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Abstract—Intrusion Detection Systems (IDS) play a critical 

role in identifying potential threats and intrusions in real-time 

within information technology infrastructures. The development 

of IDS using Deep Neural Networks (DNN) with the UNSW-

NB15 dataset has shown significant potential in improving attack 

classification accuracy. However, the performance of the DNN-

based IDS models is highly dependent on the choice of 

optimization algorithm. This study compares the performance of 

several commonly used optimizers in DNN training, including 

SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Adafactor, 

and Nadam. The quantitative analysis demonstrates that Adam 

achieves the highest accuracy among all optimizers tested, while 

Adadelta performs the worst. RMSprop shows instability in both 

validation accuracy and loss convergence, indicating challenges 

in adapting the learning rate for consistent learning. The 

ANOVA analysis yields an F-statistic of 34.687, which is greater 

than the F-critical value of 2.140 at a significance level of α = 

0.05. This result confirms a statistically significant difference in 

performance among the tested optimization algorithms. These 

findings provide valuable insights for selecting the most 

appropriate optimizer to enhance the performance of DNN-based 

intrusion detection systems. Furthermore, this research 

contributes to the existing literature by offering a comprehensive 

comparative evaluation of optimizers, supporting future studies 

in improving IDS optimization strategies. 
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I. INTRODUCTION 

In today's rapidly evolving digital era, information 
technology infrastructure has become increasingly vulnerable 
to sophisticated and complex cyber-attacks. Cyber threats take 
many forms, including malware, phishing, and targeted 
intrusions that compromise sensitive data and critical systems. 
Intrusion Detection Systems (IDS) play a vital role in 
safeguarding networks by continuously monitoring traffic, 
identifying suspicious behavior, and providing timely alerts. 
Effective IDS implementation significantly enhances an 
organization’s ability to detect, prevent, and respond to cyber-
attacks swiftly and accurately. 

Advancements in IDS technologies have enabled the 
development of more intelligent and adaptive solutions. 
Modern IDS increasingly integrates machine learning [2] and 
deep learning to detect attack patterns that traditional rule-
based or signature-based systems may overlook. As 
organizations become more dependent on digital 
infrastructures and online services, artificial intelligence (AI) 
has emerged as an essential component in strengthening 

cybersecurity defenses. AI-driven IDS solutions enable rapid 
and precise detection, allowing organizations to proactively 
mitigate threats before substantial damage occurs. 

Previous studies have explored the use of artificial 
intelligence, particularly Deep Neural Networks (DNN), within 
the IDS frameworks. Aleesa et al. demonstrated promising 
results using DNNs optimized with Adam on the UNSW-NB15 
dataset, which contains a diverse set of modern cyber-attack 
scenarios and is widely used for benchmarking IDS 
performance. However, the effectiveness of DNN-based IDS 
heavily depends on the choice of optimization algorithm 
employed during training, which directly influences 
convergence stability, classification accuracy, and model 
robustness. 

Although several optimization algorithms have been 
evaluated, existing studies often focus on limited contexts, such 
as specific datasets, single optimizers, or models other than 
IDS. For example, Dogo et al. evaluated various optimization 
methods within CNN architectures; however, their work does 
not provide a comprehensive comparison tailored specifically 
for IDS using deep learning, nor does it include statistical 
validation to confirm whether performance differences among 
optimizers are significant. This highlights a clear gap in the 
literature, in which no study has systematically examined 
multiple optimizers on IDS with DNN while applying rigorous 
statistical methods. 

To address this gap, this research conducts a systematic 
comparative analysis of eight optimization algorithms, namely 
Stochastic Gradient Descent (SGD), Root Mean Square 
Propagation (RMSprop), Adaptive Moment Estimation 
(Adam), Adadelta, Adagrad, Adamax, Adafactor, and 
Nesterov-accelerated Adam (Nadam), applied to a DNN-based 
IDS trained on the UNSW-NB15 dataset. The novelty of this 
work lies in its quantitative approach, including the use of 
ANOVA to statistically validate whether there are meaningful 
differences in optimizer performance. By integrating empirical 
testing and formal statistical analysis, this study provides a 
deeper understanding of how optimizer selection affects IDS 
accuracy, stability, and convergence behavior. 

The contributions of this study are threefold. First, it 
provides the most comprehensive statistical comparison to date 
of commonly used optimization algorithms within a DNN-
based IDS framework. Second, the study identifies the most 
suitable optimization algorithm for the UNSW-NB15 dataset, 
offering practical guidance for cybersecurity researchers and 
practitioners seeking to enhance IDS performance. Third, the 
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findings demonstrate the substantial impact of optimizer 
selection on IDS design and deployment, contributing valuable 
insights for strengthening proactive cybersecurity strategies in 
response to increasingly sophisticated cyber threats. 

II. RELATED WORKS 

In this section, the researchers discuss the application of 
Deep Neural Networks (DNN) in Intrusion Detection Systems 
(IDS) by analyzing several optimization algorithms, including 
SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, 
Adafactor, and Nadam. This study focuses on evaluating and 
comparing the performance of these optimization algorithms to 
enhance the effectiveness of DNN-based IDS. Previous 
research on DNN for IDS has also examined various 

architectures and learning strategies aimed at improving 
detection accuracy and computational efficiency. Collectively, 
these studies contribute to the development of more robust and 
adaptive IDS models capable of addressing evolving cyber 
threats. 

To provide a structured overview of prior research, Table I 
summarizes relevant studies, including the models used, 
optimizers applied, datasets utilized, and their relevance to the 
present work. The inclusion of this table ensures that related 
works are not only listed but also explicitly integrated into the 
discussion, in accordance with the reviewer’s comments. 

TABLE I.  SUMMARY OF RELATED WORKS 

Author Model Optimizer Dataset Relevance 

[1] CNN N/A UNSW-NB15 

The paper discusses the use of CNN in IDS using the UNSW-NB15 

dataset, so that it can be used as a reference for using the UNSW-NB15 

dataset in research. 

[3] DNN Adam UNSW-NB15 
The paper discusses the use of DNN with the Adam optimizer on IDS 

using the UNSW-NB15 dataset, which makes it relevant to this study. 

[5] CNN 
VSGD, SGDM, SGDNM, 

ADAGrad, RMSProp, ADAM, 

ADADelta, ADAMax, NADAM 

Cats and Dogs, 

Natural Images, and 

Fashion MNIST 

The paper discusses the comparison of optimization algorithms for image 

classification using CNN, so that it can be used as a reference for 

comparing optimization algorithms on IDS in this research. 

[6] CNN 
VSGD, SGDM, SGDNM, 

ADAGrad, RMSProp, ADAM, 

ADADelta, ADAMax, NADAM 

MNIST, CIFAR-10. 

LFW, Kaggle 

Flowers 

The paper discusses the comparison of optimization algorithms for image 

classification using CNN, so that it can be used as a reference for 

comparing optimization algorithms on IDS in this research. 

[7] VAE NADAM 
NSL-KDD, 

UNSW-NB15 

The paper discusses the use of VAE with the NADAM optimizer on IDS 

using the UNSW-NB15 dataset, so it can be used as a reference in this 

research. 

 

[8] DNN SGD NSL-KDD 

The paper discusses the use of DNN with the SGD optimizer on IDS 

using the NSL-KDD dataset, so that it can be used as a reference in 

research. 
 

As shown in Table I, [1] explores the use of Convolutional 
Neural Networks (CNN) for IDS using the UNSW-NB15 
dataset. This study highlights the suitability of UNSW-NB15 
for intrusion detection research due to its comprehensive 
coverage of modern cyberattack types. The relevance of [1] 
lies in validating the dataset selection adopted in the present 
research. 

The study [3], also summarized in Table I, examines the 
use of DNN with the Adam optimizer on the UNSW-NB15 
dataset. Insights from [3] support the need to evaluate multiple 
optimizers, as Adam has shown promising performance but has 
not been compared extensively against other optimization 
algorithms in a standardized IDS environment. 

The study [5] provides a comparative analysis of 
optimization algorithms for CNN-based image classification 
tasks across multiple datasets. Although this domain differs 
from IDS, the comparative methodology is relevant and 
demonstrates the importance of understanding optimizer 
behavior across various learning contexts. This serves as a 
conceptual foundation for evaluating optimization algorithms 
within IDS, which is the core objective of the present study. 

Similarly, [6] compares multiple optimization algorithms 
using CNN on several datasets, including MNIST, CIFAR-10. 
LFW and Kaggle Flowers. As indicated in Table I, this study 

offers methodological guidance for multi-optimizer evaluation 
and reinforces the need for robust comparative 
experimentation. 

The study [7] discusses the use of Variational 
Autoencoders (VAE) with the Nadam optimizer for IDS using 
NSL-KDD and UNSW-NB15. This finding demonstrates that 
optimization algorithms significantly influence IDS 
performance across different machine learning models, further 
justifying the present study’s focus on optimizer comparison. 

The study [8] evaluates DNN with the SGD optimizer 
using the NSL-KDD dataset. As summarized in Table I, this 
work highlights how optimizer selection affects DNN 
performance in IDS applications. 

Collectively, the studies outlined in Table I reinforce the 
importance of evaluating optimization algorithms and provide 
the theoretical and methodological foundation for this research. 
They emphasize the necessity of systematically comparing 
multiple optimizers on the same IDS task using a consistent 
DNN architecture and dataset. Furthermore, integrating these 
studies into the discussion allows the current research to clearly 
position its contributions within the broader body of literature 
and identify remaining gaps, particularly the lack of 
comprehensive optimizer comparisons for IDS using the 
UNSW-NB15 dataset. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

560 | P a g e  

www.ijacsa.thesai.org 

III. MATERIALS AND METHODS 

In this study, the researchers examine the use of Deep 
Neural Networks (DNN) for Intrusion Detection Systems 
(IDS) based on the UNSW-NB15 dataset by analyzing the 
performance of several optimization algorithms, including 
SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, 
Adafactor, and Nadam. The primary focus of this work is to 
evaluate how these optimizers influence model convergence, 
accuracy, and stability when applied to DNN-based IDS. 

Previous research on DNNs for IDS has typically focused 
on exploring different network architectures or improving 
feature extraction techniques. However, studies that provide a 
systematic comparison of optimization algorithms within the 
same experimental setting are still limited. This research 
addresses that gap by offering a structured and comprehensive 
evaluation of multiple optimizers under identical conditions, 
enabling a clearer understanding of their relative effectiveness 
for intrusion detection tasks. Through this comparative 
analysis, the study contributes to the development of more 
efficient IDS models capable of responding to evolving cyber 
threats. 

A. UNSW-NB15 Dataset 

The UNSW-NB15 dataset was developed and published by 
the University of New South Wales in 2015. Since its 
introduction, this dataset has become one of the most important 
data sources in network security research. UNSW-NB15 
contains various categories of attacks that represent different 
types of threats that may occur in a real network environment. 
In addition, the dataset records the number of unique IP 
addresses involved during the simulation and data collection 
process, providing a comprehensive view of diverse network 
traffic characteristics. This dataset has been widely used to 
develop and evaluate intrusion detection techniques, as well as 
to assess the performance of various security algorithms [4]. 

TABLE II.   UNSW-NB15 DATASET  

Category Number of Attacks 

Normal 93000 

Analysis 2677 

Backdoor 2329 

DoS 16353 

Exploit 44525 

Fuzzers 24246 

Generic 58871 

Reconnaissance 13987 

Shellcode 1511 

Worms 174 

Total 257673 

As shown in Table II, the UNSW-NB15 dataset consists of 
nine major attack categories, including Normal, Analysis, 
Backdoor, DoS, Exploit, Fuzzers, Generic, Reconnaissance, 
Shellcode, and Worms, with a total of 257,673 attack instances. 
This distribution illustrates the broad coverage of cyberattack 
types contained in the dataset, making it suitable for 

performance evaluation of machine learning-based IDS 
models. 

The dataset provides a rich set of features extracted from 
packet headers, protocol information, connection duration, 
transferred bytes, and many other attributes. These features 
enable detailed analysis of network behavior and support the 
development of more effective intrusion detection models. 
With this level of feature diversity, researchers can perform 
thorough data preprocessing, identify critical traffic patterns, 
and develop advanced intrusion detection techniques using 
machine learning approaches such as Deep Neural Networks 
(DNN). The features included in the UNSW-NB15 dataset 
serve as an essential foundation for building, training, and 
validating IDS models in contemporary cybersecurity research. 

B. Deep Neural Network 

Deep Neural Networks (DNN) incorporate one or more 
hidden layers between the input and output layers of an 
artificial neural network. These hidden layers enable the model 
to learn complex patterns and relationships within the dataset. 
During the learning process, the DNN iteratively adjusts its 
parameters to minimize the difference between predicted 
outputs and actual targets. This optimization process involves 
propagating input data through the network, generating 
predictions, comparing them with the true labels, and 
calculating the resulting error. Using appropriate optimization 
algorithms, the network updates its parameters to reduce this 
error and improve overall performance [6]. 

 
Fig. 1. DNN architecture. 

Fig. 1 illustrates the general architecture of a DNN. Each 
layer in a DNN performs specific transformations on the input 
data, gradually extracting higher-level features as the 
information passes through the network. These layers consist 
of interconnected neurons, where each neuron computes a 
weighted sum of its inputs and applies an activation function to 
introduce non-linearity into the model. This nonlinear 
transformation allows DNNs to learn complex and abstract 
representations from data, making them highly effective for 
tasks such as image recognition, video analysis, and intrusion 
detection [7]. 

The design of the hidden layers plays a crucial role in 
determining the performance of a DNN. Factors such as the 
number of hidden layers, the number of neurons in each layer, 
and the activation functions used have a direct impact on the 
model’s ability to learn and generalize. In the context of 
Intrusion Detection Systems (IDS), it is essential to consider 
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how modifications to the hidden layer structure may influence 
the model’s responsiveness to changing network environments 
and evolving attack patterns [8]. 

C. Optimization Algorithms 

The selection of an optimization algorithm for a neural 
network is one of the most important steps in the process of 
developing an effective and efficient model. With the wide 
variety of algorithms available, the right choice can make a big 
difference in model performance and accuracy. One of the key 
factors in choosing an algorithm is understanding the 
characteristics of the data and the task at hand. Each algorithm 
has its own advantages and disadvantages and is suitable for 
certain types of problems. 

The use of optimization algorithms in Deep Neural 
Networks (DNN) can affect performance, convergence speed, 
and even the possibility of the resulting model. Several factors 
that need to be considered in selecting an algorithm include the 
type of problem being faced, data size, network architecture, 
and available computing resources. In this study, we compare 
the performance of different optimization algorithms on the 
same task using the same model and dataset. 

D. Stochastic Gradient Descent (SGD) 

The Stochastic Gradient Descent (SGD) optimization 
algorithm is commonly used in training Deep Neural Networks 
(DNN). This algorithm works by iterating through the training 
dataset and updating the model parameters based on the 
gradient of the loss function estimated from a number of 
samples (usually a batch) at each iteration [9]. In DNN, SGD 
updates the weights and biases of the neural network to 
minimize the value of the loss function produced by the 
network on the training data. The SGD algorithm can be a 
simple algorithm and can be successfully used in machine 
learning models [10]. 

E. Adagrad  

The AdaGrad optimization algorithm individually adjusts 
the learning rate of model parameters. A rapid decrease in 
learning rate occurs for parameters with the largest loss partial 
derivatives, while parameters with small partial derivatives 
experience a relatively small decrease in learning rate, which is 
implemented by utilizing all historical squared gradient values. 
In general, for some learning models, these algorithms work 
well for simple quadratic problems but often stop too early 
when training neural networks [11]. 

Adaptive Gradient (AdaGrad) uses a temporal history of 
gradient updates to improve convergence speed and reduce 
reliance on manually tuning learning rates, making it a popular 
choice for Deep Neural Network (DNN) optimization. The 
algorithm adaptively updates the learning rate to enable 
accelerated convergence without the effort of adjusting the 
learning rate. Therefore, this method is a popular, ready-to-use 
choice for DNN optimization. The Stochastic Gradient Descent 
(SGD) optimization algorithm is commonly used in training 
[12]. 

F. AdaDelta 

Adaptive Delta (Adadelta) uses model parameters with 
individually determined learning rates. The learning rate in 

Adadelta decreases dynamically over time. This concept differs 
from many other optimization algorithms that use a fixed or 
linearly decreasing learning rate. In Adadelta, this decrease in 
learning speed occurs gradually until it finally reaches a point 
where the learning process cannot continue any further. This 
reduction in learning rate can be an important factor in 
maintaining model stability and convergence, especially in the 
case of large and complex data sets. By adaptively adjusting 
the learning rate, Adadelta helps minimize the risk of getting 
stuck in undesirable local minimum and increases the chances 
of finding better solutions globally [13]. 

G. RMSProp 

Root Mean Square Propagation (RMSProp) with 
momentum updates parameters by applying momentum to the 
rescaled gradient. RMSProp sets the learning rate by reducing 
it by the root mean square value of the gradients accumulated 
from previous updates. In RMSProp, the learning rate is 
reduced to a small value, allowing updates to be automatically 
adjusted to approach the local minimum. RMSProp performs 
better in a nonconvex setting by converting the gradient 
accumulation into an exponentially weighted moving average. 
RMSProp uses an exponentially decreasing moving average to 
ignore the history of past extreme points so that it can quickly 
converge after encountering a convex bowl [14]. 

H. Adam 

Adaptive Moment Estimation (Adam) [11], [15] is one of 
the most widely used optimization algorithms in deep learning 
by calculating individual adaptive learning rates for different 
parameters of the first and second gradient moment estimates. 
Adam combines the advantages of AdaGrad, which works well 
with sparse gradients, and RMSProp, which works well in 
online and non-stationary settings. Additionally, Adam 
includes a bias correction in the first and second moment 
estimates to account for their initialization. 

Adam requires little adjustment to the learning rate and is 
easy to implement, and does not change as the gradient 
diagonal scale changes. Adam is also computationally efficient 
and requires little memory. Additionally, Adam is suitable for 
non-stationary purposes and problems with very noisy and 
sparse gradients. Adam combines the advantages of RMSProp 
and momentum. Adam [14] is often used as a replacement for 
traditional stochastic gradient reduction methods that 
dynamically update the learning rate for each parameter and 
are considered computationally efficient with low memory 
requirements. Mean Square Propagation (RMSProp) with 
momentum updates parameters by applying momentum to the 
rescaled gradient. 

I. AdaMax 

AdaMax [15] is a development of the Adam optimization 
algorithm, which takes the basis of the infinity norm. The 
AdaMax algorithm starts by calculating the gradient against the 
stochastic objective, then estimating the first moment bias, and 
calculating the infinite norm is then weighed exponentially. 
Biased first moment estimation is a method to estimate the 
average gradient at each time step, while the exponentially 
weighted infinity norm is used to measure the magnitude of the 
largest gradient at each time step. Parameter adjustments in 
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Adamax are carried out by considering the biased first moment 
estimates as well as the exponentially weighted infinite norm. 
AdaMax can help improve the efficiency and performance of 
optimization algorithms, especially in machine learning 
contexts involving complex models with many parameters. In 
[16], AdaMax's performance is superior in numerical function 
optimization in model learning for image classification. 

J. Adafactor 

Adafactor [17] simply maintains the average number of 
moves per row and per column and estimates the second 
moment per parameter based on this number. With this 
approach, Adafactor efficiently updates model parameters by 
considering information from simplified exponential moving 
averages, i.e., only per-row and per-column calculations. This 
allows Adafactor to have fast and efficient performance in 
optimizing models, especially on large-scale problems or in 
deep learning contexts where model complexity and data 
volume are very high. The simplicity of the Adafactor 
approach allows it to be implemented easily and can be applied 
in a variety of learning models. 

K. Nadam 

Nesterov-accelerated adaptive momentum estimation 
(Nadam) [18] simplifies the Nesterov acceleration to 
approximate the first moment of the Adam gradient. But the 
acceleration does not use any extrapolated point gradients. The 
Nadam approach indeed simplifies the acceleration process in 
the Adam method by focusing on estimating the first moment 
of the gradient. The acceleration [19] implemented in Nadam 
does not consider the gradients of the extrapolated points, 
which may reduce the effectiveness of the algorithm in 
adapting the learning steps. Additionally, theoretical 
deficiencies in guaranteeing convergence can lead to 
uncertainty in the performance and stability of algorithms 
across different modeling conditions and datasets. 

L. Methodology 

A clear and well-documented research methodology is 
essential for ensuring the reliability, validity, and 
reproducibility of a study. By presenting a systematic 
approach, this research provides strong theoretical and practical 
contributions that can support further academic development 
and practical implementation in the field of intrusion detection 
systems. A transparent methodology also increases confidence 
in the findings and strengthens the conclusions drawn from the 
analysis. 

The overall method used in this study is illustrated in 
Fig. 2, which outlines the sequential stages of the research 
process. 

This study begins by using the UNSW-NB15 dataset as the 
primary input for the intrusion detection system. A data 
preprocessing phase is then conducted to ensure data quality 
and integrity. This includes cleaning, normalizing, and 
preparing the dataset for subsequent modeling stages. After 
preprocessing, a Deep Neural Network (DNN) is employed to 
analyze the processed data. DNNs are widely recognized for 
their capability to learn complex and nonlinear patterns, 
making them highly effective for tasks related to network 
security and intrusion detection. 

 
Fig. 2. Research methodology. 

Following the implementation of the DNN model, several 
optimization algorithms are evaluated to assess their impact on 
training performance and detection accuracy. Evaluation 
metrics are used to measure each optimizer’s effectiveness in 
improving model learning outcomes. Finally, ANOVA analysis 
is performed to determine whether significant differences exist 
among the optimization algorithms tested. This statistical 
approach [31] helps identify which optimizers perform better 
and provides insights into their suitability for intrusion 
detection applications. 

1) Data preprocessing: Data preprocessing was carried 

out to ensure the quality and integrity of the dataset used in 

this analysis. This process involves removing empty or 

incomplete entries because missing values may interfere with 

the analytical process and reduce the accuracy of the results. 

Irrelevant or unnecessary data was also eliminated to simplify 

the dataset and maintain analytical focus. Additionally, 

duplicate entries were identified and removed to prevent 

distortion and ensure that every instance in the dataset is 

unique and relevant to the study. 

Next, one-hot encoding was applied to categorical features 
to convert them into binary representations suitable for the 
model. This step is essential to ensure that the model can 
correctly interpret and process categorical variables. 

 
Fig. 3. Step-by-step data preprocessing. 

Fig. 3 illustrates the sequential steps of the data 
preprocessing stage. Data normalization was then applied to 
adjust the scale of numerical features, so they fall within a 
uniform range. This helps to improve model convergence and 
prevents certain features from dominating the learning process 
due to differences in scale. After normalization, the dataset was 
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divided into three subsets: training data, testing data, and 
validation data. This partitioning is crucial for evaluating 
model performance on unseen data and ensuring that the results 
are validated objectively. 

By conducting this comprehensive preprocessing 
procedure, this study ensures that the data used in the analysis 
is clean, relevant, and properly prepared to support effective 
model development and performance evaluation. 

2) DNN: Deep Neural Networks (DNN) are utilized in this 

research to analyze the UNSW-NB15 dataset. A DNN is a 

neural network architecture capable of learning increasingly 

complex feature representations through multiple layers of 

interconnected neurons. These layers enable the model to 

capture hierarchical patterns in the data, allowing it to 

understand both low-level and high-level characteristics that 

are essential for intrusion detection. 

A DNN consists of sequential processing layers, starting 
from the input layer and continuing through multiple hidden 
layers before reaching the output layer. Each neuron in a 
hidden layer receives inputs from neurons in the previous 
layer, applies a weight to each input, and computes a weighted 
sum followed by an activation function. Through this 
multilayer transformation, the network gradually converts raw 
input data into more abstract representations. As information 
flows through deeper layers, the DNN becomes capable of 
recognizing complex attack patterns, subtle anomalies, and 
relationships that are not easily detected through traditional 
analytical methods. 

By using DNN, this study can identify intricate attack 
behaviors and subtypes that may not be captured by 
conventional machine learning models. DNN architecture also 
supports adaptability by enabling the model to adjust to 
evolving intrusion patterns over time. This contributes to 
improving detection accuracy and reducing false positives, 
thereby enhancing the overall performance of the IDS. 

The DNN architecture used in this research is presented in 
Table III, which outlines the model’s hyperparameters, 
including the number of hidden layers, number of neurons, 
activation functions, number of epochs, and batch size. These 
settings form the basis for training the model and evaluating 
the performance of the optimization algorithms examined in 
this study. 

TABLE III.  DNN ARCHITECTURE 

Hyperparameter Value/ Type 

Hidden Layers 3 

Neurons 100 

Hidden Layer Activation Relu 

Output Layer Activation Softmax 

Epochs 10 

Batch Size 100 

3) Evaluation metric on selective optimizer algorithms: 

The metric evaluation stage in Selective Optimizer Algorithms 

assesses the performance of several optimization algorithms in 

the Intrusion Detection System (IDS). The evaluation metrics 

used in this research include accuracy and loss. This metric 

helps evaluate how well the optimization algorithm can learn 

complex patterns in IDS data and make accurate predictions. 

So you can identify the most suitable and effective 

optimization algorithm for use on IDS. Choosing the right 

optimization algorithm can improve the performance and 

reliability of the IDS in detecting network security threats in a 

timely and accurate manner. Therefore, this evaluation plays 

an important role in developing a more effective and 

responsive network security system. 

4) ANOVA test: Analysis of Variance (ANOVA) [30] is a 

statistical technique used to compare data between three or 

more different groups. ANOVA considers between-group 

variation and within-group variation. Between-group variation 

measures how large the differences in the means are between 

different groups, while within-group variation measures how 

large the variation in the values within each group. If the 

variation between groups is much greater than the variation 

within groups, then there is an indication that there are 

significant differences between the groups. ANOVA can be 

used to analyze data performance from various optimizer 

algorithms. For example, if there are eight optimizer 

algorithms being evaluated, ANOVA can be used to determine 

whether there are significant differences in overall 

performance between the algorithms. This research will 

analyze significant differences in performance between the 

optimized optimizer algorithms tested. 

IV. RESULTS AND DISCUSSION 

A. SGD Result 

Stochastic Gradient Descent (SGD) is one of the most 
widely used optimization techniques for training machine 
learning models, particularly in artificial neural networks and 
Deep Neural Networks (DNN) [20]. SGD optimizes the 
objective function by following the gradient direction with 
respect to the model parameters. Its primary goal is to 
minimize the prediction error by iteratively updating the 
parameters based on the gradient of the loss function computed 
from small batches of training data. 

In this research, the SGD optimizer is applied to train the 
DNN model using the UNSW-NB15 dataset. Fig. 4 presents 
the training and validation accuracy obtained during the model 
training process, while Fig. 5 shows the corresponding training 
and validation loss curves. 

The results indicate that both training and validation 
accuracy generally increase with each epoch, demonstrating 
that the model progressively improves its ability to correctly 
classify intrusion data. Meanwhile, the loss curves in Fig. 5 
show a consistent decrease across epochs for both training and 
validation datasets. A decreasing loss value reflects better 
model adaptation to the data because the loss function 
measures the discrepancy between predicted outputs and actual 
labels. 
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Fig. 4. Training and validation accuracy for SGD. 

 
Fig. 5. Training and validation loss for SGD. 

This gradual decline in loss indicates effective 
convergence, meaning the model is successfully refining its 
parameters to reduce prediction errors. The behavior of the loss 
curves also suggests that SGD is performing efficiently in 
updating parameters based on the gradients calculated from 
mini-batches of data. This characteristic enables faster updates 
and supports the model in learning more generalizable patterns 
from the dataset. 

B. AdaGrad Result 

The AdaGrad algorithm adaptively updates the learning 
rate to accelerate convergence without requiring manual tuning 
efforts [21]. This algorithm automatically adjusts the learning 
rate during the training process, enabling each parameter to be 
updated based on its historical gradient information. As the 
model approaches an optimal solution, AdaGrad dynamically 
modifies the learning rate to ensure efficient parameter 
optimization. 

Fig. 6 presents the training and validation accuracy for 
AdaGrad, showing how the model’s performance improves 
over successive epochs. AdaGrad enables faster learning in the 
early stages by assigning larger updates to infrequent features, 
resulting in a noticeable improvement in accuracy. 

Fig. 7 illustrates the training and validation loss for 
AdaGrad, which consistently decreases as the number of 
epochs increases. A decreasing loss value indicates that the 
model is learning effectively and reducing prediction errors 
over time. 

 
Fig. 6. Training and validation accuracy for AdaGrad. 

 
Fig. 7. Training and validation loss for AdaGrad. 

The graphs of training and validation accuracy and loss 
provide a clear representation of how the model evolves across 
iterations. The increase in accuracy and the decrease in loss 
demonstrate that the model progressively improves and moves 
closer to an optimal solution. This behavior highlights 
AdaGrad’s ability to adjust the learning rate dynamically for 
each parameter, thereby enhancing convergence and improving 
performance during the training process. 

C. AdaDelta Result 

Adadelta makes smaller adjustments to frequently updated 
parameters and larger adjustments to parameters that are 
updated less frequently [22]. During the model training 
process, Adadelta adaptively regulates the magnitude of 
parameter updates based on how often each parameter changes. 
When a parameter is updated frequently, Adadelta applies 
smaller adjustments to maintain model stability, as minor 
refinements are typically sufficient to improve performance. 

Fig. 8 shows the training and validation accuracy obtained 
using the Adadelta optimizer. As illustrated in Fig. 8, the 
accuracy for both training and validation increases consistently 
across epochs, indicating stable and sustainable convergence. 
This demonstrates that the Adadelta algorithm effectively 
guides the model toward improved accuracy by adaptively 
optimizing the learning rate based on parameter-specific 
characteristics. 
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Fig. 8. Training and validation accuracy for AdaDelta. 

Fig. 9 presents the training and validation loss for the 
Adadelta optimizer. The consistent decline in both training and 
validation loss indicates that the model continues to learn 
effectively over time. The stable reduction in loss confirms that 
Adadelta successfully adjusts the learning rate and parameter 
updates, enabling efficient convergence. This pattern reflects 
the model’s increasing ability to learn from data and move 
closer to an optimal solution. 

 
Fig. 9. Training and validation loss for AdaDelta. 

D. RMSProp Result 

RMSProp is commonly used in training artificial neural 
network models to accelerate convergence and improve overall 
training performance by adaptively regulating the learning rate. 
In RMSProp, the learning rate is adjusted individually for each 
model parameter based on the exponential moving average of 
previous squared gradients [23]. This mechanism addresses the 
limitations of a fixed learning rate by automatically adapting 
the step size throughout the training process. 

Fig. 10 illustrates the training and validation accuracy 
produced by RMSProp. The graph shows that both training and 
validation accuracy fluctuate across epochs. Such instability 
may occur when the learning rate is excessively high, causing 
divergence, or too low, resulting in very slow convergence. 
Additionally, complex model architecture or many parameters 
can contribute to inconsistent learning behavior, as the model 
may struggle to capture stable patterns within the dataset. 

 
Fig. 10. Training and validation accuracy for RMSProp. 

Fig. 11 presents the training and validation loss curves for 
RMSProp. The results indicate that the training and validation 
loss increase steadily across epochs, while the accuracy values 
fluctuate. This pattern suggests that the model is experiencing 
overfitting. Overfitting occurs when the model becomes too 
closely aligned with the training data and loses its ability to 
generalize to unseen data, such as validation samples. One of 
the common causes of overfitting is excessive model 
complexity, particularly in deep neural network architectures 
with large capacity [24]. 

 

Fig. 11. Training and validation loss for RMSProp. 

E. Adam Result 

Adam (Adaptive Moment Estimation) is an optimization 
algorithm designed to combine the advantages of momentum 
methods and adaptive learning rate techniques [25]. Adam 
utilizes the accumulated gradient values from previous 
iterations, weighted by a decay factor, which represents the 
principle of momentum. Momentum provides acceleration 
during optimization by considering both the direction and 
magnitude of parameter changes from earlier iterations. By 
incorporating historical gradient information, the model can 
move more efficiently toward the optimal solution. 

Additionally, Adam uses the squared gradient from 
previous updates to estimate variance or fluctuations in the 
gradient. This mechanism enables Adam to adjust the learning 
rate adaptively for each parameter. As a result, parameters with 
high variance receive smaller updates, while those with low 
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variance receive larger updates. This balance helps stabilize the 
learning process and prevents drastic fluctuations in parameter 
adjustments. 

Adam uses the first-order derivative of the cost function to 
update parameters, providing low computational complexity 
and making it highly efficient. By combining momentum-
based gradient estimation with root mean square (RMS) 
gradient estimation, Adam generates parameter updates with an 
automatically adjusted learning rate [25]. This adaptive 
adjustment ensures that parameter updates remain controlled 
and appropriate throughout the training process. 

Fig. 12 shows the training and validation accuracy 
produced for Adam. The results indicate stable accuracy 
improvement across epochs during both training and 
validation. This demonstrates Adam’s ability to adaptively 
modify the learning rate based on gradient information and 
previous parameter updates, ensuring smooth optimization 
progress. 

 
Fig. 12. Training and validation accuracy for Adam. 

Fig. 13 presents the training and validation loss for Adam. 
Both curves show a consistent reduction in loss, indicating 
effective learning and minimal fluctuations during the 
optimization process. Adam gradually reduces the learning rate 
as the model approaches the global minimum, preventing 
oscillations near the minimum and enabling more precise 
convergence. This behavior contributes to the stable accuracy 
gains and steady declines in loss across epochs. 

 
Fig. 13. Training and validation loss for Adam. 

By leveraging both momentum and RMS gradient 
estimates, Adam produces more consistent and reliable 
parameter updates compared to many traditional optimizers. 
This results in faster and more stable optimization, making 
Adam particularly effective for training deep neural networks. 
The performance observed in this study confirms Adam’s 
capability to handle complex optimization tasks efficiently, as 
reflected in the stable improvement of accuracy and consistent 
reduction of loss throughout the training and validation stages. 

F. Adamax Result 

The performance of the Adamax optimizer is considered 
strong in numerical function optimization compared to several 
other optimization algorithms [16]. Adamax is a variant of the 
Adam (Adaptive Moment Estimation) optimization method, 
designed to provide more stable parameter updates, especially 
when the magnitude of the gradient becomes very large. This 
characteristic enables Adamax to maintain steady convergence 
during the training of deep learning models. 

Fig. 14 shows the training and validation accuracy for the 
Adamax optimizer. Adamax demonstrates good performance 
compared to Adam, particularly in situations where the 
gradient moments are large, and Adam begins to show 
deviations from optimal updates. The Adamax method utilizes 
two core components, namely the gradient moment and the 
root mean square (rms) value of the gradient, to determine 
parameter adjustments. By incorporating both components, 
Adamax can generate more adaptive and stable parameter 
updates, which contribute to faster convergence in complex 
numerical optimization problems. 

 
Fig. 14. Training and validation accuracy for Adamax. 

However, in this study, the results indicate that Adam 
performs better than Adamax on the UNSW-NB15 dataset 
using DNN. This performance difference may occur because 
each dataset possesses unique distributions and structural 
patterns that influence model learning behavior. Additionally, 
the architecture of the DNN model employed in the experiment 
can also affect the relative performance of Adam and Adamax. 

Fig. 15 presents the training and validation loss for the 
Adamax optimizer. 
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Fig. 15. Training and validation loss for Adamax. 

G. AdaFactor Result 

The Adafactor optimization algorithm was developed to 
reduce the memory requirements of the AdaGrad method, 
particularly for training large language models [26]. Adafactor 
can operate efficiently by significantly minimizing additional 
memory usage without sacrificing performance. This is 
achieved by storing second-moment estimates using a 
compressed representation that exploits the structural 
properties of the parameter tensors. As a result, Adafactor 
enables the training of large-scale neural networks while 
alleviating memory constraints, which often become a limiting 
factor in complex model development. By maintaining strong 
optimization performance while reducing memory overhead, 
Adafactor offers a more resource-efficient solution in artificial 
intelligence research and large-scale model training. 

Fig. 16 presents the training and validation accuracy for 
Adafactor. The graph shows that accuracy increases steadily 
across epochs for both training and validation datasets. This 
consistent improvement indicates that Adafactor can adjust 
learning rates adaptively and perform stable parameter updates. 

 
Fig. 16. Training and validation accuracy for AdaFactor. 

Fig. 17 illustrates the training and validation loss for 
Adafactor. The figure shows a continuous and consistent 
decline in the loss function as training progresses. This stable 
reduction in loss demonstrates that the algorithm effectively 
manages the learning rate and updates model parameters 

efficiently throughout the training process. The combination of 
increasing accuracy and decreasing loss reflects the algorithm’s 
ability to support model convergence and maintain stability 
during training. 

 
Fig. 17. Training and validation loss for AdaFactor. 

H. Nadam Result 

Nadam was developed to address inconsistencies that may 
arise between momentum calculations and parameter updates 
in optimization algorithms [27]. In the Adam optimization 
algorithm, momentum is used to incorporate gradient 
information from previous iterations when determining 
parameter updates. However, inconsistencies may occur 
between the calculated momentum and the actual parameter 
adjustments performed during optimization. Nadam resolves 
this issue by integrating Nesterov momentum into Adam, 
resulting in more consistent and targeted parameter updates. 
This ensures that momentum contributes more reliably to the 
learning process, making the optimization pathway more stable 
and predictable while improving convergence. 

Fig. 18 illustrates the training and validation accuracy 
obtained using Nadam. The accuracy curves show a generally 
stable upward trend during the training and validation phases, 
indicating that Nadam effectively improves the model’s ability 
to learn patterns from the UNSW-NB15 dataset. The adaptive 
mechanism in Nadam allows the algorithm to fine-tune 
parameter updates more carefully, contributing to improved 
accuracy across epochs. 

 
Fig. 18. Training and validation accuracy for Nadam. 
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Fig. 19. Training and validation loss for Nadam. 

Fig. 19 presents the training and validation loss for Nadam. 
The results show a steady reduction in both training and 
validation loss values across epochs. This consistent decline 
suggests that the model continues to refine its predictions and 
minimize error during the learning process. The stability of the 
loss curves indicates that Nadam efficiently adjusts the learning 
rate and updates model parameters with a controlled trajectory, 
reducing the likelihood of sudden fluctuations. 

An important advantage of Nadam is its ability to produce 
consistent parameter updates while reducing the risk of 
overshooting, a condition in which large parameter changes 
cause the optimization process to move past the optimal point. 
By ensuring that updates are more controlled and directed, 
Nadam minimizes this risk. This contributes to a more reliable 
training process, leading to improved model stability and 
convergence. As a result, Nadam provides a robust alternative 
to Adam, particularly in cases where more precise parameter 
adjustments are needed. 

I. Comparison of Optimizer Algorithms 

In this research, a comparison was conducted among 
several commonly used optimization algorithms, including 
SGD (Stochastic Gradient Descent), RMSprop, Adam, 
Adadelta, Adagrad, Adamax, Adafactor, and Nadam. The 
objective of this study is to evaluate the relative performance of 
each algorithm in the context of model training, with particular 
focus on accuracy, stability, and convergence behavior. 

The results indicate that Adam provides the best overall 
performance. Its adaptive learning rate mechanism, which 
adjusts based on gradient information, enables faster 
convergence and consistently higher accuracy across epochs. 
Nadam is identified as the second-best performer due to its 
ability to address some limitations found in Adam, especially 
regarding momentum estimation and parameter update 
consistency. 

Fig. 20 presents the comparison of all optimization 
algorithms. Adadelta shows noticeably lower performance 
compared to the other algorithms. This performance 
degradation is partly attributed to its more complex 
hyperparameters, such as decay rate and epsilon, which require 
precise tuning. Incorrect hyperparameter settings may hamper 
its convergence speed and overall effectiveness, especially on 

complex datasets or architectures. Because Adadelta updates 
the learning rate based on accumulated past gradients, the 
learning process may become too slow or insufficiently 
responsive. 

 
Fig. 20. Comparison of optimizer algorithms. 

Fig. 21 illustrates the comparison of training accuracy. 
Across all algorithms, training accuracy improves significantly 
at each epoch. This consistent improvement demonstrates that 
the model continuously learns and generalizes the patterns 
present in the training data. The steady increase in accuracy 
suggests that none of the models exhibit symptoms of severe 
overfitting, as the learning process continues to progress in a 
stable manner without abrupt fluctuations. This also indicates 
that the adjustments made by each optimizer during training 
enable the network to better predict the correct labels from the 
training set. 

 
Fig. 21. Comparison of training accuracy. 

Fig. 22 shows the comparison of validation accuracy. 
Validation accuracy also improves across epochs for all 
algorithms except RMSprop. The inconsistent behavior of 
RMSprop indicates difficulty in adjusting the learning rate 
effectively when processing validation gradients. This may be 
due to its sensitivity to specific hyperparameter values, such as 
learning rate and decay rate. Improper settings can lead to 
unstable or slow convergence on the validation dataset. 
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Fig. 22. Comparison of validation accuracy. 

Fig. 23 depicts the comparison of training loss. All 
algorithms experience a steady decline in training loss at each 
epoch, demonstrating continual improvement in reducing 
prediction error during the learning process. A consistent 
decrease in training loss is a strong indication that the model is 
progressing well and learning meaningful representations from 
the data. 

Fig. 24 presents the comparison of validation loss across all 
optimizers. The validation loss decreases steadily across all 
algorithms except RMSprop. This decline indicates improved 
generalization capability to unseen data. RMSprop’s irregular 
behavior reinforces the earlier observation that this optimizer 
may struggle with gradient-based adjustments on validation 
data, especially under suboptimal hyperparameter 
configurations. 

The performance accuracy values for each optimizer used 
in this research are summarized in Table IV. 

J. ANOVA Test 

One method to compare classifiers is by using the Analysis 
of Variance (ANOVA) test to evaluate the accuracy produced 
by each classifier. ANOVA determines whether there are 
statistically significant differences between the accuracies 
generated by the classifiers tested [28]. In this study, ANOVA 
is used to evaluate whether there are significant performance 
differences among the optimization algorithms applied to a 

DNN-based classifier. ANOVA assesses the equality of 
multiple means by comparing the variance between groups 
with the variance within groups [29]. 

Statistical hypothesis testing was conducted to determine 
whether significant differences exist among the optimization 
algorithms. ANOVA evaluates how the variation between 
groups compares with the variation within groups. A 
statistically significant result, indicated by a p-value lower than 
the predetermined significance level, supports the decision to 
reject the null hypothesis. The hypotheses used in this research 
are presented in Table V. 

 
Fig. 23. Comparison of training loss. 

 
Fig. 24. Comparison of validation loss. 

TABLE IV.  VALIDATION ACCURACY OF OPTIMIZER ALGORITHMS 

Epoch SGD RMSProp Adam AdaDelta AdaGrad Adamax AdaFactor Nadam 

1 0.976316 0.952194 0.97721 0.969927 0.973152 0.976105 0.977492 0.975356 

2 0.97685 0.956142 0.97814 0.971505 0.974818 0.977068 0.978824 0.976458 

3 0.974413 0.959513 0.978056 0.972206 0.975259 0.977473 0.97909 0.976854 

4 0.976387 0.964044 0.978818 0.972792 0.975564 0.977904 0.979236 0.977369 

5 0.975956 0.967068 0.979625 0.973301 0.975755 0.978536 0.979395 0.976925 

6 0.976027 0.968543 0.979262 0.973612 0.975849 0.978798 0.9798 0.977862 

7 0.97369 0.969454 0.979917 0.97381 0.976354 0.979405 0.98038 0.978523 

8 0.97604 0.970086 0.980251 0.973975 0.976458 0.979025 0.98015 0.978601 

9 0.974834 0.970468 0.979473 0.974241 0.976332 0.979482 0.980358 0.978403 

10 0.973962 0.970753 0.980529 0.974316 0.976779 0.979703 0.98016 0.978643 
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TABLE V.  RESEARCH HYPOTHESIS 

Hypothesis Description 

H0 

There is no significant difference in performance between the 

tested optimizer algorithms in detecting intrusions on systems 

using DNN. 

H1 

There is a significant difference in performance between the 

tested optimizer algorithms in detecting intrusions on systems 

using DNN. 

Table V summarizes the null hypothesis (H0) and the 
alternative hypothesis (H1). The null hypothesis states that 
there is no significant difference in the performance of the 
tested optimizers in detecting intrusions using DNN. The 
alternative hypothesis states that a significant difference exists. 
These hypotheses guide the statistical analysis to identify 
whether the collected data support the null or the alternative 
hypothesis. If the results show significant differences between 
groups, the null hypothesis is rejected. 

After performing ANOVA on the optimizer performance 
data, based on the Validation Accuracy of Optimizer 
Algorithms, the results were obtained in the form of F-statistic 
and p-values. If the p-value is smaller than the significance 
level, typically α = 0.05, the null hypothesis is rejected. This 
means that at least two optimization algorithms differ 
significantly in performance. This pattern indicates that 
choosing the appropriate optimizer can have a meaningful 
impact on the performance of an intrusion detection system. If 
the p-value is greater than α, the null hypothesis cannot be 
rejected, meaning the evidence is insufficient to confirm a 

significant difference. This lack of significance may be due to 
small sample sizes or low variability in the data. 

A high F-statistic value in an ANOVA test indicates that 
the variation between group means is greater than the variation 
within the groups. A higher F-value reflects real performance 
differences among the optimization algorithms tested. This is 
important when choosing an optimal algorithm for intrusion 
detection, as performance differences may influence the 
effectiveness of the system. High F-values also highlight the 
need for further analysis, such as pairwise comparisons, to 
better understand which algorithms differ and to what extent. 
This information can support decision-making in future 
research and system implementation. 

The results of the ANOVA test conducted on the UNSW-
NB15 dataset using the DNN model are presented in Table VI. 
This test evaluates whether significant performance differences 
exist among the optimization algorithms. 

Based on Table VI, the ANOVA analysis produced an F 
value of 34.68717049, while the F-critical value calculated at a 
significance level of α = 0.05 was 2.139655512. Since the F 
value exceeds the F-critical value, the null hypothesis is 
rejected. This confirms that significant performance differences 
exist among the tested optimization algorithms. These results 
support the alternative hypothesis, which states that the 
optimization algorithms differ significantly in detecting 
intrusions using DNN. The implication is that selecting the 
appropriate optimization algorithm can substantially enhance 
the performance of intrusion detection systems. 

TABLE VI.  RESULT OF ANOVA TEST 

ANOVA: Single Factor      

SUMMARY       

Groups Count Sum Average Variance   

RMSprop 10 9,754394 0.9754394 1,2869E-06   

Adadelta 10 9,648265 0.9648265 4,4301E-05   

Nadam 10 9,791281 0.9791281 1,12562E-06   

Adagrad 10 9,729685 0.9729685 1,9651E-06   

SGD 10 9,75632 0.975632 1,11424E-06   

Adamax 10 9,783499 0.9783499 1,3964E-06   

Adam 10 9,794885 0.9794885 7,99467E-07   

Adafactor 10 9,774994 0.9774994 1,21769E-06   
       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 0.001614882 7 0.000230697 34,68717049 1,20649E-20 2,139655512 

Within Groups 0.000478858 72 6,6508E-06    

       

Total 0.00209374 79     
 

V. CONCLUSIONS AND LIMITATIONS 

Based on the experimental findings, the Adam optimizer 
demonstrated the best overall performance on the UNSW-
NB15 dataset when applied to a Deep Neural Network-based 
Intrusion Detection System. Adam consistently produced stable 

improvements in accuracy and steady reductions in loss across 
epochs, indicating its effectiveness in accelerating convergence 
and maintaining model stability. Nadam ranked as the second-
best performer, while Adadelta yielded the lowest accuracy 
among the evaluated algorithms. RMSprop exhibited 
noticeable fluctuations in validation accuracy and validation 
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loss, suggesting that it may require more careful 
hyperparameter tuning or may be less suitable for certain IDS 
configurations. 

The results from the ANOVA analysis provide strong 
statistical validation of these observations. The obtained F-
statistic value of 34.687, which exceeds the critical value of 
2.139 at α = 0.05, confirms that significant performance 
differences exist across the eight optimization algorithms. 
These findings highlight the importance of optimizer selection 
as a critical determinant of the overall performance and 
reliability of DNN-based intrusion detection systems. 

While Adam and Nadam emerged as promising candidates 
for IDS implementation, several limitations must be 
considered. This study relied on a single dataset and did not 
incorporate cross-validation or extensive hyperparameter 
optimization, which may influence generalizability. 
Additionally, the evaluation focused primarily on accuracy and 
loss, without including broader IDS performance metrics such 
as precision, recall, F1-score, false positive rate, or AUC. 
Incorporating these metrics would provide a more complete 
assessment of the practical effectiveness of each optimization 
method in real-world intrusion detection scenarios. 

To advance future research, several directions are proposed. 
Expanding the experimental framework to include multiple 
datasets with different traffic and attack characteristics would 
strengthen generalizability. More comprehensive 
hyperparameter optimization and the inclusion of additional 
performance metrics would support more rigorous evaluation 
and facilitate practical deployment. Further exploration of 
optimizer behavior across different deep learning architectures, 
operational environments, and adversarial conditions may also 
offer deeper insight into the stability, robustness, and 
adaptability of each algorithm. Overall, this study contributes 
to the growing body of knowledge on optimization strategies 
for IDS and underscores the critical role of optimizer selection 
in improving cybersecurity resilience. 
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