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Abstract—Software project effort estimation is a critical 

component of software development, as it determines the time and 

financial resources required to complete a project. Existing 

estimation techniques—ranging from empirical models and 

algorithmic methods to heuristic and expert-based approaches—

struggle with inconsistent accuracy due to the inherent 

complexity, subjectivity, and contextual variability across 

software projects. Although earlier formal methods aimed to 

reduce confusion by being very precise, they usually don't allow 

for automated logical analysis or check if the assumptions used for 

estimation are consistent with one another. To address these 

limitations, this study introduces a novel formal modeling 

framework that integrates Z-Specification with the Z3 SMT solver 

to both formalize and computationally verify effort estimation 

models. The use of Z notation guarantees the meaning is precise 

and unambiguous. Furthermore, SMT (Satisfiability Modulo 

Theories) reasoning adds powerful new abilities that older 

methods lacked. These new capabilities include automatically 

finding constraint violations, confirming how parameters depend 

on one another, and determining feasible estimation ranges under 

clearly defined conditions. This integration not only reduces 

ambiguity but also provides a verifiable, machine-checkable basis 

for evaluating, refining, and comparing diverse effort estimation 

methods, thereby offering a more robust foundation than 

traditional or solely formalized models. 

Keywords—Software effort estimation; cost estimation; formal 

methods; SMT Solver; automated verification; Z-specifications 

I. INTRODUCTION 

One of the crucial concerns for a Software house or 
company is to deliver the software product to its client or end-
users within the agreed-upon timeframe. The software 
delivered must meet the requirements and satisfy all the quality 
parameters while remaining within financial budget constraints. 
Therefore, accurate assessments of the Software Project Effort 
estimation serve as key factors that may also guide the 
achievement of important goals. In other words, it is incredibly 
important to understand and manage the cost through accurate 
estimation for proper management, improved quality, and 
enhanced comprehension of the software project. Estimating 
software costs is an ongoing process that begins at the planning 
stage and continues throughout the entire duration of a project. 
Ongoing cost estimation is necessary to ensure that 
expenditures align with the budget. In the last few decades, 
many models have been proposed and developed to calculate 
the software costs. These models are based on various 
parameters, one of them is based on the use of information from 
previous projects to assess the current project cost. The other 
method is to develop essential formulas by analyzing the 
specific database available. Many of the proposed cost models 

depend on size measurements, like lines of code (LoC) and 
Function Points. Precisely determining the size rightly impacts 
the exactness of cost estimation. However, none of the 
previously mentioned methods yield an accurate estimation [1]. 

The widely used Effort estimation models, such as 
COCOMO and Function Point Analysis, suffer from 
subjectivity, data-dependency, and a lack of formal verification 
[2]. Various Formal methods (FM) are proposed, which provide 
a robust mathematical foundation model and verify system 
components, and one of the FM is Z [3]. The current study 
introduces a novel formal framework for software effort 
estimation that integrates the semantic clarity of Z notation with 
the automated reasoning capabilities of an SMT solver. 

This Z-based formalization ensures semantic clarity, while 
SMT-backed reasoning introduces capabilities not available in 
earlier approaches—such as automated detection of constraint 
violations, verification of parameter dependencies, and 
exploration of feasible estimation ranges under formally 
defined conditions. We hypothesize that this rigorous, formally 
verifiable approach will yield a measurable improvement in 
estimation accuracy and consistency compared to existing 
empirical models. We formalized the estimation process, 
defined its components rigorously, and verified relationships 
using Z-Schema constructs, then applied the schemas to the Z3 
SMT Solver [4] to estimate the software project effort. The 
results of this validation, presented in Section VII, demonstrate 
the framework's ability to provide more accurate and 
transparent estimation ranges. 

II. RELATED WORK 

In today’s software industry, the most important thing for 
any company is to deliver a project successfully and on time. 
From a management point of view, predicting efforts is a 
challenging task. According to the report, 65 to 80 % of projects 
have delays in their delivery dates. The higher the effort, the 
higher the cost. Therefore, precise prediction is essential. There 
are many models for estimating software development effort and 
costs. COCOMO (Constructive Cost Model) [5] is the most used 
model. Machine learning methods are more apt for software 
effort prediction since they can modify more easily.  Machine 
learning can manage the variations better that are used to 
measure the effort needed to develop software, which depends 
on many factors — including the size of the problem, the 
experience of the users or developers, and other comparable 
inputs. 

The effort estimation typically involves input of the project 
size based on the lines of code (LoC) or Functional points, 
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complexity levels, risk factors, and historical productivity data. 
These inputs are often combined using empirical models but are 
rarely subjected to rigorous formal analysis. 

Formal Methods approach is used for writing formal 
description, analysis, and for the purpose of producing 
refinements [6]. A formal specification description is abstract, 
precise and, in a way, comprehensive. Precision drives 
ambiguities to be questioned and eliminated, the abstraction 
makes it possible for a human reader to grasp the larger picture, 
and the completeness ensures that every facet of behavior is 
described. Second, a thorough analysis can be conducted 
because of the description's formality. One can ascertain 
practical characteristics like deadlock-freedom or consistency 
by examining a single description [7]. Important characteristics 
like meeting high-level requirements or the accuracy of a 
suggested design can be ascertained by writing several 
descriptions from various angles [7]. Formal methods have been 
studied in the computing community since at least the 1960s, 
with seminal work by Floyd [9], Hoare [9], and Dijkstra [10] 
defining techniques for proving programs correct. 

One of the model-based notations, which is a strongly typed 
mathematical specification language, is Z notation, which is not 
an executable notation that can be interpreted or compiled into 
running programs. Z-Specification Language provides: 
Schema-based notation, State and operation modeling, and 
support for invariants and preconditions. There are special tools 
for testing Z texts, which are like a mathematical description 
for software systems, and these tools look for two types of 
errors. This includes syntax errors like grammatical mistakes, 
checking if the Z test is written using the correct rules and 
symbols to be followed for Z notation, and type errors are being 
used consistently and correctly. These are similar to how a 
compiler checks the regular computer code before it can run. 
The characteristic that sets Z apart from other formal notations 
is the schema, which is used in Z to characterize a system's 
dynamic and static elements. The Z standard makes it possible 
to create a clear, verifiable, and traceable model. Z has an ISO 
standard and is further developed [11]. 

III. METHODOLOGY 

This research study proposes and explores a framework for 
robust software effort estimation, leveraging an integrated 
model encompassing key variables, verification schemas, and 
equation schemas. The framework explicitly defines 
interdependencies between critical factors such as Effort, 
Complexity, Productivity, Risk, and Size. It introduces 
dedicated "Verification Schemas" for validating initial 
estimations of Effort and Complexity, and "Equation Schemas" 
that detail the computational relationships for deriving 
Productivity, Effort, and Complexity. By emphasizing both 
calculation and explicit validation of estimates, this work aims 
to enhance the accuracy, reliability, and transparency of 
software project predictions, addressing the usual challenges in 
traditional estimation methodologies. Fig. 1 represents a 
framework for a robust software effort estimation model related 
to cost, effort, and complexity estimation, for calculating and 
verifying project metrics, based on initial factor size and risk. 

Fig. 2 represents a conceptual model or dependency, which 
is structured into three main areas: Input Factors, which are size 

and risk, which directly influences effort and core metrics.  The 
effort calculated from size and risk is a key factor in the equation 
schemas, the other factors are productivity and complexity. 
Productivity is influenced by effort which leads to complexity, 
and which is calculated using formulas derived from effort. 
Complexity is the final calculated metric, which is influenced by 
productivity and is the focus of the verification schemas. 

A. Variables (Input/State) 

This defines the core quantitative and qualitative measures 
being tracked. These variables serve as inputs to the schemes 
for Effort: The amount of work needed (e.g., person-hours or 
person-months), Complexity: A measure of the difficulty of the 
system, Productivity: The rate at which output is generated 
(e.g., code per unit of effort), Risk: A measure of potential 
problems or uncertainties and Size: The magnitude of the 
system (e.g., lines of code, function points). 

 
Fig. 1. Framework for robust software effort estimation. 

 
Fig. 2. Conceptual model 

B. Verification Schemas 

Represents validation or constraint checks on the system's 
properties. These schemas take variables as input and output as 
a Boolean value or a report on whether a condition is met. 
EfforCheck: Depends on effort variable. It checks if the effort 
falls within an acceptable range or budget and 
ComplexityCheck: Depend on the complexity variable. Likely 
checks if the system's complexity is manageable or below a 
defined threshold. The Verification Schemas checks to validate 
the calculated metrics: Effort Check: Effort <100 which sets an 
upper limit or a constraint on the calculated Effort. 
Complexity1 < Complexity2 suggests a comparative check. 

C. Equation Schemas 

Represents computations or functions that determine value 
of one variable based on others. Productivity calculation 
depends on effort and complexity variables. Effort calculation 
depends on the size and productivity variables. Complexity 
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calculation depends on the risk and size variables. Equation 
Schemas details the mathematical relationships used to calculate 
the core metrics: Effort=Size /Productivity. Effort is 
inversely proportional to Productivity for a given Size. 
Complexity=Size*(1-Risk/10). Complexity increases 
with   size   but   decreases   as   risk   increases. 
Productivity=100/Complexity which defines 
productivity as inversely proportional to Complexity. 

IV. FORMAL DESCRIPTION 

Formal methods are mathematically based techniques and 
tools for the specification, design, and verification of software 
and hardware systems. They provide a rigorous framework for 
describing system properties and behaviors, allowing for precise 
reasoning and analysis. Fig. 3 given below illustrates a 
simplified model for calculating the effort required for a 
project, p, incorporating factors typically considered in project 
management, and can be interpreted through the lens of formal 
methods, particularly in the context of system modeling and 
analysis. 

 
Fig. 3. Sequence of transformations. 

The schemas described, which relate Size, Risk, Effort, 
Productivity, and Complexity through explicit mathematical 
formulas and constraints, can be formally specified using the Z 
Notation. The specification below defines the state space of the 
system and the operations that modify or check the state, based 
on the provided schemas. 

A. Z Specification for Project Metrics Model 

1) Basic types: We start by defining the basic sets for the 

variables in the model. Since all variables represent numerical 

quantities (size, effort, percentage/ratio), ℕ (natural numbers) 

and ℝ (real numbers). 

[ProjectID] 
size, Effort, Productivity, Complexity: ℝ 
Risk: ℝ 

2) State schema: The state schema ProjectMetrics defines 

the variables that constitute the state of the project estimation 

model. 

ProjectMetrics 
 

size, Effort, Productivity, Complexity: ℝ 
Risk: ℝ 

 

size ≥ 0 
0 ≤ risk ≤ 10  
effort ≥ 0 
productivity ≥ 0 
 complexity ≥ 
0
  
 

3) Initialization schema: The Init schema sets the initial 

state of the system, typically with the input variables defined 

and the calculated metrics initialized to zero or undefined. 

Init 
Δ 

ProjectMetri

cs size’

 

ϵ ℝ 
risk’ ϵ ℝ 
effort’ = 0 
productivity’= 0 
complexity’ = 0 

 

size’ ≥ 0 
0 ≤ risk’ ≤ 10 
effort’ = 0 
productivity’ = 0 
complexity’ = 0 

 

 

4) Operation schema: CalculateMetrics: The 

CalculateMetrics schema represents the core function of the 

model, applying the "Equation Schemas" to calculate the output 

metrics based on the current inputs. 

CalculateMEtrics 
 Δ 

ProjectMetrics

 

 risk < 10 
 

complexity’=size x (1-
risk/10) 
productivty’=100/complexity’ 
effort’= size/productivity’ 
size’ = size 
 risk’ = 
risk
  
 

5) Verification Schemas (Constraint Checks): The 

"Verification Schemas" [8] define checks that must be satisfied. 

These are modeled as query operations that report success or 

failure. 

a) Effort verification: The CheckEffort checks if the 

calculated effort is below 100. 

CheckEffort 
𝚵 ProjectMetrics 
report!: Boolean 
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(effort < 100) ⇒ (report!= true) 
(effort ≥ 100) ⇒ (report!= false) 
 

b) Complexity verification: The CompareComplexity 

schema checks the constraint Complexity1 < Complexity2. This 

requires comparing the current state (Complexity1) to an external 

value (Complexity2) which is taken as input. 

CompareComplexity 
𝚵 ProjectMetrics 
Comparison_complexity? : ℝ 
report!: Boolean 

 

(complexity < comparision-complexity?) ⇒ 
(report!= true) 
(complexity ≥ comparision-complexity?) ⇒ 
(report!= false) 

V. TOOLS FOR AUTOMATION OF FORMAL MODELS 

Formal methods can help turn a conceptual diagram into a 
formal model that can be processed by automated tools. There 
are various tools and approaches that support the automation of 
Formal models, and these tools help in three ways in specifying 
the model, which allows users to write the system’s properties 
and behaviors clearly, following rigorous and unambiguous 
language. These formal methods help in the 
analysis/verification of the model to check whether it is correct, 
complete, and satisfies the desired condition, and generate 
results/code directly from the specification. For effort estimation 
models, this could mean generating an executable version of the 
estimation function. 

A. Model Checkers / Theorem Provers 

These are core formal tools which are crucial for 
transforming a formal specification into something that can be 
analyzed automatically. 

1) Z3 (SMT Solver) [4]: A popular and powerful tool 

named Satisfiability Modulo Theories (SMT) solver 

developed by Microsoft Research. Using the tool, one can 

encode relationships as logical formulas used to check for 

consistency and to find specific values for given certain inputs 

(Size, Risk, Complexity, Productivity) to calculate the effort. 

(e.g.,Effort(p)=f(Size(p), 
Risk(p),Complexity(p), 
Productivity(assignedTo(p),p))) 

2) Alloy (Relational Model Finder): Alloy is a language 

and tool for modeling structural properties of software systems 

[12]. It's excellent for modeling relationships and constraints. 

Alloy could then analyze these relationships for consistency or 

discover instances that satisfy certain conditions. While it 

doesn't directly handle numerical calculations as easily as Z3, it 

is strong for the qualitative aspects and relationships. 

3) PVS (Prototype Verification System) / Isabelle/HOL / 

Coq (Interactive Theorem Provers) [13-15]: These are more 

heavyweight tools used for rigorous mathematical proofs. 

B. Domain-Specific Modeling Languages (DSMLs) / Low-

Code/No-Code Platforms [16]. 

Though these tools are not strictly used in "formal methods" 
in the highly rigorous sense of theorem provers, these can bridge 
the gap between conceptual diagrams and executable models, 
often with some level of formality. 

1) MATLAB/Simulink or LabVIEW [17, 18]: These tools 

are excellent where one can define functions and simulate 

scenarios involving mathematical equations and simulations. 

One can implement Effort(p) function in these environments and 

then run simulations with varying inputs for Size, Risk, 

Complexity, and Productivity to see the impact on Effort. They 

aren't "formal verification" tools, but they allow quantitative 

modeling and analysis. 

2) Business Process Model and Notation (BPMN) [19] 

Using these tools to model the process of effort estimation. 

While BPMN isn’t a formal method for mathematical models 

few of the tools allow one to embed executable logic at each 

step, making the process formally specified and potentially 

automated. Tools. While primarily for business processes, the 

"flow" aspect of the diagram could be modeled. 

3) General-Purpose Programming Languages: With 

Formal Libraries Languages, like Python with SymPy, SciPy, 

or Z3 bindings, one can implement a formal model directly in 

code. 

4) Data Modeling Tools (for structured data and 

relationships) Tools like erwin Data Modeler [20], 

PowerDesigner [21], or Sparx Enterprise Architect can create 

conceptual, logical, and physical data models. While they 

don't directly "calculate effort", they can formally define the 

structure of your inputs and outputs. The entities for attributes 

size, Risk, Complexity, and Team can be defined, which impact 

the productivity. Using these tools, one can ensure data 

consistency and define relationships, which is one of the 

foundational steps for formal models. 

VI. FORMAL VERIFICATION USING Z3 SMT SOLVER 

To apply the Z3 SMT solver for checking equations related 
to software project factors like Size, Risk, Complexity, and 
Productivity, a formal model was created, where the variables 
were defined and the rules that connect them, and how these 
variable equations and verification rules were created using Z3 
Python API. Define each of the components: P, Size, Risk, 
Complexity, assignedTo, Productivity, and Effort, which are 
proposed specific mathematical forms for these functions (e.g., 
Size as function points, Risk as a probability of failure, 
Complexity using cyclomatic complexity). Fig. 3 represents a 
simple function or a sequence of transformations. 

To support formal reasoning, the relationships among the 
project parameters were encoded as a constraint system 
amenable to SMT‐based verification in Z3. The independent 
variables Size ∈ ℕ⁺ and Risk ∈ ℚ∩ [0, 1] were instantiated for 
each case as fixed inputs, while Complexity, Productivity, and 
Effort were declared as dependent variables with explicit 
constraint schemas. Complexity was modeled as a 
monotonically increasing function of both Size and Risk, i.e., ∀ 
s,r · (s↑ ∨ r↑) ⇒ Complexity↑, capturing the empirical effect 
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that large or high-risk projects induce structural and managerial 
overhead. Productivity was constrained as a decreasing 
function of Complexity and Risk, i.e., ∀ c,r · (c↑ ∨ r↑) ⇒ 
Productivity↓, to reflect degradation of throughput under 
cognitive load, rework, and verification pressure. Effort was 
then encoded as an outcome variable derived via an effort- 
equation schema Effort = f (Size, Productivity), under the 
assumption that lower productivity under fixed size produces 
strictly higher effort. The “Project Cases” table enumerates 
three instantiated assignments (Size,Risk) with their Z3- 
verified consequences (Complexity, Productivity, Effort) 
satisfying a l l   declared  axioms  and  constraints,  thereby 
exhibiting the expected monotonic progression Size,Risk ⇒ 

Complexity ⇒ Productivity ⇒ Effort. 

A. Project_p (Initial State/Input) 

This can be viewed as the initial "system" or "object" under 
consideration. In formal methods, we would define the set of all 

projects, perhaps as P, where p∈P. 

Formally, Project_p could be represented as an initial state 
S0 in a state-transition system, or simply as an input parameter 
to a function. 

B. Size(p), Risk, Complexity (Parameters/Attributes) 

These are attributes or properties associated with Project_p. 
In formal methods, these would be formally defined metrics or 
functions that map a project to a numerical value or a categorical 
description. 

 Size(p):P→R+ (e.g., lines of code, function points) 

 Risk(p):P→ [0,1] (e.g., a probability or a risk score) 

 Complexity(p):P→R+ (e.g., cyclomatic complexity, 
number of interdependencies) 

These could be seen as a tuple of characteristics: (Size(p), 
Risk(p), Complexity(p)). The transition from "Project_p" to 
"Size(p), Risk, Complexity" implies an evaluation function or a 
feature extraction process that characterizes the project. 

C. assignedTo(p) → productivity (Function/Relation and 

Impact Factor) 

This is the most critical part from a formal methods 
perspective, as it introduces a relationship and a derived 
property. 

1) assignedTo(p): This represents the resources (e.g., team 

members, skill sets) allocated to project p. Formally, this could 

be a function A:P→R where R is the set of all resource 

allocations. 

2) Productivity: This is an attribute of the assigned 

resources, or a property derived from the interaction of the 

assigned resources with the project's characteristics. 

Productivity could be defined as a function Prod: R×P→R+. The 

arrow "→" signifies that assignedTo(p) directly influences 

productivity. The assignedTo(p) → productivity highlights that 

this step involves a mapping or a transformation where the 

characteristics of the assigned team (e.g., their skill levels, 

experience, team size) influence how efficiently the project 

attributes (size, risk, complexity) are managed. This could be a 

complex function incorporating human factors. 

D. Effort(p) (Output/Result) 

This is the final calculated output of the model. 

Effort(p) would be a function that considers the project's 
characteristics (Size(p), Risk, Complexity) and the derived 
productivity. 

Formally, Effort(p)=f(Size(p), Risk(p), Complexity(p), 

E. Define Variable 

from z3 import * 

# Define variables as real numbers (can 
also be Ints if discrete) 
Size = Real('Size') 
# Size of the software project (e.g., LOC, 
Function Points) 
Risk = Real('Risk') 
# Risk factor (e.g., scale 0–1 or 0–10) 
Complexity = Real('Complexity') 
# Complexity of the system (scale 0–10) 
Productivity=Real('Productivity') 
# Productivity (e.g., LOC/person-month) 

F. Equation Schemas 

These are mathematical models or assumptions defining 
how variables relate. 

1) Effort Estimation Equation 

We define effort (E) based on the size and productivity. 
Effort = Real('Effort') 
equation_schema_1 = Effort == Size
 / Productivity 

2) Risk-adjusted Complexity Equation 

Assume complexity increases with risk: 

equation_schema_2 = Complexity == Size * 

(1 + Risk / 10) 

3) Productivity Impact by Complexity 

Assume productivity decreases as complexity increases: 

equation_schema_3 = Implies (Complexity > 0, 
Productivity == 100 / Complexity) 

G. Verification Schemas 

These are assertions or properties we want to verify using 
Z3. Verify effort is less than a threshold (say 100 person-
months) 

verification_schema_1 = Effort < 100 
Verify that increasing risk leads to increased complexity.  

# Suppose we model two risk levels 

Risk1 = Real('Risk1') 
Risk2 = Real('Risk2') 
Complexity1 = Real('Complexity1') 
Complexity2 = Real('Complexity2') 
schema_risk1 = Complexity1 == Size * (1 + 
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Risk1 / 10) 
schema_risk2 = Complexity2 == Size * (1 + 
Risk2 / 10) 
schema_assumption = And (Risk1 < Risk2) 
verification_schema_2 = Implies 
(schema_assumption, Complexity1 < 
Complexity2) 

H. Putting it all into Z3 Solver 

Constraint Setup for this Data: Below is a minimal Z3 SMT 
model that encodes the relationships used. This Z3 model 
computes Complexity, Productivity, and Effort. 

s = Solver () 
# Add the equation schemas 
s.add(equation_schema_1) 
s.add(equation_schema_2) 

s.add(equation_schema_3) 
# Add the verification schema 
s.add(verification_schema_1) 
# Add additional bounds or assumptions 
s.add(Size > 0, Productivity > 0, Risk >= 0, 
Risk <= 10) 
# Check 
satisfiability if 
s.check() == sat: 

print ("Verification successful!") 
print(s.model()) 

else: 
print ("Verification failed or 

unsatisfiable.") 
 

Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 demonstrate the Z3 
(SMT Solver) output when the property of Effort is changed. 

 
Fig. 4. Output when the property of Effort <100. 

 
Fig. 5. Output when the property of Effort <10 

When the property of Effort is changed to less than 50 
“Effort < 50”: 

 
Fig. 6. Output when the property of Effort <50. 

 
Fig. 7. Output when small project <= 15 KLOC with low risk. 

 

Fig. 8. Small project <= 15 KLOC with high risk. 

VII. RESULTS 

Five different project scenarios with varying size and 
different risk test cases were performed with the exact values to 
measure the Complexity, Productivity, and Effort for the 
various computed values that were used for the test cases as 
shown in Table I. 

TABLE I. VARIOUS COMPUTED VALUES 

Case Size Risk Complexity 
Productiv 

ity 
Effort 

A 20 1 22.0 4.54 4.4 

B 40 3 52.0 1.92 20.8 

C 60 5 90.0 1.11 54.0 

D 80 7 136.0 0.73 108.8 

E 100 9 190.0 0.52 190.0 
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The graphs illustrated in Fig. 9, Fig. 10 and Fig. 11 present 
a realistic engineering insight, where risk and size amplify 
complexity, and reduced productivity rapidly inflates total 
effort. Fig. 9 and Fig. 10 illustrate a critical, non-linear 
relationship in software projects: as Size and Risk increase 
complexity across cases increases non-linearly as project size 
grows and as risk becomes higher as in Case A to Case E. 
Complexity value more than doubles from Case A to Case B, 
while the Size only doubles and Risk increases by a small linear 
step (1 to 3). This means larger and high-risk projects quickly 
become harder to manage. Complexity amplifies, leading to a 
sharp drop in Productivity, which ultimately results in a 
significantly inflated total Effort. Fig. 10 shows a rapid, steep 
decline in Productivity as the project cases advance. The largest 
drop occurs early, between Case A and Case B, representing a 
57% reduction in productivity. 

 
Fig. 9. Complexity across Cases. 

 
Fig. 10. Productivity across Cases. 

Fig. 10 demonstrates the productivity across cases. As 
complexity increases, productivity drops, which reflects that 
the real projects’ high uncertainty and size reduce the effective 
delivery rate, and the productivity versus Cases strictly 
decreases as complexity rises. While Size increases linearly 
(20, 40, 60, 80, 100), the calculated Effort increases at a highly 
accelerated rate: Case A to B: Effort increases 4.7 times (4.4 to 
20.8). Case D to E: Effort increases by 1.7 times (108.8 to 
190.0). The rapid drop in Productivity (due to amplified 
Complexity) is the primary driver of total project Effort. This 
phenomenon is a realistic depiction of large, complex, and 
high-risk projects where the team spends exponentially more 
time dealing with integration issues, debugging, and 
coordination (i.e., low productivity) than on core development, 
resulting in project costs that balloon far beyond the initial 
linear expectation based on size alone. 

 

Fig. 11. Effort across Cases. 

Fig. 11 demonstrates Effort across cases. Effort increases 
dramatically when productivity drops and for moderate rises in 
risk or size have a disproportionate impact on total effort. Effort 
versus Cases grow sharply as productivity drops. 

VIII. CONCLUSION AND FUTURE WORK 

Software effort estimation has progressed from early 
heuristic and cost–based models such as COCOMO to more 
data-driven and logic-based frameworks. This work contributes 
to that evolution by demonstrating how relationships among 
Size, Risk, Complexity, Productivity, and Effort can be 
formalized using Z-notation and verified through an SMT solver 
such as Z3. Instead of relying on heuristic intuition alone, the 
encoded schemas enforced logically consistent relationships, 
ensuring that any computed effort values were entailed by the 
declared constraints. The illustrative “Project Cases” and the 
generated graphs confirmed that the expected behavior 
increases in size and risk propagated to higher complexity, 
reduced productivity, and elevated total effort. This coherence 
between historical theory, formal reasoning, and empirical 
visualization supports the feasibility of combining classical 
estimation knowledge with modern verification machinery to 
produce estimations that are interpretable, auditable, and 
computationally checkable. 

In the future, we plan to improve the model by adding more 
real-world factors such as changing requirements, developer 
skill levels, number of defects, and outside system 
dependencies. We also plan to move from fixed (static) values 
to dynamic ones, so that factors like risk and productivity can 
change over time as the project progresses instead of staying 
constant. Hybrid or probabilistic SMT approaches may further 
enable uncertainty-aware verification and confidence-bounded 
outputs. Validation with industrial datasets will help assess 
whether real-world trajectories satisfy or refine the formal 
schemas. Ultimately, integrating the verified specification into 
automated tools or dashboards may provide project managers 
with rigorously justified, real-time decision support, aligning 
formal verification research with practical software engineering 
governance. 
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