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Abstract—The integration of Flexible AC Transmission 

System (FACTS) devices into modern power networks plays a 

pivotal role in enhancing voltage stability, reducing transmission 

losses, and improving overall power transfer capability. 

Determining the optimal location and sizing of these devices is a 

critical task that significantly influences system performance. In 

recent years, swarm intelligence (SI) algorithms have emerged as 

powerful optimization tools for addressing such complex, 

nonlinear, and multi-objective problems in power systems. This 

study presents a comprehensive review of the application of swarm 

intelligence techniques, Artificial Bee Colony (ABC), Bacterial 

Foraging Optimization (BFO), Dragonfly Algorithm (DA), Salp 

Swarm Algorithm (SSA), and Particle Swarm Optimization 

(PSO). These algorithms are used to optimize the placement and 

sizing of FACTS devices, such as Static Var Compensators (SVCs), 

Thyristor-Controlled Series Capacitors (TCSCs), and Static 

Synchronous Compensators (STATCOMs). The review highlights 

the underlying mechanisms, strengths, and limitations by 

comparing the performance of each algorithm in terms of 

convergence, optimal location, and sizing of a particular FACT 

device in a power transfer system to enhance voltage stability, 

minimize real power losses, and improve system loadability. The 

review provides a comprehensive resource for researchers and 

practitioners interested in applying swarm intelligence-based 

optimization techniques of FACTS devices in power transmission 

systems. 
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I. INTRODUCTION 

The United Nations adopted the Sustainable Development 
Goals (SDGs) in September 2015 as part of the 2030 Agenda for 
Sustainable Development, which comprises 17 interconnected 
goals. SDG 7 focuses specifically on energy to ensure access to 
affordable, reliable, sustainable, and modern energy for all [11]. 
One of the many targets for this SDG is to double the global rate 
of improvement in energy efficiency [12]. 

Across Africa, electricity grids face significant challenges, 
which include aging infrastructure, inadequate maintenance, and 
limited investment [1]. These issues contribute to frequent 
power outages, voltage instability, and high transmission losses 
[2]. For instance, Nigeria's power grid frequently collapses due 

to aging infrastructure and insufficient investment, resulting in 
significant economic losses. 

In South Africa, Voltage stability has been challenged by the 
integration of variable renewable energy sources, such as solar 
and wind, into the grid [3]. The intermittent nature of these 
sources leads to fluctuations in voltage levels [4], especially 
during peak demand periods. To address this, grid infrastructure 
needs to be modernized to reduce technical losses. 

The escalating complexity and demand in modern power 
systems necessitate advanced solutions to maintain voltage 
stability and minimize power losses. Flexible AC Transmission 
System (FACTS) devices, such as Static Var Compensators 
(SVCs) [5], Thyristor-Controlled Series Capacitors (TCSCs), 
and Static Synchronous Compensators (STATCOMs), among 
others, have emerged as pivotal technologies for enhancing the 
controllability and efficiency of power networks. The strategic 
placement and sizing of these devices [6] are critical to 
achieving optimal system performance. 

Traditional optimization methods often struggle with the 
nonlinearity and multi-objectivity of FACTS device allocation 
problems. In contrast, swarm intelligence (SI) algorithms, 
inspired by the collective behavior of social organisms, offer 
robust and adaptable frameworks for tackling complex 
optimization challenges [7]. Algorithms in [8] & [9], such as 
Artificial Bee Colony (ABC), Bacterial Foraging Optimization 
(BFO), Dragonfly Algorithm, Salp Swarm Algorithm (SSA), 
and Particle Swarm Optimization (PSO), are some algorithms 
that have demonstrated efficacy in identifying optimal FACTS 
placements and sizing that enhance voltage profiles and reduce 
transmission losses. 

Furthermore, incorporating renewable energy sources into 
power systems increases variability and uncertainty, thereby 
intensifying the complexity of the optimization process [10]. 
Studies have shown that optimally incorporating FACTS 
devices in such contexts can effectively mitigate voltage 
instability and power losses. 

This research effectively bridges the existing gap in the 
literature by comprehensively reviewing swarm intelligence 
algorithms and demonstrating their potential to optimally size 
and place FACTS devices in power systems, thereby enhancing 
power transfer quality, reducing losses, and strengthening 
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voltage stability across diverse operational and network 
conditions. 

This study provides a research methodology, an overview of 
FACTS devices, followed by a discussion on the purpose of 
optimization methods for FACTS devices. It is followed by 
metaheuristic optimization section that includes swarm 
intelligence techniques. The summary and conclusion appears in 
the last section. 

II. RESEARCH METHODOLOGY 

This study adopts a systematic quantitative research 
methodology aimed at evaluating the effectiveness of swarm 
intelligence algorithms in optimally positioning and sizing 
Flexible AC Transmission System (FACTS) devices within 
electrical power networks (IEEE-14 Bus and IEEE-57 bus 
system). The methodology involves selecting and analysing 
advanced algorithms such as the Artificial Bee Colony (ABC), 
Bacterial Foraging Optimization (BFO), Dragonfly Algorithm 
(DA), Swarm Salp Algorithm (SSA), and Particle Swarm 
Optimization (PSO). Each algorithm literatues is tested on 
standard IEEE-bus systems to identify the optimal placement 
and rating of FACTS devices including SVC, TCSC, and 
STATCOM, under defined operating constraints. 

The research process comprises three stages: 
1) Understanding of FACTS devices on power transfer systems, 
2) Swarm intelligence algorithms as metaheuristic techniques 
and its application in optimal positioning of FACTS devices and 
3) evaluation of strengths and weakenesses of these specifies 
algoritms through performance metrics such as power loss 
reduction, voltage deviation minimisation, and enhancement of 
overall system voltage stability. Table I gives a detailed study of 
the objectives and description of FACTS. 

TABLE I.  MAIN STUDY OBJECTIVES OF OPTIMIZATION IN FACTS 

DEVICES 

Objective Description 

Optimal Location 
Determine the best buses or transmission lines to 

install FACTS devices on to maximize impact. 

Optimal Sizing 
Choose the appropriate rating (MVAR or MVA) of 

the FACTS device to avoid over-/undersizing. 

Optimal Control 

Settings 

Find the best operational parameters (e.g., phase 

angle, voltage magnitude, impedance) to enhance 

system performance. 

Minimizing Power 

Losses 

FACTS can reduce reactive power flows and 

improve power factor. 

Enhancing Voltage 

Profile 

Improve voltage stability by dynamically 

supporting bus voltages. 

Increasing Power 

Transfer Capability 

Help the system carry more load without violating 

constraints. 

Minimizing 

Investment and 

Operational Costs 

Avoid unnecessary expenditure by efficient 

placement and control. 

Stability 

Improvement 

Improve dynamic and transient stability under 

disturbances. 

Literature reviewed between 2020 and 2025, mainly from 
Elsevier, ScienceDirect, and IEEE Xplore, forms the foundation 
of the algorithm selection and performance comparison. The 
methodology ensures that the reviewed swarm intelligence 
approaches demonstrate tangible improvements in the efficiency 
and quality of power transfer by reducing real power losses, 

improving voltage profiles, and ensuring the reliable operation 
of modern power systems. 

III. FLEXIBLE ALTERNATING CURRENT TRANSMISSION 

SYSTEM DEVICES 

These are advanced power electronic controllers used to 
enhance the controllability, stability, and efficiency of electrical 
transmission networks. The optimal sizing and location of 
Flexible Alternating Current Transmission Systems (FACTS) 
devices are critical for enhancing the performance of electrical 
power systems [13]. Optimal placement of FACTS devices 
involves determining the most advantageous locations within 
the power system to maximize their benefits. Various 
optimization techniques have been employed to achieve this, 
including swarm intelligence techniques. 

Jumaat et al. demonstrated the effectiveness of PSO in 
determining the optimal placement and sizing of multiple 
FACTS devices in an IEEE 30-bus system, highlighting the 
significant improvements in system performance achieved 
through strategic installations [13]. Similarly, [14] found that 
optimal FACTS device location and sizing can enhance system 
load ability, thereby improving overall transmission efficiency. 

The sizing of FACTS devices is equally important, as it 
directly influences their operational effectiveness. Proper sizing 
ensures that the devices can meet the system's reactive power 
demands while maintaining voltage stability. In [15], it was 
indicated that systematic sizing of FACTS devices is essential 
for optimizing voltage profiles and minimizing power system 
losses. 

Research has also shown that combining multiple types of 
FACTS devices can yield superior results compared to single-
device installations. Sekhane and Djamel [16] explored the 
optimal number and location of FACTS devices, demonstrating 
that a combination of TCSC and SVC [17] can effectively 
enhance voltage profiles and minimize losses in electrical power 
systems. 

The impact of FACTS devices on system performance 
depends on their optimal configuration. The study [19] found 
that the benefits of FACTS devices are significantly influenced 
by their location and size, which must be carefully considered to 
maximize transmission capacity and control flexibility [18]. 
Additionally, in [19], the authors emphasized the importance of 
sizing FACTS devices to achieve desired stability margins and 
improve overall system performance. 

Therefore, the optimal sizing and placement of FACTS 
devices are crucial for achieving maximum effectiveness in 
power transmission systems. 

FACTS devices [20], [21] are generally classified into three 
main categories based on their operational principles: 
operational-based devices, reactive impedance-based devices 
and voltage source-based devices. Each category fulfils distinct 
functions and is suited to specific applications within the power 
system. 

A. Operational-Based FACTS Devices 

Operational FACTS devices are power electronic controllers 
that dynamically regulate transmission parameters such as 
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voltage, impedance, and phase angle, to maximize 
controllability and efficiency in AC networks [16]. According to 
[17], they form part of shunt controllers, SVC, STATCOM, 
series controllers, TCSC, Static Synchronous Series 
Compensator (SSSC), and combined series–shunt controllers, 
Unified Power Flow Controller (UPFC), Interline Power Flow 
Controller (IPFC). They help improve voltage support, power-
flow control, and stability. 

Phase Shifting Transformers (PSTs) [17] are FACTS 
devices that manage active power flow by altering the phase 
angle between network buses. There are two types: tap-changing 
transformers, which adjust winding taps mechanically, and 
switched-capacitor/reactor hybrids, which rapidly modulate 
phase conditions via switching elements. 

Tap-changing phase-shifting transformers (PSTs) [23] are 
FACTS devices that regulate active power transfer by adjusting 
the phase angle via mechanical tap changers. They are widely 
used to control loop flows, relieve congestion, and improve 
transmission capacity in interconnected grids [23]. Unlike other 
power electronic devices, PSTs provide a cost-effective, robust, 
and low-maintenance solution for enhancing network flexibility 
and security. 

Switched capacitor/reactor phase-shifting transformers 
(PSTs) modulate active power flow by dynamically altering 
phase angles through rapid switching of capacitive or inductive 
elements [24]. In [25], [26], it is reported that hybrid devices 
combine Thyristor Switched Series Capacitors (TSSC) or 
Reactors (TSSR) with conventional PSTs to enable fast, discrete 
phase adjustments, offering advantages such as enhanced 
congestion relief, improved loop flow management, and better 
utilization of existing lines. Their mechanical simplicity and 
sub-cycle responsiveness make them reliable for enhancing grid 
flexibility and security. 

Tap-changing PSTs offer robust, low-maintenance solutions 
for loop-flow management and congestion relief. At the same 
time, Thyristor-controlled PSTs (TCPSTs) enhance grid 
responsiveness through swift, discrete adjustments. Switched-
capacitor/reactor phase-shifting transformers (PSTs) 
complement conventional tap-changing PSTs by enabling 
faster, more flexible phase-angle control [17], [25]. Both remain 
essential FACTS assets, with TCPSTs excelling in dynamic 
environments and tap-based PSTs in long-term stable control. 
Future work should integrate hybrid PST schemes that combine 
mechanical reliability with power-electronic agility, optimize 
deployment in renewable-rich grids, and ensure interoperability 
through standardized control strategies and modelling. 

B. Reactive Impedance-Based FACTS Devices 

Reactive impedance-based FACTS devices play a vital role 
in regulating reactive power flow, maintaining voltage levels, 
and controlling phase angles within power transmission 
systems. By performing these functions, they significantly 
enhance system stability, reliability, and efficiency [43]. The 
following subsection outlines the primary types of reactive 
impedance-based FACTS devices commonly used in modern 
power networks. 

Series compensation FACTS devices, such as the Thyristor-
Controlled Series Capacitor (TCSC) and the Thyristor Switched 

Series Capacitor (TSSC), reduce transmission line impedance to 
enhance active power transfer [56]. They improve system 
voltage stability, increase transfer capability, and relieve 
congestion, enabling better utilization of existing corridors 
without the need for new infrastructure. 

The TCSC device integrates a series capacitor with a 
thyristor-controlled reactor. It is primarily employed to enhance 
the transmission capacity of power lines by regulating reactive 
power flow and improving voltage stability [65]. The TCSC in 
[48] effectively dampens power system oscillations, thereby 
enhancing overall system stability and dynamic performance. 
This device can rapidly adjust the transmission line impedance, 
thereby improving reactive power management and overall 
system stability. 

As shown in Fig. 1, the Thyristor-Controlled Series 
Capacitor (TCSC) consists of a series capacitor connected to the 
transmission line and a thyristor-controlled reactor (TCR) [23], 
[30]. The circuit typically features a capacitor (C) in series with 
the line and a thyristor-controlled inductor (L) connected in 
parallel with the capacitor. By adjusting the thyristor firing 
angles, the capacitor's effective reactance can be dynamically 
controlled, enabling enhanced power-flow regulation and 
improved voltage stability within the transmission system. 

 
Fig. 1. Thyristor Controlled Series Capacitor (TCSC) circuit [23]. 

where, jXTCR  in Eq. (1), the TCR’s effective reactance, is 
related to the delay angle 𝛂 in Eq. (2) [30]. 

XTCSC =  jXTCR(−jXC)

jXTCR−jXC
=  j

|XTCR|.|XC|

|XTCR|−|XC|
     (1) 

XTCR(α) =  πXL
2(π− α)+sin2α

         (2) 

Thyristor-Switched Series Capacitors (TSSCs) are discrete 
FACTS devices in which series capacitors are bypassed or 
inserted via anti-parallel thyristor valves, enabling stepwise 
control of line compensation [27]. This configuration reported 
in [28] enhances active power flow, improves transient stability 
by damping oscillations, mitigates sub-synchronous resonance 
risks through fast switching, and reduces maintenance compared 
to mechanical switches. 

They enhance active power transfer, damp power system 
oscillations, improve transient and voltage stability, and 
suppress sub-synchronous resonance. TSSCs are valued in 
dynamic, renewable-rich grids for their fast response, durability, 
and modular scalability [65]. Their flexibility enables placement 
optimization to efficiently relieve congestion and maximize 
existing infrastructure. Economically, they reduce maintenance 
compared to traditional mechanical switching, while 
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maintaining high reliability under variable loading and fault 
conditions [17]. 

Shunt compensation FACTS devices, primarily the Static 
Var Compensator (SVC) and static synchronous compensator 
(STATCOM), inject or absorb reactive power to regulate 
voltage, improve stability, and enhance power transfer 
capability. SVCs employ thyristor-controlled reactors and 
switched capacitors, offering robust, economical dynamic var 
support on transmission grids [30]. Converter-based 
STATCOMs in [41] and [42] provide faster response, near-
constant reactive current at low voltages, and superior flicker 
and disturbance mitigation, benefiting weak grids and renewable 
integration. Together, these devices maintain bus voltages, 
reduce losses, increase loadability, and damp electromechanical 
oscillations as reported in [29], [30], [41], [42] when coordinated 
with system controls and protective schemes in modern, 
converter-dominated networks. 

Thyristor-controlled reactors (TCRs) are shunt FACTS 
elements: a reactor in series with anti-parallel thyristors, whose 
phase-controlled firing angle continuously varies the inductive 
susceptance [43]. Integrated into SVCs, TCRs absorb reactive 
power to regulate bus voltage, increase loadability, and improve 
transient and small-signal stability [43], [65]. Practical 
deployment in [65] addresses characteristic harmonics through 
filters and coordinates with thyristor-switched capacitors to 
deliver Var control and flicker mitigation at weak transmission 
nodes and loads. 

Thyristor-Switched Capacitor (TSC) is a shunt FACTS 
element that uses bidirectional thyristor valves to switch 
capacitor steps, delivering discrete, transient-free reactive power 
for fast voltage support, power-factor correction, and flicker 
mitigation. Integrated within SVCs, TSC branches complement 
TCRs to achieve a wide range with low losses and high 
reliability [48], [65]. Deployments span transmission and 
distribution nodes in [65] requiring fast voltage regulation under 
variable loads and renewable penetration. 

C. Voltage Source-Based FACTS Devices 

Voltage-source-based FACTS devices use self-commutated 
converters to synthesize controllable AC voltages and currents, 
enabling fast, continuous control of reactive power and, through 
series injections, active power flow [38]. Shunt STATCOMs 
provide near-constant reactive current at low voltages, 
stabilizing weak grids and supporting inverter-based resources; 
series SSSC and combined UPFC extend capability to regulate 
line impedance, voltage, and power flow, improving transfer 
limits and damping oscillations [38], [53]. Converter in [53] 
significantly advances dynamic performance, with robust 
control frameworks and accurate steady-state models now 
available for planning and Optimal Power Flow (OPF) 
integration of VSC-based controllers in transmission networks 
and renewable power systems. 

Series voltage-source-based FACTS [56] devices inject 
controllable AC voltage in series with a line to regulate power 
flow, boost transfer capability, damp oscillations, and enhance 
transient stability and reliability margins in converter-dominated 
grids. 

A Static Synchronous Series Compensator (SSSC) is a series 
VSC-based FACTS controller, as shown in Fig. 2 that injects a 
controllable quadrature voltage to emulate variable capacitive or 
inductive reactance and regulate line power flow, raise transfer 
limits, and damp oscillations. Practical deployment emphasizes 
robust protection and fault-ride-through using fast 
varistor/thyristor schemes [56], and system-level coordination 
for predictability, placement, and security of SSSC-
compensated corridors under renewable variability [57]. These 
capabilities support stability, reliability, and resilience in 
modern, converter-dominated grid operation. 

 
Fig. 2. Static synchronous series compensator circuit [23]. 

Shunt voltage source converter FACTS devices inject or 
absorb reactive current to hold bus voltages, stiffen weak grids, 
and aid renewable integration [53]. Advances in converter 
topology and control deliver fast response and near constant 
current, improving transfer margins, flicker mitigation, and 
oscillation damping in transmission networks. 

Static synchronous compensators (STATCOMs) are shunt-
voltage-source converter FACTS controllers that inject or 
absorb reactive current to regulate bus voltage and strengthen 
weak grids [38]. Compared to SVCs, STATCOMs provide near-
constant reactive current at low voltages, faster dynamics, and 
improved damping of flicker and oscillations [53]. The circuit 
diagram in Fig. 3 typically includes a voltage source inverter 
(VSI) connected to a coupling transformer and a DC capacitor 
[38]. The VSI converts the DC voltage from the capacitor into 
AC voltage, which can be adjusted to provide the required 
reactive power. 

STATCOMs use voltage-source converters to provide 
dynamic reactive power support, as shown in Fig. 3. They can 
respond quickly to changes in system conditions, making them 
effective for voltage regulation and for improving system 
stability [38]. STATCOMs are particularly beneficial in systems 
with high penetration of renewable energy sources, where 
voltage fluctuations are common. STATCOM [38] can respond 
rapidly to changes in system conditions, making it effective for 
voltage regulation and improving power quality [see Eq. (3)]. 

𝑆𝑆𝑇𝐶 =  𝑉𝑆𝑇𝐶𝐼𝑆𝑇𝐶 =  𝑉𝑆𝑇𝐶𝑉𝑆𝑇𝐶𝑌𝑆𝐶 − 𝑉𝑆𝑇𝐶𝑌𝑆𝐶𝑉𝑖  (3) 
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where, 𝐼𝑆𝑇𝐶is the complex conjugate of STATCOM current, 
𝑉𝑆𝑇𝐶is the complex conjugate of STATCOM voltage , and 𝑌𝑆𝑇𝐶is 
the complex conjugate of short-circuit admittance [33]. 

 
Fig. 3. Static synchronous compensator circuit [23]. 

Combined VSC-based FACTS devices like the unified 
power flow controller (UPFC) couple shunt and series 
converters through a common DC link to regulate bus voltage 
and line power flow simultaneously, increasing transfer 
capability and damping oscillations [62]. Recent research 
advances steady-state models and protection/fault identification 
for UPFC deployments in transmission corridors. 

Unified power flow controllers (UPFCs) combine shunt and 
series voltage-source converters via a common DC link to 
independently regulate bus voltage and line power flow. By 
injecting controllable series voltage and exchanging reactive 
current, UPFCs increase transfer capability, relieve congestion, 
and damp electromechanical oscillations while supporting 
renewables [63]. Recent work provides steady-state models for 
planning and OPF, and convex formulations for security-
constrained economic dispatch in [63] by improving scalability, 
dispatchability, and reliability.  

The UPFC circuit diagram in Fig. 4 typically consists of two 
voltage-source converters: one connected in series with the 
transmission line and the other connected to the shunt side. The 
series converter injects voltage into the line, while the shunt 
converter regulates the DC link voltage. 

 
Fig. 4. Unified Power Flow Controller (UPFC) circuit [23]. 

Static Var Compensator (SVC): SVCs compensate for 
reactive power and maintain voltage stability in the power 
system. They consist of a combination of capacitors and 
inductors controlled by thyristors, allowing for rapid response to 
voltage fluctuations [38]. The SVC is effective at maintaining 
voltage within the desired range and responds quickly to 

changes in load conditions, thereby improving overall power 
quality [53]. SVCs are widely deployed in transmission 
networks to enhance power quality and system reliability. 

 
Fig. 5. Static Var Compensator (SVC) circuit [23]. 

The SVC in Fig. 5 is composed of a combination of 
capacitors and inductors, controlled by thyristors. The circuit 
diagram typically shows a bank of capacitors (C) and a bank of 
inductors (L), with thyristors (T) used to switch the inductors in 
and out of the circuit as needed. This configuration allows for 
real-time reactive power compensation [see Eq. (4) and Eq. (5)]. 

XSVC =  XL(α).XC
XL(α)+  XC

    (4) 

with 

XL(α) =  XL0
π

2(π− α)+sin2α
          (5) 

where, XL0  is the fundamental frequency reactance of the 
reactor without thyristor control and α is the firing angle of the 
valves with respect to the zero-crossing instant of the controller 
voltage [31]. 

Thyristor-Controlled Phase Shifter (TCPS): This device 
controls power flow in transmission lines by adjusting the phase 
angle of the voltage. TCPS can be particularly useful in 
managing power flows in meshed networks and alleviating 
congestion [65]. By controlling the phase angle, the TCPS can 
effectively manage power flows in the network, helping to ease 
congestion and improve system stability [48]. 

The TCPS in Fig. 6, is designed to control the phase angle of 
the voltage in a transmission line. The circuit diagram typically 
includes a thyristor-controlled reactor (TCR) connected in series 
with the transmission line, allowing adjustment of the phase 
angle by varying the reactor's reactance. 

where, T is the operational mode with X𝐹, X𝑣. K1 and K2 as 
computational coefficients [32]. 

Flexible AC Transmission Systems (FACTS) devices 
enhance power system flexibility, controllability, and stability 
by dynamically regulating key parameters. They are broadly 
categorized into operational-based, reactive impedance-based, 
and voltage source-based devices. Each class functions 
differently, controlling variables such as impedance, voltage, or 
phase angle to optimize system performance. 
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Fig. 6. Thyristor-controlled phase shifter circuit [23]. 

IV. OPTIMIZATION METHODS FOR FACT DEVICES 

Optimization methods are critical tools for determining the 
optimal location, sizing, and operation of FACTS devices in a 

power system. These methods aim to maximize system 
performance while minimizing cost and operational issues. 

FACTS devices are powerful but expensive tools. Improper 
placement or operation can lead to: 

 Underutilization of expensive equipment. 

 Instability or overcompensation. 

 Increased system losses or operational costs. 

Hence, optimization ensures cost-effective, reliable, and 
efficient use of FACTS. 

Table II presents a consolidated summary of these FACTS 
device classes, highlighting their control variables, operational 
principles, and typical applications. 

TABLE II.  SUMMARY OF OPERATIONAL CHARACTERISTICS AND APPLICATIONS OF FACTS DEVICES 

FACTS 

Device Type 
Reference 

Device 

Name 
Configuration 

Control 

Variables 
Main Function 

Operational 

Principle 
Typical Application 

Operational 

based 
[16,17,23,24,27] TCSC TSR 

Shunt, series, 

combined; 

Voltage, 

Reactive-

power, Current, 

Susceptance, 

Reactance, 

Firing-angle, 

Phase-angle 

regulate voltage 

support vars 

control flow 

damp 

oscillations 

improve stability 

Switch 

shunt/series 

reactance, or 

synthesize 

voltages, to 

regulate power 

flow. 

Voltage-regulation, var-

support, power-factor-

correction, flicker-

mitigation, power-flow-

control, congestion-

relief, stability-

enhancement 

Reactive 

Impedance-

based 

[27,43, 65,28,17] TCR, TSR Shunt, series; 

firing-angle 

conduction-

angle thyristor-

state capacitor-

step reactor-

current 

susceptance 

reactance 

voltage-

regulation 

reactive-power-

compensation 

line-impedance-

control power-

flow-control 

stability-

enhancement 

oscillation-

damping loss-

reduction 

Phase control 

thyristors adjust 

reactors or 

capacitors, 

varying 

impedance 

continuously 

Voltage-regulation, var-

support, power-factor-

correction, 

compensation, power-

flow-control, 

congestion-relief, loss-

reduction. 

Voltage 

Source-based 
38,53,56,57,62] 

STATCOM 

SSSC 

UPFC 

Shunt, series, 

combined 

modulation-

index phase-

angle injected-

voltage 

reactive-

current active-

current 

 

voltage-

regulation 

stability-

enhancement 

power-flow-

control 

Synthesize 

controllable AC 

voltage; regulate 

reactive current; 

control power 

flow. 

Voltage-regulation, 

reactive-support, weak-

grid-stabilization, 

renewable-integration, 

power-flow-control, 
voltage-stability-

enhancement 

 

V. METAHEURISTIC OPTIMIZATION TECHNIQUES 

Metaheuristic optimization techniques (MOT) [34] have 
emerged as powerful tools for solving complex optimization 
problems in various fields, including electrical engineering and 
power systems. These techniques are particularly effective for 
non-convex, combinatorial problems, such as the optimal 
placement and sizing of Flexible Alternating Current 
Transmission Systems (FACTS) devices. 

Determining the best locations for FACTS devices helps to 
maximize their effectiveness in enhancing voltage stability and 
minimizing losses [33, 34, 35]. Studies have shown that 
metaheuristic techniques can effectively identify optimal 
locations based on system characteristics and load conditions. 

Optimizing the capacity of FACTS devices to ensure they 
meet the reactive power requirements of the system while 

minimizing costs [36, 37]. Many studies have focused on 
optimizing multiple objectives simultaneously [38], such as 
reducing costs while maximizing system reliability and 
performance. Metaheuristic techniques are well-suited for 
handling such multi-objective problems due to their flexibility 
and adaptability. 

Swarm Intelligence (SI) is an area of artificial intelligence 
that draws inspiration from the collective behavior of social 
organisms, such as ants, bees, birds, and fish. This paradigm is 
characterized by decentralized control, self-organization, and 
the ability to solve complex problems through simple agents 
interacting with one another and their environment [39, 40]. The 
concept of swarm intelligence [41] has been widely applied to 
the positioning and sizing of FACTS devices, leading to the 
development of various algorithms that leverage its principles 
for optimization tasks. 
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 Decentralization in swarm intelligence, zero systems 
operate without central control, with individual agents making 
decisions based on local information and simple rules, resulting 
in emergent behavior at the group level. This decentralized 
approach offers flexibility and robustness in problem-solving 
[42, 43]. This decentralized nature enables optimal placement of 
FACTS devices, such as using Particle Swarm Optimization 
(PSO) to enhance voltage stability and minimize losses [39, 40]. 
By leveraging local information, these algorithms can 
adaptively respond to system changes, ensuring devices are 
placed where needed most. This decentralized nature in [40] 
contributes to the robustness and adaptability of FACTS devices 
in power systems, enhancing overall system reliability. 

Self-organization is a fundamental property of swarm 
intelligence (SI) systems, whereby decentralized agents interact 
locally with one another and their environment to produce 
coherent, system-level behavior without central control. The 
emergent phenomenon enables SI systems to adapt to dynamic 
operating conditions autonomously, enhancing performance 
without the need for external intervention. 

In biological systems, such as ant colonies, simple 
behavioral rules and local communication mechanisms give rise 
to complex problem-solving capabilities. This principle has 
inspired numerous computational optimization techniques [44]. 
In the context of electric power systems, the self-organizing 
behavior of SI can be leveraged to optimize the placement and 
sizing of Flexible AC Transmission Systems (FACTS) devices 
[45], [46] including Static Var Compensators (SVC), Thyristor-
Controlled Series Capacitors (TCSC), and Unified Power Flow 
Controllers (UPFC), can be coordinated in a distributed manner 
to enhance voltage stability, improve load-ability, and reduce 
transmission losses under fluctuating system conditions. Such 
adaptability allows device configurations to be modified in near-
real time based on local measurements, enabling the grid to 
respond effectively to disturbances and demand variations. 

Several metaheuristic optimization methods depicted in 
Fig. 7 are grouped into swarm-based, physics-based, evolution-
based, and human- and socio-inspired algorithms. 

 
Fig. 7. Metaheuristic optimization techniques including swarm intelligence. 

The mechanism of self-organization in SI algorithms is 
driven by local interactions, in which each agent adjusts its 

behavior based on immediate surroundings and limited 
feedback. In optimization frameworks such as Particle Swarm 
Optimization (PSO), the Grey Wolf Optimizer (GWO), and the 
Gorilla Troops Optimizer (GTO), this principle enables FACTS 
devices to be allocated to minimize system losses and maximize 
voltage stability while respecting system constraints [47, 48, 
49]. Self-organization supports the integration of hybrid 
metaheuristics, such as combining PSO with other search 
strategies, [46] and [50], enabling dynamic resizing of FACTS 
devices in response to real-time reactive power demands and 
ensuring both technical and economic efficiency. 

Recent studies confirm that swarm-based self-organization 
is particularly effective in solving multi-objective FACTS 
placement problems, simultaneously optimizing cost, stability 
margin, and power-loss reduction in renewable-integrated 
networks [44, 47, 48]. The inherent robustness of self-organized 
SI systems ensures reliable system operation even under 
significant disturbances, making them a promising approach for 
modern, adaptive power systems. 

Stigmergy is an indirect communication mechanism in 
which agents influence one another by modifying their shared 
environment. In swarm intelligence, this principle enables 
coordinated behavior without direct interaction, as seen in ant 
pheromone trails. In power systems, staggery facilitates adaptive 
FACTS device placement and operation [56], [57], where 
changes in one device’s status inform others’ decisions, 
improving voltage stability and minimizing losses. 

Collective Intelligence: swarm-based optimization 
harnesses collective intelligence, where a group of simple agents 
collaborates through local interactions to explore solution spaces 
more effectively than isolated agents [52]. In nature, bees forage 
[53] efficiently by responding to local stimuli, demonstrating 
how collective behaviors emerge from decentralized rules and 
yield superior performance. 

In power systems, this principle directly benefits the 
distributed placement and sizing of FACTS devices [51], [54]. 
Rather than relying on centralized control, FACTS units can 
coordinate through emergent swarm behaviors, enabling 
adaptive responses to dynamic conditions such as load 
fluctuations and voltage instability. 

One illustrative approach is the Autonomous Groups Particle 
Swarm Optimization (AG-PSO) method, which applies swarm 
intelligence to determine optimal SVC locations and sizes, 
significantly reducing transmission losses [55]. Similarly, 
hybrid algorithms in [52] combining Genetic Algorithms with 
PSO (GA-IPSO) optimize the sizing and placement of 
STATCOM, TCSC, and UPFC in radial power networks, 
achieving enhanced voltage profile control and reduced system 
losses. 

Emergent collective intelligence also plays a vital role in 
multi-objective optimization, where objectives such as system 
cost, stability, and loadability must be balanced. Swarm-based 
algorithms naturally navigate these trade-offs by dispersing and 
aggregating candidate solutions, ultimately converging toward 
Pareto-optimal configurations for FACTS deployment [54]. 
Fig. 8 shows the unified concept of swarm intelligence. 
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Fig. 8. Swarm intelligence unified conceptual diagram. 

Swarm intelligence algorithms are nature-inspired 
optimization techniques that mimic the collective behavior of 
biological populations. They provide powerful tools for solving 
complex engineering problems with adaptability and robustness. 
The following section explores the Artificial Bee Colony 
Algorithm (ABC), Bacterial Foraging Optimization (BFO), 
Dragonfly Algorithm (DA), Salp Swarm Algorithm (SSA), and 
Particle Swarm Optimization (PSO) as swarm-based algorithms, 
highlighting their unique characteristics. 

A. Artificial Bee Colony Algorithm 

The Artificial Bee Colony (ABC) algorithm is a swarm 
intelligence metaheuristic inspired by the foraging behavior of 
honeybees. It consists of three types of agents: employed bees, 
which explore the neighborhood of current food sources; 
onlooker bees, which probabilistically select promising sources 
based on the quality shared by employed bees; and scout bees, 
which abandon depleted sources to discover new ones. Through 
this decentralized, collaborative process, ABC [63], [66] 
effectively explores and exploits the search space, making it 
suitable for complex optimization problems. 

ABC demonstrates strong global exploration capabilities and 
robustness against local optima, primarily due to its randomized 
neighborhood search [58], [61]. However, compared to Particle 
Swarm Optimization (PSO) and Genetic Algorithms (GA), 
ABC often converges more slowly because its information-
sharing mechanism relies heavily on probabilistic sampling 
rather than deterministic best-solution propagation [64]. Recent 
studies have improved convergence by integrating Bayesian 
estimation [58], elite-driven adaptive population scaling [59], 
and adaptive exploration control [60], resulting in faster 
convergence without compromising exploration diversity. ABC 
has been widely applied to the optimal placement and sizing of 
Flexible AC Transmission Systems (FACTS) to enhance 
voltage stability and reduce power losses in both small and 
large-scale networks. For example, Shokouhandeh et al. [61] 
used ABC for reactive power management with SVC devices, 
achieving superior improvements in the voltage profile 
compared with conventional methods. On the IEEE 30-bus 
system, a multi-objective hybrid ABC significantly minimized 
active power losses and improved voltage deviation indices [62]. 

In benchmark case studies, ABC-based optimization has 
produced measurable performance gains on the IEEE 30-bus 
system with SVC and TCSC devices. ABC improved voltage 
stability by 15% and reduced active power losses by 20% [66]. 

On the IEEE 11-bus system, optimal SVC placement achieved 
close to 25% loss reduction and noticeable improvement in the 
voltage profile [61], and in large-scale IEEE 118-bus networks, 
the ABC algorithm in [66] yielded a 15% absolute power loss 
reduction while enhancing overall stability. 

Strengths of ABC include its high global search capacity, 
which reduces the risk of local optima entrapment [58],[60]. 
Simplicity of implementation and adaptability to multi-objective 
and discrete problems [65]. Weaknesses include slower 
convergence compared to PSO and GA, due to less structured 
information sharing [64], [66]—an exploration–exploitation 
imbalance [67] that can limit the fine-tuning of near-optimal 
solutions. 

Hybridization strategies, such as combining ABC with PSO, 
can inherit PSO's fast convergence while maintaining ABC’s 
exploration capacity [59], [62]. Adaptive control of search 
parameters [60] and integration with other metaheuristics such 
as Firefly or Ant Colony Optimization [67] can also improve 
convergence and balance. 

B. Bacterial Foraging Optimization 

The Bacterial Foraging Optimization (BFO) algorithm is a 
nature-inspired metaheuristic mimicking the foraging behavior 
of Escherichia coli. BFO employs three primary operations: 
chemotaxis —bacteria move through tumbling and swimming 
toward nutrient-rich regions; reproduction —healthiest bacteria 
replicate, replacing weaker ones; and elimination — dispersal, 
random removal, or relocation of bacteria to sustain diversity. 
This collective mechanism guides a swarm of agents through the 
search space, facilitating efficient global optimization [69]. 

BFO effectively explores complex, multimodal landscapes 
and shows robust global search behavior [69]. However, 
compared with algorithms like PSO, it's known to have a slower 
convergence rate, attributed to its stochastic movements and the 
lack of direct global-best information sharing [69], [72]. 
Nonetheless, modified BFO variants, such as those 
incorporating adaptive chemotactic step-size or hybrid schemes, 
have exhibited faster convergence while retaining exploration 
capacity [69]. BFO has been applied to the optimal placement 
and sizing of FACTS devices, such as SVCs, TCSCs, 
STATCOMs, and IPFCs, to enhance voltage stability and reduce 
power losses in various test networks. 

A study using BFO for reactive power and voltage 
management in IEEE 39-bus systems with UPFC devices 
demonstrated improved voltage stability and reduced 
transmission losses [68]. In the IEEE 30-bus system, BFO-based 
methods significantly improved voltage profiles and reduced 
losses [70]. BFO optimized DSTATCOM placement in 
distribution systems [71] with performance gains in voltage 
regulation and loss reduction. 

Strengths of BFO include global exploration, simplicity, and 
ease of implementation [72]. At the same time, weaknesses 
include slow convergence, parameter sensitivity, and longer 
computation time [69, 72]. The weaknesses can be mitigated by 
hybridizing BFO with PSO [69] or other fast-converging 
algorithms, by adaptive control of the chemotactic step size, and 
by incorporating elimination–dispersal and reproduction 
adaptively. 
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The BFO algorithm offers a compelling, biologically 
inspired approach for FACTS device optimization, with proven 
benefits in voltage stability and power loss reduction. Its global 
search strength is counterbalanced by slower convergence and 
parameter sensitivity. Advances through hybrid and adaptive 
variants are promising routes to enhance convergence speed 
without sacrificing robustness. As a result, BFO remains a 
valuable technique in the optimization toolbox for modern 
power systems. 

C. Dragonfly Algorithm 

The Dragonfly Algorithm (DA) is a swarm-inspired 
metaheuristic that models dragonfly swarming behavior, 
specifically their foraging and predator-avoidance tactics. DA 
partitions its search process into two pivotal phases: exploration, 
where agents (dragonflies) travel far to locate promising regions, 
and exploitation, where collective, neighborhood-based 
movement guides convergence toward optimal solutions [73]. 
These behaviors emulate natural local interaction rules —
separation, alignment, and cohesion — as optimization 
operators. 

Empirical comparisons reveal that DA features superior 
exploration capability, enabling rapid coverage of high-
dimensional search spaces. In various benchmark studies, DA 
has outperformed traditional swarm paradigms such as Particle 
Swarm Optimization (PSO) and Genetic Algorithms (GA) in 
terms of convergence speed and solution quality, especially on 
multimodal and high-complexity problems [74]. 

Recent research has applied DA to the optimal placement 
and sizing of Flexible AC Transmission Systems (FACTS), 
notably TCSCs and SVCs, to bolster voltage stability and 
minimize active power losses, in a Diyala 132 kV network. DA-
based optimization of TCSC and SVC configurations resulted in 
a 15% improvement in voltage stability margin and 
approximately a 23% reduction in total system losses [75]. On 
IEEE-30 and IEEE-118 bus systems, DA-enhanced FACTS 
deployment demonstrated marked improvements in voltage 
profiles and reduced congestion-induced losses [76]. 

Strengths of DA include excellent global exploration, fast 
convergence on complex multimodal problems, and a relatively 
simple implementation framework [73]. In contrast, its 
weaknesses include the risk of premature convergence to local 
optima, dependence on random initialization for stability, and 
the need for careful parameter tuning [73]. Mitigation of 
weaknesses includes hybridizing with PSO and DE for guided 
search, adaptive control of step coefficients, and incorporating 
parameter self-adaptation techniques [77]. 

The Dragonfly Algorithm stands as a powerful, nature-
inspired approach for FACTS device optimization in power 
systems. Its strengths lie in swift exploration of solution spaces 
and effective handling of complex, multimodal problems. 
Studies have validated DA’s ability to significantly improve 
voltage stability and reduce system losses in a realistic power 
network. However, DA’s stochastic nature can lead to local 
convergence unless mitigated by hybrid approaches and 
adaptive parameter tuning. Emerging hybrid designs offer a 
promising path for combining DA’s best traits with accelerated 
convergence and improved robustness. 

D. Salp Swarm Algorithm 

The Salp Swarm Algorithm (SSA) is a nature-inspired 
metaheuristic, modeled on the chain-like swarming behavior of 
Salps in the ocean [78]. It employs two phases: exploration, in 
which the leading Salp performs randomized movement across 
the search space to discover promising regions. The second is 
exploitation, in which followers update their positions relative 
to the leader and their neighbors, refining toward optimal 
solutions [79]. These dynamics foster a balance between global 
exploration and local exploitation, rendering SSA suitable for 
complex optimization challenges. 

SSA tends to converge more slowly than algorithms such as 
Particle Swarm Optimization (PSO) and Genetic Algorithms 
(GA), primarily because of its randomized, leader-follower 
movement strategy [80], [81]. In highly multimodal landscapes 
[81], maintaining population diversity becomes challenging, 
increasing the risk of premature convergence into a local 
optimum. 

SSA has been successfully applied to optimize the placement 
and sizing of Flexible AC Transmission System (FACTS) 
devices, such as SVCs and TCSCs, for voltage profile 
enhancement and power loss minimization, such as on the IEEE 
30-bus system. SSA-based optimization resulted in 
approximately a 15% improvement in voltage stability and a 
22% reduction in power losses [79]. On the IEEE 57-bus system, 
SSA yielded a 12.5% increase in voltage stability and a 20% 
reduction in losses [82]. In the modified IEEE 14-bus system, 
optimal FACTS placement via SSA [80] achieved a 16% 
enhancement in voltage profile stability and an 18% decrease in 
power losses. 

Strengths of SSA include compelling exploration in early 
search, simple implementation with clear phases, and being 
well-suited for continuous, nonlinear spaces. In contrast, 
weaknesses include slow convergence toward the optimum, 
being prone to local optima in complex landscapes, and poor 
balance between exploration and exploitation. The mitigation of 
these weaknesses may be achieved by hybridizing SSA with 
PSO/DE for faster convergence [81], adaptive leader update, or 
dynamic control of influence radius [81,82], and incorporating 
chaotic or opposition-based strategies [78]. 

The Salp Swarm Algorithm presents an innovative, bio-
inspired strategy for optimizing the placement and sizing of 
FACTS devices in power systems. Its dual-phase structure 
effectively balances global exploration and local exploitation, 
resulting in significant reductions in losses and improvements in 
voltage stability across standard IEEE test systems. However, 
SSA’s slower convergence and vulnerability to local optima 
highlight its need for augmentation. Hybrid formulations and 
adaptive strategies promise to enhance SSA’s convergence 
speed and robustness, making it a viable tool for advanced 
power system optimization. 

E. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a prominent 
metaheuristic inspired by the collective behavior of birds or fish 
schools. Introduced by Kennedy and Eberhart in 1995, PSO 
features a swarm of particles, each representing a candidate 
solution, with associated positions and velocities [83]. Each 
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particle tracks its own best-known position (pBest) as well as the 
swarm’s best position (gBest). Velocity updates combine inertia, 
cognitive attraction to pBest, and social attraction to gBest, 
enabling particles to converge on optimal solutions [84], 
collaboratively. 

PSO is known for its fast convergence, facilitated by its dual 
communication mechanism (particles sharing both personal and 

global bests) [83]. Comparative studies have shown that PSO 
often outperforms classic algorithms such as Genetic 
Algorithms and Differential Evolution in both convergence 
speed and solution quality on benchmark functions [84]. 
However, rapid convergence can sometimes lead PSO [85] to 
prematurely settle on local optima, especially in highly 
multimodal search landscapes. 

TABLE III.  SUMMARY OF SWARM INTELLIGENCE ALGORITHMS APPLIED TO FACTS DEVICES 

Optimization 

Technique 
References Key Features Objectives 

FACTS 

Devices 

Applied To 

Advantages Limitations Applications 

Artificial Bee 

Colony (ABC) 
[4,58,61,62,63,64,66] 

Exploration – 

ability to avoid 

local optima, 

Adaptation -

balances 

exploration and 

exploitation. 

Optimization 

as it achieves 

near optimal 

solutions. 

Efficient global 

search. 

Balanced 

exploration and 

exploitation 

and 

Optimization 

of complex 

problems 

SVC, TCSC, 

STATCOM 

-Global 

exploration 

ability 

-Simplicity and 

fewer parameters 

-Robustness 

across problems 

-Slow 

convergence 

-Sensitivity 

to parameters 

-Risk of 

premature 

abandonment 

IEEE 30-bus: 

+15% voltage 

stability, −20% 

losses; IEEE 11-

bus: −25% losses; 

IEEE 118-bus: 

−15% losses 

Bacterial 

Foraging 

Algorithm 

(BFO) 

[68,69,70,71,72] 

Chemotaxis, 

Swarming – 

enhances 

information 

sharing. 

Elimination -

removes unfit 

bacteria. 

Adaptation. 

-Effective 

problem 

solving 

- Maintain 

diversity 

- Global 

optimization 

SVC, TCSC, 

STATCOM, 

IPFC, 

DSTATCOM, 

UPFC 

-Effective global 

search 

-Maintains 

population 

diversity 

-Good at 

avoiding local 

optima 

Complex due 

to many 

parameters 

-Slow 

convergence 

-Highly 

sensitive 

IEEE 39-bus 

(UPFC): 

improved voltage 

& reduced losses; 

IEEE 30-bus: 

improved voltage 

& reduced losses; 

Distribution: 

improved voltage 

& reduced losses 

Dragonfly 

Algorithm (DA) 
[73,74,75,76,77] 

Separation, 

Distraction – 

moves away 

from poor 

solutions. 

Attraction – 

moves towards 

good solutions 

-Simulate 

swarm 

dynamics 

-Balance 

search phases 

-Optimize 

complex 

systems 

TCSC, SVC 

-Strong balance 

between 

exploration and 

exploitation 

-Performs well 

on multimodal 

optimization 

problems 

-Can 

stagnate if 

diversity is 

lost 

-Requires 

careful 

parameter 

control for 

stability 

Diyala 132kV: 

+15% voltage 

stability, −23% 

losses; IEEE 

30/118-bus: 

improved voltage 

& reduced 

congestion losses 

Salp Swarm 

Algorithm 

(SSA) 

[78,79,80,81,82] 

Leader – 

guides toward 

the best 

solution. 

Exploitation – 

refines 

solutions. 

Relatively fast 

convergence. 

-Model chain 

movement 

-Enhance 

Exploration 

and 

exploitation 

-Achieve 

convergence. 

SVC, TCSC 

-Simple structure 

with leader-

follower 

dynamics 

-Efficient in both 

global and local 

search phases 

-Fast 

convergence 

-May get 

trapped in 

local optima 

-Limited 

exploitation 

ability in late 

iterations. 

IEEE 30-bus: 

+15% voltage 

stability, −22% 

losses; IEEE 57-

bus: +12.5% 

voltage stability, 

−20% losses; 

IEEE 14-bus: 

+16% voltage 

stability, −18% 

losses 

Particle Swarm 

Optimization 

(PSO) 

[83,84,86,87] 

Particles for 

search, 

Balances 

global and 

local search 

and fast 

convergence, 

Ensures broad 

search 

-Leverage 

social learning 

-Balance 

exploration and 

exploitation 

-Optimize 

high-

dimensional 

problems 

TCSC, SVC, 

STATCOM, 

IPFC 

-Fast 

convergence 

-Simple due to a 

few parameters 

-Effective 

balance on 

personal and 

social learning 

(Pbest and gbest) 

-Prone to 

premature 

convergence 

-Exploration 

ability 

decreases 

over time 

-May require 

hybridization 

for high-

dimensional 

problems. 

IEEE 14-bus: 

+20% voltage 

stability; IEEE 

57-bus (IPFC): 

+15% voltage 

stability, −22% 

losses 

 

PSO has been widely used to optimize the placement and 
sizing of FACTS devices such as TCSC, SVC, and STATCOM 
in power systems to enhance voltage stability and reduce power 

losses. For example, the PSO-based hybrid method applied to 
the IEEE 14-bus system demonstrated notable improvements in 
the voltage profile and a 20% reduction in losses [86]. On the 
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IEEE 57-bus system, PSO-optimized Interline Power Flow 
Controller (IPFC) [87] deployment yielded qualitative 
improvements in voltage and losses, reporting 15% voltage 
enhancement and 22% loss reduction. 

Strengths include high convergence speed, intuitive and 
straightforward implementation, and well-established and 
extensively studied. The PSO weaknesses include premature 
convergence, difficulties with complex, multimodal problems, 
and large-scale issues that increase computational burden [85]. 
These can be mitigated by hybridizing with exploration-rich 
methods such as DE or Firefly, Adaptive inertia weight, or 
velocity strategies to balance exploration and exploitation [84], 
and by Parallel or distributed PSO implementations to accelerate 
computation. 

PSO is a widely used swarm intelligence algorithm that 
exhibits rapid convergence and a straightforward 
implementation [83]. It has been applied successfully to the 
placement and sizing of FACTS devices, yielding improvements 
in voltage stability and loss reduction in test power networks. 
While fast convergence is a strong advantage, it also increases 
the risk of getting stuck in local optima. Hybrid approaches, 
adaptive mechanisms, and parallel implementations offer 
promising avenues to enhance PSO’s robustness and scalability 
for complex, real-world FACTS optimization tasks. 

Artificial Bee Colony (ABC), Bacterial Foraging 
Optimization (BFO), Dragonfly Algorithm (DA), Salp Swarm 
Algorithm (SSA), and Particle Swarm Optimization (PSO) 
represent widely applied swarm intelligence techniques, each 
inspired by distinct natural behaviors. These algorithms 
demonstrate strengths in exploration, exploitation, and 
adaptability across a range of optimization challenges. Table III 
provides a consolidated summary of their key principles, merits, 
limitations, and typical applications in power system 
optimization. 

VI. CONCLUSION 

Swarm intelligence algorithms have proven to be powerful 
metaheuristic optimization tools for the optimal allocation of 
Flexible AC Transmission System (FACTS) devices, which are 
vital for improving power system performance and stability. 
Review studies on algorithms such as the Artificial Bee Colony, 
Bacterial Foraging Optimization, Dragonfly Algorithm, Salp 
Swarm Algorithm, and Particle Swarm Optimization 
demonstrate their effectiveness in addressing the complex, 
multimodal challenges of FACTS device placement, including 
TCSC, SVC, and STATCOM. Over time, these algorithms have 
evolved through hybridization and refinement, significantly 
enhancing their optimization capabilities. Their adaptability to 
varying operational conditions makes them indispensable for 
improving system reliability, reducing transmission losses, and 
maintaining voltage stability. Future research should focus on 
advancing these techniques and integrating them with emerging 
technologies, such as artificial intelligence, renewable energy 
systems, and smart grid frameworks, to meet the growing, 
dynamic needs of the global energy sector. 
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