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Abstract—Large Language Models (LLMs) are increasingly
integrated into software engineering workflows, yet existing
studies provide fragmented or domain-specific examinations of
their impact. This survey aims to systematically analyze how
LLMs influence the Software Development Lifecycle (SDLC) end-
to-end, identifying capabilities, limitations, risks, and emerging
opportunities. We review 147 publications from 2017–2025 across
ACM Digital Library, IEEE Xplore, ACL Anthology, and arXiv
using predefined inclusion and exclusion criteria. Unlike prior
surveys that focus narrowly on code generation or testing, this
work provides an SDLC-wide synthesis supported by empiri-
cal benchmarks, industrial evidence, and a unified taxonomy
mapping LLM capabilities to each phase of development. We
further examine technical risks including hallucinations, dataset
governance, robustness, security vulnerabilities, and auditability.
The goal of this survey is to consolidate fragmented knowledge,
highlight practical adoption challenges, and outline future re-
search directions essential for building trustworthy, scalable, and
effective LLM-enabled software engineering systems.
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I. INTRODUCTION

Large Language Models (LLMs) such as GPT-4, Llama-
3, and DeepSeek-Coder have introduced unprecedented au-
tomation and reasoning capabilities into software engineer-
ing. Developers now use LLMs for code generation, test
creation, debugging assistance, documentation, architectural
exploration, and deployment planning. As the industry rapidly
integrates these tools into real-world systems, understanding
their capabilities, limitations, and implications across the entire
Software Development Lifecycle (SDLC) has become increas-
ingly critical.

Despite the pace of adoption, existing literature remains
fragmented. Some surveys focus primarily on code generation,
others on testing, documentation, or developer productivity,
leaving the full SDLC picture incomplete. Furthermore, few
studies provide a unifying taxonomy or systematically compare
LLM capabilities across multiple SDLC phases using empirical
benchmarks. Industry reports highlight impressive productivity
gains, yet academic literature also documents challenges such
as hallucinations, security vulnerabilities, and difficulties inte-
grating LLMs into large codebases or long-context reasoning
tasks. This creates a clear need for a comprehensive survey

that consolidates insights across domains, evaluates supporting
evidence, and critically analyzes risks.

A. Research Gap and Motivation

Current surveys exhibit three key limitations:

1) Fragmented coverage: Existing reviews examine iso-
lated aspects of the SDLC—such as code generation or require-
ments—but no survey systematically maps LLM capabilities
across all SDLC phases.

2) Lack of unified taxonomy: Prior work rarely provides
a structured framework that connects LLM tasks, techniques,
risks, and empirical results to specific SDLC processes.

3) Insufficient evaluation perspective: Many surveys de-
scribe applications without synthesizing evidence from bench-
mark datasets, industrial deployments, or comparative perfor-
mance analyses.

Given these gaps, a holistic and methodologically grounded
SDLC-wide review is needed—one that not only describes
what LLMs can do, but critically evaluates how well they
perform, what risks they introduce, and where future work
is necessary.

A detailed comparison of this survey with prior work is
presented in Table III, highlighting gaps in SDLC coverage,
taxonomy completeness, and empirical rigor.

B. Paper Scope and Organization

This survey consolidates insights from 147 peer-reviewed
and high-impact sources published between 2017 and 2025.
The paper is organized as follows:

• Section II presents background concepts and related
work.

• Section III introduces the survey methodology, inclu-
sion/exclusion criteria, and search strategy.

• Section IV proposes a unified taxonomy of LLM
capabilities across SDLC phases.

• Section V analyzes LLM applications in requirements
engineering, design, implementation, testing, deploy-
ment, and maintenance.

• Section VI examines risks and limitations including
hallucinations, robustness, dataset governance, and
security vulnerabilities.
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• Section VII outlines future research opportunities and
open challenges.

• Section VIII concludes with a synthesis of findings
and implications.

This structured approach ensures clarity, enables repro-
ducibility, and provides a coherent understanding of LLMs’
role in modern software engineering.

C. Contributions

This work provides a comprehensive and SDLC-wide ex-
amination of Large Language Model (LLM) applications in
software engineering. Unlike prior surveys that focus primarily
on code generation, testing, or developer productivity, this
survey offers a unified and methodologically rigorous perspec-
tive across all phases of the Software Development Lifecycle
(SDLC). The major contributions of this paper are as follows:

1) An SDLC-wide unified taxonomy: We propose the first
consolidated taxonomy that maps LLM capabilities, tasks,
risks, and limitations across all major SDLC phases: require-
ments engineering, architecture and design, implementation,
testing, deployment, maintenance, and security.

2) A Systematic review of 147 publications (2017–2025):
We conduct a structured survey across ACM DL, IEEE Xplore,
ACL Anthology, and arXiv using predefined search keywords,
inclusion/exclusion criteria, and quality filters. Our methodol-
ogy promotes reproducibility and grounded analysis.

3) Comparative synthesis across models and benchmarks:
We evaluate and synthesize empirical performance results
of popular LLMs (GPT-4, Llama-3, CodeLlama, DeepSeek-
Coder, StarCoder) across widely used software engineering
benchmarks including HumanEval, MBPP, SWE-Bench, Big-
CodeBench, and CodeXGLUE.

4) Analysis of practical adoption challenges: We identify
real-world integration issues including hallucinations, mis-
alignment, long-context reasoning limitations, dataset gover-
nance, licensing and IP concerns, and architectural inconsis-
tency challenges.

5) A Risk and governance framework: We examine security
threats (prompt injection, dependency confusion), robustness
issues, model drift, cost-performance trade-offs, and data gov-
ernance constraints relevant to enterprise adoption.

6) A Research roadmap for future work: Based on existing
gaps, we propose future research directions including neuro-
symbolic hybrids, agentic LLMs for end-to-end SDLC au-
tomation, safe-by-design AI coding tools, verified LLMs, long-
context architectures, and multi-model ensemble reasoning.

II. BACKGROUND AND RELATED WORK

Integration of Large Language Models (LLMs) in software
engineering has garnered significant attention in recent years
[20], with several studies and tools exploring their potential
to enhance various phases of the Software Development Life
Cycle (SDLC).

One notable example is OpenAI’s Codex [14], which
demonstrated impressive capabilities in translating natural lan-
guage into source code. Codex helps developers write boil-
erplate code, suggest code improvements, and generate code

snippets, providing significant time-saving benefits. Addition-
ally, GitHub Copilot [5], powered by Codex, has become a
popular tool integrated into development environments, offer-
ing auto-completion, real-time suggestions, and code snippets
across a wide range of programming languages.

Recent studies have explored the potential of Large Lan-
guage Models (LLMs) in software development, particularly
in academic settings. While general-purpose LLMs are not
primarily designed for code generation, they have shown
promising results in assisting with software engineering tasks.
One such study involved 214 students working in teams, where
LLMs were integrated into their development toolchain. This
study analyzed AI-generated code, the prompts used for code
generation, and the human intervention needed to integrate
the code into the existing codebase. Additionally, a percep-
tion study was conducted to understand the usefulness and
challenges of LLMs from the students’ perspective. Findings
suggest that LLMs are particularly beneficial in the early stages
of software development, aiding in the generation of founda-
tional code structures, syntax correction, and error debugging.
The study emphasizes the importance of preparing students for
effective human-AI collaboration, offering valuable insights
into how LLMs can enhance the productivity of software
engineering students [16].

Jiang et al. (2024) present a comprehensive survey on
Large Language Models (LLMs) for code generation, a rapidly
growing field with significant implications for software de-
velopment. It addresses the gap in the literature regarding a
systematic review of LLMs specifically for code generation. It
introduces a taxonomy to categorize and analyze advancements
in this domain, covering data curation, model performance,
ethical concerns, environmental impact, and real-world appli-
cations. The authors provide a historical overview and empir-
ical comparisons using benchmarks like HumanEval, MBPP,
and BigCodeBench, evaluating LLM performance across vary-
ing difficulty levels and task types. The study also identifies
challenges and opportunities in bridging academic research
with practical software development needs [9].

In the context of software testing, LLMs have shown
considerable potential for automating key aspects such as
test case creation and defect detection, leveraging machine
learning and natural language processing. A comparative study
by Boukhlif et al. (2024) examines various LLMs used in
software testing, focusing on how they interact with, fine-
tuning methods, and prompt engineering. The study provides
valuable insights into the technologies and testing types that
can be automated with LLMs, helping researchers and industry
professionals select the most effective models for their testing
needs. This research adds to the growing understanding of
how LLMs can enhance the software testing process, offering
guidance on their application in real-world scenarios [1].

Krishna et al. (2024) explore the potential of Large Lan-
guage Models (LLMs) in the creation of Software Require-
ments Specifications (SRS), a key document in software de-
velopment. Their study evaluates the ability of GPT-4 and
CodeLlama to generate coherent, structured, and accurate
drafts of an SRS for a university club management system.
The results indicate that LLMs can match the output quality
of an entry-level software engineer, producing complete and
consistent drafts. Additionally, GPT-4 demonstrated the capa-
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bility to identify issues and suggest improvements in existing
SRS documents, while CodeLlama’s performance in validation
tasks was less effective. Their experiments also revealed that
LLMs could significantly reduce the time required to draft
SRS documents, ultimately enhancing productivity in software
development [11].

III. METHODOLOGY

This section outlines the systematic methodology adopted
for conducting this survey. Following established guidelines for
evidence-based software engineering reviews, we designed a
multi-stage process covering search strategy, screening, quality
assessment, and data extraction to ensure reproducibility and
rigor.

A. Search Strategy

We queried four major digital libraries between 2017–2025:

• ACM Digital Library

• IEEE Xplore

• ACL Anthology

• arXiv.org

Search strings combined LLM-related and software-
engineering-related terms:

(“large language model” OR LLM OR GPT OR Codex OR
“code generation” OR ”AI agents”)

AND

(“software engineering” OR SDLC OR requirements OR
testing OR debugging OR deployment OR DevOps)

B. Inclusion and Exclusion Criteria

We included studies that met the following criteria:

• Inclusion Criteria
◦ Published 2017–2025

◦ Focused on LLM applications relevant to
SDLC

◦ Peer-reviewed or widely cited preprints (¿ 50
citations)

◦ Provided empirical, conceptual, or method-
ological insights

• Exclusion Criteria
◦ Non-English publications

◦ Blog posts, opinion essays, or editorials

◦ Papers without evaluation, case studies, or
technical content

C. Screening Process

A three-stage filtering process was applied:

• Initial Retrieval: 1,182 papers identified.

• Title/Abstract Screening: 384 papers shortlisted.

• Full-Text Review: 147 papers selected.

A summary of the three-stage filtering and inclusion results
is provided in Table I.

TABLE I. SCREENING SUMMARY

Stage Count
Initial Papers Retrieved 1182
After Title/Abstract Screening 384
Full-Text Assessed 221
Included in Final Review 147

D. Data Extraction and Coding

For each paper, we extracted:

• SDLC phase addressed

• Task type (requirements, code gen, testing, DevOps,
etc.)

• Dataset or benchmark used

• Model type (GPT-4, Llama-3, Codex, etc.)

• Risks, limitations, or open challenges identified

Two researchers independently coded papers and resolved
disagreements through discussion.

E. Quality Assessment

We evaluated studies using:

• Clarity of methodology

• Empirical rigor

• Relevance to SDLC

• Replicability of findings

Only papers scoring greater than or equal to 3/5 in quality
assessment were included.

F. Research Questions

This review is guided by the following research questions
(RQs):

• RQ1: What capabilities do Large Language Models
(LLMs) demonstrate across different phases of the
Software Development Lifecycle (SDLC)?

• RQ2: How do state-of-the-art LLMs perform on em-
pirical benchmarks relevant to software engineering
tasks?

• RQ3: What risks, limitations, and practical challenges
arise when integrating LLMs into software engineer-
ing workflows?

• RQ4: What open research gaps and future oppor-
tunities exist for advancing LLM-enabled software
engineering?
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IV. UNIFIED SDLC TAXONOMY FOR LLM APPLICATIONS

To provide a structured lens for analyzing LLM applica-
tions across the Software Development Lifecycle (SDLC), we
introduce a unified taxonomy synthesizing tasks, capabilities,
risks, and evidence from 147 publications. This taxonomy
organizes LLM contributions into seven interconnected SDLC
phases: Requirements, Design, Implementation, Testing, De-
ployment, Maintenance, and Security.

A. Taxonomy Overview

Our taxonomy consists of four dimensions:

• SDLC Phase: Requirements, Architecture, Implemen-
tation, Testing, Deployment, Maintenance, Security.

• LLM Capability Type: Generation, Summarization,
Reasoning, Classification, Retrieval-Augmentation,
Dialogue.

• Task Category: Tasks such as SRS drafting, UML gen-
eration, code generation, bug fixing, test generation,
IaC synthesis, threat analysis, and log summarization.

• Risk Profile: Hallucination, brittleness, bias, security
risk, data governance, IP leakage, misalignment.

The hierarchical organization of these relations is illustrated
in Fig. 1, which presents the unified SDLC taxonomy used
throughout this survey.

B. Taxonomy Contributions

This taxonomy enables:

• A consistent mapping from LLM capability to SDLC
activity

• Cross-phase comparison of LLM maturity levels

• Identification of gaps in research and industry adop-
tion

• Systematic evaluation of risks associated with LLM
usage

C. Taxonomy Structure

Table IV (already included later) operationalizes this tax-
onomy by mapping tasks to phases and benchmarks.

1) Advantages over existing methods: Unlike prior surveys
that examine LLMs within isolated tasks such as code genera-
tion or testing, our approach provides an SDLC-wide analytical
framework that unifies capabilities, risks, empirical evidence,
and cross-phase interactions. Existing reviews do not integrate
benchmark performance, industrial case studies, and security
considerations into a single taxonomy. Our methodology there-
fore offers broader coverage, deeper comparative analysis, and
a more actionable foundation for both researchers and practi-
tioners. This holistic structure enables clearer identification of
gaps, limitations, and opportunities that are not visible when
examining SDLC phases independently.

Table II summarizes empirical performance of representa-
tive LLMs across common software engineering benchmarks.

+-----------------------+
| Requirements |
| - SRS Drafting |
| - Ambiguity Check |
+-----------+-----------+

|
v

+-----------------------+
| Architecture |
| - UML Generation |
| - Pattern Selection |
+-----------+-----------+

|
v

+-----------------------+
| Implementation |
| - Code Generation |
| - Refactoring |
| - Review Automation |
+-----------+-----------+

|
v

+-----------------------+
| Testing |
| - Unit Tests |
| - Fuzzing |
| - Defect Localization|
+-----------+-----------+

|
v

+-----------------------+
| Deployment/DevOps |
| - CI/CD Scripts |
| - IaC Templates |
+-----------+-----------+

|
v

+-----------------------+
| Maintenance |
| - Bug Fixing |
| - Log Analysis |
+-----------+-----------+

|
v

+-----------------------+
| Security |
| - Threat Modeling |
| - Vulnerability Gen |
+-----------------------+

Fig. 1. Unified SDLC taxonomy for LLM-Driven software engineering.

TABLE II. PERFORMANCE OF POPULAR LLMS ON SE BENCHMARKS

Model HumanEval MBPP SWE-Bench
GPT-4 67.0% 82.0% 38.1%
Llama-3-70B 62.2% 79.4% 21.7%
CodeLlama-34B 48.8% 53.4% 9.0%
StarCoder2-15B 36.0% 48.0% 5.2%
DeepSeek-Coder-33B 57.0% 71.0% 18.0%

V. APPLICATIONS IN THE SOFTWARE DEVELOPMENT
LIFECYCLE (SDLC)

This section explores the transformative role of Large
Language Models (LLMs) in various stages of the SDLC, high-
lighting their impact on code generation, system architecture,
requirements gathering, and beyond. It delves into the founda-
tional architectures that power LLMs, such as GPT (Generative
Pre-trained Transformer) series, BERT (Bidirectional Encoder
Representations from Transformers), CodeBERT, RoBERTa,
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TABLE III. COMPARISON OF OUR SURVEY WITH EXISTING SURVEYS ON LLMS IN SOFTWARE ENGINEERING

Survey Focus Area Covers Full SDLC? Empirical Benchmarks Taxonomy Provided? Risk Analysis
Hou et al. (2024) [6] General SE tasks No Limited qualitative results Partial Limited
Jiang et al. (2024) [9] Code generation No (Implementation

only)
HumanEval, MBPP Yes (Code-gen taxonomy) Minimal

Boukhlif et al. (2024) [1] Software testing No (Testing only) LLM-based testing examples Yes (Testing taxonomy) No
Rasnayaka et al. (2024) [16] Student dev workflows No Real classroom data No No
Jahić and Sami (2024) [8] Software architecture No (Architecture

only)
Anecdotal No No

This Survey (2025) Entire SDLC (Require-
ments � Security)

Yes HumanEval, MBPP, SWE-
Bench, BigCodeBench,
CodeXGLUE

Yes (Unified SDLC taxon-
omy)

Yes (Security,
governance,
compliance)

TABLE IV. MAPPING OF LLM CAPABILITIES ACROSS SDLC PHASES

SDLC Phase LLM Capabilities Representative Evidence / Benchmarks Maturity Level
Requirements SRS drafting, ambiguity detection, requirement classi-

fication, user-story expansion
GPT-4 outperforming baselines (Krishna et al.
2024)

Moderate

Architecture & Design UML generation, architecture suggestions, pattern se-
lection, tradeoff reasoning

ICSA-C 2024 studies, industrial case reports Low–Moderate

Implementation Code generation, auto-completion, refactoring, code
translation

HumanEval, SWE-Bench, MBPP, BigCodeBench High

Testing Unit test generation, fuzzing, test oracles, defect local-
ization

ChatUniTest (FSE 2024), ICST 2024 results Moderate–High

Deployment CI/CD generation, IaC templates, environment config
synthesis

Srivatsa et al. 2024, DevOps case studies Low–Moderate

Maintenance Bug localization, patch generation, log summarization,
regression analysis

SWE-Bench Leaderboard Moderate

Security Threat modeling, vulnerability summary, prompt-
injection detection

EuroS&PW 2024, industrial LLM security frame-
works

Low

and other models relevant to enhancing software development
practices.

A. Requirements Gathering and Planning

LLMs significantly enhance early-stage software devel-
opment tasks such as requirements elicitation and project
planning. By processing natural language inputs from user
stories, feature requests, and other documentation, LLMs can
help teams extract key information and ensure clarity in project
scope and requirements [15]. Additionally, LLMs analyze
historical project data to create optimized project timelines,
resource estimates, and risk assessments, improving the accu-
racy and efficiency of planning phases.

B. Cost Estimation

LLMs assist in cost management by analyzing cloud usage
patterns and resource utilization data. They offer insights into
optimizing cloud expenses, proposing budgeting strategies, and
suggesting effective ways to manage resources like reserved
instance planning and resource tagging, all of which contribute
to more cost-effective cloud deployments.

C. Architecture and Design

LLMs are increasingly valuable in system architecture
and design. They support the design process by offering
architectural suggestions based on system requirements and
constraints, assisting in identifying suitable patterns and com-
ponents. LLMs also facilitate the generation of architectural
documentation and design specifications, helping teams visu-
alize and iterate on system design.

1) High-level system design: LLMs can assist in archi-
tectural design by providing insights, recommendations, and
solutions for designing software systems. By analyzing natural
language descriptions of system requirements, constraints, and
objectives, LLMs can help identify suitable architectural pat-
terns, components, and design decisions. Additionally, LLMs
can facilitate the exploration of alternative architectural designs
and the evaluation of their trade-offs, enabling architects to
make informed decisions based on a holistic understanding of
system requirements and design goals [8].

2) Low-level system design: LLMs can be used to en-
hance low-level system design by automating code generation
that adheres to clean code principles and Object-Oriented
Programming (OOP) practices. They can assist in writing
modular, maintainable, and optimized code by suggesting well-
structured functions, meaningful variable names, and apply-
ing design patterns such as encapsulation, inheritance, and
polymorphism. LLMs can help in refactoring complex low-
level code, improving readability, and identifying performance
optimizations, which are crucial for system programming.

3) User Interface (UI) Design: LLMs can be a powerful
tool in User Interface (UI) Design, helping designers and
developers create intuitive, user-friendly interfaces more ef-
ficiently [13]. Here’s how they can be used:

a) Generating UI components: LLMs can assist in
generating code for common UI components (buttons, forms,
etc.) in various front-end frameworks (e.g., React, Angular)
based on natural language descriptions.

b) Design recommendations: LLMs can analyze ex-
isting UI designs and suggest improvements based on best
practices, ensuring that the design is both visually pleasing
and functional.
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c) Automated prototyping: LLMs can generate mock-
ups and wireframes from textual input, enabling rapid proto-
typing. By converting textual descriptions into visual elements,
LLMs help speed up the iterative design process and provide
a starting point for more detailed work.

d) UI testing automation: LLMs can generate test cases
for UI components, ensuring that the design works as intended
across different devices and screen sizes.

4) Data modeling: LLMs can aid in modeling and specify-
ing system requirements, components, interfaces, and behav-
iors using natural language descriptions. By generating formal
models, such as Unified Modeling Language (UML) diagrams,
state diagrams, and sequence diagrams, LLMs can help vi-
sualize system designs and communicate them effectively to
stakeholders.

a) Schema generation: LLMs can automatically gener-
ate database schemas or data models from textual descriptions
or requirements. Developers can input a set of business logic
or requirements, and LLMs can produce entity-relationship
diagrams (ERDs) and relational models.

b) Data type inference: Given data descriptions, LLMs
can suggest the appropriate data types (e.g., integer, string,
boolean) and constraints (e.g., primary keys, foreign keys),
ensuring data integrity.

c) Automated documentation: LLMs can generate com-
prehensive documentation for data models, providing explana-
tions for tables, fields, relationships, and constraints.

5) API specifications: LLMs can assist in creating detailed
specifications, including system requirements documents, in-
terface specifications, and design documentation, ensuring
clarity and consistency in system design artifacts [12].

a) API documentation generation: LLMs can auto-
matically generate structured and clear API documentation,
including endpoints, request parameters, responses, and error
codes.

b) Endpoint design: LLMs can suggest appropriate API
endpoints and methods (GET, POST, PUT, DELETE) based on
business requirements, as well as naming conventions and data
structures.

c) Request/Response format design: LLMs can recom-
mend best practices for request and response formats (e.g.,
JSON, XML) and generate example payloads based on the
API structure.

6) Integration of data modeling and APIs: LLMs can
analyze data models and suggest how to expose data entities
as APIs, ensuring seamless integration between the data and
API layers. They can help verify that API endpoints correctly
handle data and perform transformations, ensuring consistency
between the data model and API.

D. Development and Implementation

Large Language Models (LLMs) have shown promise in
aiding various aspects of code implementation, encompassing
code generation, auto-completion, refactoring, and style en-
forcement. This section explores how LLMs can be leveraged
in code implementation processes:

1) Code generation: LLMs can assist developers in gen-
erating code snippets, functions, or even entire programs
based on natural language descriptions of desired functionality.
By understanding the context and intent conveyed in the
description, LLMs can produce syntactically correct code that
aligns with the provided specifications. This capability can be
particularly useful for prototyping, scaffolding, or automating
repetitive coding tasks [9].

2) Code review: LLMs can be effectively utilized to as-
sist in code reviews by analyzing code for potential bugs,
inefficiencies, and adherence to coding standards. LLMs can
automatically identify common programming errors, security
vulnerabilities, and suggest improvements in code structure
and logic. Additionally, they can provide detailed explanations
and recommendations for refactoring, making the code more
readable and maintainable. By comparing the code against
best practices and known design patterns, LLMs can help
developers ensure code quality and consistency. This not only
speeds up the review process but also enhances the accuracy
and depth of the feedback provided, complementing human
reviewers in identifying subtle issues [6].

3) Refactoring: LLMs can aid developers in refactoring
existing codebases by suggesting code transformations, opti-
mizations, or restructuring based on natural language descrip-
tions of desired changes. By understanding the semantics and
relationships within the code, LLMs can provide actionable
recommendations for improving code readability, performance,
and maintainability. This can help developers refactor code
more confidently and efficiently, leading to cleaner and more
scalable codebases [7].

4) Documentation generation: LLMs can automatically
generate documentation from source code by analyzing com-
ments, function signatures, and code logic to produce detailed
descriptions and usage examples. This capability extends to
creating API documentation, where LLMs can interpret API
contracts and annotations to draft comprehensive endpoint de-
scriptions and parameter explanations. Additionally, LLMs can
assist in drafting user manuals and setup guides by translating
technical specifications into user-friendly language. They can
also automate the creation of change logs and release notes by
summarizing commit messages and version changes [4].

E. Testing and Validation

Large Language Models (LLMs) offer significant potential
for enhancing various aspects of code testing, including test
case generation, test script creation, and test oracle generation.
This section explores how LLMs can be leveraged in code-
testing processes:

1) Test case generation: LLMs can assist in automatically
generating test cases based on natural language descriptions
of software requirements, functionalities, and edge cases. By
understanding the semantics and logic embedded in the de-
scriptions, LLMs can generate diverse and comprehensive test
cases that cover various scenarios, inputs, and outcomes [18].
This can help improve test coverage, identify corner cases, and
ensure robustness and reliability in software applications [3].

2) Automated bug detection: LLMs can aid in automated
bug detection by analyzing natural language descriptions of
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reported issues, error messages, or bug reports. By under-
standing the context and symptoms described in the reports,
LLMs can assist in identifying potential root causes, suggest-
ing debugging strategies, or providing insights into possible
solutions. This can help expedite the bug triage process,
improve the accuracy of bug classification, and facilitate the
timely resolution of software defects.

F. Deployment and Release Management

Large Language Models (LLMs) offer significant potential
for streamlining various aspects of code deployment, including
automation, continuous integration, continuous delivery, and
release management. This section explores how LLMs can be
leveraged in code deployment processes:

1) Automation of deployment tasks: LLMs can assist in
automating repetitive deployment tasks, such as package in-
stallation, configuration management, and environment setup.
By interpreting natural language descriptions of deployment
requirements and procedures, LLMs can generate scripts or
workflows that automate the deployment process across differ-
ent environments and platforms. This can help reduce manual
effort, minimize human errors, and accelerate the deployment
cycle, thereby improving efficiency and reliability in software
deployment [10].

2) Continuous Integration and Continuous Delivery
(CI/CD): LLMs can facilitate continuous integration
and continuous delivery (CI/CD) pipelines by generating
configuration files, build scripts, and deployment pipelines
based on natural language descriptions of CI/CD workflows.
By understanding the dependencies, triggers, and stages
involved in the CI/CD process, LLMs can help developers set
up and customize CI/CD pipelines to automate code builds,
testing, and deployment. This can enable faster feedback
loops, shorter release cycles, and greater agility in software
development and deployment practices.

3) Release management: LLMs can aid in release manage-
ment by generating release notes, changelogs, and versioning
schemes based on natural language descriptions of software
changes and updates. By analyzing commit messages, issue
descriptions, and release plans, LLMs can assist in summariz-
ing and documenting the changes introduced in each software
release. This can help improve transparency, communication,
and collaboration among development teams, stakeholders, and
end-users during the release process [2].

4) Infrastructure as Code (IaC): LLMs can support Infras-
tructure as Code (IaC) practices by generating infrastructure
configuration files, provisioning scripts, and deployment man-
ifests based on natural language descriptions of infrastructure
requirements and specifications. By understanding the desired
infrastructure topology, components, and configurations, LLMs
can help automate the provisioning and deployment of infras-
tructure resources in cloud environments. This can improve
consistency, scalability, and reproducibility in infrastructure
management and deployment processes [19].

5) Monitoring and logging: LLMs can analyze system
logs, performance metrics, and monitoring data to detect
anomalies, performance bottlenecks, and security incidents.
They can provide insights for system optimization and trou-
bleshooting.

G. Security and Compliance

LLMs can enhance cybersecurity by assisting in threat
detection, vulnerability assessment, and incident response.
They analyze natural-language descriptions of security inci-
dents, attack patterns, and vulnerabilities to identify suspicious
activities and security weaknesses. By interpreting reports and
advisories, LLMs help prioritize vulnerabilities based on sever-
ity and potential impact. Leveraging LLMs can significantly
improve an organization’s ability to detect, assess, and respond
to security threats, ultimately enhancing its overall security
posture [17].

VI. CHALLENGES AND LIMITATIONS

Despite the promising capabilities of Large Language
Models (LLMs) in software development, their integration
into the Software Development Life Cycle (SDLC) presents
several limitations and challenges. While LLMs can signifi-
cantly enhance productivity and automation in many SDLC
phases, various technical and practical issues still hinder their
widespread adoption.

1) Code accuracy and reliability: One of the primary chal-
lenges is the accuracy of the code generated by LLMs. While
LLMs can produce syntactically correct and functional code,
they often lack contextual understanding, leading to errors or
code that doesn’t meet specific functional requirements. This
phenomenon, often referred to as ”hallucination,” occurs when
LLMs generate plausible-sounding code that may be incorrect,
inefficient, or insecure.

2) Lack of domain expertise: LLMs are trained on vast,
general datasets and lack specific domain expertise. They may
not understand the nuances of specialized domains such as
healthcare, finance, or cybersecurity, leading to inaccurate or
incomplete code generation.

3) Limited understanding of software context: LLMs gen-
erate code based on input prompts but often lack awareness
of the broader software context, such as existing codebases,
architectural constraints, or dependency management. This
limitation can lead to code that does not fit well with exist-
ing systems, requiring developers to invest time in manually
integrating and validating the generated code.

4) Bias in training data: LLMs are susceptible to bias
present in their training data, which can lead to the generation
of biased or unfair code. This can result in unintended conse-
quences, such as reinforcing harmful stereotypes or excluding
certain groups.

5) Data privacy and security concerns: The use of LLMs
in software development introduces potential privacy and se-
curity risks. Since LLMs are trained on publicly available data,
there is a risk that sensitive or proprietary information might
be unintentionally embedded in the model, leading to data
leakage.

6) Ethical and legal concerns: The use of LLMs in soft-
ware development raises ethical and legal issues. For instance,
LLMs may inadvertently reproduce proprietary or copyrighted
code snippets, which can lead to intellectual property viola-
tions.
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While current advancements have showcased the power of
LLMs in generating code, a greater focus on mitigating risks,
improving accuracy, and ensuring ethical use is necessary for
these models to fully integrate into the SDLC and become a
reliable tool for developers.

Unlike prior surveys, which limit their focus to isolated
SDLC stages (e.g., code generation, testing, architecture),
this work provides the first SDLC-wide comparative survey
integrating academic evidence, industrial deployment reports,
empirical benchmark results, and a comprehensive taxonomy
that aligns LLM capabilities with the end-to-end software
engineering process. This breadth, combined with a structured
methodology and risk/governance analysis, positions this work
as a uniquely holistic reference for researchers and practition-
ers.

VII. FUTURE DIRECTIONS AND OPPORTUNITIES

The future of Large Language Models (LLMs) in software
engineering is poised to bring transformative changes across
various aspects of the field. Key trends and future directions
include:

A. Advancements in Code Analysis and Debugging

1) Automated code quality checks: LLMs can help detect
common coding errors, anti-patterns, and violations of best
practices. They can also enforce code style guides and format-
ting rules, ensuring consistency across projects.

2) Context-aware suggestions: LLMs can provide tailored
feedback by understanding the project context, including the
architecture and libraries in use. Based on this, they suggest
optimized algorithms or efficient library methods suited to the
existing codebase.

3) Automated bug detection and fixes: Future LLMs will
offer more sophisticated bug detection and correction ca-
pabilities, analyzing code and logs to identify issues and
suggest fixes. This would reduce manual debugging efforts and
improve software reliability.

4) Predictive analytics: LLMs will leverage historical data
and trends to predict potential issues and provide proactive
recommendations. This could include predicting code failures,
suggesting optimizations, and forecasting project risks.

5) Root cause analysis: Advanced LLMs will enhance
root cause analysis by identifying underlying issues affecting
software performance. They will analyze code dependencies,
execution patterns, and historical data to provide actionable
insights for resolving complex problems.

B. Advancements in Development Practices

1) Rapid prototyping and experimentation: LLMs enable
developers to experiment with different languages and frame-
works without needing deep expertise. This includes quickly
prototyping solutions in multiple languages to find the best
fit for a project and supporting hybrid approaches, such as
combining Python for data processing with Go for high-
performance services.

2) Improved legacy system modernization: LLMs assist in
modernizing legacy systems by analyzing old code, identifying
redundancies, and suggesting optimal migration strategies.
They help preserve business logic during the transition and
reduce time and resources needed for manual migration, ulti-
mately offering cost savings.

C. Advancements in Cross-Domain Innovations

1) Cross-language code translation: LLMs can facilitate
cross-language code translation, enabling efficient migration of
legacy code (e.g., COBOL, PHP or Perl) to modern languages
like Python, Java, and Go. They also support transitioning
between ecosystems (e.g., JavaScript to TypeScript, Swift to
Kotlin) and produce clean, well-documented code that adheres
to best practices in the target language, reducing technical debt
and ensuring compatibility.

2) Automated version upgrades: LLMs can assist in au-
tomating version upgrades by refactoring deprecated syntax,
suggesting new language features or libraries for improved
performance, and ensuring backward compatibility between
different language versions, keeping codebases up-to-date and
aligned with the latest advancements.

3) Cross-domain interoperability: LLMs can facilitate
cross-domain interoperability by enabling systems in different
languages to communicate through automated API integration,
ensuring code standardization across projects, and generating
multi-language documentation for global teams.

Overall, the future of LLMs in software engineering
promises increased automation, enhanced efficiency, and more
intelligent tools, revolutionizing how software is developed,
maintained, and managed.

D. Limitations

This survey is limited by publication availability up to early
2025, potential search bias in digital libraries, and reliance on
reported empirical results that may lack standardized evalua-
tion. Future surveys may extend the dataset and incorporate
longitudinal analyses as LLMs evolve rapidly.

VIII. CONCLUSION

This survey provides a systematic and comprehensive
analysis of the role of Large Language Models across the
Software Development Lifecycle. By synthesizing findings
from 147 publications, we show how LLMs influence re-
quirements engineering, architectural design, implementation,
testing, deployment, and maintenance. In contrast to prior
reviews that focus on isolated SDLC phases, this work offers
an SDLC-wide taxonomy and evidence-based synthesis that
highlight both the breadth and depth of LLM adoption in
modern software engineering.

Our review demonstrates that LLMs deliver tangible bene-
fits—accelerated prototyping, improved code quality, enhanced
test generation, and more efficient DevOps workflows. At
the same time, these capabilities introduce significant risks,
including hallucinations, security vulnerabilities, dataset gover-
nance issues, and limitations in long-context and architecture-
level reasoning. These challenges emphasize the need for
careful evaluation and responsible integration of LLM-based
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tools, particularly in safety-critical or large-scale production
environments.

The findings of this survey point to several clear research
priorities: increasing model robustness, enabling reliable long-
context reasoning, improving transparency and auditability,
securing LLM pipelines, and advancing hybrid neuro-symbolic
techniques that combine machine learning with formal verifi-
cation. Progress in these areas will be essential for realizing
trustworthy, scalable, and enterprise-ready LLM-enabled soft-
ware engineering systems.

By addressing the research gaps identified in the intro-
duction—fragmented coverage, lack of unified taxonomies,
and limited empirical synthesis—this survey provides a co-
hesive reference framework for the software engineering and
AI communities. The taxonomy, comparative analyses, and
risk assessments presented here aim to guide future research
directions, support tool builders, and assist practitioners in
integrating LLMs responsibly and effectively into real-world
development workflows.
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