole, but lack the accuracy of edge segmentation. The 
proposed approach performs better overall than other 
comparison techniques, and the segmentation effect is nearly 
identical to the label value. Not only the boundary is smooth and 
accurate, but also there are a few cases of under segmentation 
and over segmentation. 

 
(a) Image (b) GT (c) Ours (d) U-Net  (e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net 

Fig. 7. Visualization effect of horse image segmentation under different networks. 

The segmentation performance of the proposed method is 
more effectively verified through the comparative experiments 
on the other three datasets. Specifically, the data is showcased 
in three separate tables, namely Table Ⅱ, Table Ⅲ, and Table Ⅳ, 
which are designed to offer a comprehensive view of the various 
aspects of the experiment. 

In the three evaluation indexes of Recall, IoU, and Dice, 
Table Ⅱ demonstrates that the LCA_Net network suggested in 
this study outperforms other networks. The Dice reached 
84.62%, which was 0.71%, 1.72%, 0.58% 7.55% and 0.44% 
higher than that of U-Net, ResUnet, SegNet, Unet++ 
DeepLabv3+and DCSAU_Net, respectively. 

The segmentation results of different models in the pigeon 
dataset are displayed as illustrated in Fig. 8. The third line shows 
that when the contrast between the pigeon and the background 
features is significant, all five models can effectively segment 
the target features. When the contrast between background 
features and the overall target is low, other experimental models 

may experience under segmentation, boundary blurring, and 
other phenomena. Notably, the model proposed in this study 
exhibits superior segmentation performance, able to better 
distinguish subtle pigeon edge features, and the segmentation 
results are closer to real labels. 

TABLE II. SEGMENTATION RESULTS OF DIFFERENT MODELS IN PIGEON 

SEGMENTATION DATASET 

Method Pre Rec IoU Dice 

U-Net 0.7862 0.9041 0.7257 0.8391 

ResUnet 0.7774 0.9016 0.7139 0.8290 

Unet++ 0.7774 0.9201 0.7291 0.8404 

DeepLabv3+ 0.6842 0.8983 0.6369 0.7707 

DCSAU_Net 0.7791 0.9194 0.7292 0.8418 

Ours 0.7830 0.9243 0.7362 0.8462 
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(a) Image (b) GT (c) Ours (d) U-Net  (e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net 

Fig. 8. Visualization effect of pigeon image segmentation under different networks. 

TABLE III. SEGMENTATION RESULTS OF DIFFERENT MODELS IN CATTLE 

FARM SEGMENTATION DATASET 

Method Pre Rec IoU Dice 

U-Net 0.9066 0.9199 0.8403 0.9122 

ResUnet 0.9206 0.9000 0.8345 0.9079 

Unet++ 0.8826 0.9428 0.8372 0.9104 

DeepLabv3+ 0.8796 0.9212 0.8178 0.8989 

DCSAU_Net 0.8764 0.9124 0.8083 0.8926 

Ours 0.9102 0.9230 0.8454 0.9151 

The segmentation and visualization outcomes of various 
models in the cattle farm segmentation dataset are displayed in 
Table Ⅲ and Fig. 9, respectively. The experimental indicators 
are improved compared with other models. It is evident from the 
visualization results that the model in this study has a better 
overall segmentation effect than other models, particularly when 
it comes to the first line of the comparison image. Other models’ 
segmentation performance decreases when the scene’s lighting 
impacts, but the model developed in this study is more in line 
with the label graph, highlighting the benefits of the model’s 
robustness and anti-interference. 

 
(a) Image (b) GT (c) Ours (d) U-Net  (e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net 

Fig. 9. Visualization effect of cattle image segmentation under different networks. 
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The segmentation indexes and visualization outcomes of 
various models in the pig farm segmentation dataset are 
displayed in Table Ⅳ and Fig. 10, respectively. Three 
performance indices show that the model suggested in this study 
outperforms other models, and the segmentation effect in night 
and strong light scenes is obviously superior to other models. 

The LCA-Net network model proposed in this study 
achieved more refined segmentation results through 
comparative experiments with four datasets and visualization 
results. These results substantiate the effectiveness of the 
proposed model. 

TABLE IV. SEGMENTATION RESULTS OF DIFFERENT MODELS IN PIG FARM SEGMENTATION DATASET 

Method Pre Rec IoU Dice 

U-Net 0.9490 0.9645 0.9184 0.9556 

ResUnet 0.9522 0.9644 0.9209 0.9569 

Unet++ 0.9510 0.9687 0.9252 0.9592 

DeepLabv3+ 0.9399 0.9478 0.8947 0.9435 

DCSAU_Net 0.9335 0.9243 0.8719 0.9269 

Ours 0.9578 0.9635 0.9263 0.9602 

 
(a) Image (b) GT (c) Ours (d) U-Net  (e) ResUnet (f) Unet++ (g) DeepLabv3+ (h) DCSAU_Net 

Fig. 10. Visualization effect of pig image segmentation under different networks. 

B. Ablation Experiment 

Using the same loss function and parameter settings as the 
comparative experiment for training, the ablation experiment 
confirms the overall effect of innovative reconstruction on the 
LCA_Net model. The method is to take U-Net as the baseline 
and successively accumulate CSwin module, CBAM attention 
module and ASPP module into it. Finally, ablation experiments 
are performed on the horse body segmentation dataset using the 
optimized LCA_Net network. Table Ⅴ displays the 
comprehensive study results. 

TABLE V. TESTS OF ABLATION FOR DIFFERENT MODULES ON THE HORSE 

SEGMENTATION DATASET 

Method Pre Rec IoU Dice 

U-Net 0.9242 0.9566 0.8864 0.9385 

CSwin 0.9378 0.9522 0.8955 0.9435 

CBAM 0.9408 0.9571 0.9023 0.9477 

ASPP 0.9402 0.9576 0.9020 0.9476 

CSwin+CBAM+ASPP 0.9549 0.9455 0.9047 0.9494 

As shown in Table Ⅴ, when the CSwin module is introduced 
alone, Precision and IoU are improved by 1.36% and 0.91% over 
the baseline, respectively, demonstrating its effectiveness in 
deep feature extraction. However, Recall slightly decreases. The 
CBAM module, when introduced alone, performs optimally, 
with Precision, IoU, and Dice increasing by 1.66%, 1.59%, and 
0.92%, respectively, while Recall remains stable. This validates 
that the attention mechanism helps suppress redundant features 
and enhance critical areas. The performance of the ASPP 
module alone is close to that of CBAM, indicating that multiple 
modules can integrate multi-scale contextual information, but 
the improvement in Precision is limited. After integrating all 
three modules, Precision, IoU, and Dice reach their optimal 
values, improving by 3.07%, 1.83%, and 1.09%, respectively, 
compared to the baseline. Although Recall slightly decreases, 
the overall results show that the feature extraction capability of 
CSwin, along with the refined optimization from CBAM and 
ASPP, complement each other effectively, notably improving 
the model’s segmentation accuracy and target localization. This 
suggests that the feature extraction of CSwin, attention 
enhancement from CBAM, and multi-scale fusion from ASPP 
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form an effective synergy that drives the systematic 
optimization of the model’s segmentation performance. 

Each module’s efficacy can be confirmed by the ablation 
experiment. Every module introduced in this study has the 
capability to increase the precision and accuracy of 
segmentation. The CSwin module in particular is essential for 
enhancing segmentation performance. 

V. DISCUSSION 

However, there are still some limitations in this study, 
including the relatively small size of the dataset and the fact that 
cross-dataset generalization tests have not yet been conducted to 
fully assess the model's adaptability. Future research directions 
should prioritize addressing these limitations. Expanding the 
diversity and volume of training data, implementing rigorous 
cross-dataset benchmarking, and conducting more sophisticated 
statistical testing will be essential steps toward strengthening the 
validity and real-world impact of the LCA-Net framework. 

VI. CONCLUSION 

Aiming at the problem of edge blurring in image 
segmentation, an improved U-Net network combining the 
CSwin module and channel spatial attention mechanism is 
proposed. Additionally, the ASPP module is introduced into the 
decoder output which contributes in improving the quality 
image segmentation accuracy. Moreover, the LCA-Net 
proposed by ours is compared with U-Net, ResUnet, Unet++ and 
Deeplabv3+ networks. On the test sets of four datasets, the 
LCA-Net’s evaluation indexes are essentially superior to those 
of other networks, achieving better results in segmentation 
visualization. The LCA_Net network model can accurately 
segment the target edge, provide a reliable technical means for 
growth monitoring in the process of animal husbandry, and 
provide a valuable reference for other similar segmentation 
tasks. 

The future work we will focus on the development of a 
lightweight version of LCA-Net to provide a low-power and 
high-efficiency solution for the farm mobile monitoring system. 
At the same time, we will optimize the model architecture for 
specific scenarios such as livestock individual identification and 
health monitoring to ensure stable operation under complex 
conditions. 
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