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Abstract—Driver fatigue is a major contributor to traffic 

accidents, yet most existing detection systems rely on unimodal 

inputs or static fusion mechanisms that lack robustness under 

poor lighting, partially obscured faces, and missing sensor data. 

This study aims to overcome these limitations by proposing a 

Hierarchical Adaptive Dynamic Fusion (HADF) model. HADF 

integrates a two-level adaptive fusion mechanism combining a 

CNN (ResNet-18) for facial micro-expressions and an LSTM for 

physiological signals (heart rate, temperature, and accelerometer). 

The first stage computes adaptive intra-modality weights (α), 

while the second stage assigns inter-modality weights (γ), enabling 

context-aware and resilient multimodal integration even under 

missing-modality conditions. Experiments on a multimodal 

fatigue dataset show that HADF achieves a validation accuracy of 

96.5%, a macro F1-score of 0.96, and ROC-AUC values of 1.00 

(Normal), 0.99 (Eye-Closed), and 0.93 (Yawn). Compared with 

unimodal and static-fusion baselines, HADF improves accuracy by 

approximately 4.5% and macro F1-score by 6–9%, while 

maintaining stable performance under incomplete data. These 

results confirm the novelty of HADF as a two-stage adaptive fusion 

strategy that enhances accuracy and system robustness, making it 

suitable for real-time fatigue monitoring in transportation, 

occupational safety, and healthcare applications. 

Keywords—Multimodal fusion; adaptive dynamic fusion; CNN-

LSTM; fatigue level prediction 

I. INTRODUCTION 

Fatigue is a significant factor that reduces concentration, 
reflexes, and alertness, thus contributing significantly to traffic 
and occupational accidents. WHO and ILO data (2021) recorded 
more than 398,000 global deaths per year related to fatigue. In 
Indonesia, the KNKT (2022) report indicated that fatigued 
drivers were responsible for more than 20% of land 
transportation accidents. This underscores the importance of a 
thorough, adaptive, and real-time fatigue detection system. 

In recent years, deep learning-based approaches such as 
CNNs (Convolutional Neural Networks) and RNNs (Recurrent 
Neural Networks) have been used to process facial images and 
physiological signals to detect fatigue. CNNs are effective at 
capturing spatial patterns (such as facial expressions), while 
RNNs—especially LSTMs—can analyze temporal patterns in 
sensor data (such as heart rate or body temperature). Therefore, 
early detection of fatigue levels has become a crucial focus in 
many recent studies. Single-feature-based methods (e.g., those 

focusing only on the eyes or only on the mouth) are prone to 
failure when the face is partially covered (by glasses/mask) or in 
poor lighting conditions. Various deep learning-based 
approaches have been developed, such as CNN for spatial 
features (actualization) and LSTM for temporal features 
(physiological frequencies). However, previous research still 
has limitations, namely that single-feature methods are prone to 
failure when the face is obscured or in poor lighting conditions. 
[1]. CNN-RNN has a high computational cost due to the 
complexity of its data and examples, which require substantial 
computing power. Furthermore, this example is often used for 
large datasets, such as video or other sequential data, which 
require significant computing power. As a result, training can be 
slow, especially with large and complex datasets [2]. 

Currently, many prediction methods are employed, such as 
deepening the model to become more complex and adding 
parameters, which can lead to problems, including a less stable 
model (less durable), inflexibility, and a one-dimensional 
approach (failing to capture enough features). The model is not 
robust to data variations or noise. Limited flexibility: difficult to 
apply to various types of materials or conditions. One-
dimensional approaches are limited to a single category or 
feature [3]. Learning-based techniques have been widely used to 
process data from various sources, namely facial images, 
physiological signals (EEG, EOG), and time data, which have 
been analyzed through multiple learning-based methods. 
Convolutional Neural Networks (CNNs) and Long Short-Term 
Memory (LSTM) models can extract spatial features from 
images and capture temporal relationships in time series data. 
Learning-based techniques have been widely used to process 
data from various sources, namely facial images, physiological 
signals (EEG, EOG), and time data, which have been analyzed 
through multiple learning-based methods. Convolutional Neural 
Networks (CNNs) and Long Short-Term Memory (LSTM) 
models can extract spatial features from images, while also 
capturing temporal relationships in time series data [4]. 

The combination of hybrid CNN-LSTM models still has 
limitations in terms of flexibility and adaptability to complex 
data. Developing a system to assess a person's fatigue and 
physical load by combining various subjective and objective 
data. Measuring physical load and fatigue using traditional 
methods is ineffective and inaccurate. Expanding machine 
learning applications that can monitor and predict fatigue [5]. 
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The hybrid CNN–LSTM has been widely used, but its weakness 
lies in its non-adaptive, static fusion. In baseline trials, static 
fusion accuracy only reached 92% and dropped to 80% when 
one modality was missing [6]. 

This study demonstrates that a CNN-LSTM-based 
multimodal fusion approach can non-invasively enhance driver 
stress detection accuracy by up to 95.5% using eye data, vehicle 
dynamics, and environmental variables. However, this study is 
limited by the fact that stress labels are based on participants' 
subjective assessments of their own experiences. Furthermore, 
other studies have employed a single-feature fusion mechanism 
without hierarchical fusion and have not considered models with 
noise or missing modalities [7]. 

The non-invasive multi-index fusion and CNN–BiLSTM 
approaches can achieve 98.2% accuracy, but the fusion remains 
static and single-level. As a result, these methods are susceptible 
to noise and deficiencies in modality [8]. Another study 
[9][10][11] shows that the hybrid CNN-RNN model improved 
accuracy. However, limited generalization, high complexity, 
and the lack of an adaptive fusion mechanism remain issues. 

In summary, existing multimodal fatigue detection 
approaches still rely on static or single-stage fusion, which limits 
their ability to adapt to variations in data quality, environmental 
conditions, and missing modalities. These constraints reduce the 
robustness and generalization of current CNN-LSTM-based 
frameworks. To address this gap, this study proposes the Two-
Level Hierarchical Adaptive Dynamic Fusion (HADF) model, 
which integrates dynamic intra-modality weighting (α) and 
inter-modality weighting (γ) to enable context-aware, flexible, 
and resilient multimodal feature integration. The contributions 
of this work include: 1) introducing a hierarchical and adaptive 
fusion mechanism for non-invasive fatigue prediction, 
2) designing a hybrid CNN–LSTM model capable of handling 
incomplete or degraded multimodal inputs, and 3) providing 
comprehensive experimental evaluations demonstrating 
improved accuracy, stability, and robustness compared to 
unimodal and static-fusion baselines. The subsequent sections 
detail the model architecture, experimental methodology, 
evaluation metrics, and performance analysis. 

II. MATERIALS AND METHODS 

A. Fatigue Level 

Fatigue is a condition that can affect performance and safety 
across many jobs. Predicting fatigue levels is crucial for 
preventing accidents and increasing productivity. Numerous 
studies have used multiple approaches to predict fatigue levels. 
The condition characterized by decreased cognitive and motor 
function due to sustained fatigue is called fatigue. In the areas of 
work, transportation, and health, it is crucial to recognize and 
address fatigue. In [12], the authors have shown that combining 
facial images with physiological signals such as heart rate, 
temperature, and rPPG can significantly improve fatigue 
prediction. 

The aim is to compile and present the latest research on 
fatigue analysis, covering knowledge of fatigue analysis theory, 
fatigue life prediction methods, and design and application 
techniques. Another aim is to provide a comprehensive 

overview of the progress and challenges achieved in the field. 
Furthermore, the researchers propose a path forward to improve 
the reliability and effectiveness of fatigue life prediction 
methods in industry. Since the combination of existing 
approaches is insufficient to address the increasingly complex 
challenges, this study demonstrates the urgent need for the 
development of new technologies. Therefore, new solutions for 
fatigue analysis must be developed to meet current industry 
needs [13]. 

One of the Prediction Model Development is building a deep 
learning-based model, namely Deep Belief Neural Network-
Back Propagation (DBN-BP), to predict the fatigue life of Ti-
6Al-4V in the very high fatigue range (VHCF). Parameter 
influence analysis examines how process parameters, such as 
energy density, tensile strength, and fabrication method, impact 
fatigue life behavior. By using deep learning models, 
researchers can improve prediction accuracy, precision, and 
model stability compared to traditional methods and existing 
machine learning algorithms. However, if the model is too 
complex for a limited dataset, it can lead to overfitting. Deep 
learning models can also be very complex and risk overfitting 
when the number of parameters exceeds the available data. 

B. Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) 

The combination of CNNs and LSTMs has been used to 
exploit the advantages of both spatial and temporal features 
simultaneously. The CNN serves as a feature extractor, and its 
output is then fed into the LSTM as sequential input. This hybrid 
model has shown promising results in the fatigue domain [14]. 
But it still uses static feature fusion, which limits the model's 
flexibility. The problem of multidimensional data remains a 
subject of ongoing research aimed at finding suitable models for 
various applications. Table I shows a critical literature analysis. 

TABLE I.  CRITICAL LITERATURE ANALYSIS 

Study /Approach Methods 
Limitation / Gap 

Identified 

Remaining Useful Life 

Prediction [15] 

CNN–

LSTM 

Prone to overfitting on small 

datasets, fusion remains static, 

and interpretation is challenging. 

Industrial and 

Machined Surfaces 

CNN–

LSTM 

Very sensitive to image noise, 

validation is limited to specific 

data types. 

Renewable Energy and 

Weather [16] 

CNN–

LSTM 

Accuracy drops sharply during 

extreme weather conditions, and 

the interpretation of spatial 

features is limited. 

General Image 

Classification [17][18] 

RNN–

ResNet18 

Small, unbalanced dataset; high 

potential for bias. 

C. Hybrid Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) 

This approach is combined with the Hierarchical Adaptive 
Dynamic Fusion (HADF) method. This model uses non-
invasive multimodal input from heart rate, facial video, and 
environmental factors to predict fatigue level (fatigue level). 
Making model research is shown in Fig. 1: 
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Fig. 1. Making model research. 

The research began with the collection and creation of 
datasets from three primary data sources: visual data (facial 
images) used to detect expressions, closed eyes, or nervousness, 
and physiological sensor data used to detect changes in physical 
condition. A temperature sensor measures body temperature. An 
accelerometer measures movement or posture. The data 
collection method involves attaching the sensor to the subject 
during video recording. Sensor data is synchronized with the 
video recording time (timestamp). Data is stored in a CSV file. 
Data acquisition is shown in Fig. 2: 

 

Fig. 2. Data acquisition. 

Preprocessing is performed on two data sources—images 
(visual) and sensor signals—and then they are temporally 
aligned (synchronized) before being formed into sequential 
samples for a CNN–LSTM model with adaptive fusion (HADF). 
All steps are designed to minimize data leakage and maintain 
inter-subject consistency. 

The Hierarchical Adaptive Dynamic Fusion (HADF) model 
was developed to address the limitations of static fusion models, 
which generally use simple concatenation weights (e.g., direct 
concatenation). The HADF model is designed to integrate visual 
(facial images) and physiological (e.g., heart rate, body 
temperature, acceleration) modalities gradually and adaptively. 

D. Hierarchical Adaptive Dynamic Fusion (HADF) 

Architecture 

The Hierarchical Adaptive Dynamic Fusion (HADF) 
architecture is proposed in the study. Preprocessing—collecting 

facial images (RGB), eye area detection (including eye 
landmarks), and physiological sensor data (heart rate, 
acceleration)—begins the process. To extract spatial features 
from facial images and eye landmarks, a CNN (ResNet18) is 
used, while an LSTM is used to extract temporal features from 
the sensor data. A two-stage fusion mechanism is then used to 
combine the feature extraction results. The first is intrafusion 
(α), which combines features within a single modality with 
dynamic relevance weights, and the second is interfusion (γ), 
which combines across modalities to form a more contextual and 
responsive multimodal representation. In the final stage, a 
classification layer is used to determine the fatigue level and 
divide it into three categories: Normal, Eyeclosed, and Yawn 
(see Fig. 3). 

 
Fig. 3. HADF architecture visualization with two levels of fusion. 

III. RESULTS AND DISCUSSION 

A. Model Static 

 Previous research proposed hierarchical fusion, which 
processes each modality independently and then performs level-
wise fusion. Each fusion stage produces a combined 
representation that is fed back to the network to learn inter-
modality interactions. This approach improves robustness but 
does not yet implement dynamic weight adaptation to changes 
in modality quality. Basic formula: 

𝑢𝑡  = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑡 + 𝑏)         (1) 

where, the hidden state vector at time t, ht, is passed to a fully 
connected layer: multiplied by the weight matrix W, added to 
the bias b, and then activated using the tanh function to produce 
the hidden representation ut. 

𝛼𝑡 = 𝑒𝑥𝑝(𝑢𝑡
𝑇𝑢)

∑ 𝑒𝑥𝑝(𝑢𝑡
𝑇𝑢)𝑛

𝑡=1
  (2) 

The attention score for time t, αt, is calculated by applying a 
softmax function to the alignment (dot product) between ut and 
the trained context parameter vector, u. The resulting αt is a non-
negative weight that sums to 1 across all time steps 
(probabilities). 

B. Hierarchical Adaptive Dynamic Fusion (HADF) 

In this study, the proposed Hierarchical Adaptive Dynamic 
Fusion (HADF) model is a two-level fusion mechanism, namely 
intra-modality and inter-modality, with weights calculated based 
on temporal data and input feature characteristics. Basic 
formula: 
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 Fusi Intra-Modality: In a single diffusion modality, each 
feature is weighted by α, which represents its 
importance. 

𝐹𝑡
(𝑘)

=  ∑ α𝑡,𝑖
(𝑘)

. 𝑓𝑡,𝑖
(𝑘)𝑁𝑘

𝑖=1  𝑑𝑒𝑛𝑔𝑎𝑛 ∑ α𝑡,𝑖
(𝑘)𝑁𝑘

𝑖=1 = 1  (3) 

The value is calculated through the softmax function of the 
relevance scores generated by the multilayer perceptron (MLP) 
module: 

α𝑡,𝑖
(𝑘)

=  
exp (𝑒𝑡,𝑖

(𝑘)
)

∑ 𝑒𝑥𝑝(𝑒𝑡𝑗

(𝑘)
)

𝑁𝑘
𝑗=1

 𝑤𝑖𝑡ℎ  𝑒𝑡,𝑖
(𝑘)

= 𝑀𝐿𝑃(𝑓𝑡,𝑖
(𝑘)

)   (4) 

where, 

𝑭𝒕
(𝒌)

is the representation of the intra-modality fusion results 

for the kth modality at time t. 

𝑁𝒌  is the Total number of features in the kth modality. 

𝑓𝒕,𝒊
(𝒌)

 is the fitur-i, feature of the k-t modality at time-t 

α𝒕,𝒊
(𝒌)

 Adaptive weight for the i feature in the k modality at 

time t. 

∑ α𝒕,𝒊
(𝒌)𝑵𝒌

𝒊=𝟏 = 1  Normalization: all α weights in one modality 

sum to 1. 

 Fusi Inter-Modality: The results from each modality are 
then combined using the weight γ in the formula.  

𝐹𝑓𝑢𝑠𝑒𝑑(𝑡) =  ∑ 𝑦𝑘(𝑡). 𝐹𝑡
(𝑘)𝐾

𝑘=1 𝑤𝑖𝑡ℎ ∑ 𝑦𝑘(𝑡) = 1𝐾
𝑘=1  (5) 

The weight γ is also calculated using softmax over the 
relevance between modalities. 

𝑦𝑘(𝑡) =  
exp (𝑔𝑘(𝑡))

∑ exp (𝑔𝑙(𝑡))𝐾
𝑙=1

 𝑤𝑖𝑡ℎ 𝑔𝑘(𝑡) = 𝑀𝐿𝑃(𝐹𝑡
(𝑘)

) (6) 

𝐹𝑓𝑢𝑠𝑒𝑑(𝑡)is the final multimodal representation at time 𝑡, 

which is the combination of all features from all modalities after 
going through a two-level adaptive fusion process. 

K is the total number of modalities used (e.g., facial image, 
heart rate, body temperature, accelerometer). 

𝑵𝒌 is the Number of features in the k modality 

𝒇𝒕,𝒊
(𝒌)

 Intra-modality weights (level within modality) for the i 

feature of the k modality.  

𝒚𝒌(𝒕) Inter-modality weights for the k modality at time t. 

C. Maths Pseudocode 

Between mathematical conceptual thinking and effective 
programming implementation. Maths Pseudocode is a logical 
and methodical presentation of mathematical algorithms 
organized in half-code form. 

 Simulation using HADF 

# Algorithm in Fig. 4 presents the simulation results, 
implemented in Python. 

 
Fig. 4. Algorithm for the simulation results. 

This simulation helps analyze the performance of systems 
with limited capacity, such as contact centers, banks, and similar 
systems. Fig. 5 presents the running system simulation for 
HADF. 

 
Fig. 5. Running system simulation for HADF. 

The HADF model was trained using supervised learning 
with the cross-entropy loss function. Training was conducted 
over 10 epochs, comprising two main phases: training and 
validation. In the training phase, the model received input in the 
form of facial images and physiological sensor data, which were 
then processed through a CNN–LSTM architecture with a 
HADF fusion mechanism. The loss value was calculated for 
each batch, then the weights were updated using a 
backpropagation-based optimizer. Next, in the validation phase, 
the model was evaluated on test data without weight updates to 
measure its generalization ability (see Fig. 6). 

 
Fig. 6. Model training logs. 

for each sequence: 

  for t = 1..T: 

    # Intra-modality 

    for k in 1..K: 

      e_k[i]   = MLP_alpha(f_k[i,t]) 

      alpha_k  = softmax(e_k)                      # size N_k 

      F_k[t]   = Σ_i alpha_k[i] * f_k[i,t] 

 

    # Inter-modality (mask-aware) 

    for k in 1..K: 

      s_k[t]   = (m_k[t]==1) ? MLP_gamma(F_k[t]) : -inf 

    gamma[t]   = softmax(s_[1..K][t])              # over available modalities 

 

    # Fusion + classify 

    Z[t]       = Σ_k gamma[t][k] * (W_k * F_k[t]) 

    y_hat[t]   = softmax( g_clf(Z[t]) ) 

    L[t]       = CE(y[t], y_hat[t]) 

Update params by ∇(mean_t L[t]) 
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 Summary of Fig. 6: 

Epoch 1: The model is still in the early stages of learning. 
The training loss is relatively high (0.6244), while the training 
accuracy is 80.9%. Fairly good accuracy (91.1%) in the 
validation data indicates that the model can instantly recognize 
basic patterns in multimodal data. Epochs 2-4: Training 
accuracy increases significantly (from 95.8% to 98.6%), and the 
value loss decreases from 0.3365 to 0.1654. Validation accuracy 
rises to 95.2%, indicating the model's increasing generalization 
ability. Epochs 5-7: The model achieves a training accuracy 
above 99%. Validation accuracy stabilizes at 95.6–96.3%, while 
the value loss remains low (0.1230–0.1802). This indicates that 
the model is approaching optimal conditions, though slight 
fluctuations in the loss value are due to the complexity of the 

data. Epochs 8-10: The model stabilizes, with near-perfect 
training accuracy (99.8%), and value accuracy peaking at 96.5% 
at the 10th epoch. Furthermore, the value drops to 0.1189, 
indicating that the model's generalization remains good without 
significant overfitting. 

Overall, these training results demonstrate that the HADF 
model learns well from the dataset. The hierarchical adaptive 
dynamic fusion mechanism produces robust multimodal 
representations that balance the ability to learn from training 
data and generalize to new data. This demonstrates that training 
accuracy approaching 100% does not degrade validation 
performance, which remains stable between 95% and 96%. In 
Fig. 7(a), the simulation results obtained using Python are 
shown. 

 
(a)       (b) 

Fig. 7. (a) Shows the simulation results (loss) obtained using Python. (b) Shows the simulation results (accuracy) obtained using Python. 

Fig. 7(b) shows a gradual, consistent decrease in training and 
validation scores, indicating a stable learning process. 
Furthermore, the curves show that model accuracy increases 
significantly over time, with no significant differences between 
the training and validation phases. This indicates that the HADF 
model has good generalization capabilities; it recognizes 
patterns in the training data and can maintain them when 
exposed to new data. This stability suggests that the model does 
not overfit and can achieve ideal convergence in a short training 
time. On the left, the graph shows how the loss values evolve. 
The training loss (blue line) continues to decrease as the number 
of epochs increases, indicating that the model has successfully 
learned the patterns in the training data. The validation loss 
(orange line) also decreases, albeit more fluctuating, indicating 
that the fused representation continues to generalize well. The 
graph on the right side shows accuracy. The adaptive fusion 
result (f) obtained from the α, β, and γ mechanisms can produce 
an effective and robust multimodal representation that is robust 
to data variations while preventing overfitting. The 
improvement in instruction accuracy is nearly 100%, while 
validation accuracy remains stable at 95%-97%. 

The confusion matrix indicates that the HADF model has 
very high classification performance across all classes, 

including minority classes such as 'eyeclose' and 'yawn'. The 
misclassification rate is very low, indicating that this model 
successfully overcomes the limitations of previous models, 
which tend to be biased towards the majority class. These results 
suggest that the two-level adaptive fusion strategy implemented 
by HADF has consistently improved the sensitivity and 
classification accuracy across all classes. The confusion matrix 
for the validation data shows the HADF model's performance in 
distinguishing between three classes: eyeclosed, normal, and 
yawn. From the prediction results, it can be seen that the model 
correctly recognized the eyeclose class for 147 samples and was 
misclassified only 5 times, as usual. In the regular class, the 
model correctly detected 281 samples, with relatively small 
errors: 7 samples were predicted as 'eye closed' and four samples 
as 'yawn'. Meanwhile, in the yawn class, 42 samples were 
correctly classified with only one error as usual. The dominant 
distribution of predictions lies along the main diagonal of the 
matrix, indicating that the model exhibits excellent classification 
performance, with a low error rate and high accuracy in 
distinguishing the three conditions, as shown in Fig. 8 
(Confusion Matrix HADF). 
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Fig. 8. Confusion matrix HADF. 

 Simulation using Static Fusion: Between mathematical 
conceptual thinking and effective programming 
implementation. Maths Pseudocode is a logical and 
methodical presentation of mathematical algorithms 
organized in half-code form. 

Fig. 9 presents the algorithm for the simulation results, 
implemented in Python. 

 
Fig. 9. Pseudocode using fusion. 

Confusion matrix showing the results of the fatigue detection 
model evaluation on the test data (test set) using the Static 
Fusion model. Confusion matrix showing the results of the 
fatigue detection model evaluation on the test data (test set). The 
following Fig. 10 presents the confusion matrix fusi static. 

It shows the model's performance in distinguishing three 
fatigue condition classes: Normal, Eyeclose, and Yawn. In 
general, the model achieves an excellent classification rate in the 
Normal class, with almost perfect accuracy (69 correct instances 
and only one incorrect instance, which is Eyeclose). 
Performance in the Eyeclose class is also optimal, with all 45 
cases correctly predicted, compared to other courses. However, 
a significant weakness is seen in the Yawn class. Of the 142 
Yawn instances, 108 are predicted correctly, but 34 cases are 
incorrectly classified as eye closed. This indicates confusion 
between the yawn expression and the eye-closed condition, both 
of which exhibit similar visual patterns. This error can be 
influenced by data quantity imbalance and limitations in visual 
features. To overcome this, additional strategies are needed, 
such as data augmentation for the Yawn class, the use of 
weighted loss, or the utilization of physiological sensor 

modalities in the adaptive fusion mechanism to increase the 
model's robustness. 

 
Fig. 10. Confusion matrix fusi static. 

D. Comparison of Static Fusion Model Performance of 

HADF Model 

After each model is evaluated separately, this subsection 
compares their performance. The purpose of this comparison is 
to determine whether the HADF model, which incorporates 
weights from the resulting classifications, can achieve 
significant performance improvements over the Static Fusion 
model approach. Table II presents a performance comparison 
between the HADF model and the Static Fusion model, 
including training and validation accuracies and loss values, to 
evaluate the stability and generalization capability of each 
model. 

TABLE II.  COMPARISON OF STATIC FUSION MODEL PERFORMANCE OF 

HADF MODEL 

Aspect 
HADF 

Model 

Static Fusion 

Model 
Analysis 

Training 

Accuracy 

Increased 

from 80.9% 

→ 99.8% 

(epoch 10) 

Increased from 

80.7% → 99.6% 

(epoch 10) 

Both models exhibit 

fast convergence, as 

they can learn the 

training data 

patterns very well. 

Validation 

Accuracy 

Stable, peak 

96.5% 

(epoch 10) 

Fluctuating, peak 

95.0% (epochs 9–

10) 

HADF is more 

stable with better 

generalization; 

Static Fusion is 

slightly less stable. 

Validation 

Loss 

Consistently 

decreasing 

(0.3365 → 

0.1189) 

Initially decreased 

(0.3841 → 0.1869) 

then fluctuated 

(0.22–0.26) 

HADF is more 

consistent; Static 

Fusion shows 

instability. 

1) Table Analysis: The results highlight differences in 

model performance across two training trials — HADF and 

Static Fusion — focusing on four key aspects: training 

accuracy, validation accuracy, validation loss, and model 

stability. 

 Training Accuracy: From around 80% in the initial epoch 
to nearly perfect (99.6–99.8%) in the 10th epoch, both 
HADF and Static Fusion show very rapid improvement. 

class StaticFusion(nn.Module): 

    def __init__(self, ...): 

        super().__init__() 

        self.fc = nn.Linear(total_feat_dim, num_classes) 

 

    def forward(self, feat1, feat2, feat3): 

        fused = torch.cat([feat1, feat2, feat3], dim=1)   # <--- Fusi 

statis 

        out = self.fc(fused) 

        return out 
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This demonstrates the model's ability to learn patterns 
from the training data, and both methods show rapid 
convergence. 

 Validation Accuracy: HADF consistently achieved a 
peak validation accuracy of 96.5%, whereas Static 
Fusion achieved only 95% with a more fluctuating trend. 
This indicates that HADF is better at maintaining 
generalization to the validation data, while Static Fusion 
is slightly less stable despite maintaining high accuracy. 

 Loss: In Static Fusion, the value loss dropped drastically 
initially, but then fluctuated between 0.22 and 0.26, 
indicating mild overfitting. In contrast, in HADF, the 
value loss dropped consistently from 0.3365 to 0.1189. 

E. Discussion 

In summary, the differences between the previous Attention 
Fusion and HADF models can be summarized in the following 
points: 1) The Attention Fusion model computes weights for 
each hidden state of the LSTM in one modality. In contrast, 
HADF computes stepwise adaptive fusion weights, including 
intra-modality (spatial-temporal) and inter-modality (between 
modalities) weights. 2) Weight type, the previous model αt = 
attention weight per time (time-step) for one modality, while 

HADF. 𝛼𝑡
𝑚

time in one modality (intra-fusion). 𝛽𝑡
𝑚

= Temporal 
attention weight per modality, ym = weight between modalities 
(inter-fusion). 3) Fusion level, the previous model uses a single-
level (directly from hidden states to aggregation), while HADF 
Multi-level: intra-modality-temporal pooling-inter-modality. 

IV. CONCLUSION 

The Two-Level Hierarchical Adaptive Dynamic Fusion 
(HADF) formulation represents a novel and scientifically 
grounded solution for fatigue prediction, addressing key 
limitations of prior multimodal fusion approaches such as static 
weighting, lack of adaptivity to modality quality, and absence of 
hierarchical processing. HADF integrates two adaptive 
weighting mechanisms: α (intra-modality), which determines 
the importance of features within each modality, and γ (inter-
modality), which dynamically regulates the contribution of each 
modality based on input reliability at each timestep. This 
mechanism provides a scientific explanation for the model’s 
stability—when a modality becomes degraded, noisy, or 
missing, the adaptive weights automatically downscale its 
influence while shifting emphasis to more reliable modalities. 
Experimental results demonstrate that HADF achieves high 
accuracy and maintains strong robustness under missing-
modality and low-quality conditions, outperforming 
conventional static fusion methods that cannot adjust their 
weights dynamically. Consequently, the CNN–LSTM 
architecture augmented with HADF offers not only improved 
predictive accuracy but also substantial practical relevance for 
real-world fatigue-monitoring systems in transportation safety, 
industrial operator supervision, and healthcare applications, 
where detection failures may have critical consequences. 
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