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Abstract—Plant diseases pose a serious threat to agricultural
productivity, which can cause significant crop losses if not
addressed quickly and appropriately. There are significant
opportunities for digital image-based treatment with computer
vision and artificial intelligence. The main challenges in
recognizing image-based plant diseases are: developing a single
model capable of diagnosing diseases in various types of plants.
Ensuring the model remains reliable even when images are taken
under varying lighting conditions, backgrounds, and camera
quality. In addition, the challenge in this study is to present a
model capable of recognizing leaf diseases of multiple food crops,
especially rice and corn. The purpose of this study is to identify
leaf diseases of rice and corn crops. This study proposes deep
learning and transfer learning for diagnosing plant leaf diseases in
various types of plants and unstructured imaging environments.
To address these challenges, a selection of VGGNet, ResNet50,
InceptionV3, and EfficientNetB0 methods was conducted by
testing them using laboratory datasets. Based on the testing, the
EfficientNetB0 model performed the best. Then, the selected
model parameters were tuned, feature extraction and a new
dataset was collectedin a real-world domain with varying lighting,
changing viewpoints and scales, complex backgrounds, similar
symptoms between diseases, and occlusion. The results showed
that the proposed model performed very well and robustly, with
98% accuracy and a weighted average Fl-score of 98% in
identifying food crop diseases: blight, rust, blast, blight, tungro,
and healthy leaves. This performance indicates that the developed
model is highly reliable in classifying leaf diseasesin rice and corn.
This model is expected to be applied to precision agriculture
technology so that farmers can take timely action regarding
treatment without further delay.
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I.  INTRODUCTION

Global food security is one of the most pressing challenges
of the 21st century. Crop diseases pose a significant threat to
agricultural productivity, causing significant crop losses if not
addressed promptly and appropriately. Traditional diagnostic
methods (expert systems) [1]oftenrely on agronomic expertise,
which is time-consuming, expensive, and not always available
in remote locations.

Rapid developments in computer vision and deep learning
[2][3], particularly in automated image-based plant disease
diagnosis have emerged as an attractive alternative [4]. Using
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cameras on smartphones or drones [5][6], farmers can take
pictures of diseased plants and get instant diagnoses. However,
training deep learning models from scratch requires a very large
dataset of labeled images, which is difficult to obtain for every
combination of plant and disease.

Researchers struggling to obtain such a large dataset for
multiple crops and diseases can leverage models trained on
complex datasets (ImageNet) and adapt their knowledge to
detect crop leaf diseases. This is where transfer learning can be
used to address the limitations of large datasets. This approach
leverages the “knowledge” a model has learned from large-scale
image classification tasks (e.g., recognizing thousands of
everyday objects from datasets like ImageNet) and applies it to
a new task: identifying crop diseases. This drastically reduces
the amount of data required and training time, and most
importantly, improves model accuracy.

This study will explore how transfer learning can address
two major challenges in crop disease diagnosis. [7][8]: Multi-
Crop Diversity: developing a single model capable of
diagnosing diseases in multiple crop types [9][10]-{12].
Heterogeneous Imaging Environments: Ensures the model
remains reliable even when images are taken under different
lighting conditions, backgrounds, and camera quality. The
existence of a model with these two capabilities will have a
significant impact on the field of digital image-based artificial
intelligence, particularly for the task of detecting various leaf
diseases across multiple food crops.

This study aims to build a diagnostic model that remains
reliable and accurate when food crop images are taken under
non-ideal (unstructured) or varying conditions, such as
variations in lighting, background, and camera quality. These
models are expected to contribute to precision agriculture
technology, enabling farmers to take timely action to address
problems without further delay.

The study is structured as follows: Section Il is a literature
reviewrelevantto the topic, containing similar published studies
on crop disease detection. Section III describes the proposed
methodology, including the dataset and the proposed model. The
results and discussion are presented, and their performance is
compared with previous research in Section IV. Section V
concludes the study with successes and future research.
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II. RELATED WORK

A. Deep Learning

Deep learning, especially Convolutional Neural Networks
(CNNs)[9], [13], [14], has revolutionized the field of image
analysis. CNNs are designed to automatically and adaptively
learn a hierarchy of features from images, ranging from simple
edges and textures to complex shapes and objects. In the
agricultural context, CNNs have been successfully applied to a
variety of tasks, including weed identification, crop yield
estimation, and disease detection.

Models like Inception3 [15], VGG [16],[17], ResNet [18],
and EfficientNetB0O have demonstrated advanced performance
in a variety of computer vision tasks. This success is driven by
their ability to extract relevant features from raw image data
without the need for manual feature engineering.

B. Transfer Learning Concept

Transfer leaming is a machine learning technique in which a
model developed for onetask is reused as a starting point for a
model for a subsequent task. In computer vision, this can mean
reusing a CNN model that has been trained on a large image
dataset like ImageNet. The logic is that the early layers of a
trained CNN learn to recognize universal features such as edges,
corners, color, and texture. These features are also relevant for
other tasks, including identifying disease symptoms in plant
leaves. Thus, instead of training the entire network from scratch,
we can "freeze" these early layers and retrain only the final
layers responsible for task-specific classification. This process
is called fine-tuning.

The main advantages of transfer learning are: Less Data
Requirement: Since themodel already has a basic understanding
of image features, it requires fewer specific examples of plant
diseases to learn. Faster Training Time: Training focuses on
only a small part of the network, making the process faster.
Better Accuracy: Knowledge transferred from large datasets can
help the model to generalize better, especially on small datasets.

C. Heterogeneous Image

While transfer learning is highly effective, its real-world
application faces challenges, including: Cross-Crop
Generalization: Similar disease symptoms (e.g., yellow spots)
can appear on different plants but are caused by different
pathogens. Conversely, the same disease can exhibit different
symptoms on different plant varieties. The model must be
intelligent enough to distinguish between these contexts.
Environmental Variability: Images captured in the field vary
widely. Factors such as: Lighting: Direct sunlight, shade, or
cloudy conditions can change the appearance of the color and
texture of symptoms. Background: Soil, other leaves, weeds, or
human hands in the background can confuse the model. Image
Quality: Different camera resolutions, focus, and shooting
angles can affect model performance.

Current research focuses on developing transfer learning-
based models that are robustto variation, often using extensive
data augmentation techniques and more sophisticated model
architectures. This research is expected to contributeto precision
agriculture technology, enabling farmers to take timely action
regarding treatment without further delay.
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III. METHODOLOGY

To build a universal plant disease diagnosis system, this
study proposes a transfer learning-based framework consisting
of several key stages.

A. Dataset

The dataset, constructed during this crucial stage, consists of
images showingleafdiseases in food crops, specificallyriceand
corn. Both are major commodities produced by farmers and are
a source of food. The data sources were obtained from
independent field data collection, namely rice leaf images and
corn leaf images. The cameras used for field photography were
smartphonecameras(RedmiNote 12 Pro 5G,50 MP,and OPPO
A9 2020 edition, 48 MP). The dataset also includes images from
previous researchers' repositories available on Kaggle.

This study's novelty is its independently collected dataset,
which captures diverse conditions in rice plants, including blast,
blight, tungro, and healthy states. Meanwhile, for corn plant
types, for types of blight, rust, and healthy diseases. Overall, the
dataset consists of six classes. In addition to diversity, the dataset
is also designed to have heterogeneity. To ensure heterogeneity,
images were taken from three locations (Malang City, Malang
Regency, and Pasuruan Regency) to simulate real-world use. To
obtainimages with different lighting levels, images were taken
at three different times, namely: 7 am, 10 pm, and 4 pm. In
addition to diverse lighting, the dataset was also collected from
various image capture angles and images with complex
backgrounds. This datasetdesign is designed to representreal-
world conditions. Aftercollection, the images are pre-processed.
Data Cleaning: Removing irrelevant or very poor-quality
images. Labeling: Each image was accurately labeled by an
agronomist. The labelingof disease types involved experts in the
field of food crop leaf diseases from BRMP Malang City.
However, in thisstudy, the names of food cropleafdiseases (rice
and corn) were addressed as the name of the folder where the
dataset was stored, not in each image file for each disease type.
Resizing: Adjusting the size of all images to the standard
dimensions (224 x 224 pixels) required by the CNN model. An
example of a food crop image dataset that will be used for
experiments on the food crop disease identification task is
shown in Fig. 1.

(d) tungro (e) sehat

Fig. 1. Example images from the dataset.

Lighting: This dataset design demonstrates good lighting
variation. Natural Light (Outdoor): Fig. 1(a), 1(c), 1(e), and 1(f)
were taken outdoors in sunlight. There are variations ranging
from bright, direct light in Fig. 1(a) to areas with sharp shadows
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in Fig. 1(c). Artificial Light (Indoor): Fig. 1(b) and 1(d) were
taken indoors against a white background. This creates
controlled, even lighting conditions, without shadows. Benefits:
This variation trains the model to be independent of specific
lightingconditionsand canrecognize diseases in bright sunlight,
shade, and indoors.

Image Angle: There is significant diversity in shooting
angles. Close-Up and Oblique: Fig. 1(a), 1(c), and 1(e) show the
leaf close-up at a slight angle. Top and Flat Lay: Fig. 1(b) and
1(d) show anisolated leaf photographed straight on from above.
Wide Angle: Fig. 1(f) is taken from a greater distance, showing
multiple leaves in a single clump. Benefits: The model learns to
recognize disease symptoms not just from one perspective, but
from multiple angles and distances, much like what users will
encounter in the field.

Occlusion and Background Complexity: Backgrounds and
the presence of occlusions vary significantly. Simple
Background: Fig. 1(b) and 1(d) have a clean, white background
free of occlusions, allowing the model to focus entirely on the
leaf. Complex Background: Fig. 1 (a) has a background of other
leaves and a water surface. Fig. 1(f) is the most complex, with
overlap between the leaf (significant occlusion), the soil, and
other surrounding plants. Benefit: This variation trains the
model to distinguish between disease symptoms and visual
“noise” in the background. This prevents the model from
misidentifying shadows or other leaves as diseased.

Pixels, Resolution, and Scale: While difficultto quantify
without the original files, the differences in scale are visually
noticeable. Macroscale (Close-up): Fig. 1(e) shows thedetails of
the leaftexture and veins very clearly. Medium-scale: Most of
the images show a single leaf or part of it. Microscale (Wide):
Fig. 1(f) makes each leaf appear smaller and has lower
resolution per leaf. Benefits: The model is flexible in
recognizing diseases from both detailed close-up photos and
long-distance photos that capture the entire plant.

Disease Types and Regions of Interest (ROIs): This dataset
includes a wide variety of diseases with very different
manifestations (Regions of Interest / ROIs). Small and
Scattered: Blast [Fig. 1(a)] and Rust [Fig. 1(c)] appear as small,
scattered spots across the leaf surface. Large & Necrotic: Blight
[Fig. 1(b)] and Blight [Fig. 1(f)] cover large areas of the leaf,
often causing it to dry out and die. Localized at the Tip: Tungro
symptoms [Fig. 1(d)] appear concentrated at the leaf tips. No
Symptoms: The Healthy class [Fig. 1(e)] serves as an important
comparison with no disease ROlIs at all. Benefits: This diversity
is the essence of training. The model learns to recognize the
uniquepatterns, shapes, colors,andlocations of each disease and
distinguish them from healthy leaf conditions.

B. Label Inference Automation

In this study, utilizing a subdirectory structure to represent
class names is an efficient methodological design in deep
learning projects. Its main advantage lies in the automation of
label inference directly by the computational framework,
eliminating the need for manual data-label mapping. This design
inherently offers a structured and intuitive data organization,
which is crucial for scalability and management of large-scale
datasets. Thus, this approach not only improves efficiency and
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reduces the potential for human error but also enhances the
reproducibility of experiments in image classification.

C. Pre-processing

To improve the model's robustness to image variations, data
augmentation techniques are essential. This involves artificially
generating modified versions of the training images. Common
techniques include: Random rotation= 20, Horizontal flipping
= true, Brightness and contrast changes, Zooming, Shearing,
width_shift range=0.1,height_shift range=0.1,and fill mode
is nearest.

Data augmentation effectively increases the size of the
dataset [19][20] and helps the model learn to focus less on
certain orientations or lighting conditions, thereby improving its
ability to generalize.

D. Model Selection

Selecting a pre-trained CNN model is an important initial
step. In this study, the selection process for several models was
carried out as follows:

1) VGGI16: VGG16 [16] is a Convolutional Neural
Network (CNN) architecture that has 16 layers with trainable
weights. This architecture is very uniform and simple. Its
structure consists of 13 convolutional layers and 3 fully-
connected layers. Its main characteristic is the use of very small
convolutional filters, namely 3x3, stacked sequentially. These
blocks of convolutional layers are interspersed with five max-
pooling layers to reduce the spatial dimensionality. Finally, the
three fully-connected layers act as classifiers to determine the
final output.

2) ResNet50: ResNet50 [18] is a 50-layer Convolutional
Neural Network (CNN) architecture that introduces a
revolutionary concept: residual connections, or skip
connections. This architecture not only stacks layers
sequentially but also creates "shortcuts" that allow input from
previous layers to be added directly to the output of deeper
layers. This mechanism overcomes the problem of vanishing
gradients in very deep networks, allowing for more efficient
training. Its structure consists of a single initial convolutional
layer, followed by 16 '"residual blocks" (consisting of
convolutional layers), and finally with a pooling and fully-
connected layer for classification. Using residual connections
allows for training very deep networks without the problem of
vanishing gradients.

3) InceptionV3: InceptionV3 [15] is a Convolutional
Neural Network (CNN) architecture that focuses on
computational efficiency without sacrificing accuracy. At the
heartofthis architecture is an "Inception module" that performs
multiple convolution operations (e.g., 1x1, 3x3, 5x5) and
poolingin parallel within a single block, allowing the network
to capture features at multiple scales. It is computationally
efficient by using an "inception module" that performs
convolutions at multiple scales. A major update in V3 is
convolution factorization, which breaks a large convolution
filter (such as 5x5) into a stack of smaller (two 3x3) and
asymmetric (1x3 and then 3x1) filters. This step drastically
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reduces the number of parameters and computational cost,
making the network deeper and more efficient.

4) EfficientNetB0: EfficientNetB0[21] is a Convolutional
Neural Network (CNN) architecture designed to achieve very
high efficiency and accuracy. Instead of randomly changing
one dimension of the network (depth, width, or resolution),
EfficientNet introduces a compound scaling method. This
method intelligently and uniformly balances all three
dimensions using predefined scaling coefficients. Its base
architecture (B0) is discovered through Neural Architecture
Search (NAS) and uses inverted residual blocks (MBConv)
similar to MobileNetV2. With balanced scaling,
EfficientNetBO achieves high accuracy with a significantly
lower number of parameters and computation (FLOPS)
compared to other models.

E. Proposed Model

The architectural modifications proposedin thisstudy aim to
improvetheaccuracy of diseaseidentification. The process steps
that will occur during data training are depicted in the
framework of Fig. 2.
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Fig.2. Proposed method.

1) Load Pretrained Base Model: The experimental setup
involved importing several convolutional neural networks that
had undergone prior training, alongside the weights acquired
from the ImageNet dataset. Our investigation specifically
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incorporated well-known CNN frameworks, namely VGG16,
ResNet50, EfficientNetB0, and InceptionV3, each initialized
using their respective ImageNet weights. A critical
configuration involved disabling the top classification layer (by
settinginclude_top to false), thereby isolatingthe robust feature
extraction capabilities and bypassing ImageNet's original
categorization mechanism. This process yielded a collection of
highly descriptive feature maps.

2) Data Augmentation Layer: The first step will add a data
augmentation layer to artificially enrich the training data. This
additional layer makes the model more robust and reduces
overfitting. Additional augmentation pipelines are Random
rotation = 20, Horizontal flipping = true, Brightness and
contrast changes, Zooming, Shearing, width_shift range =0.1,
height shift range = 0.1, and fill mode is nearest.

3) Classifier Head: Adds an additional dense layer before
the output layer with ReLU activation to give the model more
capacity to learn complex patterns. Dropout layer (optional, for
regularization). Output layer with softmax/sigmoid activation
depending on the number of classes.

4) Two-Stage Training: Stage 1 (Feature Extraction): Train
the classifier head layer by freezing the base model. Freeze all
base model layers (trainable=False). Train only the classifier
head.

Stage 2 (Fine-Tuning): This layer will "unfreeze" the top
layers of the model and retrain the entire model at a very low
learning rate to keep the pretrained weights stable but more
adaptive to the target dataset. This technique allows the model
to adjust the learned features to be more specific to your dataset.

5) Learning Rate Scheduler: Uses the
ReduceLROnPlateau callback with parameters monitor =
"val loss", factor=0.1 (reduce LR 10x), and patience=3-5 (if
validation stagnates for several epochs). To automatically
reduce the learning rate when model performance on validation
data stagnates.

Evaluate Model: Model performance is evaluated using
standard classification metrics, such as: Accuracy: The
percentage of correct predictions overall. Precision: Of all
positive predictions for a class, how many were correct. Recall
(Sensitivity): Of all actual instances of a class, how many were
successfully identified. F1-Score: The harmonic mean of
precision and recall, providing a balanced measure of
performance. Confusion Matrix: A table that visualizes model
performance, showing which classes are frequently confused
with each other. Evaluation is performed on a test dataset that
the model has never seen during training to obtain an estimate
of its real-world performance.

IV. RESULTS AND DISCUSSION

A. Results

The first experiment was conducted on VGGNet, Resnet50,
EfficientNetBO0, and InceptionV3 models using homogeneous
(laboratory) image data with six disease types and two normal
images. A performance comparison of the six models is
presented in Table L.
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TABLE L. COMPARISON OF INITIAL MODEL PERFORMANCE ON CLASSIFICATION RESULTS WITH LABORATORY DATA
Disease VGGNet ResNet EfficientNetB0 InceptionV3
name Precision  Recall F1-score Precision Recall F1-score Precision Recall F1-score  Precision Recall F1- score

Rise leaves % % % %

Blast 0.88 0.94 091 0.87 1.00 0.93 0.87 1.00 0.93 0.78 0.90 0.84
Blight 091 0.63 0.74 0.87 0.65 0.74 1.00 0.75 0.86 0.75 0.75 0.75
Tungro 0.75 0.94 0.83 0.73 0.80 0.76 091 1.00 0.95 0.81 0.60 0.72
Healthy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.98
Corn leaves

Hawar 0.90 0.43 0.58 0.67 0.50 0.57 0.64 0.79 0.67 0.80 0.60 0.69
Rust 0.63 1.00 0.77 0.60 0.75 0.67 0.67 0.60 0.63 0.62 0.75 0.68
Healthy 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.95 0.93

accuracy 83 % accuracy 81 % accuracy 86 % accuracy 80 %

Based on the experimental results as written in Table I, it is
informed that although classical architectures such as VGG are
known to be simple, ResNet50 is effective for deep networks,
and InceptionV3 is computationally efficient, EfficientNetB0O
shows significant advantages. This model is specifically
designed to achieve an optimal balance between accuracy and
computational efficiency. With the highest accuracy,
EfficientNetBO is an ideal choice for applications that require
high performance on devices with limited resources, such as
mobile devices. The training and validation accuracy graph is
shown in Fig. 3.

Training and Validation Accuracy

0.9 1

0.4 4 —— Training Accuracy
validation Accuracy

0 2 4 ] 8

Fig.3. Graph of accuracy and validation of model training with laboratory
data.

Classification report:
precision recall fl-score  suppert
Hawar 2.64 a.7e a.67 28
karat 8.67 a.68 @.63 28
sehat 1.089 l.22 l.82 28
blast 8.87 1.88 8.93 28
blight 1.08 a8.75 8.86 28
normal 1.88 1.88 1.88 28
tungro 8.91 1.88 B8.35 28
ACCUracy 8,86 148
macro avg 8.87 a.86 a.86 148
weighted avg 8.87 B.86 8. 28 148

Fig. 4. Results of laboratory data image classification.

This classification report analysis (Fig. 4) highlights
significant weaknesses in the model's performance, despite an
overall accuracy of 86%. The main issue lies in the low F1-
scores for the "Blight" (0.67) and "Rust" (0.63) classes.

Specifically, the Recall for "Rust" is only 0.60, meaning that
40% of Rust cases were missed by the model (misclassified as
other diseases). The Precision for "Blight" (0.64) is also
concerning, indicating a high false positive rate; the model
frequently mistakes other diseases for Blight.

Since this dataset is perfectly balanced (Support 20 for each
class), this poor performance is not due to imbalance. It strongly
indicates a data quality issue: there is likely mislabeling or high
visual similarity (ambiguity) between the symptoms "Blight",
"Rust", and other classes, which confuses the model.

Training and Validation Accuracy
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0.900
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0.750 validation Accuracy

0 2 4 ] 8 10 12 14

Fig.5. Accuracy and validation graph of model training with complex

images.

The EfficientNetB0 model, which achieved an accuracy of
86%, was selected as the best model. However, there is still
room for improvement in accuracy. Therefore, changes were
made to increase the complexity and variation of the training
data and to avoid dataredundancy, especially in healthy image
types. The training data was selected for images with high
complexity, resembling real-world conditions such as irregular
images, varying illumination, images with occlusion, and
varyinglevels ofimagebrightness. Aftertrainingand validation,
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the model's performance accuracy increased from 86% to 98%
after improvements. The results of data quality improvements
on model performance are shown in Fig. 5 as the training graph
and Fig. 6 as the classification report.

Classification Report:
precision recall fi-score  support
blast 8.9% 8.99 a.97 199
blight 8.98 @.84 @.91 (-]
hawar @.89 1.88 8.94 25
karat 1.08 8.97 8.98 225
sehat @.91 1.88 8,95 28
tungro @.99 1.8 1.82 277
acCuracy 8.98 825
macre avg 8.95 8.97 8.96 225
weighted avg 2.93 8.98 8,98 g25

Fig. 6. The results of the complex data image classification resemble real
conditions in the field.

B. Discussion

1) Metric-based performance analysis: Based on the
Classification Report of disease classes and health conditions
as written in Fig. 6, it is explained as follows:

a) Blast (199 data). Precision reached 0.95: Of all the
plants predicted as blast, 95% ofthem were indeed blast. Recall
(0.99): Of all the plants that were actually blast, the model
successfully identified 99% of them. F1-Score (0.97): An
excellent balance between precision and recall. This indicates
very strong model performance for the blast class.

b) Blight (69 data): Precision (0.98): When the model
predicted blight, it was correct 98% of the time. This is very
high. Recall (0.84): The model only managed to find 84% of all
true blight cases. It missed 16% of blight cases (possibly
predictedas other classes). This is the lowest point of the model's
performance. F1-Score (0.91): While still good, this value is
slightly lower thanthe other classesdueto thelower recall value.

¢) Hawar (25 data): Precision (0.89): When the model
predicted blight, it was correct 89%. Recall (1.00): Perfect! The
model successfully identified all plants that were actually
blighted. It missed none. F1-Score (0.94): Excellent value.

d) Rust (225 data): Precision (1.00): Perfect! Every time
the model predictsrust, it is correct. Recall (97%): The model
successfully finds 97% of all rust cases. F1-Score (98%):
Excellent performance for this class.

e) Healthy (30 data): Precision (0.91): 91% of healthy
predictions were correct. Recall (1.00): Excellent! The model
successfully identified all plants that were indeed healthy. This
is good because it means the model did not incorrectly label
healthy plants as diseased. F1-Score (0.95): Very good.

f) Tungro (277 data): Precision (0.99): Nearly perfect.
The model's predictions of tungro are 99% correct. Recall
(1.00): Perfect! All cases of tungro were detected. F1-Score
(1.00): Perfect performance for the tungro class.

Points for Improvement: The only area of concemn is the
performance in the blight class. While the precision is high, the
recall value (84%) is the lowest. This means the model tends to
miss some cases of blight. It may be worthwhile to re-examine
the data forthe blight class or try other techniques to improve its
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ability to detect this class. The success in multi-crop diagnosis
suggests that the CNN model [21] is able to leam a
representation of the underlying disease symptoms (e.g.,
necrosis, chlorosis) that can be generalized across different crop
species. Potential future developments include: Hybrid Models:
Combining image information with other data, such as weather
or soil type, for more accurate diagnosis. Federated Leaming;
Training the model on multiple devices (e.g., farmers' mobile
phones) without the need to collect data on a central server, to
maintain data privacy.

2) Model performance overview: Overall, the model
performed very well and robustly. With 98% accuracy and a
weighted average F1-score of 98%, the model performed very
reliably in classifying the given crop leafdiseases. While these
figures indicate good baseline performance, a deeper analysis
at the per-class level revealed significant performance
variation, suggesting specific challenges in distinguishing
between several disease categories (blast, blight, tungro, blight,
rust, and health). The dataset appears well-balanced, with an
average of 137 samples for each class (support), making the
macro average metric a reliable benchmark for average
performance without majority class bias. The model's
performance was also compared with several single-crop
studies, including rice, corn, and similar multi-crop studies
(corn and soybean), which yielded quite good results, as shown
in Table I

TABLE II. COMPARISON OF THE PROPOSED METHOD WITH OTHER
RESEARCH
Plant Type Method Performance %)
Rice [22], CNN model 84.00
Rice [23],[24] CNN model 98.86,91.4
Com [25],[26] YoloV8 Model, DL 98.00,98,6

Com [27],[28],[29] CNN Model 96.30,84.5,98.3
Multi crop (corm, Crop Growth Curve 80.00
soybean)[30] Matching Method
Multi crop (Rice, corn) Proposed method 98.00
(CNN+transfer
learning)

The proposed method (CNN + transfer learning) achieves
98.00% accuracy formulti-crop (Rice, Corn) classification. This
performance is highly competitive, matching or surpassing
many specialized single-crop models, such as those for Rice
(which range from 84.00% to 98.86%) and Corn (ranging from
84.5% to 98.6%). Crucially, it significantly outperforms the
other listed multi-crop method [30], which only achieved
80.00% usinga different technique. This highlights the proposed
method's effectiveness and robustness in handling multiple crop
types simultaneously with high accuracy.

This 98.00% achievement strongly indicates that the
application of transfer learning to the CNN architecture is a
determining factor. This technique appears to provide
substantial precision improvements compared to standard
architectures (such as YoloV8 [25] at 98.00%), optimizing
extraction features to accurately distinguish between various
types of leaf diseases of rice and corn plants.
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V. CONCLUSION

Plant diseases pose a serious threat to agricultural
productivity, potentially causing significant crop losses if not
addressed promptly and appropriately. Digital image-based
disease management with computer vision and artificial
intelligence offers significant opportunities. The main
challenges in image-based plant disease recognition are
developing a single model capable of diagnosing disease in a
wide range of plants and ensuring the model remains reliable
even when images are captured under varying lighting
conditions, backgrounds, and camera quality.

Transfer learning has emerged as a fundamental
methodology in the development of Al-based plant disease
diagnosis systems. This study demonstrates the development
and validation of an efficient and accurate deep learning model
for multi-disease diagnosis in rice and corn crops. Through a
comparative evaluation against several leading Convolutional
Neural Network (CNN) architectures, the EfficientNetB0 model
was shown to exhibit superior performance, achieving an overall
accuracy of 98%. This performance significantly outperforms
other classic architectures such as VGGNet (83%), ResNet50
(81%), and InceptionV3 (80%), while also confirming its
superiority in balancing predictive accuracy with computational
efficiency, makingit an ideal candidate for implementation on
mobile devices in the field.

A more in-depth analysis of the metrics revealed that the
model demonstrated excellent capability in identifying healthy
plant conditions (F1-score = 1.00) as well as diseases with clear
visual symptoms, such as blast (F1-score 97%). However,
significant challenges were identified in the models
discriminatory ability when faced with diseases with visually
overlapping symptomatology. Model performance declined in
classes such as blight, which showed a low recall of 84%, the
lowest. This indicates that the model tends to miss some blight
cases.

These weaknesses are concluded to stem not only from the
limitations of the model architecture, but are also fundamentally
related to the potential for ambiguity and label inconsistency in
the datasets used. Therefore, future research will focus on two
strategic avenues: 1) Rigorous dataset curation to improve label
quality and consistency as a foundation for morerobust training,
and 2) Development of hybrid models that integrate visual data
withnon-image data (e.g., weatherandsoil type data) to enhance
diagnostic context. Further exploration of the Federated
Learning paradigm is also proposed as an approach to
collaboratively train models without compromising data
privacy, ultimately aiming to create more reliable decision
support systems for precision agriculture practices.
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