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Abstract—Plant diseases pose a serious threat to agricultural 

productivity, which can cause significant crop losses if not 

addressed quickly and appropriately. There are significant 

opportunities for digital image-based treatment with computer 

vision and artificial intelligence. The main challenges in 

recognizing image-based plant diseases are: developing a single 

model capable of diagnosing diseases in various types of plants. 

Ensuring the model remains reliable even when images are taken 

under varying lighting conditions, backgrounds, and camera 

quality. In addition, the challenge in this study is to present a 

model capable of recognizing leaf diseases of multiple food crops, 

especially rice and corn. The purpose of this study is to identify 

leaf diseases of rice and corn crops. This study proposes deep 

learning and transfer learning for diagnosing plant leaf diseases in 

various types of plants and unstructured imaging environments. 

To address these challenges, a selection of VGGNet, ResNet50, 

InceptionV3, and EfficientNetB0 methods was conducted by 

testing them using laboratory datasets. Based on the testing, the 

EfficientNetB0 model performed the best. Then, the selected 

model parameters were tuned, feature extraction and a new 

dataset was collected in a real-world domain with varying lighting, 

changing viewpoints and scales, complex backgrounds, similar 

symptoms between diseases, and occlusion. The results showed 

that the proposed model performed very well and robustly, with 

98% accuracy and a weighted average F1-score of 98% in 

identifying food crop diseases: blight, rust, blast, blight, tungro, 

and healthy leaves. This performance indicates that the developed 

model is highly reliable in classifying leaf diseases in rice and corn. 

This model is expected to be applied to precision agriculture 

technology so that farmers can take timely action regarding 

treatment without further delay. 

Keywords—Plant diseases; deep learning; transfer learning; 

multi-food crops; precision agriculture 

I. INTRODUCTION 

Global food security is one of the most pressing challenges 
of the 21st century. Crop diseases pose a significant threat to 
agricultural productivity, causing significant crop losses if not 
addressed promptly and appropriately. Traditional diagnostic 
methods (expert systems)  [1] often rely on agronomic expertise, 
which is time-consuming, expensive, and not always available 
in remote locations. 

Rapid developments in computer vision and deep learning 
[2][3], particularly in automated image-based plant disease 
diagnosis have emerged as an attractive alternative [4]. Using 

cameras on smartphones or drones [5][6], farmers can take 
pictures of diseased plants and get instant diagnoses. However, 
training deep learning models from scratch requires a very large 
dataset of labeled images, which is difficult to obtain for every 
combination of plant and disease. 

Researchers struggling to obtain such a large dataset for 
multiple crops and diseases can leverage models trained on 
complex datasets (ImageNet) and adapt their knowledge to 
detect crop leaf diseases. This is where transfer learning can be 
used to address the limitations of large datasets. This approach 
leverages the “knowledge” a model has learned from large-scale 
image classification tasks (e.g., recognizing thousands of 
everyday objects from datasets like ImageNet) and applies it to 
a new task: identifying crop diseases. This drastically reduces 
the amount of data required and training time, and most 
importantly, improves model accuracy. 

This study will explore how transfer learning can address 
two major challenges in crop disease diagnosis. [7][8]: Multi-
Crop Diversity: developing a single model capable of 
diagnosing diseases in multiple crop types [9][10]–[12]. 
Heterogeneous Imaging Environments: Ensures the model 
remains reliable even when images are taken under different 
lighting conditions, backgrounds, and camera quality. The 
existence of a model with these two capabilities will have a 
significant impact on the field of digital image-based artificial 
intelligence, particularly for the task of detecting various leaf 
diseases across multiple food crops. 

This study aims to build a diagnostic model that remains 
reliable and accurate when food crop images are taken under 
non-ideal (unstructured) or varying conditions, such as 
variations in lighting, background, and camera quality. These 
models are expected to contribute to precision agriculture 
technology, enabling farmers to take timely action to address 
problems without further delay. 

The study is structured as follows: Section II is a literature 
review relevant to the topic, containing similar published studies 
on crop disease detection. Section III describes the proposed 
methodology, including the dataset and the proposed model. The 
results and discussion are presented, and their performance is 
compared with previous research in Section IV. Section V 
concludes the study with successes and future research. 

*Corresponding author. 
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II. RELATED  WORK 

A. Deep Learning 

Deep learning, especially Convolutional Neural Networks 
(CNNs)[9], [13], [14], has revolutionized the field of image 
analysis. CNNs are designed to automatically and adaptively 
learn a hierarchy of features from images, ranging from simple 
edges and textures to complex shapes and objects. In the 
agricultural context, CNNs have been successfully applied to a 
variety of tasks, including weed identification, crop yield 
estimation, and disease detection. 

Models like Inception3 [15], VGG [16], [17], ResNet [18], 
and EfficientNetB0 have demonstrated advanced performance 
in a variety of computer vision tasks. This success is driven by 
their ability to extract relevant features from raw image data 
without the need for manual feature engineering. 

B. Transfer Learning Concept 

Transfer learning is a machine learning technique in which a 
model developed for one task is reused as a starting point for a 
model for a subsequent task. In computer vision, this can mean 
reusing a CNN model that has been trained on a large image 
dataset like ImageNet. The logic is that the early layers of a 
trained CNN learn to recognize universal features such as edges, 
corners, color, and texture. These features are also relevant for 
other tasks, including identifying disease symptoms in plant 
leaves. Thus, instead of training the entire network from scratch, 
we can "freeze" these early layers and retrain only the final 
layers responsible for task-specific classification. This process 
is called fine-tuning. 

The main advantages of transfer learning are: Less Data 
Requirement: Since the model already has a basic understanding 
of image features, it requires fewer specific examples of plant 
diseases to learn. Faster Training Time: Training focuses on 
only a small part of the network, making the process faster. 
Better Accuracy: Knowledge transferred from large datasets can 
help the model to generalize better, especially on small datasets. 

C. Heterogeneous Image 

While transfer learning is highly effective, its real-world 
application faces challenges, including: Cross-Crop 
Generalization: Similar disease symptoms (e.g., yellow spots) 
can appear on different plants but are caused by different 
pathogens. Conversely, the same disease can exhibit different 
symptoms on different plant varieties. The model must be 
intelligent enough to distinguish between these contexts. 
Environmental Variability: Images captured in the field vary 
widely. Factors such as: Lighting: Direct sunlight, shade, or 
cloudy conditions can change the appearance of the color and 
texture of symptoms. Background: Soil, other leaves, weeds, or 
human hands in the background can confuse the model. Image 
Quality: Different camera resolutions, focus, and shooting 
angles can affect model performance. 

Current research focuses on developing transfer learning-
based models that are robust to variation, often using extensive 
data augmentation techniques and more sophisticated model 
architectures. This research is expected to contribute to precision 
agriculture technology, enabling farmers to take timely action 
regarding treatment without further delay. 

III. METHODOLOGY 

To build a universal plant disease diagnosis system, this 
study proposes a transfer learning-based framework consisting 
of several key stages. 

A. Dataset 

The dataset, constructed during this crucial stage, consists of 
images showing leaf diseases in food crops, specifically rice and 
corn. Both are major commodities produced by farmers and are 
a source of food. The data sources were obtained from 
independent field data collection, namely rice leaf images and 
corn leaf images. The cameras used for field photography were 
smartphone cameras (Redmi Note 12 Pro 5G, 50 MP, and OPPO 
A9 2020 edition, 48 MP). The dataset also includes images from 
previous researchers' repositories available on Kaggle. 

This study's novelty is its independently collected dataset, 
which captures diverse conditions in rice plants, including blast, 
blight, tungro, and healthy states. Meanwhile, for corn plant 
types, for types of blight, rust, and healthy diseases. Overall, the 
dataset consists of six classes. In addition to diversity, the dataset 
is also designed to have heterogeneity. To ensure heterogeneity, 
images were taken from three locations (Malang City, Malang 
Regency, and Pasuruan Regency) to simulate real-world use. To 
obtain images with different lighting levels, images were taken 
at three different times, namely: 7 am, 10 pm, and 4 pm. In 
addition to diverse lighting, the dataset was also collected from 
various image capture angles and images with complex 
backgrounds. This dataset design is designed to represent real-
world conditions. After collection, the images are pre-processed. 
Data Cleaning: Removing irrelevant or very poor-quality 
images. Labeling: Each image was accurately labeled by an 
agronomist. The labeling of disease types involved experts in the 
field of food crop leaf diseases from BRMP Malang City. 
However, in this study, the names of food crop leaf diseases (rice 
and corn) were addressed as the name of the folder where the 
dataset was stored, not in each image file for each disease type. 
Resizing: Adjusting the size of all images to the standard 
dimensions (224 × 224 pixels) required by the CNN model. An 
example of a food crop image dataset that will be used for 
experiments on the food crop disease identification task is 
shown in Fig. 1. 

   
(a) blast (b) blight (c) karat 

   
(d) tungro (e) sehat (f) hawar 

Fig. 1. Example images from the dataset. 

Lighting: This dataset design demonstrates good lighting 
variation. Natural Light (Outdoor): Fig. 1(a), 1(c), 1(e), and 1(f) 
were taken outdoors in sunlight. There are variations ranging 
from bright, direct light in Fig. 1(a) to areas with sharp shadows 
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in Fig. 1(c). Artificial Light (Indoor): Fig. 1(b) and 1(d) were 
taken indoors against a white background. This creates 
controlled, even lighting conditions, without shadows. Benefits: 
This variation trains the model to be independent of specific 
lighting conditions and can recognize diseases in bright sunlight, 
shade, and indoors. 

Image Angle: There is significant diversity in shooting 
angles. Close-Up and Oblique: Fig. 1(a), 1(c), and 1(e) show the 
leaf close-up at a slight angle. Top and Flat Lay: Fig. 1(b) and 
1(d) show an isolated leaf photographed straight on from above. 
Wide Angle: Fig. 1(f) is taken from a greater distance, showing 
multiple leaves in a single clump. Benefits: The model learns to 
recognize disease symptoms not just from one perspective, but 
from multiple angles and distances, much like what users will 
encounter in the field. 

Occlusion and Background Complexity: Backgrounds and 
the presence of occlusions vary significantly. Simple 
Background: Fig. 1(b) and 1(d) have a clean, white background 
free of occlusions, allowing the model to focus entirely on the 
leaf. Complex Background: Fig. 1(a) has a background of other 
leaves and a water surface. Fig. 1(f) is the most complex, with 
overlap between the leaf (significant occlusion), the soil, and 
other surrounding plants. Benefit: This variation trains the 
model to distinguish between disease symptoms and visual 
“noise” in the background. This prevents the model from 
misidentifying shadows or other leaves as diseased. 

Pixels, Resolution, and Scale: While difficult to quantify 
without the original files, the differences in scale are visually 
noticeable. Macroscale (Close-up): Fig. 1(e) shows the details of 
the leaf texture and veins very clearly. Medium-scale: Most of 
the images show a single leaf or part of it. Microscale (Wide): 
Fig. 1(f) makes each leaf appear smaller and has lower 
resolution per leaf. Benefits: The model is flexible in 
recognizing diseases from both detailed close-up photos and 
long-distance photos that capture the entire plant. 

Disease Types and Regions of Interest (ROIs): This dataset 
includes a wide variety of diseases with very different 
manifestations (Regions of Interest / ROIs). Small and 
Scattered: Blast [Fig. 1(a)] and Rust [Fig. 1(c)] appear as small, 
scattered spots across the leaf surface. Large & Necrotic: Blight 
[Fig. 1(b)] and Blight [Fig. 1(f)] cover large areas of the leaf, 
often causing it to dry out and die. Localized at the Tip: Tungro 
symptoms [Fig. 1(d)] appear concentrated at the leaf tips. No 
Symptoms: The Healthy class [Fig. 1(e)] serves as an important 
comparison with no disease ROIs at all. Benefits: This diversity 
is the essence of training. The model learns to recognize the 
unique patterns, shapes, colors, and locations of each disease and 
distinguish them from healthy leaf conditions. 

B. Label Inference Automation 

In this study, utilizing a subdirectory structure to represent 
class names is an efficient methodological design in deep 
learning projects. Its main advantage lies in the automation of 
label inference directly by the computational framework, 
eliminating the need for manual data-label mapping. This design 
inherently offers a structured and intuitive data organization, 
which is crucial for scalability and management of large-scale 
datasets. Thus, this approach not only improves efficiency and 

reduces the potential for human error but also enhances the 
reproducibility of experiments in image classification. 

C. Pre-processing 

To improve the model's robustness to image variations, data 
augmentation techniques are essential. This involves artificially 
generating modified versions of the training images. Common 
techniques include: Random rotation = 20, Horizontal flipping 
= true, Brightness and contrast changes, Zooming, Shearing, 
width_shift_range = 0.1, height_shift_range = 0.1, and fill mode 
is nearest. 

Data augmentation effectively increases the size of the 
dataset [19][20] and helps the model learn to focus less on 
certain orientations or lighting conditions, thereby improving its 
ability to generalize. 

D. Model Selection 

Selecting a pre-trained CNN model is an important initial 
step. In this study, the selection process for several models was 
carried out as follows: 

1) VGG16: VGG16 [16] is a Convolutional Neural 

Network (CNN) architecture that has 16 layers with trainable 

weights. This architecture is very uniform and simple. Its 

structure consists of 13 convolutional layers and 3 fully-

connected layers. Its main characteristic is the use of very small 

convolutional filters, namely 3x3, stacked sequentially. These 

blocks of convolutional layers are interspersed with five max-

pooling layers to reduce the spatial dimensionality. Finally, the 

three fully-connected layers act as classifiers to determine the 

final output. 

2) ResNet50: ResNet50 [18] is a 50-layer Convolutional 

Neural Network (CNN) architecture that introduces a 

revolutionary concept: residual connections, or skip 

connections. This architecture not only stacks layers 

sequentially but also creates "shortcuts" that allow input from 

previous layers to be added directly to the output of deeper 

layers. This mechanism overcomes the problem of vanishing 

gradients in very deep networks, allowing for more efficient 

training. Its structure consists of a single initial convolutional 

layer, followed by 16 "residual blocks" (consisting of 

convolutional layers), and finally with a pooling and fully-

connected layer for classification. Using residual connections 

allows for training very deep networks without the problem of 

vanishing gradients. 

3) InceptionV3: InceptionV3 [15] is a Convolutional 

Neural Network (CNN) architecture that focuses on 

computational efficiency without sacrificing accuracy. At the 

heart of this architecture is an "Inception module" that performs 

multiple convolution operations (e.g., 1x1, 3x3, 5x5) and 

pooling in parallel within a single block, allowing the network 

to capture features at multiple scales. It is computationally 

efficient by using an "inception module" that performs 

convolutions at multiple scales. A major update in V3 is 

convolution factorization, which breaks a large convolution 

filter (such as 5x5) into a stack of smaller (two 3x3) and 

asymmetric (1x3 and then 3x1) filters. This step drastically 
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reduces the number of parameters and computational cost, 

making the network deeper and more efficient. 

4) EfficientNetB0: EfficientNetB0 [21] is a Convolutional 

Neural Network (CNN) architecture designed to achieve very 

high efficiency and accuracy. Instead of randomly changing 

one dimension of the network (depth, width, or resolution), 

EfficientNet introduces a compound scaling method. This 

method intelligently and uniformly balances all three 

dimensions using predefined scaling coefficients. Its base 

architecture (B0) is discovered through Neural Architecture 

Search (NAS) and uses inverted residual blocks (MBConv) 

similar to MobileNetV2. With balanced scaling, 

EfficientNetB0 achieves high accuracy with a significantly 

lower number of parameters and computation (FLOPS) 

compared to other models. 

E. Proposed Model 

The architectural modifications proposed in this study aim to 
improve the accuracy of disease identification. The process steps 
that will occur during data training are depicted in the 
framework of Fig. 2. 

 
Fig. 2. Proposed method. 

1) Load Pretrained Base Model: The experimental setup 

involved importing several convolutional neural networks that 

had undergone prior training, alongside the weights acquired 

from the ImageNet dataset. Our investigation specifically 

incorporated well-known CNN frameworks, namely VGG16, 

ResNet50, EfficientNetB0, and InceptionV3, each initialized 

using their respective ImageNet weights. A critical 

configuration involved disabling the top classification layer (by 

setting include_top to false), thereby isolating the robust feature 

extraction capabilities and bypassing ImageNet's original 

categorization mechanism. This process yielded a collection of 

highly descriptive feature maps. 

2) Data Augmentation Layer: The first step will add a data 

augmentation layer to artificially enrich the training data. This 

additional layer makes the model more robust and reduces 

overfitting. Additional augmentation pipelines are Random 

rotation = 20, Horizontal flipping = true, Brightness and 

contrast changes, Zooming, Shearing, width_shift_range = 0.1, 

height_shift_range = 0.1, and fill mode is nearest. 

3) Classifier Head: Adds an additional dense layer before 

the output layer with ReLU activation to give the model more 

capacity to learn complex patterns. Dropout layer (optional, for 

regularization). Output layer with softmax/sigmoid activation 

depending on the number of classes. 

4) Two-Stage Training: Stage 1 (Feature Extraction): Train 

the classifier head layer by freezing the base model. Freeze all 

base model layers (trainable=False). Train only the classifier 

head. 

Stage 2 (Fine-Tuning): This layer will "unfreeze" the top 
layers of the model and retrain the entire model at a very low 
learning rate to keep the pretrained weights stable but more 
adaptive to the target dataset. This technique allows the model 
to adjust the learned features to be more specific to your dataset. 

5) Learning Rate Scheduler: Uses the 

ReduceLROnPlateau callback with parameters monitor = 

"val_loss", factor=0.1 (reduce LR 10x), and patience=3–5 (if 

validation stagnates for several epochs). To automatically 

reduce the learning rate when model performance on validation 

data stagnates. 

Evaluate Model: Model performance is evaluated using 
standard classification metrics, such as: Accuracy: The 
percentage of correct predictions overall. Precision: Of all 
positive predictions for a class, how many were correct. Recall 
(Sensitivity): Of all actual instances of a class, how many were 
successfully identified. F1-Score: The harmonic mean of 
precision and recall, providing a balanced measure of 
performance. Confusion Matrix: A table that visualizes model 
performance, showing which classes are frequently confused 
with each other. Evaluation is performed on a test dataset that 
the model has never seen during training to obtain an estimate 
of its real-world performance. 

IV. RESULTS AND DISCUSSION 

A. Results 

The first experiment was conducted on VGGNet, Resnet50, 
EfficientNetB0, and InceptionV3 models using homogeneous 
(laboratory) image data with six disease types and two normal 
images. A performance comparison of the six models is 
presented in Table I.
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TABLE I. COMPARISON OF INITIAL MODEL PERFORMANCE ON CLASSIFICATION RESULTS WITH LABORATORY DATA 

Disease 

name 

VGGNet ResNet EfficientNetB0 InceptionV3 

Precision Recall F1- score Precision Recall F1- score Precision Recall F1- score Precision Recall F1- score 

Rise leaves % % % % 

Blast 0.88 0.94 0.91 0.87 1.00 0.93 0.87 1.00 0.93 0.78 0.90 0.84 

Blight 0.91 0.63 0.74 0.87 0.65 0.74 1.00 0.75 0.86 0.75 0.75 0.75 

Tungro 0.75 0.94 0.83 0.73 0.80 0.76 0.91 1.00 0.95 0.81 0.60 0.72 

Healthy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.98 

Corn leaves     

Hawar 0.90 0.43 0.58 0.67 0.50 0.57 0.64 0.79 0.67 0.80 0.60 0.69 

Rust 0.63 1.00 0.77 0.60 0.75 0.67 0.67 0.60 0.63 0.62 0.75 0.68 

Healthy 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.95 0.93 

 accuracy 83 % accuracy 81 % accuracy 86 % accuracy 80 % 

Based on the experimental results as written in Table I, it is 
informed that although classical architectures such as VGG are 
known to be simple, ResNet50 is effective for deep networks, 
and InceptionV3 is computationally efficient, EfficientNetB0 
shows significant advantages. This model is specifically 
designed to achieve an optimal balance between accuracy and 
computational efficiency. With the highest accuracy, 
EfficientNetB0 is an ideal choice for applications that require 
high performance on devices with limited resources, such as 
mobile devices. The training and validation accuracy graph is 
shown in Fig. 3. 

 
Fig. 3. Graph of accuracy and validation of model training with laboratory 

data . 

 
Fig. 4. Results of laboratory data image classification. 

This classification report analysis (Fig. 4) highlights 
significant weaknesses in the model's performance, despite an 
overall accuracy of 86%. The main issue lies in the low F1-
scores for the "Blight" (0.67) and "Rust" (0.63) classes. 

Specifically, the Recall for "Rust" is only 0.60, meaning that 
40% of Rust cases were missed by the model (misclassified as 
other diseases). The Precision for "Blight" (0.64) is also 
concerning, indicating a high false positive rate; the model 
frequently mistakes other diseases for Blight. 

Since this dataset is perfectly balanced (Support 20 for each 
class), this poor performance is not due to imbalance. It strongly 
indicates a data quality issue: there is likely mislabeling or high 
visual similarity (ambiguity) between the symptoms "Blight", 
"Rust", and other classes, which confuses the model. 

 
Fig. 5. Accuracy and validation graph of model training with complex 

images. 

The EfficientNetB0 model, which achieved an accuracy of 
86%, was selected as the best model. However, there is still 
room for improvement in accuracy. Therefore, changes were 
made to increase the complexity and variation of the training 
data and to avoid data redundancy, especially in healthy image 
types. The training data was selected for images with high 
complexity, resembling real-world conditions such as irregular 
images, varying illumination, images with occlusion, and 
varying levels of image brightness. After training and validation, 
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the model's performance accuracy increased from 86% to 98% 
after improvements. The results of data quality improvements 
on model performance are shown in Fig. 5 as the training graph 
and Fig. 6 as the classification report. 

 
Fig. 6. The results of the complex data image classification resemble real 

conditions in the field. 

B. Discussion 

1) Metric-based performance analysis: Based on the 

Classification Report of disease classes and health conditions 

as written in Fig. 6, it is explained as follows: 

a) Blast (199 data): Precision reached 0.95: Of all the 

plants predicted as blast, 95% of them were indeed blast. Recall 
(0.99): Of all the plants that were actually blast, the model 
successfully identified 99% of them. F1-Score (0.97): An 
excellent balance between precision and recall. This indicates 

very strong model performance for the blast class. 

b) Blight (69 data): Precision (0.98): When the model 
predicted blight, it was correct 98% of the time. This is very 
high. Recall (0.84): The model only managed to find 84% of all 
true blight cases. It missed 16% of blight cases (possibly 

predicted as other classes). This is the lowest point of the model's 
performance. F1-Score (0.91): While still good, this value is 

slightly lower than the other classes due to the lower recall value. 

c) Hawar (25 data): Precision (0.89): When the model 

predicted blight, it was correct 89%. Recall (1.00): Perfect! The 
model successfully identified all plants that were actually 

blighted. It missed none. F1-Score (0.94): Excellent value. 

d) Rust (225 data): Precision (1.00): Perfect! Every time 

the model predicts rust, it is correct. Recall (97%): The model 
successfully finds 97% of all rust cases. F1-Score (98%): 

Excellent performance for this class. 

e) Healthy (30 data): Precision (0.91): 91% of healthy 

predictions were correct. Recall (1.00): Excellent! The model 
successfully identified all plants that were indeed healthy. This 
is good because it means the model did not incorrectly label 

healthy plants as diseased. F1-Score (0.95): Very good. 

f) Tungro (277 data): Precision (0.99): Nearly perfect. 
The model's predictions of tungro are 99% correct. Recall 
(1.00): Perfect! All cases of tungro were detected. F1-Score 

(1.00): Perfect performance for the tungro class. 

Points for Improvement: The only area of concern is the 
performance in the blight class. While the precision is high, the 
recall value (84%) is the lowest. This means the model tends to 
miss some cases of blight. It may be worthwhile to re-examine 
the data for the blight class or try other techniques to improve its 

ability to detect this class. The success in multi-crop diagnosis 
suggests that the CNN model [21] is able to learn a 
representation of the underlying disease symptoms (e.g., 
necrosis, chlorosis) that can be generalized across different crop 
species. Potential future developments include: Hybrid Models: 
Combining image information with other data, such as weather 
or soil type, for more accurate diagnosis. Federated Learning: 
Training the model on multiple devices (e.g., farmers' mobile 
phones) without the need to collect data on a central server, to 
maintain data privacy. 

2) Model performance overview: Overall, the model 

performed very well and robustly. With 98% accuracy and a 

weighted average F1-score of 98%, the model performed very 

reliably in classifying the given crop leaf diseases. While these 

figures indicate good baseline performance, a deeper analysis 

at the per-class level revealed significant performance 

variation, suggesting specific challenges in distinguishing 

between several disease categories (blast, blight, tungro, blight, 

rust, and health). The dataset appears well-balanced, with an 

average of 137 samples for each class (support), making the 

macro average metric a reliable benchmark for average 

performance without majority class bias. The model's 

performance was also compared with several single-crop 

studies, including rice, corn, and similar multi-crop studies 

(corn and soybean), which yielded quite good results, as shown 

in Table II. 

TABLE II. COMPARISON OF THE PROPOSED METHOD WITH OTHER 

RESEARCH 

Plant Type Method  Performance %) 

Rice [22],  CNN model 84.00 

Rice [23],[24] CNN model 98.86,91.4 

Corn [25],[26] YoloV8 Model, DL 98.00,98,6 

Corn [27],[28],[29] CNN Model 96.30, 84.5,98.3 

Multi crop (corn, 

soybean)[30] 

Crop Growth Curve 

Matching Method 

80.00   

Multi crop (Rice, corn) Proposed method 

(CNN+transfer 

learning) 

98.00   

The proposed method (CNN + transfer learning) achieves 
98.00% accuracy for multi-crop (Rice, Corn) classification. This 
performance is highly competitive, matching or surpassing 
many specialized single-crop models, such as those for Rice 
(which range from 84.00% to 98.86%) and Corn (ranging from 
84.5% to 98.6%). Crucially, it significantly outperforms the 
other listed multi-crop method [30], which only achieved 
80.00% using a different technique. This highlights the proposed 
method's effectiveness and robustness in handling multiple crop 
types simultaneously with high accuracy. 

This 98.00% achievement strongly indicates that the 
application of transfer learning to the CNN architecture is a 
determining factor. This technique appears to provide 
substantial precision improvements compared to standard 
architectures (such as YoloV8 [25] at 98.00%), optimizing 
extraction features to accurately distinguish between various 
types of leaf diseases of rice and corn plants. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 11, 2025 

543 | P a g e  
www.ijacsa.thesai.org 

V. CONCLUSION 

Plant diseases pose a serious threat to agricultural 
productivity, potentially causing significant crop losses if not 
addressed promptly and appropriately. Digital image-based 
disease management with computer vision and artificial 
intelligence offers significant opportunities. The main 
challenges in image-based plant disease recognition are 
developing a single model capable of diagnosing disease in a 
wide range of plants and ensuring the model remains reliable 
even when images are captured under varying lighting 
conditions, backgrounds, and camera quality. 

Transfer learning has emerged as a fundamental 
methodology in the development of AI-based plant disease 
diagnosis systems. This study demonstrates the development 
and validation of an efficient and accurate deep learning model 
for multi-disease diagnosis in rice and corn crops. Through a 
comparative evaluation against several leading Convolutional 
Neural Network (CNN) architectures, the EfficientNetB0 model 
was shown to exhibit superior performance, achieving an overall 
accuracy of 98%. This performance significantly outperforms 
other classic architectures such as VGGNet (83%), ResNet50 
(81%), and InceptionV3 (80%), while also confirming its 
superiority in balancing predictive accuracy with computational 
efficiency, making it an ideal candidate for implementation on 
mobile devices in the field. 

A more in-depth analysis of the metrics revealed that the 
model demonstrated excellent capability in identifying healthy 
plant conditions (F1-score ≈ 1.00) as well as diseases with clear 
visual symptoms, such as blast (F1-score 97%). However, 
significant challenges were identified in the model's 
discriminatory ability when faced with diseases with visually 
overlapping symptomatology. Model performance declined in 
classes such as blight, which showed a low recall of 84%, the 
lowest. This indicates that the model tends to miss some blight 
cases. 

These weaknesses are concluded to stem not only from the 
limitations of the model architecture, but are also fundamentally 
related to the potential for ambiguity and label inconsistency in 
the datasets used. Therefore, future research will focus on two 
strategic avenues: 1) Rigorous dataset curation to improve label 
quality and consistency as a foundation for more robust training, 
and 2) Development of hybrid models that integrate visual data 
with non-image data (e.g., weather and soil type data) to enhance 
diagnostic context. Further exploration of the Federated 
Learning paradigm is also proposed as an approach to 
collaboratively train models without compromising data 
privacy, ultimately aiming to create more reliable decision 
support systems for precision agriculture practices. 
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