(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

Optimizer Algorithms Analysis for Intrusion
Detection System on Deep Neural Network

H. A. Danang Rimbawa, Agung Nugroho, Muhammad Abditya Arghanie

Cyber Defense Engineering Study Program-Faculty of Science and Defense Technology,
The Republic of Indonesia Defense University, Bogor, Indonesia

Abstract—Intrusion Detection Systems (IDS) play a critical
role in identifying potential threats and intrusions in real-time
within information technology infrastructures. The development
of IDS using Deep Neural Networks (DNN) with the UNSW-
NB15 dataset has shown significant potential in improving attack
classification accuracy. However, the performance of the DNN-
based IDS models is highly dependent on the choice of
optimization algorithm. This study compares the performance of
several commonly used optimizers in DNN training, including
SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Adafactor,
and Nadam. The quantitative analysis demonstrates that Adam
achieves the highest accuracy among all optimizers tested, while
Adadelta performs the worst. RMSprop shows instability in both
validation accuracy and loss convergence, indicating challenges
in adapting the learning rate for consistent learning. The
ANOVA analysis yields an F-statistic of 34.687, which is greater
than the F-critical value of 2.140 at a significance level of a =
0.05. This result confirms a statistically significant difference in
performance among the tested optimization algorithms. These
findings provide valuable insights for selecting the most
appropriate optimizer to enhance the performance of DNN-based
intrusion detection systems. Furthermore, this research
contributes to the existing literature by offering a comprehensive
comparative evaluation of optimizers, supporting future studies
in improving IDS optimization strategies.

Keywords—Deep Neural Networks (DNN); Intrusion Detection
System (IDS); optimization algorithms; UNSW-NB15 dataset

l. INTRODUCTION

In today's rapidly evolving digital era, information
technology infrastructure has become increasingly vulnerable
to sophisticated and complex cyber-attacks. Cyber threats take
many forms, including malware, phishing, and targeted
intrusions that compromise sensitive data and critical systems.
Intrusion Detection Systems (IDS) play a vital role in
safeguarding networks by continuously monitoring traffic,
identifying suspicious behavior, and providing timely alerts.
Effective IDS implementation significantly enhances an
organization’s ability to detect, prevent, and respond to cyber-
attacks swiftly and accurately.

Advancements in IDS technologies have enabled the
development of more intelligent and adaptive solutions.
Modern IDS increasingly integrates machine learning [2] and
deep learning to detect attack patterns that traditional rule-
based or signature-based systems may overlook. As
organizations become more dependent on digital
infrastructures and online services, artificial intelligence (Al)
has emerged as an essential component in strengthening

cybersecurity defenses. Al-driven IDS solutions enable rapid
and precise detection, allowing organizations to proactively
mitigate threats before substantial damage occurs.

Previous studies have explored the use of artificial
intelligence, particularly Deep Neural Networks (DNN), within
the IDS frameworks. Aleesa et al. demonstrated promising
results using DNNs optimized with Adam on the UNSW-NB15
dataset, which contains a diverse set of modern cyber-attack
scenarios and is widely used for benchmarking IDS
performance. However, the effectiveness of DNN-based IDS
heavily depends on the choice of optimization algorithm
employed during training, which directly influences
convergence stability, classification accuracy, and model
robustness.

Although several optimization algorithms have been
evaluated, existing studies often focus on limited contexts, such
as specific datasets, single optimizers, or models other than
IDS. For example, Dogo et al. evaluated various optimization
methods within CNN architectures; however, their work does
not provide a comprehensive comparison tailored specifically
for IDS using deep learning, nor does it include statistical
validation to confirm whether performance differences among
optimizers are significant. This highlights a clear gap in the
literature, in which no study has systematically examined
multiple optimizers on IDS with DNN while applying rigorous
statistical methods.

To address this gap, this research conducts a systematic
comparative analysis of eight optimization algorithms, namely
Stochastic Gradient Descent (SGD), Root Mean Square
Propagation (RMSprop), Adaptive Moment Estimation
(Adam), Adadelta, Adagrad, Adamax, Adafactor, and
Nesterov-accelerated Adam (Nadam), applied to a DNN-based
IDS trained on the UNSW-NB15 dataset. The novelty of this
work lies in its quantitative approach, including the use of
ANOVA to statistically validate whether there are meaningful
differences in optimizer performance. By integrating empirical
testing and formal statistical analysis, this study provides a
deeper understanding of how optimizer selection affects IDS
accuracy, stability, and convergence behavior.

The contributions of this study are threefold. First, it
provides the most comprehensive statistical comparison to date
of commonly used optimization algorithms within a DNN-
based IDS framework. Second, the study identifies the most
suitable optimization algorithm for the UNSW-NB15 dataset,
offering practical guidance for cybersecurity researchers and
practitioners seeking to enhance IDS performance. Third, the

558 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

findings demonstrate the substantial impact of optimizer
selection on IDS design and deployment, contributing valuable
insights for strengthening proactive cybersecurity strategies in
response to increasingly sophisticated cyber threats.

Il. RELATED WORKS

In this section, the researchers discuss the application of
Deep Neural Networks (DNN) in Intrusion Detection Systems
(IDS) by analyzing several optimization algorithms, including
SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax,
Adafactor, and Nadam. This study focuses on evaluating and
comparing the performance of these optimization algorithms to

Vol. 16, No. 11, 2025

architectures and learning strategies aimed at improving
detection accuracy and computational efficiency. Collectively,
these studies contribute to the development of more robust and
adaptive IDS models capable of addressing evolving cyber
threats.

To provide a structured overview of prior research, Table |
summarizes relevant studies, including the models used,
optimizers applied, datasets utilized, and their relevance to the
present work. The inclusion of this table ensures that related
works are not only listed but also explicitly integrated into the
discussion, in accordance with the reviewer’s comments.

enhance the effectiveness of DNN-based IDS. Previous
research on DNN for IDS has also examined various
TABLE I. SUMMARY OF RELATED WORKS
Author Model Optimizer Dataset Relevance
The paper discusses the use of CNN in IDS using the UNSW-NB15
[1] CNN N/A UNSW-NB15 dataset, so that it can be used as a reference for using the UNSW-NB15
dataset in research.
: The paper discusses the use of DNN with the Adam optimizer on IDS
(3] DNN Adam UNSW-NB15 using the UNSW-NB15 dataset, which makes it relevant to this study.
vSGD, SGDw, SGDnw, | Cats and Dogs, The paper discusses the comparison of optimization algorithms for image
[5] CNN ADAGrad, RMSProp, ADAM, | Natural Images, and | classification using CNN, so that it can be used as a reference for
ADADelta, ADAMax, NADAM Fashion MNIST comparing optimization algorithms on IDS in this research.
vSGD, SGDw, SGDnwm, | MNIST, CIFAR-10. | The paper discusses the comparison of optimization algorithms for image
[6] CNN ADAGrad, RMSProp, ADAM, | LFW, Kaggle | classification using CNN, so that it can be used as a reference for
ADADelta, ADAMax, NADAM Flowers comparing optimization algorithms on IDS in this research.
The paper discusses the use of VAE with the NADAM optimizer on IDS
NSL-KDD, using the UNSW-NB15 dataset, so it can be used as a reference in this
7] VAE NADAM UNSW-NB15 research.
The paper discusses the use of DNN with the SGD optimizer on IDS
[8] DNN SGD NSL-KDD using the NSL-KDD dataset, so that it can be used as a reference in
research.

As shown in Table I, [1] explores the use of Convolutional
Neural Networks (CNN) for IDS using the UNSW-NB15
dataset. This study highlights the suitability of UNSW-NB15
for intrusion detection research due to its comprehensive
coverage of modern cyberattack types. The relevance of [1]
lies in validating the dataset selection adopted in the present
research.

The study [3], also summarized in Table I, examines the
use of DNN with the Adam optimizer on the UNSW-NB15
dataset. Insights from [3] support the need to evaluate multiple
optimizers, as Adam has shown promising performance but has
not been compared extensively against other optimization
algorithms in a standardized IDS environment.

The study [5] provides a comparative analysis of
optimization algorithms for CNN-based image classification
tasks across multiple datasets. Although this domain differs
from IDS, the comparative methodology is relevant and
demonstrates the importance of understanding optimizer
behavior across various learning contexts. This serves as a
conceptual foundation for evaluating optimization algorithms
within IDS, which is the core objective of the present study.

Similarly, [6] compares multiple optimization algorithms
using CNN on several datasets, including MNIST, CIFAR-10.
LFW and Kaggle Flowers. As indicated in Table I, this study

offers methodological guidance for multi-optimizer evaluation
and reinforces the need for robust comparative
experimentation.

The study [7] discusses the wuse of Variational
Autoencoders (VAE) with the Nadam optimizer for IDS using
NSL-KDD and UNSW-NB15. This finding demonstrates that
optimization algorithms significantly influence IDS
performance across different machine learning models, further
justifying the present study’s focus on optimizer comparison.

The study [8] evaluates DNN with the SGD optimizer
using the NSL-KDD dataset. As summarized in Table I, this
work highlights how optimizer selection affects DNN
performance in IDS applications.

Collectively, the studies outlined in Table I reinforce the
importance of evaluating optimization algorithms and provide
the theoretical and methodological foundation for this research.
They emphasize the necessity of systematically comparing
multiple optimizers on the same IDS task using a consistent
DNN architecture and dataset. Furthermore, integrating these
studies into the discussion allows the current research to clearly
position its contributions within the broader body of literature
and identify remaining gaps, particularly the lack of
comprehensive optimizer comparisons for IDS using the
UNSW-NB15 dataset.

559 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

I1l. MATERIALS AND METHODS

In this study, the researchers examine the use of Deep
Neural Networks (DNN) for Intrusion Detection Systems
(IDS) based on the UNSW-NB15 dataset by analyzing the
performance of several optimization algorithms, including
SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax,
Adafactor, and Nadam. The primary focus of this work is to
evaluate how these optimizers influence model convergence,
accuracy, and stability when applied to DNN-based IDS.

Previous research on DNNs for IDS has typically focused
on exploring different network architectures or improving
feature extraction techniques. However, studies that provide a
systematic comparison of optimization algorithms within the
same experimental setting are still limited. This research
addresses that gap by offering a structured and comprehensive
evaluation of multiple optimizers under identical conditions,
enabling a clearer understanding of their relative effectiveness
for intrusion detection tasks. Through this comparative
analysis, the study contributes to the development of more
efficient IDS models capable of responding to evolving cyber
threats.

A. UNSW-NB15 Dataset

The UNSW-NB15 dataset was developed and published by
the University of New South Wales in 2015. Since its
introduction, this dataset has become one of the most important
data sources in network security research. UNSW-NB15
contains various categories of attacks that represent different
types of threats that may occur in a real network environment.
In addition, the dataset records the number of unique IP
addresses involved during the simulation and data collection
process, providing a comprehensive view of diverse network
traffic characteristics. This dataset has been widely used to
develop and evaluate intrusion detection techniques, as well as
to assess the performance of various security algorithms [4].

TABLE I1. UNSW-NB15 DATASET
Category Number of Attacks
Normal 93000
Analysis 2677
Backdoor 2329
DoS 16353
Exploit 44525
Fuzzers 24246
Generic 58871
Reconnaissance | 13987
Shellcode 1511
Worms 174
Total 257673

As shown in Table I1, the UNSW-NB15 dataset consists of
nine major attack categories, including Normal, Analysis,
Backdoor, DoS, Exploit, Fuzzers, Generic, Reconnaissance,
Shellcode, and Worms, with a total of 257,673 attack instances.
This distribution illustrates the broad coverage of cyberattack
types contained in the dataset, making it suitable for

Vol. 16, No. 11, 2025

performance evaluation of machine
models.

learning-based IDS

The dataset provides a rich set of features extracted from
packet headers, protocol information, connection duration,
transferred bytes, and many other attributes. These features
enable detailed analysis of network behavior and support the
development of more effective intrusion detection models.
With this level of feature diversity, researchers can perform
thorough data preprocessing, identify critical traffic patterns,
and develop advanced intrusion detection techniques using
machine learning approaches such as Deep Neural Networks
(DNN). The features included in the UNSW-NB15 dataset
serve as an essential foundation for building, training, and
validating IDS models in contemporary cybersecurity research.

B. Deep Neural Network

Deep Neural Networks (DNN) incorporate one or more
hidden layers between the input and output layers of an
artificial neural network. These hidden layers enable the model
to learn complex patterns and relationships within the dataset.
During the learning process, the DNN iteratively adjusts its
parameters to minimize the difference between predicted
outputs and actual targets. This optimization process involves
propagating input data through the network, generating
predictions, comparing them with the true labels, and
calculating the resulting error. Using appropriate optimization
algorithms, the network updates its parameters to reduce this
error and improve overall performance [6].

Deep Learning Neural Network

I

®
®

o
@
®
L

®
® G
SIS S
S R XK
Ny g 27008
® <
® L

@ Hidden Layer
Fig. 1. DNN architecture.

Fig. 1 illustrates the general architecture of a DNN. Each
layer in a DNN performs specific transformations on the input
data, gradually extracting higher-level features as the
information passes through the network. These layers consist
of interconnected neurons, where each neuron computes a
weighted sum of its inputs and applies an activation function to
introduce non-linearity into the model. This nonlinear
transformation allows DNNs to learn complex and abstract
representations from data, making them highly effective for
tasks such as image recognition, video analysis, and intrusion
detection [7].

The design of the hidden layers plays a crucial role in
determining the performance of a DNN. Factors such as the
number of hidden layers, the number of neurons in each layer,
and the activation functions used have a direct impact on the
model’s ability to learn and generalize. In the context of
Intrusion Detection Systems (IDS), it is essential to consider

560 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

how modifications to the hidden layer structure may influence
the model’s responsiveness to changing network environments
and evolving attack patterns [8].

C. Optimization Algorithms

The selection of an optimization algorithm for a neural
network is one of the most important steps in the process of
developing an effective and efficient model. With the wide
variety of algorithms available, the right choice can make a big
difference in model performance and accuracy. One of the key
factors in choosing an algorithm is understanding the
characteristics of the data and the task at hand. Each algorithm
has its own advantages and disadvantages and is suitable for
certain types of problems.

The use of optimization algorithms in Deep Neural
Networks (DNN) can affect performance, convergence speed,
and even the possibility of the resulting model. Several factors
that need to be considered in selecting an algorithm include the
type of problem being faced, data size, network architecture,
and available computing resources. In this study, we compare
the performance of different optimization algorithms on the
same task using the same model and dataset.

D. Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent (SGD) optimization
algorithm is commonly used in training Deep Neural Networks
(DNN). This algorithm works by iterating through the training
dataset and updating the model parameters based on the
gradient of the loss function estimated from a number of
samples (usually a batch) at each iteration [9]. In DNN, SGD
updates the weights and biases of the neural network to
minimize the value of the loss function produced by the
network on the training data. The SGD algorithm can be a
simple algorithm and can be successfully used in machine
learning models [10].

E. Adagrad

The AdaGrad optimization algorithm individually adjusts
the learning rate of model parameters. A rapid decrease in
learning rate occurs for parameters with the largest loss partial
derivatives, while parameters with small partial derivatives
experience a relatively small decrease in learning rate, which is
implemented by utilizing all historical squared gradient values.
In general, for some learning models, these algorithms work
well for simple quadratic problems but often stop too early
when training neural networks [11].

Adaptive Gradient (AdaGrad) uses a temporal history of
gradient updates to improve convergence speed and reduce
reliance on manually tuning learning rates, making it a popular
choice for Deep Neural Network (DNN) optimization. The
algorithm adaptively updates the learning rate to enable
accelerated convergence without the effort of adjusting the
learning rate. Therefore, this method is a popular, ready-to-use
choice for DNN optimization. The Stochastic Gradient Descent
(SGD) optimization algorithm is commonly used in training
[12].

F. AdaDelta

Adaptive Delta (Adadelta) uses model parameters with
individually determined learning rates. The learning rate in

Vol. 16, No. 11, 2025

Adadelta decreases dynamically over time. This concept differs
from many other optimization algorithms that use a fixed or
linearly decreasing learning rate. In Adadelta, this decrease in
learning speed occurs gradually until it finally reaches a point
where the learning process cannot continue any further. This
reduction in learning rate can be an important factor in
maintaining model stability and convergence, especially in the
case of large and complex data sets. By adaptively adjusting
the learning rate, Adadelta helps minimize the risk of getting
stuck in undesirable local minimum and increases the chances
of finding better solutions globally [13].

G. RMSProp

Root Mean Square Propagation (RMSProp) with
momentum updates parameters by applying momentum to the
rescaled gradient. RMSProp sets the learning rate by reducing
it by the root mean square value of the gradients accumulated
from previous updates. In RMSProp, the learning rate is
reduced to a small value, allowing updates to be automatically
adjusted to approach the local minimum. RMSProp performs
better in a nonconvex setting by converting the gradient
accumulation into an exponentially weighted moving average.
RMSProp uses an exponentially decreasing moving average to
ignore the history of past extreme points so that it can quickly
converge after encountering a convex bowl [14].

H. Adam

Adaptive Moment Estimation (Adam) [11], [15] is one of
the most widely used optimization algorithms in deep learning
by calculating individual adaptive learning rates for different
parameters of the first and second gradient moment estimates.
Adam combines the advantages of AdaGrad, which works well
with sparse gradients, and RMSProp, which works well in
online and non-stationary settings. Additionally, Adam
includes a bias correction in the first and second moment
estimates to account for their initialization.

Adam requires little adjustment to the learning rate and is
easy to implement, and does not change as the gradient
diagonal scale changes. Adam is also computationally efficient
and requires little memory. Additionally, Adam is suitable for
non-stationary purposes and problems with very noisy and
sparse gradients. Adam combines the advantages of RMSProp
and momentum. Adam [14] is often used as a replacement for
traditional stochastic gradient reduction methods that
dynamically update the learning rate for each parameter and
are considered computationally efficient with low memory
requirements. Mean Square Propagation (RMSProp) with
momentum updates parameters by applying momentum to the
rescaled gradient.

. AdaMax

AdaMax [15] is a development of the Adam optimization
algorithm, which takes the basis of the infinity norm. The
AdaMax algorithm starts by calculating the gradient against the
stochastic objective, then estimating the first moment bias, and
calculating the infinite norm is then weighed exponentially.
Biased first moment estimation is a method to estimate the
average gradient at each time step, while the exponentially
weighted infinity norm is used to measure the magnitude of the
largest gradient at each time step. Parameter adjustments in

561|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Adamax are carried out by considering the biased first moment
estimates as well as the exponentially weighted infinite norm.
AdaMax can help improve the efficiency and performance of
optimization algorithms, especially in machine learning
contexts involving complex models with many parameters. In
[16], AdaMax's performance is superior in numerical function
optimization in model learning for image classification.

J. Adafactor

Adafactor [17] simply maintains the average number of
moves per row and per column and estimates the second
moment per parameter based on this number. With this
approach, Adafactor efficiently updates model parameters by
considering information from simplified exponential moving
averages, i.e., only per-row and per-column calculations. This
allows Adafactor to have fast and efficient performance in
optimizing models, especially on large-scale problems or in
deep learning contexts where model complexity and data
volume are very high. The simplicity of the Adafactor
approach allows it to be implemented easily and can be applied
in a variety of learning models.

K. Nadam

Nesterov-accelerated adaptive momentum estimation
(Nadam) [18] simplifies the Nesterov acceleration to
approximate the first moment of the Adam gradient. But the
acceleration does not use any extrapolated point gradients. The
Nadam approach indeed simplifies the acceleration process in
the Adam method by focusing on estimating the first moment
of the gradient. The acceleration [19] implemented in Nadam
does not consider the gradients of the extrapolated points,
which may reduce the effectiveness of the algorithm in
adapting the learning steps. Additionally, theoretical
deficiencies in guaranteeing convergence can lead to
uncertainty in the performance and stability of algorithms
across different modeling conditions and datasets.

L. Methodology

A clear and well-documented research methodology is
essential for ensuring the reliability, validity, and
reproducibility of a study. By presenting a systematic
approach, this research provides strong theoretical and practical
contributions that can support further academic development
and practical implementation in the field of intrusion detection
systems. A transparent methodology also increases confidence
in the findings and strengthens the conclusions drawn from the
analysis.

The overall method used in this study is illustrated in
Fig. 2, which outlines the sequential stages of the research
process.

This study begins by using the UNSW-NB15 dataset as the
primary input for the intrusion detection system. A data
preprocessing phase is then conducted to ensure data quality
and integrity. This includes cleaning, normalizing, and
preparing the dataset for subsequent modeling stages. After
preprocessing, a Deep Neural Network (DNN) is employed to
analyze the processed data. DNNs are widely recognized for
their capability to learn complex and nonlinear patterns,
making them highly effective for tasks related to network
security and intrusion detection.

Vol. 16, No. 11, 2025

UNSW-NBE15 Dataset

l

Data Preprocessing

1

DNN

1

Evaluation Metric on
Selective Optimizer Algorithms

1

ANOVA Test

Fig. 2. Research methodology.

Following the implementation of the DNN model, several
optimization algorithms are evaluated to assess their impact on
training performance and detection accuracy. Evaluation
metrics are used to measure each optimizer’s effectiveness in
improving model learning outcomes. Finally, ANOVA analysis
is performed to determine whether significant differences exist
among the optimization algorithms tested. This statistical
approach [31] helps identify which optimizers perform better
and provides insights into their suitability for intrusion
detection applications.

1) Data preprocessing: Data preprocessing was carried
out to ensure the quality and integrity of the dataset used in
this analysis. This process involves removing empty or
incomplete entries because missing values may interfere with
the analytical process and reduce the accuracy of the results.
Irrelevant or unnecessary data was also eliminated to simplify
the dataset and maintain analytical focus. Additionally,
duplicate entries were identified and removed to prevent
distortion and ensure that every instance in the dataset is
unique and relevant to the study.

Next, one-hot encoding was applied to categorical features
to convert them into binary representations suitable for the
model. This step is essential to ensure that the model can
correctly interpret and process categorical variables.

S

Fig. 3. Step-by-step data preprocessing.

Data
Normalization

Data Split

Fig. 3 illustrates the sequential steps of the data
preprocessing stage. Data normalization was then applied to
adjust the scale of numerical features, so they fall within a
uniform range. This helps to improve model convergence and
prevents certain features from dominating the learning process
due to differences in scale. After normalization, the dataset was

562 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

divided into three subsets: training data, testing data, and
validation data. This partitioning is crucial for evaluating
model performance on unseen data and ensuring that the results
are validated objectively.

By conducting this comprehensive preprocessing
procedure, this study ensures that the data used in the analysis
is clean, relevant, and properly prepared to support effective
model development and performance evaluation.

2) DNN: Deep Neural Networks (DNN) are utilized in this
research to analyze the UNSW-NB15 dataset. A DNN is a
neural network architecture capable of learning increasingly
complex feature representations through multiple layers of
interconnected neurons. These layers enable the model to
capture hierarchical patterns in the data, allowing it to
understand both low-level and high-level characteristics that
are essential for intrusion detection.

A DNN consists of sequential processing layers, starting
from the input layer and continuing through multiple hidden
layers before reaching the output layer. Each neuron in a
hidden layer receives inputs from neurons in the previous
layer, applies a weight to each input, and computes a weighted
sum followed by an activation function. Through this
multilayer transformation, the network gradually converts raw
input data into more abstract representations. As information
flows through deeper layers, the DNN becomes capable of
recognizing complex attack patterns, subtle anomalies, and
relationships that are not easily detected through traditional
analytical methods.

By using DNN, this study can identify intricate attack
behaviors and subtypes that may not be captured by
conventional machine learning models. DNN architecture also
supports adaptability by enabling the model to adjust to
evolving intrusion patterns over time. This contributes to
improving detection accuracy and reducing false positives,
thereby enhancing the overall performance of the IDS.

The DNN architecture used in this research is presented in
Table III, which outlines the model’s hyperparameters,
including the number of hidden layers, number of neurons,
activation functions, number of epochs, and batch size. These
settings form the basis for training the model and evaluating
the performance of the optimization algorithms examined in
this study.

TABLE IIl. DNN ARCHITECTURE
Hyperparameter Value/ Type
Hidden Layers 3
Neurons 100
Hidden Layer Activation Relu
Output Layer Activation Softmax
Epochs 10
Batch Size 100

3) Evaluation metric on selective optimizer algorithms:
The metric evaluation stage in Selective Optimizer Algorithms

Vol. 16, No. 11, 2025

assesses the performance of several optimization algorithms in
the Intrusion Detection System (IDS). The evaluation metrics
used in this research include accuracy and loss. This metric
helps evaluate how well the optimization algorithm can learn
complex patterns in IDS data and make accurate predictions.
So you can identify the most suitable and effective
optimization algorithm for use on IDS. Choosing the right
optimization algorithm can improve the performance and
reliability of the IDS in detecting network security threats in a
timely and accurate manner. Therefore, this evaluation plays
an important role in developing a more effective and
responsive network security system.

4) ANOVA test: Analysis of Variance (ANOVA) [30] is a
statistical technique used to compare data between three or
more different groups. ANOVA considers between-group
variation and within-group variation. Between-group variation
measures how large the differences in the means are between
different groups, while within-group variation measures how
large the variation in the values within each group. If the
variation between groups is much greater than the variation
within groups, then there is an indication that there are
significant differences between the groups. ANOVA can be
used to analyze data performance from various optimizer
algorithms. For example, if there are eight optimizer
algorithms being evaluated, ANOVA can be used to determine
whether there are significant differences in overall
performance between the algorithms. This research will
analyze significant differences in performance between the
optimized optimizer algorithms tested.

IV. RESULTS AND DISCUSSION

A. SGD Result

Stochastic Gradient Descent (SGD) is one of the most
widely used optimization techniques for training machine
learning models, particularly in artificial neural networks and
Deep Neural Networks (DNN) [20]. SGD optimizes the
objective function by following the gradient direction with
respect to the model parameters. Its primary goal is to
minimize the prediction error by iteratively updating the
parameters based on the gradient of the loss function computed
from small batches of training data.

In this research, the SGD optimizer is applied to train the
DNN model using the UNSW-NB15 dataset. Fig. 4 presents
the training and validation accuracy obtained during the model
training process, while Fig. 5 shows the corresponding training
and validation loss curves.

The results indicate that both training and validation
accuracy generally increase with each epoch, demonstrating
that the model progressively improves its ability to correctly
classify intrusion data. Meanwhile, the loss curves in Fig. 5
show a consistent decrease across epochs for both training and
validation datasets. A decreasing loss value reflects better
model adaptation to the data because the loss function
measures the discrepancy between predicted outputs and actual
labels.

563|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Training and Validation Accuracy by Epoch - SGD

—— SGD Training Accuracy -
—— SGD Validation Accuracy ——/___-—”
0976 e

0.975

0.977

0.974

0973

Accuracy

0.972

0.971

0.970

4 6 8
Epoch

o
¥]

Fig. 4. Training and validation accuracy for SGD.
Training and Validation Loss by Epoch - SGD
0.095 —— SGD Training Loss

—— SGD Validation Loss
0.090

0.085

0.080

Loss

0.075
0.070

0.065 =
—

0.060

T T T T
o 2 4 6 8
Epoch

Fig. 5. Training and validation loss for SGD.

This gradual decline in loss indicates effective
convergence, meaning the model is successfully refining its
parameters to reduce prediction errors. The behavior of the loss
curves also suggests that SGD is performing efficiently in
updating parameters based on the gradients calculated from
mini-batches of data. This characteristic enables faster updates
and supports the model in learning more generalizable patterns
from the dataset.

B. AdaGrad Result

The AdaGrad algorithm adaptively updates the learning
rate to accelerate convergence without requiring manual tuning
efforts [21]. This algorithm automatically adjusts the learning
rate during the training process, enabling each parameter to be
updated based on its historical gradient information. As the
model approaches an optimal solution, AdaGrad dynamically
modifies the learning rate to ensure efficient parameter
optimization.

Fig. 6 presents the training and validation accuracy for
AdaGrad, showing how the model’s performance improves
over successive epochs. AdaGrad enables faster learning in the
early stages by assigning larger updates to infrequent features,
resulting in a noticeable improvement in accuracy.

Fig. 7 illustrates the training and validation loss for
AdaGrad, which consistently decreases as the number of
epochs increases. A decreasing loss value indicates that the
model is learning effectively and reducing prediction errors
over time.

Vol. 16, No. 11, 2025

Training and Validation Accuracy by Epoch - Adagrad

0.974 - e

0.972

0.970

0.968

Accuracy

0.966

0.964
—— Adagrad Training Accuracy
Adagrad Validation Accuracy

0.962

o 2 4 6 8
Epoch

Fig. 6. Training and validation accuracy for AdaGrad.

Training and Validation Loss by Epoch - Adagrad

0.15 —— Adagrad Training Loss

—— Adagrad Validation Loss
0.14
013

0.12

0.11

Loss

0.10

0.09

0.08

0.07

o
N
r
-3
-]

Epoch

Fig. 7. Training and validation loss for AdaGrad.

The graphs of training and validation accuracy and loss
provide a clear representation of how the model evolves across
iterations. The increase in accuracy and the decrease in loss
demonstrate that the model progressively improves and moves
closer to an optimal solution. This behavior highlights
AdaGrad’s ability to adjust the learning rate dynamically for
each parameter, thereby enhancing convergence and improving
performance during the training process.

C. AdaDelta Result

Adadelta makes smaller adjustments to frequently updated
parameters and larger adjustments to parameters that are
updated less frequently [22]. During the model training
process, Adadelta adaptively regulates the magnitude of
parameter updates based on how often each parameter changes.
When a parameter is updated frequently, Adadelta applies
smaller adjustments to maintain model stability, as minor
refinements are typically sufficient to improve performance.

Fig. 8 shows the training and validation accuracy obtained
using the Adadelta optimizer. As illustrated in Fig. 8, the
accuracy for both training and validation increases consistently
across epochs, indicating stable and sustainable convergence.
This demonstrates that the Adadelta algorithm effectively
guides the model toward improved accuracy by adaptively
optimizing the learning rate based on parameter-specific
characteristics.

564 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Training and Validation Accuracy by Epoch - Adadelta

0.96 //_

0.94

0.92

Accuracy

0.90

—— Adadelta Training Accuracy
0.88 - Adadelta validation Accuracy

T T T T T
0 2 4 6 8
Epoch

Fig. 8. Training and validation accuracy for AdaDelta.

Fig. 9 presents the training and validation loss for the
Adadelta optimizer. The consistent decline in both training and
validation loss indicates that the model continues to learn
effectively over time. The stable reduction in loss confirms that
Adadelta successfully adjusts the learning rate and parameter
updates, enabling efficient convergence. This pattern reflects
the model’s increasing ability to learn from data and move
closer to an optimal solution.

Training and Validation Loss by Epoch - Adadelta

—— Adadelta Training Loss
0.7+ —— Adadelta Validation Loss

Epoch

Fig. 9. Training and validation loss for AdaDelta.

D. RMSProp Result

RMSProp is commonly used in training artificial neural
network models to accelerate convergence and improve overall
training performance by adaptively regulating the learning rate.
In RMSProp, the learning rate is adjusted individually for each
model parameter based on the exponential moving average of
previous squared gradients [23]. This mechanism addresses the
limitations of a fixed learning rate by automatically adapting
the step size throughout the training process.

Fig. 10 illustrates the training and validation accuracy
produced by RMSProp. The graph shows that both training and
validation accuracy fluctuate across epochs. Such instability
may occur when the learning rate is excessively high, causing
divergence, or too low, resulting in very slow convergence.
Additionally, complex model architecture or many parameters
can contribute to inconsistent learning behavior, as the model
may struggle to capture stable patterns within the dataset.

Vol. 16, No. 11, 2025

Training and Validation Accuracy by Epoch - RMSprop

0.9770
—— RMSprop Training Accuracy

\ RMSprop Validation Accuracy
0.9765 /\
0.9760 \ e

~

A

0.9755

Accuracy

0.9750

0.9745 4

0.9740

0.9735

0 2 4 6 8
Epoch

Fig. 10. Training and validation accuracy for RMSProp.

Fig. 11 presents the training and validation loss curves for
RMSProp. The results indicate that the training and validation
loss increase steadily across epochs, while the accuracy values
fluctuate. This pattern suggests that the model is experiencing
overfitting. Overfitting occurs when the model becomes too
closely aligned with the training data and loses its ability to
generalize to unseen data, such as validation samples. One of
the common causes of overfitting is excessive model
complexity, particularly in deep neural network architectures
with large capacity [24].

Training and Validation Loss by Epoch - RMSprop

—— RMSprop Training Loss

0.095 1 mmMsprop validation Loss

0.090

0.085

0.080

Loss

0.075

0.070

0.065

Epoch

Fig. 11. Training and validation loss for RMSProp.

E. Adam Result

Adam (Adaptive Moment Estimation) is an optimization
algorithm designed to combine the advantages of momentum
methods and adaptive learning rate techniques [25]. Adam
utilizes the accumulated gradient values from previous
iterations, weighted by a decay factor, which represents the
principle of momentum. Momentum provides acceleration
during optimization by considering both the direction and
magnitude of parameter changes from earlier iterations. By
incorporating historical gradient information, the model can
move more efficiently toward the optimal solution.

Additionally, Adam uses the squared gradient from
previous updates to estimate variance or fluctuations in the
gradient. This mechanism enables Adam to adjust the learning
rate adaptively for each parameter. As a result, parameters with
high variance receive smaller updates, while those with low

565|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

variance receive larger updates. This balance helps stabilize the
learning process and prevents drastic fluctuations in parameter
adjustments.

Adam uses the first-order derivative of the cost function to
update parameters, providing low computational complexity
and making it highly efficient. By combining momentum-
based gradient estimation with root mean square (RMS)
gradient estimation, Adam generates parameter updates with an
automatically adjusted learning rate [25]. This adaptive
adjustment ensures that parameter updates remain controlled
and appropriate throughout the training process.

Fig. 12 shows the training and validation accuracy
produced for Adam. The results indicate stable accuracy
improvement across epochs during both training and
validation. This demonstrates Adam’s ability to adaptively
modify the learning rate based on gradient information and
previous parameter updates, ensuring smooth optimization
progress.

Training and Validation Accuracy by Epoch - Adam

—— Adam Training Accuracy e
0.980 4 —— Adam Validation Accuracy /
—
0.979
>
"
< 0978
o
£
0.977
0.976
T : |
(1] 2 4 6 8

Epoch

Fig. 12. Training and validation accuracy for Adam.

Fig. 13 presents the training and validation loss for Adam.
Both curves show a consistent reduction in loss, indicating
effective learning and minimal fluctuations during the
optimization process. Adam gradually reduces the learning rate
as the model approaches the global minimum, preventing
oscillations near the minimum and enabling more precise
convergence. This behavior contributes to the stable accuracy
gains and steady declines in loss across epochs.

Training and Validation Loss by Epoch - Adam

0.0650 - —— Adam Training Loss
Adam Validation Loss
0.0625 1
0.0600 +
0.0575
@
|
0.0550
0.0525
0.0500
T |)
0.0475 T~
0 2 4 6 8

Epoch

Fig. 13. Training and validation loss for Adam.

Vol. 16, No. 11, 2025

By leveraging both momentum and RMS gradient
estimates, Adam produces more consistent and reliable
parameter updates compared to many traditional optimizers.
This results in faster and more stable optimization, making
Adam particularly effective for training deep neural networks.
The performance observed in this study confirms Adam’s
capability to handle complex optimization tasks efficiently, as
reflected in the stable improvement of accuracy and consistent
reduction of loss throughout the training and validation stages.

F. Adamax Result

The performance of the Adamax optimizer is considered
strong in numerical function optimization compared to several
other optimization algorithms [16]. Adamax is a variant of the
Adam (Adaptive Moment Estimation) optimization method,
designed to provide more stable parameter updates, especially
when the magnitude of the gradient becomes very large. This
characteristic enables Adamax to maintain steady convergence
during the training of deep learning models.

Fig. 14 shows the training and validation accuracy for the
Adamax optimizer. Adamax demonstrates good performance
compared to Adam, particularly in situations where the
gradient moments are large, and Adam begins to show
deviations from optimal updates. The Adamax method utilizes
two core components, namely the gradient moment and the
root mean square (rms) value of the gradient, to determine
parameter adjustments. By incorporating both components,
Adamax can generate more adaptive and stable parameter
updates, which contribute to faster convergence in complex
numerical optimization problems.

Training and Validation Accuracy by Epoch - Adamax

09801 Adamax Training Accuracy
—— Adamax Validation Accuracy /
/
0.979
0978 /
o)
& 0977
=2
o
ks
0.976
0.975
0.974
T T T T
0 2 4 6 8

Epoch

Fig. 14. Training and validation accuracy for Adamax.

However, in this study, the results indicate that Adam
performs better than Adamax on the UNSW-NB15 dataset
using DNN. This performance difference may occur because
each dataset possesses unique distributions and structural
patterns that influence model learning behavior. Additionally,
the architecture of the DNN model employed in the experiment
can also affect the relative performance of Adam and Adamax.

Fig. 15 presents the training and validation loss for the
Adamax optimizer.

566 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Training and Validation Loss by Epoch - Adamax

0.075 —— Adamax Training Loss
—— Adamax Validation Loss
0.070
0.065
@
38
0.060
0.055 \\
0.050 ‘__‘
T T T T T
0 2 4 6 8

Epoch

Fig. 15. Training and validation loss for Adamax.

G. AdaFactor Result

The Adafactor optimization algorithm was developed to
reduce the memory requirements of the AdaGrad method,
particularly for training large language models [26]. Adafactor
can operate efficiently by significantly minimizing additional
memory usage without sacrificing performance. This is
achieved by storing second-moment estimates using a
compressed representation that exploits the structural
properties of the parameter tensors. As a result, Adafactor
enables the training of large-scale neural networks while
alleviating memory constraints, which often become a limiting
factor in complex model development. By maintaining strong
optimization performance while reducing memory overhead,
Adafactor offers a more resource-efficient solution in artificial
intelligence research and large-scale model training.

Fig. 16 presents the training and validation accuracy for
Adafactor. The graph shows that accuracy increases steadily
across epochs for both training and validation datasets. This
consistent improvement indicates that Adafactor can adjust
learning rates adaptively and perform stable parameter updates.

Training and Validation Accuracy by Epoch - Adafactor

0.979 1 —— adafactor Training Accuracy —
—— Adafactor Validation Accuracy — —
0.978 /
0.977 :
% 0976
g
2
o
< 0975
0974
0.973
0972 : : : ; ;
0 2 4 6 8

Epoch

Fig. 16. Training and validation accuracy for AdaFactor.

Fig. 17 illustrates the training and validation loss for
Adafactor. The figure shows a continuous and consistent
decline in the loss function as training progresses. This stable
reduction in loss demonstrates that the algorithm effectively
manages the learning rate and updates model parameters

Vol. 16, No. 11, 2025

efficiently throughout the training process. The combination of
increasing accuracy and decreasing loss reflects the algorithm’s
ability to support model convergence and maintain stability
during training.

Training and Validation Loss by Epoch - Adafactor

—— Adafactor Training Loss

0.085 —— Adafactor Validation Loss

0.080

0.075

0.070

Loss

0.065

0.060

0.055

Epoch

Fig. 17. Training and validation loss for AdaFactor.

H. Nadam Result

Nadam was developed to address inconsistencies that may
arise between momentum calculations and parameter updates
in optimization algorithms [27]. In the Adam optimization
algorithm, momentum is used to incorporate gradient
information from previous iterations when determining
parameter updates. However, inconsistencies may occur
between the calculated momentum and the actual parameter
adjustments performed during optimization. Nadam resolves
this issue by integrating Nesterov momentum into Adam,
resulting in more consistent and targeted parameter updates.
This ensures that momentum contributes more reliably to the
learning process, making the optimization pathway more stable
and predictable while improving convergence.

Fig. 18 illustrates the training and validation accuracy
obtained using Nadam. The accuracy curves show a generally
stable upward trend during the training and validation phases,
indicating that Nadam effectively improves the model’s ability
to learn patterns from the UNSW-NBL15 dataset. The adaptive
mechanism in Nadam allows the algorithm to fine-tune
parameter updates more carefully, contributing to improved
accuracy across epochs.

Training and Validation Accuracy by Epoch - Nadam

/

—— Nadam Training Accuracy
—— Nadam Validation Accuracy

<

0.980

0.979

0.978

Accuracy

0.977

0.976

0 2 4 6 8
Epoch

F

g. 18. Training and validation accuracy for Nadam.

567|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Training and Validation Loss by Epoch - Nadam

0.0650 - —— Nadam Training Loss
Nadam Validation Loss
0.0625 1
0.0600
" 0.0575
|
0.0550
0.0525 4
0.0500 \
—_ N
0.0475
0 2 4 6 8

Epoch

Fig. 19. Training and validation loss for Nadam.

Fig. 19 presents the training and validation loss for Nadam.
The results show a steady reduction in both training and
validation loss values across epochs. This consistent decline
suggests that the model continues to refine its predictions and
minimize error during the learning process. The stability of the
loss curves indicates that Nadam efficiently adjusts the learning
rate and updates model parameters with a controlled trajectory,
reducing the likelihood of sudden fluctuations.

An important advantage of Nadam is its ability to produce
consistent parameter updates while reducing the risk of
overshooting, a condition in which large parameter changes
cause the optimization process to move past the optimal point.
By ensuring that updates are more controlled and directed,
Nadam minimizes this risk. This contributes to a more reliable
training process, leading to improved model stability and
convergence. As a result, Nadam provides a robust alternative
to Adam, particularly in cases where more precise parameter
adjustments are needed.

I. Comparison of Optimizer Algorithms

In this research, a comparison was conducted among
several commonly used optimization algorithms, including
SGD (Stochastic Gradient Descent), RMSprop, Adam,
Adadelta, Adagrad, Adamax, Adafactor, and Nadam. The
objective of this study is to evaluate the relative performance of
each algorithm in the context of model training, with particular
focus on accuracy, stability, and convergence behavior.

The results indicate that Adam provides the best overall
performance. Its adaptive learning rate mechanism, which
adjusts based on gradient information, enables faster
convergence and consistently higher accuracy across epochs.
Nadam is identified as the second-best performer due to its
ability to address some limitations found in Adam, especially
regarding momentum estimation and parameter update
consistency.

Fig. 20 presents the comparison of all optimization
algorithms. Adadelta shows noticeably lower performance
compared to the other algorithms. This performance
degradation is partly attributed to its more complex
hyperparameters, such as decay rate and epsilon, which require
precise tuning. Incorrect hyperparameter settings may hamper
its convergence speed and overall effectiveness, especially on

Vol. 16, No. 11, 2025

complex datasets or architectures. Because Adadelta updates
the learning rate based on accumulated past gradients, the
learning process may become too slow or insufficiently
responsive.

Comparison of Optimizers

1.00

0.99
0.98 w
0.97

0.96

Accuracy

0.95

Q <& R 3+
$ & F S
g < G Yb

&P &

Optimizer

Fig. 20. Comparison of optimizer algorithms.

Fig. 21 illustrates the comparison of training accuracy.
Across all algorithms, training accuracy improves significantly
at each epoch. This consistent improvement demonstrates that
the model continuously learns and generalizes the patterns
present in the training data. The steady increase in accuracy
suggests that none of the models exhibit symptoms of severe
overfitting, as the learning process continues to progress in a
stable manner without abrupt fluctuations. This also indicates
that the adjustments made by each optimizer during training
enable the network to better predict the correct labels from the
training set.

Training Accuracy by Epoch

0.98

e
=

0.96

0.94

Accuracy

—— RMSprop
0.92 - Adadelta
—— Nadam
—— Adagrad
0.90 — 5GD
— Adamax
Adam
0.88 —— Adafactor

T T T T T
0 2 4 6 8
Epoch

Fig. 21. Comparison of training accuracy.

Fig. 22 shows the comparison of validation accuracy.
Validation accuracy also improves across epochs for all
algorithms except RMSprop. The inconsistent behavior of
RMSprop indicates difficulty in adjusting the learning rate
effectively when processing validation gradients. This may be
due to its sensitivity to specific hyperparameter values, such as
learning rate and decay rate. Improper settings can lead to
unstable or slow convergence on the validation dataset.

568 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Validation Accuracy by Epoch

0.980

0.975

0.970

Accuracy

0.965

—— RMSprop

Vol. 16, No. 11, 2025

DNN-based classifier. ANOVA assesses the equality of
multiple means by comparing the variance between groups
with the variance within groups [29].

Statistical hypothesis testing was conducted to determine
whether significant differences exist among the optimization
algorithms. ANOVA evaluates how the variation between
groups compares with the wvariation within groups. A

Adadelta statistically significant result, indicated by a p-value lower than
0.960 — the predetermined significance level, supports the decision to
. —— Adagrad . . - -
— 56D reject the null hypothesis. The hypotheses used in this research
0.855 il are presented in Table V.
—— Adafactor
I } I | ; Training Loss by Epoch
0 2 4] 8
Epoch —— RMSprop
0.7 —— Adadelta
Fig. 22. Comparison of validation accuracy. — hadam
0.6 — adagrad
— SGD
Fig. 23 depicts the comparison of training loss. All 05 — Adsmax
algorithms experience a steady decline in training loss at each Aiofacor
epoch, demonstrating continual improvement in reducing g 04
prediction error during the learning process. A consistent s
decrease in training loss is a strong indication that the model is
progressing well and learning meaningful representations from 02
the data.
0.1 -— - _—
Fig. 24 presents the comparison of validation loss across all
optimizers. The validation loss decreases steadily across all 0 2 ‘o 6 8
algorithms except RMSprop. This decline indicates improved "
generalization capability to unseen data. RMSprop’s irregular Fig. 23. Comparison of training loss.
behavior reinforces the earlier observation that this optimizer
may struggle with gradient-based adjustments on validation Validation Loss by Epoch
data, especially under suboptimal hyperparameter 020 — Msprop
configurations. — Nadam
. o.18 —— Adagrad
The performance accuracy values for each optimizer used 016 — 56D
in this research are summarized in Table IV. — fiiommax
0.14 —— Adafactor
J. ANOVA Test g0
One method to compare classifiers is by using the Analysis o0 ~—
of Variance (ANOVA) test to evaluate the accuracy produced) =<
by each classifier. ANOVA determines whether there are 008 M
statistically significant differences between the accuracies 0.06 —
generated by the classifiers tested [28]. In this study, ANOVA —
is used to evaluate whether there are significant performance 0 2 o © 8
. . - - . - ocl
differences among the optimization algorithms applied to a :
Fig. 24. Comparison of validation loss.
TABLE IV. VALIDATION ACCURACY OF OPTIMIZER ALGORITHMS
Epoch SGD RMSProp Adam AdabDelta AdaGrad Adamax AdaFactor Nadam
1 0.976316 0.952194 0.97721 0.969927 0.973152 0.976105 0.977492 0.975356
2 0.97685 0.956142 0.97814 0.971505 0.974818 0.977068 0.978824 0.976458
3 0.974413 0.959513 0.978056 0.972206 0.975259 0.977473 0.97909 0.976854
4 0.976387 0.964044 0.978818 0.972792 0.975564 0.977904 0.979236 0.977369
5 0.975956 0.967068 0.979625 0.973301 0.975755 0.978536 0.979395 0.976925
6 0.976027 0.968543 0.979262 0.973612 0.975849 0.978798 0.9798 0.977862
7 0.97369 0.969454 0.979917 0.97381 0.976354 0.979405 0.98038 0.978523
8 0.97604 0.970086 0.980251 0.973975 0.976458 0.979025 0.98015 0.978601
9 0.974834 0.970468 0.979473 0.974241 0.976332 0.979482 0.980358 0.978403
10 0.973962 0.970753 0.980529 0.974316 0.976779 0.979703 0.98016 0.978643
569 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE V. RESEARCH HYPOTHESIS

Hypothesis Description

There is no significant difference in performance between the
HO tested optimizer algorithms in detecting intrusions on systems
using DNN.

There is a significant difference in performance between the
H1 tested optimizer algorithms in detecting intrusions on systems
using DNN.

Table V summarizes the null hypothesis (HO) and the
alternative hypothesis (H1). The null hypothesis states that
there is no significant difference in the performance of the
tested optimizers in detecting intrusions using DNN. The
alternative hypothesis states that a significant difference exists.
These hypotheses guide the statistical analysis to identify
whether the collected data support the null or the alternative
hypothesis. If the results show significant differences between
groups, the null hypothesis is rejected.

After performing ANOVA on the optimizer performance
data, based on the Validation Accuracy of Optimizer
Algorithms, the results were obtained in the form of F-statistic
and p-values. If the p-value is smaller than the significance
level, typically a = 0.05, the null hypothesis is rejected. This
means that at least two optimization algorithms differ
significantly in performance. This pattern indicates that
choosing the appropriate optimizer can have a meaningful
impact on the performance of an intrusion detection system. If
the p-value is greater than o, the null hypothesis cannot be
rejected, meaning the evidence is insufficient to confirm a

Vol. 16, No. 11, 2025

significant difference. This lack of significance may be due to
small sample sizes or low variability in the data.

A high F-statistic value in an ANOVA test indicates that
the variation between group means is greater than the variation
within the groups. A higher F-value reflects real performance
differences among the optimization algorithms tested. This is
important when choosing an optimal algorithm for intrusion
detection, as performance differences may influence the
effectiveness of the system. High F-values also highlight the
need for further analysis, such as pairwise comparisons, to
better understand which algorithms differ and to what extent.
This information can support decision-making in future
research and system implementation.

The results of the ANOVA test conducted on the UNSW-
NB15 dataset using the DNN model are presented in Table VI.
This test evaluates whether significant performance differences
exist among the optimization algorithms.

Based on Table VI, the ANOVA analysis produced an F
value of 34.68717049, while the F-critical value calculated at a
significance level of o = 0.05 was 2.139655512. Since the F
value exceeds the F-critical value, the null hypothesis is
rejected. This confirms that significant performance differences
exist among the tested optimization algorithms. These results
support the alternative hypothesis, which states that the
optimization algorithms differ significantly in detecting
intrusions using DNN. The implication is that selecting the
appropriate optimization algorithm can substantially enhance
the performance of intrusion detection systems.

TABLE VI. RESULT OF ANOVA TEST

ANOVA: Single Factor
SUMMARY

Groups Count Sum Average Variance
RMSprop 10 9,754394 0.9754394 1,2869E-06
Adadelta 10 9,648265 0.9648265 4,4301E-05
Nadam 10 9,791281 0.9791281 1,12562E-06
Adagrad 10 9,729685 0.9729685 1,9651E-06
SGD 10 9,75632 0.975632 1,11424E-06
Adamax 10 9,783499 0.9783499 1,3964E-06
Adam 10 9,794885 0.9794885 7,99467E-07
Adafactor 10 9,774994 0.9774994 1,21769E-06

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.001614882 7 0.000230697 34,68717049 1,20649E-20 2,139655512
Within Groups 0.000478858 72 6,6508E-06
Total 0.00209374 79

V. CONCLUSIONS AND LIMITATIONS

Based on the experimental findings, the Adam optimizer
demonstrated the best overall performance on the UNSW-
NB15 dataset when applied to a Deep Neural Network-based
Intrusion Detection System. Adam consistently produced stable

improvements in accuracy and steady reductions in loss across
epochs, indicating its effectiveness in accelerating convergence
and maintaining model stability. Nadam ranked as the second-
best performer, while Adadelta yielded the lowest accuracy
among the evaluated algorithms. RMSprop exhibited
noticeable fluctuations in validation accuracy and validation

570|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

loss, suggesting that it may require more careful
hyperparameter tuning or may be less suitable for certain IDS
configurations.

The results from the ANOVA analysis provide strong
statistical validation of these observations. The obtained F-
statistic value of 34.687, which exceeds the critical value of
2.139 at a = 0.05, confirms that significant performance
differences exist across the eight optimization algorithms.
These findings highlight the importance of optimizer selection
as a critical determinant of the overall performance and
reliability of DNN-based intrusion detection systems.

While Adam and Nadam emerged as promising candidates
for IDS implementation, several limitations must be
considered. This study relied on a single dataset and did not
incorporate cross-validation or extensive hyperparameter
optimization, which may influence generalizability.
Additionally, the evaluation focused primarily on accuracy and
loss, without including broader IDS performance metrics such
as precision, recall, F1-score, false positive rate, or AUC.
Incorporating these metrics would provide a more complete
assessment of the practical effectiveness of each optimization
method in real-world intrusion detection scenarios.

To advance future research, several directions are proposed.
Expanding the experimental framework to include multiple
datasets with different traffic and attack characteristics would
strengthen generalizability. More comprehensive
hyperparameter optimization and the inclusion of additional
performance metrics would support more rigorous evaluation
and facilitate practical deployment. Further exploration of
optimizer behavior across different deep learning architectures,
operational environments, and adversarial conditions may also
offer deeper insight into the stability, robustness, and
adaptability of each algorithm. Overall, this study contributes
to the growing body of knowledge on optimization strategies
for IDS and underscores the critical role of optimizer selection
in improving cybersecurity resilience.

REFERENCES

[1] J. Sinha and M. Manollas, “Efficient Deep CNN-BiLSTM Model for
Network Intrusion Detection,” in Proceedings of the 2020 3rd
International Conference on Artificial Intelligence and Pattern
Recognition, New York, NY, USA: ACM, Jun. 2020. pp. 223-231. doi:
10.1145/3430199.3430224.

[2] M. Rodriguez, A. Alesanco, L. Mehavilla, and J. Garcia, “Evaluation of
Machine Learning Techniques for Traffic Flow-Based Intrusion
Detection,” Sensors, vol. 22, no. 23, p. 9326, Nov. 2022, doi:
10.3390/522239326.

[3] A. Aleesa, M. Thanoun, A. Mohammed, and N. Sahar, “DEEP-
INTRUSION DETECTION SYSTEM WITH ENHANCED UNSW-
NB15 DATASET BASED ON DEEP LEARNING TECHNIQUES,”
Journal of Engineering Science and Technology, vol. 16, pp. 711-727,
Mar. 2021.

[4] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MiIICIS), IEEE, Nov. 2015, pp. 1-6. doi:
10.1109/MilCIS.2015.7348942.

[5] E. M. Dogo, O. J. Afolabi, and B. Twala, “On the Relative Impact of
Optimizers on Convolutional Neural Networks with Varying Depth and
Width for Image Classification,” Applied Sciences, vol. 12, no. 23, p.
11976, Nov. 2022, doi: 10.3390/app122311976.

6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Vol. 16, No. 11, 2025

D. Soydaner, “A Comparison of Optimization Algorithms for Deep
Learning,” Intern J Pattern Recognit Artif Intell, vol. 34, no. 13, p.
2052013, Dec. 2020. doi: 10.1142/S0218001420520138.

M. A. Albahar and M. Binsawad, “Deep Autoencoders and Feedforward
Networks Based on a New Regularization for Anomaly Detection,”
Security and Communication Networks, vol. 2020. pp. 1-9, Jul. 2020.
doi: 10.1155/2020/7086367.

S. P. Thirimanne, L. Jayawardana, L. Yasakethu, P. Liyanaarachchi, and
C. Hewage, “Deep Neural Network Based Real-Time Intrusion
Detection System,” SN Comput Sci, vol. 3, no. 2, p. 145, Mar. 2022,
doi: 10.1007/s42979-022-01031-1.

A. M. Aleesa, B. B. Zaidan, A. A. Zaidan, and N. M. Sahar, “Review of
intrusion detection systems based on deep learning techniques: coherent
taxonomy, challenges, motivations, recommendations, substantial
analysis and future directions,” Neural Comput Appl, vol. 32, no. 14, pp.
9827-9858, Jul. 2020. doi: 10.1007/s00521-019-04557-3.

M. Merenda, C. Porcaro, and D. Iero, “Edge Machine Learning for Al-
Enabled IoT Devices: A Review,” Sensors, vol. 20. no. 9, p. 2533, Apr.
2020. doi: 10.3390/s20092533.

H. Han, H. Kim, and Y. Kim, “Correlation between Deep Neural
Network Hidden Layer and Intrusion Detection Performance in loT
Intrusion Detection System,” Symmetry (Basel), vol. 14, no. 10. p. 2077,
Oct. 2022, doi: 10.3390/sym14102077.

H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407, Sep.
1951, doi: 10.1214/a0ms/1177729586.

Y. Tian, Y. Zhang, and H. Zhang, “Recent Advances in Stochastic
Gradient Descent in Deep Learning,” Mathematics, vol. 11, no. 3, p.
682, Jan. 2023, doi: 10.3390/math11030682.

S. Chaudhury and T. Yamasaki, “Robustness of Adaptive Neural
Network Optimization Under Training Noise,” IEEE Access, vol. 9, pp.
37039-37053, 2021, doi: 10.1109/ACCESS.2021.3062990.

S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization
Methods From a Machine Learning Perspective,” IEEE Trans Cybern,
vol. 50. no. 8 pp. 3668-3681, Aug. 2020. doi:
10.1109/TCYB.2019.2950779.

M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm
for deep neural network optimization,” Neural Comput Appl, vol. 35,
no. 23, pp. 17095-17112, Aug. 2023, doi: 10.1007/s00521-023-08568-z.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” Dec. 2014.

E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, “The effect of
choosing optimizer algorithms to improve computer vision tasks: a
comparative study,” Multimed Tools Appl, vol. 82, no. 11, pp. 16591—
16633, May 2023, doi: 10.1007/511042-022-13820-0.

N. Shazeer and M. Stern, “Adafactor: Adaptive Learning Rates with
Sublinear Memory Cost.” 2018.

X. Xie, P. Zhou, H. Li, Z. Lin, and S. Yan, “Adan: Adaptive Nesterov
Momentum Algorithm for Faster Optimizing Deep Models.” 2023.

T. Dozat, “Incorporating Nesterov Momentum into Adam,” 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:70293087

F. Lopez, E. Chow, S. Tomov, and J. Dongarra, “Asynchronous SGD
for DNN training on Shared-memory Parallel Architectures,” in 2020
IEEE International Parallel and Distributed Processing Symposium
Workshops ~ (IPDPSW), IEEE, May 2020. pp. 1-4. doi:
10.1109/IPDPSW50202.2020.00168.

Y. Wang, J. Liu, J. Misic, V. B. Misic, S. Lv, and X. Chang, “Assessing
Optimizer Impact on DNN Model Sensitivity to Adversarial Examples,”
IEEE Access, vol. 7, pp. 152766-152776, 2019, doi:
10.1109/ACCESS.2019.2948658.

R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy, “Improving
the efficiency of RMSProp optimizer by utilizing Nestrove in deep
learning,” Sci Rep, vol. 13, no. 1, p. 8814, May 2023, doi:
10.1038/s41598-023-35663-X.

Z-Y. Zhang et al, “Towards Understanding the Overfitting
Phenomenon of Deep Click-Through Rate Models,” in Proceedings of
the 31st ACM International Conference on Information & Knowledge

571|Page

www.ijacsa.thesai.org

[26]

[27]

[28]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Management, New York, NY, USA: ACM, Oct. 2022, pp. 2671-2680.
doi: 10.1145/3511808.3557479.

D. Yi, J. Ahn, and S. Ji, “An Effective Optimization Method for
Machine Learning Based on ADAM,” Applied Sciences, vol. 10. no. 3,
p. 1073, Feh. 2020. doi: 10.3390/app10031073.

E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, “The effect of
choosing optimizer algorithms to improve computer vision tasks: a
comparative study,” Multimed Tools Appl, vol. 82, no. 11, pp. 16591—
16633, May 2023, doi: 10.1007/s11042-022-13820-0.

X. He, F. Xue, X. Ren, and Y. You, “Large-Scale Deep Learning
Optimizations: A Comprehensive Survey,” Nov. 2021.

Vol. 16, No. 11, 2025

[29] S. Ruder, “An overview of gradient descent optimization algorithms,”
Sep. 2016.

[30] Nurrahma and R. Yusuf, “Comparing Different Supervised Machine
Learning Accuracy on Analyzing COVID-19 Data using ANOVA Test,”
in 2020 6th International Conference on Interactive Digital Media
(ICIDM), IEEE, Dec. 2020. pp. 1-6. doi:
10.1109/1CIDM51048.2020.9339676.

[31] R. A. Fisher, “Statistical Methods for Research Workers,” 1992, pp. 66—
70. doi: 10.1007/978-1-4612-4380-9_6.

572|Page

www.ijacsa.thesai.org

