(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

Software Project Effort Estimation Using Formal
Method and Model Checker

Abdulaziz Alhumam
Dept. of Computer Science-College of Computer Science and Information Technology, King Faisal University, Saudi Arabia

Abstract—Software project effort estimation is a critical
component of software development, as it determines the time and
financial resources required to complete a project. Existing
estimation techniques—ranging from empirical models and
algorithmic methods to heuristic and expert-based approaches—
struggle with inconsistent accuracy due to the inherent
complexity, subjectivity, and contextual variability across
software projects. Although earlier formal methods aimed to
reduce confusion by being very precise, they usually don't allow
for automated logical analysis or check if the assumptions used for
estimation are consistent with one another. To address these
limitations, this study introduces a novel formal modeling
framework that integrates Z-Specification with the Z3 SMT solver
to both formalize and computationally verify effort estimation
models. The use of Z notation guarantees the meaning is precise
and unambiguous. Furthermore, SMT (Satisfiability Modulo
Theories) reasoning adds powerful new abilities that older
methods lacked. These new capabilities include automatically
finding constraint violations, confirming how parameters depend
on one another, and determining feasible estimation ranges under
clearly defined conditions. This integration not only reduces
ambiguity but also provides a verifiable, machine-checkable basis
for evaluating, refining, and comparing diverse effort estimation
methods, thereby offering a more robust foundation than
traditional or solely formalized models.

Keywords—Software effort estimation; cost estimation; formal
methods; SMT Solver; automated verification; Z-specifications

l. INTRODUCTION

One of the crucial concerns for a Software house or
company is to deliver the software product to its client or end-
users within the agreed-upon timeframe. The software
delivered must meet the requirements and satisfy all the quality
parameters while remaining within financial budget constraints.
Therefore, accurate assessments of the Software Project Effort
estimation serve as key factors that may also guide the
achievement of important goals. In other words, it is incredibly
important to understand and manage the cost through accurate
estimation for proper management, improved quality, and
enhanced comprehension of the software project. Estimating
software costs is an ongoing process that begins at the planning
stage and continues throughout the entire duration of a project.
Ongoing cost estimation is necessary to ensure that
expenditures align with the budget. In the last few decades,
many models have been proposed and developed to calculate
the software costs. These models are based on various
parameters, one of them is based on the use of information from
previous projects to assess the current project cost. The other
method is to develop essential formulas by analyzing the
specific database available. Many of the proposed cost models

depend on size measurements, like lines of code (LoC) and
Function Points. Precisely determining the size rightly impacts
the exactness of cost estimation. However, none of the
previously mentioned methods yield an accurate estimation [1].

The widely used Effort estimation models, such as
COCOMO and Function Point Analysis, suffer from
subjectivity, data-dependency, and a lack of formal verification
[2]. Various Formal methods (FM) are proposed, which provide
a robust mathematical foundation model and verify system
components, and one of the FM is Z [3]. The current study
introduces a novel formal framework for software effort
estimation that integrates the semantic clarity of Z notation with
the automated reasoning capabilities of an SMT solver.

This Z-based formalization ensures semantic clarity, while
SMT-backed reasoning introduces capabilities not available in
earlier approaches—such as automated detection of constraint
violations, verification of parameter dependencies, and
exploration of feasible estimation ranges under formally
defined conditions. We hypothesize that this rigorous, formally
verifiable approach will yield a measurable improvement in
estimation accuracy and consistency compared to existing
empirical models. We formalized the estimation process,
defined its components rigorously, and verified relationships
using Z-Schema constructs, then applied the schemas to the Z3
SMT Solver [4] to estimate the software project effort. The
results of this validation, presented in Section VII, demonstrate
the framework's ability to provide more accurate and
transparent estimation ranges.

Il. RELATED WORK

In today’s software industry, the most important thing for
any company is to deliver a project successfully and on time.
From a management point of view, predicting efforts is a
challenging task. According to the report, 65 to 80 % of projects
have delays in their delivery dates. The higher the effort, the
higher the cost. Therefore, precise prediction is essential. There
are many models for estimating software development effort and
costs. COCOMO (Constructive Cost Model) [5] is the most used
model. Machine learning methods are more apt for software
effort prediction since they can modify more easily. Machine
learning can manage the variations better that are used to
measure the effort needed to develop software, which depends
on many factors — including the size of the problem, the
experience of the users or developers, and other comparable
inputs.

The effort estimation typically involves input of the project
size based on the lines of code (LoC) or Functional points,

403|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

complexity levels, risk factors, and historical productivity data.
These inputs are often combined using empirical models but are
rarely subjected to rigorous formal analysis.

Formal Methods approach is used for writing formal
description, analysis, and for the purpose of producing
refinements [6]. A formal specification description is abstract,
precise and, in a way, comprehensive. Precision drives
ambiguities to be questioned and eliminated, the abstraction
makes it possible for a human reader to grasp the larger picture,
and the completeness ensures that every facet of behavior is
described. Second, a thorough analysis can be conducted
because of the description's formality. One can ascertain
practical characteristics like deadlock-freedom or consistency
by examining a single description [7]. Important characteristics
like meeting high-level requirements or the accuracy of a
suggested design can be ascertained by writing several
descriptions from various angles [7]. Formal methods have been
studied in the computing community since at least the 1960s,
with seminal work by Floyd [9], Hoare [9], and Dijkstra [10]
defining techniques for proving programs correct.

One of the model-based notations, which is a strongly typed
mathematical specification language, is Z notation, which is not
an executable notation that can be interpreted or compiled into
running programs. Z-Specification Language provides:
Schema-based notation, State and operation modeling, and
support for invariants and preconditions. There are special tools
for testing Z texts, which are like a mathematical description
for software systems, and these tools look for two types of
errors. This includes syntax errors like grammatical mistakes,
checking if the Z test is written using the correct rules and
symbols to be followed for Z notation, and type errors are being
used consistently and correctly. These are similar to how a
compiler checks the regular computer code before it can run.
The characteristic that sets Z apart from other formal notations
is the schema, which is used in Z to characterize a system's
dynamic and static elements. The Z standard makes it possible
to create a clear, verifiable, and traceable model. Z has an 1SO
standard and is further developed [11].

Il. METHODOLOGY

This research study proposes and explores a framework for
robust software effort estimation, leveraging an integrated
model encompassing key variables, verification schemas, and
equation schemas. The framework explicitly defines
interdependencies between critical factors such as Effort,
Complexity, Productivity, Risk, and Size. It introduces
dedicated "Verification Schemas" for validating initial
estimations of Effort and Complexity, and "Equation Schemas"
that detail the computational relationships for deriving
Productivity, Effort, and Complexity. By emphasizing both
calculation and explicit validation of estimates, this work aims
to enhance the accuracy, reliability, and transparency of
software project predictions, addressing the usual challenges in
traditional estimation methodologies. Fig. 1 represents a
framework for a robust software effort estimation model related
to cost, effort, and complexity estimation, for calculating and
verifying project metrics, based on initial factor size and risk.

Fig. 2 represents a conceptual model or dependency, which
is structured into three main areas: Input Factors, which are size

Vol. 16, No. 11, 2025

and risk, which directly influences effort and core metrics. The
effort calculated from size and risk is a key factor in the equation
schemas, the other factors are productivity and complexity.
Productivity is influenced by effort which leads to complexity,
and which is calculated using formulas derived from effort.
Complexity is the final calculated metric, which is influenced by
productivity and is the focus of the verification schemas.

A. Variables (Input/State)

This defines the core quantitative and qualitative measures
being tracked. These variables serve as inputs to the schemes
for Effort: The amount of work needed (e.g., person-hours or
person-months), Complexity: A measure of the difficulty of the
system, Productivity: The rate at which output is generated
(e.g., code per unit of effort), Risk: A measure of potential
problems or uncertainties and Size: The magnitude of the
system (e.g., lines of code, function points).

l Vana:lei
v

Productivity ‘ Risk

[

Efiont Comalesity

-

Equatfon_scifemas
v hd A

4

Varification Schumai
v

Effort Check ‘ Carmplexity Check Productivity Caleulation ‘ | Effert Caleulation ‘ | Complexity Caleulation ‘

{ —]

Fig. 1. Framework for robust software effort estimation.

Equation Schemas

p-| Complexity Formula

Effort

p-| Effort Formul;

Verification Schemas

Risk p| Productivity Formula

Size

p| Complexity Check

Productivity

o [
U

Complexity b| Effort Check

Fig.2. Conceptual model

B. Verification Schemas

Represents validation or constraint checks on the system's
properties. These schemas take variables as input and output as
a Boolean value or a report on whether a condition is met.
EfforCheck: Depends on effort variable. It checks if the effort
falls within an acceptable range or budget and
ComplexityCheck: Depend on the complexity variable. Likely
checks if the system's complexity is manageable or below a
defined threshold. The Verification Schemas checks to validate
the calculated metrics: Effort Check: Effort <100 which sets an
upper limit or a constraint on the calculated Effort.
Complexityl < Complexity2 suggests a comparative check.

C. Equation Schemas

Represents computations or functions that determine value
of one variable based on others. Productivity calculation
depends on effort and complexity variables. Effort calculation
depends on the size and productivity variables. Complexity

404|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

calculation depends on the risk and size variables. Equation
Schemas details the mathematical relationships used to calculate
the core metrics: Effort=Size /Productivity. Effortis
inversely proportional to Productivity for a given Size.
Complexity=Size*(1-Risk/10). Complexity increases
with size but decreases as risk increases.
Productivity=100/Complexity which defines
productivity as inversely proportional to Complexity.

IV. FORMAL DESCRIPTION

Formal methods are mathematically based techniques and
tools for the specification, design, and verification of software
and hardware systems. They provide a rigorous framework for
describing system properties and behaviors, allowing for precise
reasoning and analysis. Fig. 3 given below illustrates a
simplified model for calculating the effort required for a
project, p, incorporating factors typically considered in project
management, and can be interpreted through the lens of formal
methods, particularly in the context of system modeling and
analysis.

Project_p

I

Size(p), Risk, Complexity

!

assignedTo(p) -->
productivity

I

effort(p)

Fig. 3. Sequence of transformations.

The schemas described, which relate Size, Risk, Effort,
Productivity, and Complexity through explicit mathematical
formulas and constraints, can be formally specified using the Z
Notation. The specification below defines the state space of the
system and the operations that modify or check the state, based
on the provided schemas.

A. Z Specification for Project Metrics Model

1) Basic types: We start by defining the basic sets for the
variables in the model. Since all variables represent numerical
quantities (size, effort, percentage/ratio), N (natural numbers)
and R (real numbers).

[ProjectID]
size, Effort, Productivity, Complexity: R
Risk: R
2) State schema: The state schema ProjectMetrics defines
the variables that constitute the state of the project estimation
model.

ProjectMetrics

size, Effort, Productivity, Complexity: R
Risk: R

Vol. 16, No. 11, 2025

3) Initialization schema: The Init schema sets the initial
state of the system, typically with the input variables defined
and the calculated metrics initialized to zero or undefined.

Init

A
ProjectMetri
cs size’

e R

risk’ e R
effort’ =0
productivity’= 0
complexity’ =0
size’ 2 0

0 < risk’ < 10
effort’ = 0
productivity’ = 0
complexity’ = 0

4) Operation schema: CalculateMetrics: The
CalculateMetrics schema represents the core function of the
model, applying the "Equation Schemas" to calculate the output
metrics based on the current inputs.

CalculateMEtrics
A

ProjectMetrics

risk < 10

complexity’=size x (1-
risk/10)
productivty’=100/complexity’
effort’= size/productivity’
size’ = size

risk’ =

risk

5) Verification Schemas (Constraint Checks): The
"Verification Schemas" [8] define checks that must be satisfied.
These are modeled as query operations that report success or
failure.

a) Effort verification: The CheckEffort checks if the
calculated effort is below 100.

CheckEffort
E ProjectMetrics
report!: Boolean

405|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

(effort < 100) = (report!= true)
(effort 2 100) = (report!= false)

b) Complexity verification: The CompareComplexity
schema checks the constraint Complexity; < Complexity,. This
requires comparing the current state (Complexity;) to an external
value (Complexityz) which is taken as input.

CompareComplexity

E ProjectMetrics

Comparison_complexity? : R

report!: Boolean

(complexity < comparision-complexity?) =
(report!= true)

(complexity 2 comparision-complexity?) =
(report!= false)

V. ToOLSFOR AUTOMATION OF FORMAL MODELS

Formal methods can help turn a conceptual diagram into a
formal model that can be processed by automated tools. There
are various tools and approaches that support the automation of
Formal models, and these tools help in three ways in specifying
the model, which allows users to write the system’s properties
and behaviors clearly, following rigorous and unambiguous
language. These formal methods help in the
analysis/verification of the model to check whether it is correct,
complete, and satisfies the desired condition, and generate
results/code directly from the specification. For effort estimation
models, this could mean generating an executable version of the
estimation function.

A. Model Checkers / Theorem Provers

These are core formal tools which are crucial for
transforming a formal specification into something that can be
analyzed automatically.

1) Z3 (SMT Solver) [4]: A popular and powerful tool
named Satisfiability Modulo Theories (SMT) solver
developed by Microsoft Research. Using the tool, one can
encode relationships as logical formulas used to check for
consistency and to find specific values for given certain inputs
(Size, Risk, Complexity, Productivity) to calculate the effort.

(e.g.,Effort(p)=f(Size(p),
Risk(p),Complexity(p),
Productivity(assignedTo(p),p)))

2) Alloy (Relational Model Finder): Alloy is a language
and tool for modeling structural properties of software systems
[12]. It's excellent for modeling relationships and constraints.
Alloy could then analyze these relationships for consistency or
discover instances that satisfy certain conditions. While it
doesn't directly handle numerical calculations as easily as Z3, it
is strong for the qualitative aspects and relationships.

3) PVS (Prototype Verification System) / Isabelle/HOL /
Coq (Interactive Theorem Provers) [13-15]: These are more
heavyweight tools used for rigorous mathematical proofs.

B. Domain-Specific Modeling Languages (DSMLs) / Low-

Vol. 16, No. 11, 2025

Code/No-Code Platforms [16].

Though these tools are not strictly used in "“formal methods"
in the highly rigorous sense of theorem provers, these can bridge
the gap between conceptual diagrams and executable models,
often with some level of formality.

1) MATLAB/Simulink or LabVIEW [17, 18]: These tools
are excellent where one can define functions and simulate
scenarios involving mathematical equations and simulations.
One can implement Effort(p) function in these environments and
then run simulations with varying inputs for Size, Risk,
Complexity, and Productivity to see the impact on Effort. They
aren't "formal verification" tools, but they allow quantitative
modeling and analysis.

2) Business Process Model and Notation (BPMN) [19]
Using these tools to model the process of effort estimation.
While BPMN isn’t a formal method for mathematical models
few of the tools allow one to embed executable logic at each
step, making the process formally specified and potentially
automated. Tools. While primarily for business processes, the
"flow" aspect of the diagram could be modeled.

3) General-Purpose Programming Languages: With
Formal Libraries Languages, like Python with SymPy, SciPy,
or Z3 bindings, one can implement a formal model directly in
code.

4) Data Modeling Tools (for structured data and
relationships) Tools like erwin Data Modeler [20],
PowerDesigner [21], or Sparx Enterprise Architect can create
conceptual, logical, and physical data models. While they
don't directly “calculate effort”, they can formally define the
structure of your inputs and outputs. The entities for attributes
size, Risk, Complexity, and Team can be defined, which impact
the productivity. Using these tools, one can ensure data
consistency and define relationships, which is one of the
foundational steps for formal models.

VI. FORMAL VERIFICATION USING Z3 SMT SOLVER

To apply the Z3 SMT solver for checking equations related
to software project factors like Size, Risk, Complexity, and
Productivity, a formal model was created, where the variables
were defined and the rules that connect them, and how these
variable equations and verification rules were created using Z3
Python API. Define each of the components: P, Size, Risk,
Complexity, assignedTo, Productivity, and Effort, which are
proposed specific mathematical forms for these functions (e.g.,
Size as function points, Risk as a probability of failure,
Complexity using cyclomatic complexity). Fig. 3 represents a
simple function or a sequence of transformations.

To support formal reasoning, the relationships among the
project parameters were encoded as a constraint system
amenable to SMT-based verification in Z3. The independent
variables Size € N* and Risk € QN [0, 1] were instantiated for
each case as fixed inputs, while Complexity, Productivity, and
Effort were declared as dependent variables with explicit
constraint schemas. Complexity was modeled as a
monotonically increasing function of both Size and Risk, i.e., V
s,r + (sT V r7) = Complexity?, capturing the empirical effect

406 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

that large or high-risk projects induce structural and managerial
overhead. Productivity was constrained as a decreasing
function of Complexity and Risk, i.e., V ¢r - (¢ V 17) =
Productivity|, to reflect degradation of throughput under
cognitive load, rework, and verification pressure. Effort was
then encoded as an outcome variable derived via an effort-
equation schema Effort = f (Size, Productivity), under the
assumption that lower productivity under fixed size produces
strictly higher effort. The “Project Cases” table enumerates
three instantiated assignments (Size,Risk) with their Z3-
verified consequences (Complexity, Productivity, Effort)
satisfying all declared axioms and constraints, thereby
exhibiting the expected monotonic progression Size,Risk =

Complexity = Productivity = Effort.

A. Project_p (Initial State/Input)

This can be viewed as the initial "system" or "object" under
consideration. In formal methods, we would define the set of all
projects, perhaps as P, where pep.

Formally, Project_p could be represented as an initial state

So in a state-transition system, or simply as an input parameter
to a function.

B. Size(p), Risk, Complexity (Parameters/Attributes)

These are attributes or properties associated with Project_p.
In formal methods, these would be formally defined metrics or
functions that map a project to a numerical value or a categorical
description.

e Size(p):P—R" (e.g., lines of code, function points)
e Risk(p).P— [0,1] (e.g., a probability or arisk score)

o Complexity(p):P—R* (e.g., cyclomatic complexity,
number of interdependencies)

These could be seen as a tuple of characteristics: (Size(p),
Risk(p), Complexity(p)). The transition from "Project p" to
"Size(p), Risk, Complexity" implies an evaluation function or a
feature extraction process that characterizes the project.

C. assignedTo(p) — productivity (Function/Relation and
Impact Factor)
This is the most critical part from a formal methods
perspective, as it introduces a relationship and a derived
property.

1) assignedTo(p): This represents the resources (e.g., team
members, skill sets) allocated to project p. Formally, this could
be a function A:P—R where R is the set of all resource
allocations.

2) Productivity: This is an attribute of the assigned
resources, or a property derived from the interaction of the
assigned resources with the project's characteristics.
Productivity could be defined as a function Prod: RxP—R*. The
arrow "—" signifies that assignedTo(p) directly influences
productivity. The assignedTo(p) — productivity highlights that
this step involves a mapping or a transformation where the
characteristics of the assigned team (e.g., their skill levels,
experience, team size) influence how efficiently the project

Vol. 16, No. 11, 2025

attributes (size, risk, complexity) are managed. This could be a
complex function incorporating human factors.

D. Effort(p) (Output/Result)
This is the final calculated output of the model.

Effort(p) would be a function that considers the project's
characteristics (Size(p), Risk, Complexity) and the derived
productivity.

Formally, Effort(p)=f(Size(p), Risk(p), Complexity(p),

E. Define Variable
from z3 import *

Define variables as real numbers (can
also be Ints if discrete)

Size = Real('Size')

Size of the software project (e.g., LOC,
Function Points)

Risk = Real('Risk")

Risk factor (e.g., scale 6-1 or 0-10)
Complexity = Real('Complexity')

Complexity of the system (scale 6-10)
Productivity=Real('Productivity")

Productivity (e.g., LOC/person-month)

F. Equation Schemas

These are mathematical models or assumptions defining
how variables relate.

1) Effort Estimation Equation

We define effort (E) based on the size and productivity.
Effort = Real('Effort')
equation_schema_1 = Effort ==
/ Productivity
2) Risk-adjusted Complexity Equation

Size

Assume complexity increases with risk:
equation_schema_2 = Complexity == Size *

(1 + Risk / 10)

3) Productivity Impact by Complexity

Assume productivity decreases as complexity increases:
equation_schema_3 = Implies (Complexity > 0,
Productivity == 100 / Complexity)

G. Verification Schemas

These are assertions or properties we want to verify using
Z3. Verify effort is less than a threshold (say 100 person-
months)

verification_schema_1 = Effort < 100
Verify that increasing risk leads to increased complexity.

Suppose we model two risk levels

Risk1 = Real ('Risk1")

Risk2 = Real('Risk2')

Complexityl = Real('Complexityl')
Complexity2 = Real('Complexity2')
schema_risk1l = Complexityl == Size * (1 +

407 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Risk1 / 10)

schema_risk2 = Complexity2 == Size * (1 +
Risk2 / 10)

schema_assumption = And (Risk1l < Risk2)
verification_schema 2 = Implies
(schema_assumption, Complexityl <
Complexity2)

H. Putting itall into Z3 Solver

Constraint Setup for this Data: Below is a minimal Z3 SMT
model that encodes the relationships used. This Z3 model
computes Complexity, Productivity, and Effort.

s = Solver ()

Add the equation schemas
s.add(equation_schema_1)
s.add(equation_schema_2)

s.add(equation_schema_3)
Add the verification schema
s.add(verification_schema_1)
Add additional bounds or assumptions
s.add(Size > @, Productivity > @, Risk >= 0,
Risk <= 10)
Check
satisfiability if
s.check() == sat:
print ("Verification successful!")
print(s.model())
else:
print ("Verification failed or
unsatisfiable.")

Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 demonstrate the Z3
(SMT Solver) output when the property of Effort is changed.

(.venv) C:\z3_demo>python model.py
SAT result: sat

-—— Example satisfying assignment --—-
Size = 51
Risk = 498/51

Complexity = 100
Productivity = 1
Effort = 51

(.venv) C:\z3_demo>|

Fig. 4. Output when the property of Effort <100.

(.venv) C:\z3_demo>python model.py
SAT result: sat

——— Example satisfying assignment —
Size = 17

Risk = 498/51

Complexity = 188/3

Productivity = 3

Effort = 17/3

(.venv) C:\z3_demo3|

Fig. 5. Output when the property of Effort <10

Vol. 16, No. 11, 2025

When the property of Effort is changed to less than 50
“Effort < 50"

(.venv) C:\z3_demo>python model.py
SAT result: sat

——— Example satisfying assignment -—-
Size = 26

Risk = 128/13
Complexity = 50
Productivity = 2
Effort = 13

Fig. 6. Output when the property of Effort <50.

(.venv) C:\z3_demo>python model.py
Small & low-risk: sat

SAT result: sat

—— Example satisfying assignment ——-
Size = B

Risk = @

Complexity = 0

Productivity = @

Effort = 6

(.venv) C:\z3_demo>|

Fig. 7. Output when small project <= 15 KLOC with low risk.

(.venv) C:\z3_demo>python model.py
Small & high-risk: sat

SAT result: sat

—— Example satisfying assignment ——-
Size = ©

Risk = 8

Complexity = @

Productivity = 8

Effort = 6

(.venv) C:\z3_demo>|

Fig. 8. Small project <=15 KLOC with high risk.

VII. RESULTS

Five different project scenarios with varying size and
different risk test cases were performed with the exact values to
measure the Complexity, Productivity, and Effort for the
various computed values that were used for the test cases as
shown in Table I.

TABLE I. VARIOUS COMPUTED VALUES

Case Size Risk Complexity PmdL:g'V Effort
A 20 1 220 454 44

B 40 3 52.0 1.92 20.8
C 60 5 90.0 111 54.0
D 80 7 136.0 0.73 108.8
E 100 9 190.0 0.52 190.0

408 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

The graphs illustrated in Fig. 9, Fig. 10 and Fig. 11 present
a realistic engineering insight, where risk and size amplify
complexity, and reduced productivity rapidly inflates total
effort. Fig. 9 and Fig. 10 illustrate a critical, non-linear
relationship in software projects: as Size and Risk increase
complexity across cases increases non-linearly as project size
grows and as risk becomes higher as in Case A to Case E.
Complexity value more than doubles from Case A to Case B,
while the Size only doubles and Risk increases by a small linear
step (1 to 3). This means larger and high-risk projects quickly
become harder to manage. Complexity amplifies, leading to a
sharp drop in Productivity, which ultimately results in a
significantly inflated total Effort. Fig. 10 shows a rapid, steep
decline in Productivity as the project cases advance. The largest
drop occurs early, between Case A and Case B, representing a
57% reduction in productivity.

Complexity across Project Cases

Complexity
8

T T T T T
A B Cc D E
Case

Fig. 9. Complexity across Cases.

Productivity across Project Cases

Productivity
~

A B c D E
Case

Fig. 10. Productivity across Cases.

Fig. 10 demonstrates the productivity across cases. As
complexity increases, productivity drops, which reflects that
the real projects’ high uncertainty and size reduce the effective
delivery rate, and the productivity versus Cases strictly
decreases as complexity rises. While Size increases linearly
(20, 40, 60, 80, 100), the calculated Effort increases at a highly
accelerated rate: Case A to B: Effort increases 4.7 times (4.4 to
20.8). Case D to E: Effort increases by 1.7 times (108.8 to
190.0). The rapid drop in Productivity (due to amplified
Complexity) is the primary driver of total project Effort. This
phenomenon is a realistic depiction of large, complex, and
high-risk projects where the team spends exponentially more
time dealing with integration issues, debugging, and
coordination (i.e., low productivity) than on core development,
resulting in project costs that balloon far beyond the initial
linear expectation based on size alone.

Vol. 16, No. 11, 2025

Effort across Project Cases

Effort
8

T T T T T
A B C D E
Case

Fig. 11. Effort across Cases.

Fig. 11 demonstrates Effort across cases. Effort increases
dramatically when productivity drops and for moderate rises in
risk or size have a disproportionate impact on total effort. Effort
versus Cases grow sharply as productivity drops.

VIIl. CONCLUSION AND FUTURE WORK

Software effort estimation has progressed from early
heuristic and cost-based models such as COCOMO to more
data-driven and logic-based frameworks. This work contributes
to that evolution by demonstrating how relationships among
Size, Risk, Complexity, Productivity, and Effort can be
formalized using Z-notation and verified through an SMT solver
such as Z3. Instead of relying on heuristic intuition alone, the
encoded schemas enforced logically consistent relationships,
ensuring that any computed effort values were entailed by the
declared constraints. The illustrative “Project Cases” and the
generated graphs confirmed that the expected behavior
increases in size and risk propagated to higher complexity,
reduced productivity, and elevated total effort. This coherence
between historical theory, formal reasoning, and empirical
visualization supports the feasibility of combining classical
estimation knowledge with modern verification machinery to
produce estimations that are interpretable, auditable, and
computationally checkable.

In the future, we plan to improve the model by adding more
real-world factors such as changing requirements, developer
skill levels, number of defects, and outside system
dependencies. We also plan to move from fixed (static) values
to dynamic ones, so that factors like risk and productivity can
change over time as the project progresses instead of staying
constant. Hybrid or probabilistic SMT approaches may further
enable uncertainty-aware verification and confidence-bounded
outputs. Validation with industrial datasets will help assess
whether real-world trajectories satisfy or refine the formal
schemas. Ultimately, integrating the verified specification into
automated tools or dashboards may provide project managers
with rigorously justified, real-time decision support, aligning
formal verification research with practical software engineering
governance.

REFERENCES

[1] Alturki, F., Alshahrani, A., Alhazmi, A., and Albogami, M.
“Comprehensive Analysis of Software Effort Estimation Techniques:
Evolving Trends, Key Challenges, and Prospective Directions”.
International Journal of Computer Applications, vol 186, no. 68, pp. 41—
48, 2025.

409 |Page

www.ijacsa.thesai.org

[2]

3]

[4]

[5]

6]
[7]
(8]

[]
[10]

[11]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Lavazza, L.; Locoro, A.; Meli, R. “Software Development and
Maintenance Effort Estimation Using Function Points and Simpler
Functional Measures”. Software 3, no. 4, pp. 442-472, 2024.

Ghassemi, B., and Ghassemi, R. “Software Cost Estimation: A
Comparative Analysis Of Traditional And Machine Learning
Approaches”. International Journal of Environmental Sciences, vol
11(7s), pp. 710-720, 2025.

de Moura, L. and Bjgrner, N. “Z3: An efficient smt solver’, Lecture Notes
in Computer Science”, pp. 337-340, 2008, doi:10.1007/978-3-540-
78800-3_24.

Pahariya, J. S., V. Ravi, et al. "Software cost estimation using
computational intelligence techniques”. Nature & Biologically Inspired
Computing, NaBIC 2009. World Congress on,2009.

Clarke, E. M., Henzinger, T. A., & Veith, H. (Eds.). Handbook of Model
Checking. Springer, 2020.

P. W. H. Woodcock and J. Davies. “Using Z: Specification, Refinement,
and Proof”. Prentice Hall, 1996.

Song Gao, Bohua Zhan, Depeng Liu, Xuechao Sun, Yanan Zhi, David N.
Jansen, and Lijun Zhang. Formal verification of consensus in the Taurus
distributed database. In Proceedings of the 24th International Symposium
on Formal Methods (FM'21) (LNCS, Vol. 13047), Marieke Huisman,
Corina S. Pasareanu, and Naijun Zhan (Eds.). Springer, Germany, 741—
751.,2021.

C. A. R. (Tony) Hoare. 1969. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969), 576-580.

Edsger W. Dijkstra. 1968. A constructive approach to the problem of
program correctness. BIT Numer. Math. 8, 3 (1968), 174-186.

B. A. Liskov and J. V. Guttag. “Program Development in Java: Modeling
Specification, and Refinement”. Addison Wesley, 2000.

[12]

(13]

[14]

[15]

(16]
[17]

(18]

(19]

[20]

[21]

Vol. 16, No. 11, 2025

Daniel Jackson, “Alloy: A Lightweight Object Modelling Notation”,
ACM Transactions on Software Engineering and Methodology
(TOSEM), Vol. 11, No. 3.pp 256-298, 2002.

Hahnle, R., Miller, G., and Schmidt, R. "The KeY System: Integrating
Deductive and Model Checking for Software Verification." In
International Conference on Formal Engineering Methods (ICFEM).
Lecture Notes in Computer Science, vol 3785. Springer, Berlin,
Heidelberg, 2005.

Nipkow, T., Paulson, L., Wenzel, M., "Isabelle/HOL: A Proof Assistant
for Higher-Order Logic". Lecture Notes in Computer Science, vol 2283.
Springer, Berlin, Heidelberg, 2002.

Bertot, Y., Castéran, P. "Interactive Theorem Proving and Program
Development: Coq'Art: The Calculus of Inductive Constructions".
Springer, 2004.

France, R., & Rumpe, B. “Domain specific modeling”. ACM Computing
Surveys (CSUR), Vol 37 No., 167-205, 2005

Palm, W. J. “Introduction to MATLAB for Engineers (5th ed.)”. McGraw
Hill, 2019.

MathWorks. (n.d.). “Simulink Documentation: Simulink Environment
Fundamentals”. Retrieved October 26, 2025, from
https://www.mathworks.com/help/simulink/simulink-environment-
fundamentals.html

Camunda. (n.d.). BPMN 2.0 Symbols - A complete guide with examples.
Retrieved October 26, 2025, from https://camunda.com/bpmn/reference/
Quest Software, Inc. erwin Data Modeler Navigator Edition User Guide
(2021 R1). Retrieved from Quest Supportwebsite:
https://support.quest.com/erwin-data-modeler/2021%20r1/technical-
documents, 2021

SAP SE. SAP PowerDesigner, version 16.7. Accessed October 26, 2025.
https://www.sap.com/products/powerdesigner-data-modeling-tools.html

410|Page

www.ijacsa.thesai.org

