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Abstract—Driver fatigue is a major contributor to traffic
accidents, yet most existing detection systems rely on unimodal
inputs or static fusion mechanisms that lack robustness under
poor lighting, partially obscured faces, and missing sensor data.
This study aims to overcome these limitations by proposing a
Hierarchical Adaptive Dynamic Fusion (HADF) model. HADF
integrates a two-level adaptive fusion mechanism combining a
CNN (ResNet-18) for facial micro-expressions and an LSTM for
physiological signals (heart rate, temperature, and accelerometer).
The first stage computes adaptive intra-modality weights (o),
while the second stage assigns inter-modality weights (y), enabling
context-aware and resilient multimodal integration even under
missing-modality conditions. Experiments on a multimodal
fatigue dataset show that HADF achieves a validation accuracy of
96.5%, a macro F1-score of 0.96, and ROC-AUC values of 1.00
(Normal), 0.99 (Eye-Closed), and 0.93 (Yawn). Compared with
unimodal and static-fusion baselines, HADF improves accuracy by
approximately 4.5% and macro Fl-score by 6-9%, while
maintaining stable performance under incomplete data. These
results confirm the novelty of HADF as a two-stage adaptive fusion
strategy that enhances accuracy and system robustness, making it
suitable for real-time fatigue monitoring in transportation,
occupational safety, and healthcare applications.

Keywords—Multimodal fusion; adaptive dynamic fusion; CNN-
LSTM,; fatigue level prediction

l. INTRODUCTION

Fatigue is a significant factor that reduces concentration,
reflexes, and alertness, thus contributing significantly to traffic
and occupational accidents. WHO and ILO data (2021) recorded
more than 398,000 global deaths per year related to fatigue. In
Indonesia, the KNKT (2022) report indicated that fatigued
drivers were responsible for more than 20% of Iland
transportation accidents. This underscores the importance of a
thorough, adaptive, and real-time fatigue detection system.

In recent years, deep learning-based approaches such as
CNNs (Convolutional Neural Networks) and RNNs (Recurrent
Neural Networks) have been used to process facial images and
physiological signals to detect fatigue. CNNs are effective at
capturing spatial patterns (such as facial expressions), while
RNNs—especially LSTMs—can analyze temporal patterns in
sensor data (such as heart rate or body temperature). Therefore,
early detection of fatigue levels has become a crucial focus in
many recent studies. Single-feature-based methods (e.g., those
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focusing only on the eyes or only on the mouth) are prone to
failure when the face is partially covered (by glasses/mask) or in
poor lighting conditions. Various deep learning-based
approaches have been developed, such as CNN for spatial
features (actualization) and LSTM for temporal features
(physiological frequencies). However, previous research still
has limitations, namely that single-feature methods are prone to
failure when the face is obscured or in poor lighting conditions.
[1]. CNN-RNN has a high computational cost due to the
complexity of its data and examples, which require substantial
computing power. Furthermore, this example is often used for
large datasets, such as video or other sequential data, which
require significant computing power. As a result, training can be
slow, especially with large and complex datasets [2].

Currently, many prediction methods are employed, such as
deepening the model to become more complex and adding
parameters, which can lead to problems, including a less stable
model (less durable), inflexibility, and a one-dimensional
approach (failing to capture enough features). The model is not
robust to data variations or noise. Limited flexibility: difficult to
apply to various types of materials or conditions. One-
dimensional approaches are limited to a single category or
feature [3]. Learning-based techniques have been widely used to
process data from various sources, namely facial images,
physiological signals (EEG, EOG), and time data, which have
been analyzed through multiple learning-based methods.
Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) models can extract spatial features from
images and capture temporal relationships in time series data.
Learning-based techniques have been widely used to process
data from various sources, namely facial images, physiological
signals (EEG, EOG), and time data, which have been analyzed
through multiple learning-based methods. Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM)
models can extract spatial features from images, while also
capturing temporal relationships in time series data [4].

The combination of hybrid CNN-LSTM models still has
limitations in terms of flexibility and adaptability to complex
data. Developing a system to assess a person's fatigue and
physical load by combining various subjective and objective
data. Measuring physical load and fatigue using traditional
methods is ineffective and inaccurate. Expanding machine
learning applications that can monitor and predict fatigue [5].
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The hybrid CNN-LSTM has been widely used, but its weakness
lies in its non-adaptive, static fusion. In baseline trials, static
fusion accuracy only reached 92% and dropped to 80% when
one modality was missing [6].

This study demonstrates that a CNN-LSTM-based
multimodal fusion approach can non-invasively enhance driver
stress detection accuracy by up to 95.5% using eye data, vehicle
dynamics, and environmental variables. However, this study is
limited by the fact that stress labels are based on participants'
subjective assessments of their own experiences. Furthermore,
other studies have employed a single-feature fusion mechanism
without hierarchical fusion and have not considered models with
noise or missing modalities [7].

The non-invasive multi-index fusion and CNN-BIiLSTM
approaches can achieve 98.2% accuracy, but the fusion remains
static and single-level. As a result, these methods are susceptible
to noise and deficiencies in modality [8]. Another study
[9][20][11] shows that the hybrid CNN-RNN model improved
accuracy. However, limited generalization, high complexity,
and the lack of an adaptive fusion mechanism remain issues.

In summary, existing multimodal fatigue detection
approaches still rely on static or single-stage fusion, which limits
their ability to adapt to variations in data quality, environmental
conditions, and missing modalities. These constraints reduce the
robustness and generalization of current CNN-LSTM-based
frameworks. To address this gap, this study proposes the Two-
Level Hierarchical Adaptive Dynamic Fusion (HADF) model,
which integrates dynamic intra-modality weighting (o) and
inter-modality weighting (y) to enable context-aware, flexible,
and resilient multimodal feature integration. The contributions
of this work include: 1) introducing a hierarchical and adaptive
fusion mechanism for non-invasive fatigue prediction,
2) designing a hybrid CNN-LSTM model capable of handling
incomplete or degraded multimodal inputs, and 3) providing
comprehensive  experimental  evaluations  demonstrating
improved accuracy, stability, and robustness compared to
unimodal and static-fusion baselines. The subsequent sections
detail the model architecture, experimental methodology,
evaluation metrics, and performance analysis.

Il.  MATERIALS AND METHODS

A. Fatigue Level

Fatigue is a condition that can affect performance and safety
across many jobs. Predicting fatigue levels is crucial for
preventing accidents and increasing productivity. Numerous
studies have used multiple approaches to predict fatigue levels.
The condition characterized by decreased cognitive and motor
function due to sustained fatigue is called fatigue. In the areas of
work, transportation, and health, it is crucial to recognize and
address fatigue. In [12], the authors have shown that combining
facial images with physiological signals such as heart rate,
temperature, and rPPG can significantly improve fatigue
prediction.

The aim is to compile and present the latest research on
fatigue analysis, covering knowledge of fatigue analysis theory,
fatigue life prediction methods, and design and application
techniques. Another aim is to provide a comprehensive
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overview of the progress and challenges achieved in the field.
Furthermore, the researchers propose a path forward to improve
the reliability and effectiveness of fatigue life prediction
methods in industry. Since the combination of existing
approaches is insufficient to address the increasingly complex
challenges, this study demonstrates the urgent need for the
development of new technologies. Therefore, new solutions for
fatigue analysis must be developed to meet current industry
needs [13].

One of the Prediction Model Development is building a deep
learning-based model, namely Deep Belief Neural Network-
Back Propagation (DBN-BP), to predict the fatigue life of Ti-
6AI-4V in the very high fatigue range (VHCF). Parameter
influence analysis examines how process parameters, such as
energy density, tensile strength, and fabrication method, impact
fatigue life behavior. By using deep learning models,
researchers can improve prediction accuracy, precision, and
model stability compared to traditional methods and existing
machine learning algorithms. However, if the model is too
complex for a limited dataset, it can lead to overfitting. Deep
learning models can also be very complex and risk overfitting
when the number of parameters exceeds the available data.

B. Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM)

The combination of CNNs and LSTMs has been used to
exploit the advantages of both spatial and temporal features
simultaneously. The CNN serves as a feature extractor, and its
output is then fed into the LSTM as sequential input. This hybrid
model has shown promising results in the fatigue domain [14].
But it still uses static feature fusion, which limits the model's
flexibility. The problem of multidimensional data remains a
subject of ongoing research aimed at finding suitable models for
various applications. Table I shows a critical literature analysis.

TABLE I. CRITICAL LITERATURE ANALYSIS
Limitation / Gap
Study /Approach Methods Identified
- . Prone to overfitting on small
Remaining Useful Life | CNN- datasets, fusion remains static,
Prediction [15] LSTM . S A
and interpretation is challenging.
. Very sensitive to image noise,
Industrial and | CNN- Do L o
Machined Surfaces LSTM validation is limited to specific
data types.
Accuracy drops sharply during
Renewable Energy and | CNN- extreme weather conditions, and
Weather [16] LSTM the interpretation of spatial
features is limited.
General Image | RNN- Small, unbalanced dataset; high
Classification [17][18] | ResNet18 potential for bias.

C. Hybrid Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM)

This approach is combined with the Hierarchical Adaptive
Dynamic Fusion (HADF) method. This model uses non-
invasive multimodal input from heart rate, facial video, and
environmental factors to predict fatigue level (fatigue level).
Making model research is shown in Fig. 1:
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Fig. 1. Making model research.

The research began with the collection and creation of
datasets from three primary data sources: visual data (facial
images) used to detect expressions, closed eyes, or nervousness,
and physiological sensor data used to detect changes in physical
condition. A temperature sensor measures body temperature. An
accelerometer measures movement or posture. The data
collection method involves attaching the sensor to the subject
during video recording. Sensor data is synchronized with the
video recording time (timestamp). Data is stored in a CSV file.
Data acquisition is shown in Fig. 2:
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Fig. 2. Data acquisition.

Preprocessing is performed on two data sources—images
(visual) and sensor signals—and then they are temporally
aligned (synchronized) before being formed into sequential
samples for a CNN-LSTM model with adaptive fusion (HADF).
All steps are designed to minimize data leakage and maintain
inter-subject consistency.

The Hierarchical Adaptive Dynamic Fusion (HADF) model
was developed to address the limitations of static fusion models,
which generally use simple concatenation weights (e.g., direct
concatenation). The HADF model is designed to integrate visual
(facial images) and physiological (e.g., heart rate, body
temperature, acceleration) modalities gradually and adaptively.

D. Hierarchical Fusion (HADF)

Architecture

The Hierarchical Adaptive Dynamic Fusion (HADF)
architecture is proposed in the study. Preprocessing—collecting

Adaptive  Dynamic
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facial images (RGB), eye area detection (including eye
landmarks), and physiological sensor data (heart rate,
acceleration)—begins the process. To extract spatial features
from facial images and eye landmarks, a CNN (ResNet18) is
used, while an LSTM is used to extract temporal features from
the sensor data. A two-stage fusion mechanism is then used to
combine the feature extraction results. The first is intrafusion
(o), which combines features within a single modality with
dynamic relevance weights, and the second is interfusion (y),
which combines across modalities to form a more contextual and
responsive multimodal representation. In the final stage, a
classification layer is used to determine the fatigue level and
divide it into three categories: Normal, Eyeclosed, and Yawn
(see Fig. 3).

ﬂ Intra-Fusion
h
I I ] e

| Detected Ea
| IRGB)

' ! T 1
e ondmark 1 | h e

! /| N
L — hal. (X 3
| > ; I I . B I » " e :
— L
b —I I gr [ now

Inter-Fusion

Fig. 3. HADF architecture visualization with two levels of fusion.

IIl.  RESULTS AND DISCUSSION

A. Model Static

Previous research proposed hierarchical fusion, which
processes each modality independently and then performs level-
wise fusion. Each fusion stage produces a combined
representation that is fed back to the network to learn inter-
modality interactions. This approach improves robustness but
does not yet implement dynamic weight adaptation to changes
in modality quality. Basic formula:

u; = tanh(Wh; + b) )

where, the hidden state vector at time t, ht, is passed to a fully
connected layer: multiplied by the weight matrix W, added to
the bias b, and then activated using the tanh function to produce
the hidden representation u.

_ exp (uTu)
=Pt (2)

a
7 S el

The attention score for time t, a, is calculated by applying a
softmax function to the alignment (dot product) between u; and
the trained context parameter vector, u. The resulting oy is a non-
negative weight that sums to 1 across all time steps
(probabilities).

B. Hierarchical Adaptive Dynamic Fusion (HADF)

In this study, the proposed Hierarchical Adaptive Dynamic
Fusion (HADF) model is a two-level fusion mechanism, namely
intra-modality and inter-modality, with weights calculated based
on temporal data and input feature characteristics. Basic
formula:

553|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

e Fusi Intra-Modality: In a single diffusion modality, each
feature is weighted by o, which represents its
importance.

Ft(k) = Z 10 1) ft(k) dengan Z ai’? =1 (3)

The value is calculated through the softmax function of the
relevance scores generated by the multilayer perceptron (MLP)
module:

GN
o = exp(e;; (k) (k)
= with e = MLP 4
tl 27 1exp(6tk)) (ﬂ ) ( )
where,

ng)is the representation of the intra-modality fusion results
for the kth modality at time t.
N, is the Total number of features in the kth modality.

(k) is the fitur-i, feature of the k-t modality at time-t

(k) Adaptive weight for the i feature in the k modality at
time t.

Zl la(k) =1 Normalization: all a weights in one modality

sumto 1.

e Fusi Inter-Modality: The results from each modality are
then combined using the weight v in the formula.

Frusea(t) = SEK_1 yk (). F with TK_, yk(t) = 1 (5)

The weight vy is also calculated using softmax over the
relevance between modalities.

_ _ exp(gk(®)
k() = YK exp(gl(t))

Frysea(t)is the final multimodal representation at time t,
which is the combination of all features from all modalities after
going through a two-level adaptive fusion process.

with gk(t) = MLP(FX) (6)

K is the total number of modalities used (e.g., facial image,
heart rate, body temperature, accelerometer).

N, is the Number of features in the k modality

fgk) Intra-modality weights (level within modality) for the i
feature of the k modality.

yk(t) Inter-modality weights for the k modality at time t.

C. Maths Pseudocode

Between mathematical conceptual thinking and effective
programming implementation. Maths Pseudocode is a logical
and methodical presentation of mathematical algorithms
organized in half-code form.

e Simulation using HADF

# Algorithm in Fig. 4 presents the simulation results,
implemented in Python.
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for each sequence:
fort=1.T:
# Intra-modality
forkinl.K:
e_k[i] =MLP_alpha(f_kI[i,t])
alpha_k = softmax(e_k)
F k[t] =X ialpha k[i] * f k[i,t]

#size N_k

# Inter-modality (mask-aware)
forkinl.K:
s k[t] = (m_k[t]==1) ? MLP_gamma(F_K[t]) : -inf
gamma[t] = softmax(s_[1..K][t]) # over available modalities

# Fusion + classify
Z[t] =% k gamma[t][k] * (W_k * F_K[t])
y_hat[t] = softmax(g_clf(Z[t]))
L] = CE(Y[t], y_hat[t])
Update params by V(mean_t L[t])

Fig. 4. Algorithm for the simulation results.

This simulation helps analyze the performance of systems
with limited capacity, such as contact centers, banks, and similar
systems. Fig. 5 presents the running system simulation for
HADF.

Q Commands + Code v + Text D Runall ~

= © train_loss_hist, val_loss_hist = [], []
train_acc_hist, val_acc_hist = [1, []

<>

for epoch in range(1@):
model.train()
total_loss, correct, total = @, 8, @
for img, sensor, label in train_loader:
(o) img, sensor, label = img.to(device), sensor.to(device), label.to(device)
out = model(img, sensor)
() loss = criterion(out, label)

optimizer.zero_grad()
loss.backward()
optimizer.step()

total_loss += loss.item()

_, pred = torch.max(out, 1)

correct += (pred == label).sum().item()
total += label.size(®)

train_loss = total_loss / len(train_loader)
train_acc = correct / total
train_loss_hist.append(train_loss)
train_acc_hist.append(train_acc)

I

Fig. 5. Running system simulation for HADF.

The HADF model was trained using supervised learning
with the cross-entropy loss function. Training was conducted
over 10 epochs, comprising two main phases: training and
validation. In the training phase, the model received input in the
form of facial images and physiological sensor data, which were
then processed through a CNN-LSTM architecture with a
HADF fusion mechanism. The loss value was calculated for
each batch, then the weights were updated using a
backpropagation-based optimizer. Next, in the validation phase,
the model was evaluated on test data without weight updates to
measure its generalization ability (see Fig. 6).

Train Acc: 8.8098
Train Acc: 8.9584

Train Loss: ©.6244
Train Loss: ©.1953

Val Loss: @.3365 | Val Acc: ©.9117
Val Loss: @.217@ | val Acc: @.9363
Epoch 3 | Train Loss: ©.8958 | Train Acc: 8.9799 | Val Loss: @.2078 | val Acc: @,9528
Epoch 4 Train Loss: ©.8671 Train Acc: ©.9856 | Val Loss: @.1654 | Val Acc: ©.9528

Epoch 1 | | |
| | |
| | |
| | |
Epoch 5 | Train Loss: ©.8328 | Train Acc: ©.9938 | Val Loss: 8.1238 | Val Acc: 8.963@
| | |
| | |
| | |
| | |

Epoch 2

Epoch 6 Train Loss: 8.8417 Train Acc: 8.9913 Val Loss: ©.1438 | val Acc: 8.9569
Epoch 7 Train Loss: @.8351 Train Acc: 8.9943 val Loss: ©.1802 | Val Acc: @.9569
Epoch 8 | Train Loss: ©.8216 | Train Acc: ©.9959 | Val Loss: 8.155@ | Val Acc: 8.961@
Epoch 9 Train Loss: @.8187 Train Acc: 8.9959 | Val Loss: @.1366 | val Acc: @.9589
Epoch 18 | Train Loss: ©.8126 | Train Acc: ©.9979 | Val Loss: 8.1189 | val Acc: 8.9651

Fig. 6. Model training logs.
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e Summary of Fig. 6:

Epoch 1: The model is still in the early stages of learning.
The training loss is relatively high (0.6244), while the training
accuracy is 80.9%. Fairly good accuracy (91.1%) in the
validation data indicates that the model can instantly recognize
basic patterns in multimodal data. Epochs 2-4: Training
accuracy increases significantly (from 95.8% to 98.6%), and the
value loss decreases from 0.3365 to 0.1654. Validation accuracy
rises to 95.2%, indicating the model's increasing generalization
ability. Epochs 5-7: The model achieves a training accuracy
above 99%. Validation accuracy stabilizes at 95.6-96.3%, while
the value loss remains low (0.1230-0.1802). This indicates that
the model is approaching optimal conditions, though slight
fluctuations in the loss value are due to the complexity of the

Loss

—— Train Loss
Val Loss

0.6

0.5 1

0.4 4

0.3 1

0.2 4

0.1+

0.0 1

@
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data. Epochs 8-10: The model stabilizes, with near-perfect
training accuracy (99.8%), and value accuracy peaking at 96.5%
at the 10th epoch. Furthermore, the value drops to 0.1189,
indicating that the model's generalization remains good without
significant overfitting.

Overall, these training results demonstrate that the HADF
model learns well from the dataset. The hierarchical adaptive
dynamic fusion mechanism produces robust multimodal
representations that balance the ability to learn from training
data and generalize to new data. This demonstrates that training
accuracy approaching 100% does not degrade validation
performance, which remains stable between 95% and 96%. In
Fig. 7(a), the simulation results obtained using Python are
shown.

Accuracy

1.000 ~
0.975 A
0.950 ~
0.925 -
0.2900 ~
0.875 A

0.850 A

—— Train Acc
Val Acc

0 2 4 6 8
(b)

0.825 ~

Fig. 7. (a) Shows the simulation results (loss) obtained using Python. (b) Shows the simulation results (accuracy) obtained using Python.

Fig. 7(b) shows a gradual, consistent decrease in training and
validation scores, indicating a stable learning process.
Furthermore, the curves show that model accuracy increases
significantly over time, with no significant differences between
the training and validation phases. This indicates that the HADF
model has good generalization capabilities; it recognizes
patterns in the training data and can maintain them when
exposed to new data. This stability suggests that the model does
not overfit and can achieve ideal convergence in a short training
time. On the left, the graph shows how the loss values evolve.
The training loss (blue line) continues to decrease as the number
of epochs increases, indicating that the model has successfully
learned the patterns in the training data. The validation loss
(orange line) also decreases, albeit more fluctuating, indicating
that the fused representation continues to generalize well. The
graph on the right side shows accuracy. The adaptive fusion
result (f) obtained from the a, B, and y mechanisms can produce
an effective and robust multimodal representation that is robust
to data variations while preventing overfitting. The
improvement in instruction accuracy is nearly 100%, while
validation accuracy remains stable at 95%-97%.

The confusion matrix indicates that the HADF model has
very high classification performance across all classes,

including minority classes such as 'eyeclose' and 'yawn'. The
misclassification rate is very low, indicating that this model
successfully overcomes the limitations of previous models,
which tend to be biased towards the majority class. These results
suggest that the two-level adaptive fusion strategy implemented
by HADF has consistently improved the sensitivity and
classification accuracy across all classes. The confusion matrix
for the validation data shows the HADF model's performance in
distinguishing between three classes: eyeclosed, normal, and
yawn. From the prediction results, it can be seen that the model
correctly recognized the eyeclose class for 147 samples and was
misclassified only 5 times, as usual. In the regular class, the
model correctly detected 281 samples, with relatively small
errors: 7 samples were predicted as 'eye closed' and four samples
as 'vawn'. Meanwhile, in the yawn class, 42 samples were
correctly classified with only one error as usual. The dominant
distribution of predictions lies along the main diagonal of the
matrix, indicating that the model exhibits excellent classification
performance, with a low error rate and high accuracy in
distinguishing the three conditions, as shown in Fig. 8
(Confusion Matrix HADF).
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Fig. 8. Confusion matrix HADF.

e Simulation using Static Fusion: Between mathematical
conceptual thinking and effective programming
implementation. Maths Pseudocode is a logical and
methodical presentation of mathematical algorithms
organized in half-code form.

Fig. 9 presents the algorithm for the simulation results,
implemented in Python.

class StaticFusion(nn.Module):
def __init__(self, ...):
super().__init_ ()
self.fc = nn.Linear(total_feat_dim, num_classes)

def forward(self, featl, feat2, feat3):
fused = torch.cat([featl, feat2, feat3], dim=1) # <--- Fusi
statis
out = self.fc(fused)
return out

Fig. 9. Pseudocode using fusion.

Confusion matrix showing the results of the fatigue detection
model evaluation on the test data (test set) using the Static
Fusion model. Confusion matrix showing the results of the
fatigue detection model evaluation on the test data (test set). The
following Fig. 10 presents the confusion matrix fusi static.

It shows the model's performance in distinguishing three
fatigue condition classes: Normal, Eyeclose, and Yawn. In
general, the model achieves an excellent classification rate in the
Normal class, with almost perfect accuracy (69 correct instances
and only one incorrect instance, which is Eyeclose).
Performance in the Eyeclose class is also optimal, with all 45
cases correctly predicted, compared to other courses. However,
a significant weakness is seen in the Yawn class. Of the 142
Yawn instances, 108 are predicted correctly, but 34 cases are
incorrectly classified as eye closed. This indicates confusion
between the yawn expression and the eye-closed condition, both
of which exhibit similar visual patterns. This error can be
influenced by data quantity imbalance and limitations in visual
features. To overcome this, additional strategies are needed,
such as data augmentation for the Yawn class, the use of
weighted loss, or the utilization of physiological sensor

Vol. 16, No. 11, 2025

modalities in the adaptive fusion mechanism to increase the
model's robustness.

Confusion Matrix

. 100
[1+]
E 1 0
2
80
[11]
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= @
)
- 40
=
Eg 0 34 -20
£
| | -0
Normal Eyeclose Yawn
Predicted

Fig. 10. Confusion matrix fusi static.

D. Comparison of Static Fusion Model Performance of
HADF Model

After each model is evaluated separately, this subsection
compares their performance. The purpose of this comparison is
to determine whether the HADF model, which incorporates
weights from the resulting classifications, can achieve
significant performance improvements over the Static Fusion
model approach. Table Il presents a performance comparison
between the HADF model and the Static Fusion model,
including training and validation accuracies and loss values, to
evaluate the stability and generalization capability of each
model.

TABLE II. COMPARISON OF STATIC FUSION MODEL PERFORMANCE OF
HADF MODEL
HADF Static Fusion .
Aspect Model Model Analysis
Both models exhibit
Increased Increased from | fast convergence, as
. 0 ,
Training | from 80.9% | ¢70, ™" 99 6o, | they can learn the
Accuracy | — 99.8% 2
(epoch 10) training data
(epoch 10)
patterns very well.
HADF is more
Validation Stable, peak | Fluctuating, peak | stable with better
Accurac 96.5% 95.0% (epochs 9- | generalization;
y (epoch 10) 10) Static  Fusion is
slightly less stable.
Consistently Initially  decreased | HADF is more
Validation | decreasing (0.3841 — 0.1869) | consistent;  Static
Loss (0.3365 — | then fluctuated | Fusion shows
0.1189) (0.22-0.26) instability.

1) Table Analysis: The results highlight differences in
model performance across two training trials — HADF and
Static Fusion — focusing on four key aspects: training
accuracy, validation accuracy, validation loss, and model
stability.

e Training Accuracy: From around 80% in the initial epoch
to nearly perfect (99.6-99.8%) in the 10th epoch, both
HADF and Static Fusion show very rapid improvement.
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This demonstrates the model's ability to learn patterns
from the training data, and both methods show rapid
convergence.

e Validation Accuracy: HADF consistently achieved a
peak validation accuracy of 96.5%, whereas Static
Fusion achieved only 95% with a more fluctuating trend.
This indicates that HADF is better at maintaining
generalization to the validation data, while Static Fusion
is slightly less stable despite maintaining high accuracy.

e Loss: In Static Fusion, the value loss dropped drastically
initially, but then fluctuated between 0.22 and 0.26,
indicating mild overfitting. In contrast, in HADF, the
value loss dropped consistently from 0.3365 to 0.1189.

E. Discussion

In summary, the differences between the previous Attention
Fusion and HADF models can be summarized in the following
points: 1) The Attention Fusion model computes weights for
each hidden state of the LSTM in one modality. In contrast,
HADF computes stepwise adaptive fusion weights, including
intra-modality (spatial-temporal) and inter-modality (between
modalities) weights. 2) Weight type, the previous model a; =
attention weight per time (time-step) for one modality, while

HADF. a["time in one modality (intra-fusion). B{™= Temporal
attention weight per modality, ym = weight between modalities
(inter-fusion). 3) Fusion level, the previous model uses a single-
level (directly from hidden states to aggregation), while HADF
Multi-level: intra-modality-temporal pooling-inter-modality.

IV. CONCLUSION

The Two-Level Hierarchical Adaptive Dynamic Fusion
(HADF) formulation represents a novel and scientifically
grounded solution for fatigue prediction, addressing key
limitations of prior multimodal fusion approaches such as static
weighting, lack of adaptivity to modality quality, and absence of
hierarchical processing. HADF integrates two adaptive
weighting mechanisms: a (intra-modality), which determines
the importance of features within each modality, and y (inter-
modality), which dynamically regulates the contribution of each
modality based on input reliability at each timestep. This
mechanism provides a scientific explanation for the model’s
stability—when a modality becomes degraded, noisy, or
missing, the adaptive weights automatically downscale its
influence while shifting emphasis to more reliable modalities.
Experimental results demonstrate that HADF achieves high
accuracy and maintains strong robustness under missing-
modality and low-quality conditions, outperforming
conventional static fusion methods that cannot adjust their
weights dynamically. Consequently, the CNN-LSTM
architecture augmented with HADF offers not only improved
predictive accuracy but also substantial practical relevance for
real-world fatigue-monitoring systems in transportation safety,
industrial operator supervision, and healthcare applications,
where detection failures may have critical consequences.
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