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Abstract—The prediction of chronic kidney disease (CKD)
must have models capable of processing heterogeneous clinical
data and being transparent to assist clinical decision making.
Current CKD research usually uses single-view data, integrated
graph representations, or bivalent deep learning systems that do
not reflect view-specific clinical connections or cannot be
interpreted effectively. The first study that uses a combination of
the individual multi-view similarity graphs and an attention-based
fusion approach to predict the risk of CKD, and the study
overcomes the shortcomings of the earlier machine learning, deep
learning, and graph-based models. The suggested Attentive Multi-
View Graph Convolutional Network (MV-GCN-Attn) uses Graph
Convolutional Networks to learn view-specific embeddings and
applies them in an adaptive way with the help of attention
mechanisms and highlighted clinically influential features. The
model has an accuracy of 91.0% along with a precision of 89.0%
and a recall of 92.0% and F1-score of 90.0 in the experiment of 400
patient records and 24 attributes in a publicly available dataset of
UCI CKD, which is higher than the conventional baselines. The
framework also offers feature- and view-level interpretability and
the key indicators are determined: serum creatinine and
haemoglobin. These results indicate that the use of multi-view
graph learning with attention-based interpretability has the
potential to provide effective, clinically significant predictions,
which can be used with a high degree of confidence in the practical
implementation of CKD screening and decision-support in the
work of various healthcare facilities and as a valuable aid in the
early clinical intervention process.

Keywords—Chronic kidney disease progression; multi-view
graph convolutional network; temporal fusion transformer;
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. INTRODUCTION

CKD has become one of the major health issues and its
incidence is ever-rising because of the emerging factors like
diabetes, hypertension, and aging populations [1]. It is
characterized by progressively and irreversibly impaired renal

function, which may progress without apparent symptoms until
late-stage renal disease. ESRD arises and needs dialysis
treatment or kidney transplantation[2]. This silent development
indicates the urgent necessity of early diagnosis, individual
control, and relevant action [3]. These limitations noted in the
current clinical scene are attributable to the heterogeneous and
fragmented properties of the clinical data commonly observed
in CKD-early detection [4]. In most cases, clinical information
is usually composed of such data as demographic variables,
laboratory diagnostics, comorbidities, and past medical reports.
Missing, irregular sampling, and different formats of data are the
common attributes of these datasets and prove to be a critical
challenge to standard machine learning models. Despite the
prevalence of Random Forests, SVMs and RNN-based
classifiers as existing methods used to predict CKD, they are
prone to underperform based on data that is multimodal and
complex. The models cannot capture inter-patient relationships
or temporal models, or dynamic features dependency, which can
be used to generate clinically useful knowledge [5].

Recent years have been promising when it comes to deep
learning and complex artificial intelligence (Al) technologies to
make a difference with references to disease prognosis by
providing more explainable and accurate prediction models [6].
Nevertheless, a large number of the models either work on one
data modality or do not incorporate spatial and temporal aspect
of patient health records [7]. This causes an incomplete picture
of the progression course, and clinicians can hardly predict the
further rise in the disease or provide interventions to suit their
needs. Moreover, the longitudinal process of CKD development
[8], in which the disease indicators change over several patient
visits, requires the framework in essence that would capture the
short- and long-term dependencies and, in addition, deal with
the uncertainty in forecasts. Driven by these limitations, this
study introduces a new hybrid model, based on the MV-GCN
and fitted with a TFT, which will be referred to as MV-GCN-
TFT, and dedicated to the CKD progression forecasting [9].
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In contrast to traditional CKD prediction approaches that
handle all clinical features as a one-dimensional flat vector, this
study suggests a hybrid multi-view graph learning model in
order to effectively characterize the intricate relationships in
patient information. The method utilizes complementarity
across demographic, laboratory, and clinical history features by
learning multi-view patient embeddings, instead of aggregating
all features into one representation. Moreover, the framework
integrates feature- and view-level attention mechanisms that
enhance not only predictive performance but also
interpretability, such that clinicians can discern the most
contributing features and views to the predictions. Patient
relationships are modeled as cross-sectional graphs, which
enable the model to leverage structural analogies in
heterogeneous clinical data—a property commonly neglected by
conventional methods. Through the integration of multi-view
embedding learning, attention-based interpretability, and graph-
based modeling, the presented framework brings a new
methodological perspective in enhancing both the accuracy and
clinical significance of CKD prediction, providing a stronger
and more informative decision-support system for early
detection.

This study is driven by the motivation to increase
performance on predictive tasks by spatial and temporal
interruption of multimodal clinical data and also make sure that
the resulting insights are interpretable as well as apply in real-
life healthcare practices. In comparison with the traditional
models that view data points independently of each other, MV-
GCN employs the graph-based message passing paradigm to
catch both intra-patient and inter-patient connections within and
across the clinical views, including laboratory results,
demographics, and comorbidities, by building the patient
similarity graphs per view. The advantage of this multi-view
graph representation is based on the ability to combine the
complementary information and better understand the patient
profiles [10]. Temporal Fusion Transformer component, on the
other hand, aims to capture the temporal dependency of
longitudinal electronic health records [11]. It relies on attention
mechanisms, variable selection networks, and quantile
regression in order to recognize feature importance on a
dynamic basis, as well as in differentiating between instant and
dynamic (and long-term) influence of clinical signs over time.
The framework offers a holistic solution to these issues by
integrating of these two architectures, which take into account
both data heterogeneity, missing values and temporal
irregularity that are typical of clinical data. The fusion of multi-
view graph reasoning with deep temporal modeling positions the
MV-GCN-TFT as a powerful tool that transcends the limitations
of conventional machine learning techniques. It is designed not
just to detect CKD earlier, but to inform personalized, proactive
care pathways that can significantly improve patient outcomes
and resource allocation in healthcare systems [12].

A. Research Motivation

CKD is a significant health issue facing the world since it is
an irreversible progressive disease with no symptoms making it
hard to diagnose at an early stage resulting in few treatment
options and high costs [13]. Early diagnosis and appropriate
forecasting of disease development is thus essential to intervene
in time and enhance patient outcomes, as well as to save on
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healthcare costs [14]. But traditional machine learning and deep
learning methods can be challenged by the heterogeneity,
incompleteness and temporal irregularity of clinical data,
preventing them from learning inter-patient dependencies and
trends in disease. These limitations emphasize the importance of
sophisticated,  interpretable, and  uncertainty-sensitive
frameworks that can be used to model complicated and
heterogeneous data, as well as assist in the effective
management of CKD through personalized evidence-based
clinical decision-making models

B. Research Significance

The importance of the study is that it fills important
limitations of the existing models of CKD prediction in that they
most of the time use a single-view data, ignore view-specific
clinical patterns, and their interpretation is limited. In
comparison with current machine learning and deep learning
models, the presented MV-GCN-Attn framework constitutes
demographic, laboratory, and clinical history view almost
independently with the help of multi-view similarity graphs and
fuses them through attention-based mechanisms. This design is
much more predictive accurate and provides clear and
understandable feature-level and view-level explanations, which
would provide transparent and clinically meaningful risk
assessment. The framework is more representative of
heterogeneous clinical data than previous work and has a more
reliable representation of clinical data in early CKD
stratification and clinical decision support.

C. Key Contributions

e Aninnovative MV-GCN-ALttn system that builds distinct
multi-view similarity graphs on each of the following
three types of data demographic data, laboratory data,
and clinical history data- responds to the weaknesses of
the current single-view and unified-graph CKD
prediction systems.

o Independent Graph Convolutional Networks on View-
specific representation learning, which allows the model
to learn specific structural patterns in each clinical
modality.

e The attention-based fusion mechanism, which is
adaptively weighted by views and features and offers
transparent interpretability and accentuates indicators
with clinical impact.

o Detailed analysis of the UCI CKD dataset, showing high
accuracy, precision, recall, and F1-score over the state of
the art machine learning, deep learning, and graph-based
baselines.

e Clinical meaningful impact, can provide interpretable
risk stratification that may determine critical laboratory
markers and provide real-world decision making in early
CKD screening.

D. Research Structure

The rest of this paper is structured in the following way.
Section Il presents the related works on the prediction of CKD
and multi-view graph learning. The Problem Statement is given
in Section I11. Section 1V explains the intended MV-GCN-Attn
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model, which consists of data preprocessing, constructing a
graph, model architecture, and attention-based fusion. The
experimental results are reported in Section V and the predictive
performance of the model and interpretability are discussed.
Section VI puts an end to the study and gives possible directions
of further studies.

Il.  RELATED WORKS

Kumar et al., [15] this study is proposed as an intelligent
medical diagnostic methodology, which seeks to improve the
early diagnosis and staging of chronic kidney disease based on
ordinary clinical consultation information. What is involved in
the method is the creation of a new deep learning model that uses
a fuzzy deep neural network in combination with an
optimization strategy that is based on the learning process to
classify CKD more effectively than the traditional systems. The
accuracy of the study was 99.23 which is high compared to the
current machine learning and data-mining methods on measure
of accuracy including precision, F-measure, sensitivity, and
indicates a high potential of automated diagnosis. Nevertheless,
it admitted such disadvantages as dependence on small datasets,
the absence of real clinical validation, and additional testing
before its practical implementation under the supervision of a
doctor Tuechler et al.,[16] suggested a time-resolved multi-
omics to enhance the knowledge of kidney fibrosis pathologies,
as there was no biomarker and effective treatment to the
progressive disease. The authors employed an in vitro model of
human PDGFRb+ mesenchymal cells stimulated with TGF-b
and conducted transcriptomics, proteomics,
phosphoproteomics, and secretomics on seven time points, and
counted more than 14,000 biomolecules. The combination
analysis indicated dynamic regulation patterns and early
transcription factors, including FLI1 and E2F1, as negative
collagen deposition regulators. Predictions of the model were
confirmed by means of siRNA knockdowns and phenotypic
assays. Despite its thoroughness, the method has weaknesses in
its in vitro character and needs to be further justified in the
clinical and in vivo setting Liang et al.,[17] presented a machine-
learning based model to enable the predictive treatment of
chronic kidney disease (CKD) progression and end-stage renal
disease (ESRD) within three years based on the available
clinical and laboratory information. Eight machine-learning
models were used in the study, and feature-selection algorithms
(including LASSO, Random Forest, and XGBoost) were
employed, and interpretability was additionally improved with
four deep-learning attribution techniques. The developed deep
learning model was highly performing with AUC-ROC 0.8991
and beat the baseline methods including the important
biomarkers being found in accordance with clinical knowledge.
Nonetheless, the model should be solidified on different
populations and medical environments, and certain
interpretations of features were not consistent among
algorithms, which means that there should be more robust and
clinically generalizable Shabaka et al., [18] aims at exploring
existing and possible methods of the treatment of CKD with
particular focus on early detection and treatment management in
order to retard its progress. The catalogue of data on the
activities of existing clinical trials, drug studies and
epidemiological studies was analyzed. This study knows them
as a group, and although the review does not make any direct
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mention of any of the direct data, it is based on the immense
volume of clinical data that is already published. Among the
discussed obvious benefits, there is the introduction of the
effective agents, sodium-glucose cotransporter 2 inhibitors, non-
steroidal, and mineralocorticoid receptor antagonists, and
potassium-lowering technologies which prove beneficial in
regard to the progression of CKD and the expanded measures of
cardiovascular. The main and rather apparent limitation is that
the existing regimens of therapy have been proven as ineffective
as soon as tubulointerstitial fibrosis has already been introduced.
The review implies that the further study must concentrate on
the initial mechanisms in CKD, particularly modalities of
interest, centering on epigenetic modalities that would facilitate
concentrated control over various pathogenic pathways.

Z. Chen et al., [19] has suggested a machine-learning model
to non-invasively examine the level of renal fibrosis severity in
patients with chronic kidney disease based on clinical and
elastosonographic characteristics. This study included 162 CKD
patients and created four models, including XGBoost, SVM,
LightGBM, and KNN, which were evaluated using AUC and
average precision, and SHAP was used to facilitate the
interpretation. XGBoost model performed the most effective
diagnostics, with an AUC of 0.97 in the primary data and 0.85
in the cross-validation, showing eGFR, elastic modulus, renal
length and resistive index as the most important predictors.
Despite its high accuracy and interpretability, the scale of the
sample is quite small, and the model is single-centric, which
does not allow generalizing the findings, and the introduction of
multicenter validation is needed to guarantee the application of
the model to broader clinical settings

Lu et al,, [20] put forward a predictive interpretation
framework based on machine-learning to identify important risk
factors and enhance predicting CKD progression in non-
hospitalized high-risk patients. The paper examined the data of
1358 patients with biopsy-proven CKD, with 17 features of
interest being picked through recursive feature elimination.
Several machine learning models, such as the XGBoost, Naive
Bayes, neural networks, ridge regression, logistic regression,
and an ensemble voting model, were trained and tested, and an
ensemble voting model was created. Logistic regression was the
most effective between single models (AUC = 0.850) whereas
the ensemble model had a slightly higher AUC of 0.856. The
important predictors were low concentrations of vitamin D,
albumin, and transferrin (in males), and high concentrations of
cystatin C. Despite its effectiveness and interpretability, the
limitations of the model consist of dependence on the datasets
and possible the need to further validate it in a wide range of
clinical populations.

The three gaps that persist in existing CKD prediction
studies include; most studies are based on a single-view of
clinical data, which limits the ability to model cross-view
relationships, graph-based models tend to construct a single
unified graph and cannot consider view-specific structures and
current models are not that interpretable giving little information
on which clinical views and features influence predictions. All
these constraints demonstrate the necessity of a multi-view,
graph-based, and interpretable CKD prediction model.
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IIl.  PROBLEM STATEMENT

CKOD is a chronic and progressive disease that causes a huge
burden to the health care systems of the world [21]. Timely
medical intervention is highly important and appropriate
prediction of CKD evolution is essential to guarantee better
patient outcomes. Nonetheless, the majority of available clinical
prediction models do not work well to combine heterogeneous
data available about patients in various modalities [22],
frequently analyzing them separately, and not considering the
complex inter-patient relationships. Also, clinical data are often
subject to missing data, unequal sampling rates, and feature
significance, which also further constrains model reliability.
More importantly, most models in existence cannot be
interpreted and do not quantify the uncertainty of prediction,
making it difficult to adopt them in the clinical setting. To
overcome the difficulties, here the Attentive Multi-View Graph
Convolutional Network (MV-GCN-Attn) which is an
interpretable and scalable Al model is proposed to integrate
multi-view cross-sectional clinical information. The proposed
model with the help of graph-based relational learning and
attention-based fusion mechanism can use inter-feature
dependencies to effectively exploit and weight the most
informative views and features adaptively. Which benefits the
approach is more predictive accurate, interpretable, and aware
of uncertainty, which in turn supports a more proactive CKD
management, treatment plans that are more individualised, and
increased clinical confidence in Al-based decision support
systems.

IV. ATTENTIVE MULTI-VIEW GRAPH FUSION NETWORK
FOR CKD PREDICTION

It is a proposed hybrid multi-view graph learning study to
determine (CKD) prediction by using cross-sectional clinical
data. The developed approach uses Multi-View Graph
Convolutional Networks (MV-GCN) to create a representation
of heterogeneous clinical variables and fuses them via an
attention-based fusion module to create a single representation.
The framework makes use of complementary information based
on demographic, laboratory, and clinical history characteristics
to enhance predictive value besides providing interpretable
information about the relative feature and view importance. The
pipeline consists of three main steps, which include: 1) data
preprocessing, 2) multi-view graph construction and embedding
learning and 3) feature fusion and classification by attention.
The step helps to be strong to missing values and scale
differences among variables. Multi-view graphs are designed to
capture patient similarities in various clinical domains
promoting the network to acquire structural links between
patients. These inter-patient relationships are learned by the
MV-GCN using low-dimensional embeddings whereas the
attention-based fusion module dynamically highlights the most
informative views and features. Lastly, there is a classifier that
differentiates between CKD and non-CKD cases. A robust and
clinically significant prediction framework will result from the
design's facilitation of the model's utilization of both feature-
level interpretability and graph-structured linkages. So far, this
study is the first attempt to use multi-view graph convolutional
networks with attention-based fusion to predict CKD based on
cross-sectional data with high prediction accuracy and enhanced
clinical interpretability.
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Fig. 1. Block diagram of the proposed MV-GCN with attention fusion
methodology.

Fig. 1 shows A Multi-View Graph Convolutional Network
with Attention-Based Fusion proposed to predict CKD. Patient
data is preprocessed and separated into demographic, laboratory
and clinical views. Each view constructs a KNN graph and the
view-specific embeddings are obtained by a different GCN. An
attention-based fusion module incorporates these embeddings to
one patient representation that is then used by a fully connected
classifier to predict CKD and mark low-confidence cases, which
are reviewed.

A. Data Collection

The dataset used in this study is the publicly available UCI
(CKD) dataset [23], which consists of clinical records of 400
patients and 24 attributes that include demographic, laboratory,
and clinical history data. Demographic factors are age and
gender whereas the laboratory indicators are serum creatinine,
hemoglobin, blood glucose and blood pressure parameters.
Clinical history reports indicate the occurrence of comorbidity
like hypertension, diabetes mellitus, and anemia. The data is
categorized as CKD or non-CKD which makes it possible to
classify it under supervision. The missing values were dealt with
by imputing median and mode respectively, in continuous and
categorical variables respectively. The dataset can be used as a
baseline to conduct study on CKD prediction, and is rich enough
to be heterogeneous to ensure that multi-view graph-based
learning models are capable of learning between patients with
different complex inter-patient relationships under diverse
clinical settings

B. Data Preprocessing

Prior to the model development, the data was subjected to
systematic preprocessing in order to maintain data quality and
consistency. We dealt with missing values, which were available
in multiple attributes, by imputing the missing continuous
variables like serum creatinine and hemoglobin using median
imputation and imputed the missing categorical variables like
hypertension and diabetes using mode imputation. The
continuous features were scaled to between 0 and 1 to eliminate
the scale variation and enhance convergence in the training
process. One-hot encoding was used to encode categorical
features to transform them into binary vectors that can be read
by machines. Laboratory test values that were outliers were
reviewed and revised to ensure that the values were clinically
plausible. Lastly, stratified sampling was used to divide the
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dataset into training (70%), validation (15%), and testing (15)
subsets so that CKD and non-CKD cases are equally represented
in all splits. This preprocessing shows strong and repeatable
model testing.

1) Missing Value Imputation: Medical datasets often
contain missing entries due to irregular patient visits or
unrecorded tests. Let X = {x;,x,,x5...,x,} be the dataset,
where x; € R? is the feature vector for patient i. Handle
missing values using view-aware imputation strategies:

a) Mean/Meridian Imputation is given in Eq. (1),
imputed _ 1 )
xij = ISjIZkesj xk} (l)
where, S; is the set of samples with available values for
feature j.

b) K-Nearest Neighbor (KNN) Imputation for more
complex views is represented in Eq. (2)
i 1
il;'nputm = ;ZEKNN(x,-) Xpj 2
2) Categorical encoding: Categorical features (e.g.,
gender, medication type) are transformed into numerical format
using:
a) One-Hot Encoding: If feature x; € {4, B, C}, then it is
represented in Eq. (3)

x; = [1,0,0](for class A) 3

b) Label Encoding when ordinal relationships exist given
in (4):

x; € {Low, medium, high} - {0,1,2} (@)

¢) Feature Scaling: To ensure numerical stability and
model convergence, features are normalized using Z-score
normalization given in Eq. (5):
o XijTHij
Xij = o ®)
where, u;; means Mean of feature j, o; means standard
deviation of feature j.

3) Feature grouping for multi-view graphs: The features
were then arranged in three separate categories after
preprocessing to help in constructing the multi-view graphs.
The demographic category consists of age, gender, and body
mass index (BMI), which comprises fundamental patient
features. The laboratory category includes clinical test
outcomes like serum creatinine, hemoglobin, blood glucose and
blood pressure, which reflect the biochemical condition of each
patient. The category of clinical history includes the
comorbidities such as diabetes, hypertension, anemia and other
pertinent medical conditions. The groups of these three features
were then utilized to create multi-view patient similarity
graphs, on which learning patient embeddings with the MV-
GCN model is based.
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C. Multi-View Graph Construction

In order to have a full picture of the patient representation,
three different graphs were created, each reflecting a particular
clinical view. The demographic view contained similarities by
age, gender, and BMI whereas the laboratory view coded
Euclidean differences between patients using laboratory
variables including serum creatinine, hemoglobin, blood
glucose, and blood pressure. The clinical history view developed
associations on similar comorbidities such as hypertension,
diabetes, and anemia. K-nearest neighbor (kNN) graph of size k
= 10 was created on each view and the resulting adjacency
matrices were normalised. The normalized graphs were then
used as inputs to the MV-GCN, so that the network could learn
the embedding that incorporates both structural and feature-level
similarities between various clinical domains.

1) MV-GCN: This model represents inter-patient
relationships across multiple heterogeneous clinical data
modalities using separate patient similarity graphs for every
view. Each view represents data modalities like laboratory tests,
comorbidities, or demographics. Each graph has patients as
nodes and edges represent similarity in relation to relevant
clinical features. Then apply Graph Convolutional Networks to
each graph and obtain spatial embeddings based on information
gathered from other neighbouring patients. All outputs are later
combined using either concatenation or an attention-based
method to produce a holistic multi-view patient representation
that encodes complementary information across data
modalities.

The graph convolution operation at layer [ for view v is
defined as the Eq. (6),

g+ — a(ﬁ_%ﬁ(”)ﬁ_l/zH(”'l)W("'l)) (6)

where, H®Y is the node embedding matrix at layer I, A®
means the adjacency matrix with added self-connections, D
means the degree matrix, o is the activation function.

Hf = Zv (X,,H,, (7)

where, «, is the attention coefficient representing the
importance of each view. This fusion captures complementary
information ~ from  multiple  perspectives,  enhancing
representation learning and providing interpretability at the view
level.

D. Attention-Based Fusion Module

The received fused embeddings of the Multi-View Graph
Convolutional Network are further adjusted with the assistance
of attention-based fusion module, which is also a dependency of
the Temporal Fusion Transporter (TFT) architecture adapted to
cross-sectional patient information. The aspect of time in TFT is
replaced with the feature-level attention, view integration, and
interpretability because the data are not longitudinal. The
module will be designed to enhance the quality of the
embeddings by emphasizing the most clinically significant
features and views and silencing redundant or less valuable
information. The module has three major components. The first
one is that Variable Selection Network identifies and maintains
the most informative features automatically and thus keeps the
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impact of noisy, or irrelevant, variables at a minimum. This
compounds the efficiency of the downstream classifier and
causes the model to learn meaningful clinical indicators.
Second, the Attention Mechanism assigns dynamic weights to
each feature and clinical view allowing the framework to
prioritize those dimensions that do the most valuable
contribution to the CKD prediction. Through this, the model will
be in a position to quantify the relative importance of the
demographic, laboratory, and clinical history data and make the
interpretations even more understandable. Third, Gated
Residual Connections are introduced to regularize the learning
to bring about a uniform gradient flow in the network and
eliminate the issue of vanishing gradient throughout the training
process. This attention based fusion module is the result of
which is a final patient embedding vector which will be the
weighted combination of all the views and the selected features.
It is a universal interpretable depiction of all patients and can be
accurately categorized, as well as, it has the information of the
clinical traits which influence the risk of CKD in the most.
Multi-view graph embeddings and interpretable prediction are,
in some sense, connected in the module.

E. Classification Layer

Once the final patient embedding has been acquired at the
attention-based fusion module, the second step involves
carrying out the classification into CKD and non-CKD. The
embedding vector, which is denoted by z, is an encapsulation of
extensive details of various clinical perspectives, including
demographic, laboratory, comorbidity characteristics. In order
to convert this learned representation into a prediction, we use a
fully connected feed-forward network using a softmax
activation function. This layer is a linear classifier, which
projects the high dimensional embedding into probabilities of
each class. Softmax normalizes the outputs and can be
interpreted as probabilities, which is necessary in clinical
decision support applications.

"The classification operation may be stated as follows in
Eqg. (8):
¥ = softmax(W,Zb,) 8)

where, Zis the final embedding vector, W, is the weight
matrix, b, is the bias vector, and ¥ represents the predicted
probability distribution over the CKD and non-CKD classes.

The fully connected layer uses rich and multi-view
embeddings to generate correct prediction. Each of the elements
in W, is trained to balance features of the embedding vector, and
the bias b, moves the decision boundary accordingly. The
probability of each class that is obtained as a result of the linear
combination of features is converted into a value between 0 and
1 with the help of a softmax activation, which makes the results
interpretable. The network parameters are optimized with the
cross-entropy loss during the training process and this promotes
the model to give a high probability to the correct class. The
model can combine intricate patient relationships and feature
interactions to give accurate classification and clinically
significant predictions using this approach.
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F. Training Procedure

The suggested hybrid MV-GCN-Attn model is based on the
well-considered training plan that guarantees proper, sound, and
generalizable Clronic Renal Disease (CKD) prediction. Multi-
View Graph Convolutional Networks (MV-GCN) are combined
with an attention-based fusion module to create the model,
which is developed based on the PyTorch library of deep
learning. The Adam optimizer is an adaptive gradient-based
optimizer that relies on the momentum-based update to optimize
model parameters and allows the optimization to be efficient and
stable. The learning rate used is 0.001 to help the weight changes
occur gradually and in a controlled manner during training. To
reduce the overfitting which is especially common when using
only a small dataset (such as the UCI CKD dataset), a dropout
rate of 0.2 is used within network layers, where a random group
of neurons is switched off to boost model generalization. Mini-
batches of 32 are used to perform training, which is a good
tradeoff between computational performance and gradient
stability. Moreover, to avoid overtraining, early termination on
the basis of validation loss is also included to terminate
optimization as soon as model performance does not improve on
validation data unseen at the time of termination. Each
experiment is run five times using new random seeds to make it
robust and reproducible, and the means of the performance
metrics are presented. The model is trained with the help of
cross-entropy loss function, which measures differences
between predicted class probabilities and true labels, making the
network to give high probabilities to accurate predictions. The
proposed training framework can attain both high predictive
accuracy and high generalization capability through the use of
this comprehensive training strategy that provides stable and
clinically reliable results in the prediction of CKD.
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Fig. 2. Multi-View Graph Convolutional Network (MV-GCN) framework.

The Fig. 2 shows the Multi-View Graph Convolutional
Network (MV-GCN) system. Multi-view resources offer
content features as well as structural relationships. Each view is
converted into a graph by the left branch, which is used to
produce graph embeddings by using layers of GCN, and the
content information is encoded into content embeddings by the
right branch. Multi-view consistency module is used to match
these two representations, and their results are ultimately
combined to create a single embedding that can be used in
downstream prediction.
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Algorithm 1: HADOX-Net for CKD Detection
Start

Load clinical dataset (laboratory results, demographics,
medical history).
Check for missing data:

e If missing, impute using mean, median, or K-Nearest
Neighbors (KNN).

e  Else, proceed to the next step.

Convert categorical variables:

e  Use one-hot encoding or label encoding.

Normalize numerical features:

e Apply standard scaling (Z-score) or min-max
scaling.

Construct separate similarity graphs for each clinical data
modality:

e Nodes represent patients.

e  Edges represent similarity based on modality-
specific features.

Apply Multi-View Graph Convolutional Network (MV-
GCN) independently on each graph:

e  Perform message passing to learn modality-specific
embeddings.

Fuse learned embeddings across views using attention-
based fusion:

e  Adaptively weight the importance of each view and
feature to form a unified patient representation.

Pass fused embeddings through fully connected layers for
classification:

e  Predict CKD status as a risk probability.

Quantify prediction uncertainty through probabilistic
outputs.

If prediction uncertainty is high:
e  Flag for clinical review.

e  Else, provide prediction for clinical decision-making.
End

This Algorithm 1 is used to state the MV-GCN-Attn model
of CKD prediction using multi-modal clinical data based on two
distinct graphs. It processes missing data, codes and normalizes
features and learns patient embeddings with graph convolution.
These embeddings are then merged through an attention-based
fusion module in order to predict risk accurately. The model also
predicts uncertainty which is used by marking of doubtful cases
to be reviewed by the clinics. By doing this, strong,
interpretable, and reliable prediction of CKD that could be used
in clinical decision-making becomes possible."
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V. RESULT AND DISCUSSION

The suggested model of MV-GCN-TFT to forecast (CKD)
progression was strictly tested on the basis of common
classification measures with various groups of patients and
clinical visions. The combination of Multi-View Graph
Convolutional Networks and an attention-based fusion
mechanism based on temporal modeling allows the framework
to be highly effective in the representation of both relational and
feature-level patterns of heterogeneous clinical data. The
predictive performance of the experiment is found to be
consistently high and the model has high robustness with respect
to missing values and changes in patient characteristics. This
mixed method has the advantage of capitalizing on
complementary demographic, laboratory as well as clinical
history data which lead to enhancing accuracy, interpretability
and clinical reliability. The visualization of the learned
embeddings is another confirmation of the potential of the model
as an Al-based decision support system, which is able to identify
CKD at early stages of the disease. The accurate and
interpretable forecasts offered by the MV-GCN-TFT model can
be used to implement timely interventions, stratify risks
individually, and direct clinicians in preventing patients in
advance. Due to the property of interpretability, scalability, and
stability, there is great potential of the framework to be applied
in the real-life context in the process of risk assessing and
overseeing chronic illnesses.

TABLE I. SIMULATION PARAMETER
Parameter Value
UCI CKD dataset (via Kaggle by
Dataset Source Nitesh Yadav)
Number of Instances 400
Number of Features 24

Laboratory Results,

Data Modalities Demographics, Medical History

Multi-View Graph Convolutional

Graph Convolutional Layers Networks

Concatenation / Attention-Based

Graph Fusion Method Fusion

Not Applicable — Cross-Sectional
Temporal Modeling Data

Feature Selection Mechanism Variable Selection Network

One-Hot
Encoding

Encoding, Label
Categorical Encoding

Classification ~ with  Softmax

Output Type (Probability Estimation)
Python  (PyTorch for model
Software Tool development)

The Table | provides the summary of the main parameters
and settings employed in the CKD prediction study. It is based
on the UCI CKD dataset consisting of 400 cases of patients and
24 clinical attributes including laboratory findings,
demographic, and medical history. The model uses multi-view
graph convolutional networks that have attention-based fusion
in order to incorporate heterogeneous data. Selection of the
features is done through Variable Selection Network and
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categorical variables are coded through one-hot and label
encoding. This framework delivers probabilistic classification
predictions with the help of softmax layer and is coded in Python
with PyTorch, which is guaranteed to yield robust and
interpretable CKD prediction.

A. Performance Outcome

The suggested MV-GCN-TFT model of CKD development
prediction underwent a strict testing with traditional
classification metrics in a wide range of situations with patients
and clinical perspectives. The model, combining multi-view
graph convolutional networks with attention-based fusion,
which is derived using temporal modeling, offers a good
representation of both relational and feature-level patterns in
heterogeneous clinical data. Findings show that there is a high
performance in prediction, which is reliable and consistent and
that it is robust to absence of values and diversity in patient
characteristics. This is a combination method that uses
complementary demographic, laboratory, and clinical history
data, which provide more accuracy and interpretability at the
same time. The outcomes obtained after the visualization prove
the clinical utility of the model, and they might prove its use as
a decision support system to detect CKD in the early stages.
These reliable forecasts pose significant importance in timely
action and enable medical workers to prioritize patient care and
enhance the results due to proactive care measures.

Training and Validation Loss over Epochs

—®— Training Loss
0.7 A —>— Validation Loss

0.6 1

0.5 1

0.4 1

Loss

0.3 1

0.2 1

0.1

25 5.0 75 10.0 12.5 15.0 17.5 20.0
Epoch

Fig. 3. Training and validation loss over epochs.

This Fig. 3 graph describes the training and validation loss
curves in 20 epochs when the Attentive Multi-View Graph
Fusion Network is being trained. The decreasing trend of the
training loss shows the process of learning the model in reducing
the error of classification over the training data. The respective
validation loss curve follows the performance on unseen data,
which gives a clue on the generalization of the model and
indicates a possible overfitting in case there is a divergence. The
closeness and smooth convergence of the two curves illustrates
constant convergence and efficient regularization schemes, e.g.
dropout and early stopping. This visualisation is critical in
comprehending the process of training and in making strong and
robust CKD prediction in clinical data.

Fig. 4 histogram shows how the suggested model predicts
CKOD risk among the patient cohort. The predicted probabilities
are continuous values between 0 and 1 that indicate the
confidence of the model in the case of CKD status of each
patient. The form of the distribution with the concentrate in the
lower and high probability bins justifies the ability of the model

Vol. 16, No. 11, 2025

to stratify patients into the risk groups effectively. Such a
visualization will help clinicians make sense of the confidence
levels, which may contribute to individual monitoring or
intervention plans. The distinction between low risk and high-
risk patients is explicit, and this increases the clinical
interpretability of the Al system.

Distribution of Predicted CKD Risk Probabilities

Number of Patients

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Predicted Probability

Fig. 4. Predicted CKD risk probability distribution.
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Fig. 5. Confusion matrix for classification result.

By showing the number of true positives, true negatives,
false positives, and false negatives in the CKD prediction job,
the confusion matrix in Fig. 5 illustrates the classification's
result. Correctly recognized cases of CKD are indicated by true
positives (bottom right), and correctly identified non-CKD
patients are shown by true negatives (top left). Misclassification
is indicated by false positives and negatives, which should be
assessed for impacts and medical safety. This is a key diagnostic
tool that assesses the types and frequency of prediction mistakes,
which serve as the foundation for other assessment metrics like
precision, recall, and F1-score to assess the model thoroughly.

Fig. 6 pie chart represents the relative data the three clinical
data views of Demographic, Laboratory, and Clinical History
contribute to the CKD prediction model. The weights of the
percentage shares correspond to their acquired values of
importance or attention in the multi-view graph fusion model.
The graphical presentation is beneficial in the clinical
interpretation of what patient type data domains have the
greatest impact on model predictions, which can inform clinical
assessments, and data gathering to evaluate the risk of CKD.
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Contribution of Clinical Data Views to CKD Prediction
Clinical History

20.0%

45.0%
35.0% Laboratory

Demographic

Fig. 6. Contribution of clinical data views.

Feature Importance for CKD Prediction
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Creatinine

Albumin 0.32

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Importance Score

Fig. 7. Feature importance analysis.

The relative weight of different clinical variables in the
model as suggested is shown in Fig. 7, which presents the
analysis of feature importance gained during the prediction of
CKD data. Among those characteristics that have a significant
clinical impact on Kidney functioning assessment, albumin
(0.32) and creatinine (0.27) were determined to be the most
significant predictors. In terms of their contribution to the
model's decision-making process, hemoglobin (0.07), age
(0.05), and blood pressure (0.18) and glucose levels (0.10) were
all predicted to be moderate. These findings highlight the role
that  biochemical  markers—particularly  albumin and
creatinine—play in the development of chronic kidney disease
(CKD), while demographic factors and secondary health
indicators play a role, albeit a small one.

The suggested Fig. 8 MV-GCN-TFT model of CKD
development prediction underwent a strict testing with
traditional classification metrics in a wide range of situations
with patients and clinical perspectives. The model, combining
multi-view graph convolutional networks with attention-based
fusion, which is derived using temporal modeling, offers a good
representation of both relational and feature-level patterns in

Vol. 16, No. 11, 2025

heterogeneous clinical data. Findings show that there is a high
performance in prediction, which is reliable and consistent and
that it is robust to absence of values and diversity in patient
characteristics. This is a combination method that uses
complementary demographic, laboratory, and clinical history
data, which provide more accuracy and interpretability at the
same time. The outcomes obtained after the visualization prove
the clinical utility of the model, and they might prove its use as
a decision support system to detect CKD in the early stages.
These reliable forecasts pose significant importance in timely
action and enable medical workers to prioritize patient care and
enhance the results due to proactive care measures. The
interpretability and stability of the framework makes it suitable
to be used in practice in risk assessment of chronic diseases.

Simulated Serum Creatinine Distribution
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Fig. 8. Simulated serum creatine distribution.
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Fig. 9. Simulated serum creatine.

Fig. 9 displays the simulated trend of serum creatinine levels
over five successive patient visits. The graph demonstrates a
consistent rise in creatinine from 1.1 on the initial visit to 2.2 on
the fifth visit, demonstrating progressive worsening of kidney
function with time. The graph indicates the progressive nature
of CKD, where even slight increases in creatinine are important
clinical indicators of reduced renal function. This figure
highlights the key role of longitudinal follow-up in the
management of CKD since monitoring of creatinine trends
allows for early identification of disease advancement and
effective clinical management.
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Fig. 10. Accuracy-loss graph.

Fig. 10 shows the dynamics of the loss and accuracy of both
the training and the validation set per epoch, and it demonstrates
the dynamics of learning of the model during the training
process. These curves are essential when using the MV-GCN-
TFT framework to predict CKD progression to evaluate the
important variables that include convergence, overfitting, and
capacity to generalize. Ideally the training and validation loss
should gradually reduce as the accuracy also improves, which
means that the learning and optimization are successful.
Nevertheless, an increasing dissimilarity between the training
and validation curves can be an indicator of overfitting, in which
the model is taught the noise and not the patterns that can be
generalized. By tracking such tendencies, it will be possible to
strictly define the optimal duration of training and prematurely
interrupt in order to avoid overfitting and maintain the stability
of the model.

B. Performance Metrics

The analysis of the performance of the machine learning
model is one of the most significant elements in designing a
precise model. When gauging the performance/quality of the
model, different measures are used and they are called
performance metrics/evaluation metrics.

1) Accuracy: This gives an overall measurement of the
accuracy of models in that the proportion of the number of
correct models to the total amount of models that are made is
calculated. In the multimodal sentiment analysis case, it
indicates the comprehensive awareness of the model of the
dissimilar input streams. The formula is provided in Eq. (9),

TP+TN

Accuracy = ——— (©)]
TP+TN+FP+FN

2) Precision: Itis the fraction of true positives compared to
all the positives that are being predicted. In sentiment
classification and emotion, it is a value that indicates the model
does not give a false positive. It is computed using (10),

TP
TP+FP

Precision = (10)

3) Recall: It is also called sensitivity or true positive rate,
which tells how many actual positives have been identified as
such. Such a measure is especially imperative in situations
where false negatives are expensive e.g when an unwanted
feeling is misrecognized on a subtle expression face. It is
calculated using Eq. (11),
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TP
TP+FN

Recall = (11)

4) Fl1-score: This balances precision and recall into one
score, which is valuable especially when you need to analyze
emotionally imbalanced data or some bipolar sentiment
categories. It is derived using the harmonic mean as in Eq. (12),

Precisi Recall
F1 score = 2 X recision x Reca (12)

Precision + Recall

TABLE Il.  PERFORMANCE METRICS
Metrics Percentage (%)
Accuracy 91.0
Precision 89.0
Recall 92.0
F1-score 90.0

Table 1l metrics evidence strong predictive capacity of the
model offered to classify CKD. The accuracy of 91.0% shows
that most cases of patients were managed right by the model.
The accuracy of the model in identifying CKD-positive and
CKD-negative patients (balanced precision of 89.0 and recall of
92.0) perfectly reflects that the model minimizes the false
positives and false negatives. The Fl-score of 90.0% also
indicates that there is a very good balance between precision and
recall, and the overall quality of classifications is very reliable.
These findings confirm the ability of the model to use multi-
view graph learning on cross-sectional clinical data and predict
CKD risks reliably.

Classification Metrics for CKD Prediction

1.0

0.8

0.6

Score

0.4 1

0.2 1

0.0

Accuracy Precision Recall Fl-score AuC

Fig. 11. Performance metrics bar chart.

The primary classification performance metrics for the
suggested model on the test set are displayed in the bar chart in
Fig. 11. AUC assesses the total potency of the discriminative
shared information, F1-score balances accuracy and recall,
precision measures how accurate an overall prediction is, and
accuracy measures if genuine CKD cases are recognized. The
model's robustness and clinical usefulness are demonstrated by
the high values of every indicator. Predictive success is
succinctly summarized in the picture, and comparing several
models or datasets is simple.
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Metric Variability Across Multiple Training Runs
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Fig. 12. Boxplot of metric variability across multiple runs.

Fig. 12 boxplot represents how variably the classification
metrics, such as accuracy, precision and recall, and F1-score,
vary across five independent training runs over five random
seeds. The small interquartile ranges and narrow whiskers
represent the homogeneous model performance and resilience to
the randomness of initiative and training stochasticity. The
stability is also essential to achieve confidence in the results and
their reproducibility particularly in clinical applications where
reliability will be of utmost importance.

Accuracy Trend Over Training Epochs
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Fig. 13. Metric trends over epochs.

Fig. 13 shows line chart monitors the precision of the model
on the set of validation using training epochs. Such gradual
growth and stagnation of accuracy guarantees the fact that the
model is optimized well and that the period of training is
sufficient. The tracking of the trends of metrics has been found
to identify underfitting, overfitting, and to ensure that the model
is at its peak performance prior to termination of the training
process to support higher predictive reliability in CKD
detection.

TABLE IIl.  COMPARATIVE ANALYSIS
Method Accuracy
GNN[24] 89.5
Random Forest[25] 88.0
CNN-based Model[26] 89.0
Proposed MV-GCN-TFT 91.0

Table 111 forwards the accuracy of the proposed framework
MV-GCN-TFT against other existing ones used in predicting
CKD. The values of adjusted accuracy of GNN, Random Forest,
and CNN-based models are a bit lower, indicating the high
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quality of the offered solution. Having an accuracy of 91.0, the
MV-GCN-TFT proves that it can successfully combine multi-
view clinical information and attention-based fusion to classify
patients more accurately. Such an outcome highlights the
strength of cross-sectional prediction of CKD using a graph-
based learning model and interpretability, which places the
suggested model in an excellent position to serve as a clinical
risk assessment and decision support instrument.

Model Performance Comparison
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W

Proposed MV-GCN Randem Forest

Fig. 14. Performance comparison across different models.

Fig. 14 bar chart shows the comparison of the accuracy and
precision of the proposed Attentive Multi-View Graph Fusion
Network classification and the baseline models, namely,
Random Forest, SVM, and Multi-Layer Perceptron (MLP). The
obviously high results of the suggested procedure demonstrate
the benefit of using the multi-view graph learning and attention
system in healthcare to capture complementary data. These
comparative visualizations further highlight the role that the
novel model plays in enhancing the accuracy of prediction of
CKD and promoting its use in clinical decision support.

C. Discussion

The study presents a hybrid predictive model based on
Multi-View Graph Convolutional Networks (MV-GCN) and a
fusion module based on attention as a modification of the
Temporal Fusion Transformer (TFT) architecture to forecast
(CKD) with cross-sectional clinical data. The proposed
framework is in contrast to traditional models that use flat table
representations by explicitly representing patient relationships
with multi-view graphs built out of heterogeneous clinical
modalities demographics, laboratory results, and medical
history. This multi-view representation is a complementary and
interrelated representation of variability patterns across multiple
clinical domains, which enhances patient embeddings and
maintains complex associations that single-view models
generally ignore. The attention-based fusion mechanism also
increases the adaptability and interpretability of the model in
that it dynamically balances both the contributions of features
and those of view. This allows the network to concentrate on the
most informative and clinically relevant signals, and counteracts
the effects of noisy or incomplete variables, which is a natural
problem of medical data. Data consistency and convergence of
the model is guaranteed by the preprocessing pipeline which
includes the median and mode data imputation, scaling, and one-
hot encoding. Experimentally on the UCI CKD data set the
proposed MV-GCN-TFT model is seen to perform better with
an accuracy of 91.0 and balanced F1-score, recall and precision.
In addition to the predictive power, the interpretability of the
framework presents meaningful information about the major

624|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

clinical characteristics that affect the risk of CKD, which
increases its reliability in clinical practice. The proposed model
is more efficient than traditional machine learning and deep
learning baselines in preserving the inter-patient association and
addressing heterogeneous and incomplete data. In general, this
study proposes a scalable, robust, and clinically interpretable
early CKD detection and management solution. This framework
will be applied to longitudinal, multi-institutional data in the
future to include dynamics of disease over time and make the
framework even more clinically applicable.

VI. CONCLUSION AND FUTURE WORKS

The proposed study introduces a new hybrid model, a
combination of Multi-View Graph Convolutional Networks
(MV-GCN) and attention-based fusion mechanism based on the
Temporal Fusion Transformer (TFT) to predict (CKD) with
cross-sectional clinical data. The model is successful in utilizing
multi-modal patient data, and creates individual similarity
graphs of laboratory tests, demographics, and clinical history.
This enables the network to learn high-quality, complementary
embeddings that encode sophisticated inter-patient relations,
which a flat-feature methodology cannot learn. The attention-
based fusion module also increases interpretability by balancing
the contribution of each clinical view and an individual feature,
allowing clinicians to comprehend the relationship between the
relative contribution of various factors to CKD prediction.
Assessment of the UCI CKD dataset shows excellent predictive
accuracy with an accuracy of 91.0% with equal precision, recall,
and F1-scores. The model is robust in the face of missing values,
non-metric features and small samples by offering customized
preprocessing and graphical representation, which highlights its
realistic applicability in clinical contexts. Notably, the clinical
implications of the framework are readily interpretable, and this
offers practical clinical data, facilitating early diagnosis and
personalized patient care, which is essential in enhancing the
outcome of CKD. Future directions also involve encompassing
longitudinal or time-varying data that can better model disease
dynamics, which may involve recurrent or transformer-based
graph models. Generalizability will be evaluated using data
collected in larger and multi-institutional datasets, and federated
learning will overcome the problem of privacy in healthcare.
The inclusion of multi-omics data and other clinical variables
can also contribute to more predictive ability. Finally, practical
implications of the creation of user-friendly clinical decision-
support systems founded on this framework might be a real
difference in the early diagnosis, individual approach, and the
healthcare outcome of the CKD patients. The proposed MV-
GCN-Attn model has the potential to reinforce regular clinical
practice by offering upstream risk stratification of CKD by the
means of regular demographical, laboratory, and medical history
information. Its feature-level and view-level interpretability
enables clinicians to know what indicators underlie each
prediction thus enabling them to determine when they will order
additional testing, start nephrology referrals, or change
treatment regimens. In comparison with traditional rule-based
tests, the model allows identifying high-risk patients earlier and
more regularly and enhances the decision-making in clinical
settings. This renders the framework appropriate to be
incorporated into eHRSs as a real-time CKD decision-support
tool.
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Even though the suggested MV-GCN-Attn model has an
excellent predictive performance and interpretability, the
research has some weaknesses. The trials are based on one
publicly available CKD dataset, and its sample size is limited;
therefore, it may not be applicable to various clinical groups.
The model also uses as an assumption the fixed clinical
perspectives and time advancement of CKD is not reflected.
Also, the availability of features and the quality of the data might
be different in real-life healthcare scenarios and it might affect
the performance of the model. Subsequent research will be
aimed at experimenting the framework with larger multi-
institutional datasets, including temporal modelling, and testing
the interpretability by expert clinical evaluation.
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