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Abstract—The prediction of chronic kidney disease (CKD) 

must have models capable of processing heterogeneous clinical 

data and being transparent to assist clinical decision making. 

Current CKD research usually uses single-view data, integrated 

graph representations, or bivalent deep learning systems that do 

not reflect view-specific clinical connections or cannot be 

interpreted effectively. The first study that uses a combination of 

the individual multi-view similarity graphs and an attention-based 

fusion approach to predict the risk of CKD, and the study 

overcomes the shortcomings of the earlier machine learning, deep 

learning, and graph-based models. The suggested Attentive Multi-

View Graph Convolutional Network (MV-GCN-Attn) uses Graph 

Convolutional Networks to learn view-specific embeddings and 

applies them in an adaptive way with the help of attention 

mechanisms and highlighted clinically influential features. The 

model has an accuracy of 91.0% along with a precision of 89.0% 

and a recall of 92.0% and F1-score of 90.0 in the experiment of 400 

patient records and 24 attributes in a publicly available dataset of 

UCI CKD, which is higher than the conventional baselines. The 

framework also offers feature- and view-level interpretability and 

the key indicators are determined: serum creatinine and 

haemoglobin. These results indicate that the use of multi-view 

graph learning with attention-based interpretability has the 

potential to provide effective, clinically significant predictions, 

which can be used with a high degree of confidence in the practical 

implementation of CKD screening and decision-support in the 

work of various healthcare facilities and as a valuable aid in the 

early clinical intervention process. 

Keywords—Chronic kidney disease progression; multi-view 

graph convolutional network; temporal fusion transformer; 

uncertainty-aware AI models; personalized medicine in healthcare 

I. INTRODUCTION 

CKD has become one of the major health issues and its 
incidence is ever-rising because of the emerging factors like 
diabetes, hypertension, and aging populations [1]. It is 
characterized by progressively and irreversibly impaired renal 

function, which may progress without apparent symptoms until 
late-stage renal disease. ESRD arises and needs dialysis 
treatment or kidney transplantation[2]. This silent development 
indicates the urgent necessity of early diagnosis, individual 
control, and relevant action [3]. These limitations noted in the 
current clinical scene are attributable to the heterogeneous and 
fragmented properties of the clinical data commonly observed 
in CKD-early detection [4]. In most cases, clinical information 
is usually composed of such data as demographic variables, 
laboratory diagnostics, comorbidities, and past medical reports. 
Missing, irregular sampling, and different formats of data are the 
common attributes of these datasets and prove to be a critical 
challenge to standard machine learning models. Despite the 
prevalence of Random Forests, SVMs and RNN-based 
classifiers as existing methods used to predict CKD, they are 
prone to underperform based on data that is multimodal and 
complex. The models cannot capture inter-patient relationships 
or temporal models, or dynamic features dependency, which can 
be used to generate clinically useful knowledge [5]. 

Recent years have been promising when it comes to deep 
learning and complex artificial intelligence (AI) technologies to 
make a difference with references to disease prognosis by 
providing more explainable and accurate prediction models [6]. 
Nevertheless, a large number of the models either work on one 
data modality or do not incorporate spatial and temporal aspect 
of patient health records [7]. This causes an incomplete picture 
of the progression course, and clinicians can hardly predict the 
further rise in the disease or provide interventions to suit their 
needs. Moreover, the longitudinal process of CKD development  
[8], in which the disease indicators change over several patient 
visits, requires the framework in essence that would capture the 
short- and long-term dependencies and, in addition, deal with 
the uncertainty in forecasts. Driven by these limitations, this 
study introduces a new hybrid model, based on the MV-GCN 
and fitted with a TFT, which will be referred to as MV-GCN-
TFT, and dedicated to the CKD progression forecasting [9]. 
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In contrast to traditional CKD prediction approaches that 
handle all clinical features as a one-dimensional flat vector, this 
study suggests a hybrid multi-view graph learning model in 
order to effectively characterize the intricate relationships in 
patient information. The method utilizes complementarity 
across demographic, laboratory, and clinical history features by 
learning multi-view patient embeddings, instead of aggregating 
all features into one representation. Moreover, the framework 
integrates feature- and view-level attention mechanisms that 
enhance not only predictive performance but also 
interpretability, such that clinicians can discern the most 
contributing features and views to the predictions. Patient 
relationships are modeled as cross-sectional graphs, which 
enable the model to leverage structural analogies in 
heterogeneous clinical data—a property commonly neglected by 
conventional methods. Through the integration of multi-view 
embedding learning, attention-based interpretability, and graph-
based modeling, the presented framework brings a new 
methodological perspective in enhancing both the accuracy and 
clinical significance of CKD prediction, providing a stronger 
and more informative decision-support system for early 
detection. 

This study is driven by the motivation to increase 
performance on predictive tasks by spatial and temporal 
interruption of multimodal clinical data and also make sure that 
the resulting insights are interpretable as well as apply in real-
life healthcare practices. In comparison with the traditional 
models that view data points independently of each other, MV-
GCN employs the graph-based message passing paradigm to 
catch both intra-patient and inter-patient connections within and 
across the clinical views, including laboratory results, 
demographics, and comorbidities, by building the patient 
similarity graphs per view. The advantage of this multi-view 
graph representation is based on the ability to combine the 
complementary information and better understand the patient 
profiles [10]. Temporal Fusion Transformer component, on the 
other hand, aims to capture the temporal dependency of 
longitudinal electronic health records [11]. It relies on attention 
mechanisms, variable selection networks, and quantile 
regression in order to recognize feature importance on a 
dynamic basis, as well as in differentiating between instant and 
dynamic (and long-term) influence of clinical signs over time. 
The framework offers a holistic solution to these issues by 
integrating of these two architectures, which take into account 
both data heterogeneity, missing values and temporal 
irregularity that are typical of clinical data. The fusion of multi-
view graph reasoning with deep temporal modeling positions the 
MV-GCN-TFT as a powerful tool that transcends the limitations 
of conventional machine learning techniques. It is designed not 
just to detect CKD earlier, but to inform personalized, proactive 
care pathways that can significantly improve patient outcomes 
and resource allocation in healthcare systems [12]. 

A. Research Motivation 

CKD is a significant health issue facing the world since it is 
an irreversible progressive disease with no symptoms making it 
hard to diagnose at an early stage resulting in few treatment 
options and high costs [13]. Early diagnosis and appropriate 
forecasting of disease development is thus essential to intervene 
in time and enhance patient outcomes, as well as to save on 

healthcare costs [14]. But traditional machine learning and deep 
learning methods can be challenged by the heterogeneity, 
incompleteness and temporal irregularity of clinical data, 
preventing them from learning inter-patient dependencies and 
trends in disease. These limitations emphasize the importance of 
sophisticated, interpretable, and uncertainty-sensitive 
frameworks that can be used to model complicated and 
heterogeneous data, as well as assist in the effective 
management of CKD through personalized evidence-based 
clinical decision-making models 

B. Research Significance 

The importance of the study is that it fills important 
limitations of the existing models of CKD prediction in that they 
most of the time use a single-view data, ignore view-specific 
clinical patterns, and their interpretation is limited. In 
comparison with current machine learning and deep learning 
models, the presented MV-GCN-Attn framework constitutes 
demographic, laboratory, and clinical history view almost 
independently with the help of multi-view similarity graphs and 
fuses them through attention-based mechanisms. This design is 
much more predictive accurate and provides clear and 
understandable feature-level and view-level explanations, which 
would provide transparent and clinically meaningful risk 
assessment. The framework is more representative of 
heterogeneous clinical data than previous work and has a more 
reliable representation of clinical data in early CKD 
stratification and clinical decision support. 

C. Key Contributions 

 An innovative MV-GCN-Attn system that builds distinct 
multi-view similarity graphs on each of the following 
three types of data demographic data, laboratory data, 
and clinical history data- responds to the weaknesses of 
the current single-view and unified-graph CKD 
prediction systems. 

 Independent Graph Convolutional Networks on View-
specific representation learning, which allows the model 
to learn specific structural patterns in each clinical 
modality. 

 The attention-based fusion mechanism, which is 
adaptively weighted by views and features and offers 
transparent interpretability and accentuates indicators 
with clinical impact. 

 Detailed analysis of the UCI CKD dataset, showing high 
accuracy, precision, recall, and F1-score over the state of 
the art machine learning, deep learning, and graph-based 
baselines. 

 Clinical meaningful impact, can provide interpretable 
risk stratification that may determine critical laboratory 
markers and provide real-world decision making in early 
CKD screening. 

D. Research Structure 

The rest of this paper is structured in the following way. 
Section II presents the related works on the prediction of CKD 
and multi-view graph learning. The Problem Statement is given 
in Section III. Section IV explains the intended MV-GCN-Attn 
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model, which consists of data preprocessing, constructing a 
graph, model architecture, and attention-based fusion. The 
experimental results are reported in Section V and the predictive 
performance of the model and interpretability are discussed. 
Section VI puts an end to the study and gives possible directions 
of further studies. 

II. RELATED WORKS 

Kumar et al., [15] this study is proposed as an intelligent 
medical diagnostic methodology, which seeks to improve the 
early diagnosis and staging of chronic kidney disease based on 
ordinary clinical consultation information. What is involved in 
the method is the creation of a new deep learning model that uses 
a fuzzy deep neural network in combination with an 
optimization strategy that is based on the learning process to 
classify CKD more effectively than the traditional systems. The 
accuracy of the study was 99.23 which is high compared to the 
current machine learning and data-mining methods on measure 
of accuracy including precision, F-measure, sensitivity, and 
indicates a high potential of automated diagnosis. Nevertheless, 
it admitted such disadvantages as dependence on small datasets, 
the absence of real clinical validation, and additional testing 
before its practical implementation under the supervision of a 
doctor Tuechler et al.,[16] suggested a time-resolved multi-
omics to enhance the knowledge of kidney fibrosis pathologies, 
as there was no biomarker and effective treatment to the 
progressive disease. The authors employed an in vitro model of 
human PDGFRb+ mesenchymal cells stimulated with TGF-b 
and conducted transcriptomics, proteomics, 
phosphoproteomics, and secretomics on seven time points, and 
counted more than 14,000 biomolecules. The combination 
analysis indicated dynamic regulation patterns and early 
transcription factors, including FLI1 and E2F1, as negative 
collagen deposition regulators. Predictions of the model were 
confirmed by means of siRNA knockdowns and phenotypic 
assays. Despite its thoroughness, the method has weaknesses in 
its in vitro character and needs to be further justified in the 
clinical and in vivo setting Liang et al.,[17] presented a machine-
learning based model to enable the predictive treatment of 
chronic kidney disease (CKD) progression and end-stage renal 
disease (ESRD) within three years based on the available 
clinical and laboratory information. Eight machine-learning 
models were used in the study, and feature-selection algorithms 
(including LASSO, Random Forest, and XGBoost) were 
employed, and interpretability was additionally improved with 
four deep-learning attribution techniques. The developed deep 
learning model was highly performing with AUC-ROC 0.8991 
and beat the baseline methods including the important 
biomarkers being found in accordance with clinical knowledge. 
Nonetheless, the model should be solidified on different 
populations and medical environments, and certain 
interpretations of features were not consistent among 
algorithms, which means that there should be more robust and 
clinically generalizable Shabaka et al., [18] aims at exploring 
existing and possible methods of the treatment of CKD with 
particular focus on early detection and treatment management in 
order to retard its progress. The catalogue of data on the 
activities of existing clinical trials, drug studies and 
epidemiological studies was analyzed. This study knows them 
as a group, and although the review does not make any direct 

mention of any of the direct data, it is based on the immense 
volume of clinical data that is already published. Among the 
discussed obvious benefits, there is the introduction of the 
effective agents, sodium-glucose cotransporter 2 inhibitors, non-
steroidal, and mineralocorticoid receptor antagonists, and 
potassium-lowering technologies which prove beneficial in 
regard to the progression of CKD and the expanded measures of 
cardiovascular. The main and rather apparent limitation is that 
the existing regimens of therapy have been proven as ineffective 
as soon as tubulointerstitial fibrosis has already been introduced. 
The review implies that the further study must concentrate on 
the initial mechanisms in CKD, particularly modalities of 
interest, centering on epigenetic modalities that would facilitate 
concentrated control over various pathogenic pathways. 

Z. Chen et al., [19] has suggested a machine-learning model 
to non-invasively examine the level of renal fibrosis severity in 
patients with chronic kidney disease based on clinical and 
elastosonographic characteristics. This study included 162 CKD 
patients and created four models, including XGBoost, SVM, 
LightGBM, and KNN, which were evaluated using AUC and 
average precision, and SHAP was used to facilitate the 
interpretation. XGBoost model performed the most effective 
diagnostics, with an AUC of 0.97 in the primary data and 0.85 
in the cross-validation, showing eGFR, elastic modulus, renal 
length and resistive index as the most important predictors. 
Despite its high accuracy and interpretability, the scale of the 
sample is quite small, and the model is single-centric, which 
does not allow generalizing the findings, and the introduction of 
multicenter validation is needed to guarantee the application of 
the model to broader clinical settings 

Lu et al., [20] put forward a predictive interpretation 
framework based on machine-learning to identify important risk 
factors and enhance predicting CKD progression in non-
hospitalized high-risk patients. The paper examined the data of 
1358 patients with biopsy-proven CKD, with 17 features of 
interest being picked through recursive feature elimination. 
Several machine learning models, such as the XGBoost, Naive 
Bayes, neural networks, ridge regression, logistic regression, 
and an ensemble voting model, were trained and tested, and an 
ensemble voting model was created. Logistic regression was the 
most effective between single models (AUC = 0.850) whereas 
the ensemble model had a slightly higher AUC of 0.856. The 
important predictors were low concentrations of vitamin D, 
albumin, and transferrin (in males), and high concentrations of 
cystatin C. Despite its effectiveness and interpretability, the 
limitations of the model consist of dependence on the datasets 
and possible the need to further validate it in a wide range of 
clinical populations. 

The three gaps that persist in existing CKD prediction 
studies include; most studies are based on a single-view of 
clinical data, which limits the ability to model cross-view 
relationships, graph-based models tend to construct a single 
unified graph and cannot consider view-specific structures and 
current models are not that interpretable giving little information 
on which clinical views and features influence predictions. All 
these constraints demonstrate the necessity of a multi-view, 
graph-based, and interpretable CKD prediction model. 
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III. PROBLEM STATEMENT 

CKD is a chronic and progressive disease that causes a huge 
burden to the health care systems of the world [21]. Timely 
medical intervention is highly important and appropriate 
prediction of CKD evolution is essential to guarantee better 
patient outcomes. Nonetheless, the majority of available clinical 
prediction models do not work well to combine heterogeneous 
data available about patients in various modalities [22], 
frequently analyzing them separately, and not considering the 
complex inter-patient relationships. Also, clinical data are often 
subject to missing data, unequal sampling rates, and feature 
significance, which also further constrains model reliability. 
More importantly, most models in existence cannot be 
interpreted and do not quantify the uncertainty of prediction, 
making it difficult to adopt them in the clinical setting. To 
overcome the difficulties, here the Attentive Multi-View Graph 
Convolutional Network (MV-GCN-Attn) which is an 
interpretable and scalable AI model is proposed to integrate 
multi-view cross-sectional clinical information. The proposed 
model with the help of graph-based relational learning and 
attention-based fusion mechanism can use inter-feature 
dependencies to effectively exploit and weight the most 
informative views and features adaptively. Which benefits the 
approach is more predictive accurate, interpretable, and aware 
of uncertainty, which in turn supports a more proactive CKD 
management, treatment plans that are more individualised, and 
increased clinical confidence in AI-based decision support 
systems. 

IV. ATTENTIVE MULTI-VIEW GRAPH FUSION NETWORK 

FOR CKD PREDICTION 

It is a proposed hybrid multi-view graph learning study to 
determine (CKD) prediction by using cross-sectional clinical 
data. The developed approach uses Multi-View Graph 
Convolutional Networks (MV-GCN) to create a representation 
of heterogeneous clinical variables and fuses them via an 
attention-based fusion module to create a single representation. 
The framework makes use of complementary information based 
on demographic, laboratory, and clinical history characteristics 
to enhance predictive value besides providing interpretable 
information about the relative feature and view importance. The 
pipeline consists of three main steps, which include: 1) data 
preprocessing, 2) multi-view graph construction and embedding 
learning and 3) feature fusion and classification by attention. 
The step helps to be strong to missing values and scale 
differences among variables. Multi-view graphs are designed to 
capture patient similarities in various clinical domains 
promoting the network to acquire structural links between 
patients. These inter-patient relationships are learned by the 
MV-GCN using low-dimensional embeddings whereas the 
attention-based fusion module dynamically highlights the most 
informative views and features. Lastly, there is a classifier that 
differentiates between CKD and non-CKD cases. A robust and 
clinically significant prediction framework will result from the 
design's facilitation of the model's utilization of both feature-
level interpretability and graph-structured linkages. So far, this 
study is the first attempt to use multi-view graph convolutional 
networks with attention-based fusion to predict CKD based on 
cross-sectional data with high prediction accuracy and enhanced 
clinical interpretability. 

 
Fig. 1. Block diagram of the proposed MV-GCN with attention fusion 

methodology. 

Fig. 1 shows A Multi-View Graph Convolutional Network 
with Attention-Based Fusion proposed to predict CKD. Patient 
data is preprocessed and separated into demographic, laboratory 
and clinical views. Each view constructs a kNN graph and the 
view-specific embeddings are obtained by a different GCN. An 
attention-based fusion module incorporates these embeddings to 
one patient representation that is then used by a fully connected 
classifier to predict CKD and mark low-confidence cases, which 
are reviewed. 

A. Data Collection 

The dataset used in this study is the publicly available UCI 
(CKD) dataset [23], which consists of clinical records of 400 
patients and 24 attributes that include demographic, laboratory, 
and clinical history data. Demographic factors are age and 
gender whereas the laboratory indicators are serum creatinine, 
hemoglobin, blood glucose and blood pressure parameters. 
Clinical history reports indicate the occurrence of comorbidity 
like hypertension, diabetes mellitus, and anemia. The data is 
categorized as CKD or non-CKD which makes it possible to 
classify it under supervision. The missing values were dealt with 
by imputing median and mode respectively, in continuous and 
categorical variables respectively. The dataset can be used as a 
baseline to conduct study on CKD prediction, and is rich enough 
to be heterogeneous to ensure that multi-view graph-based 
learning models are capable of learning between patients with 
different complex inter-patient relationships under diverse 
clinical settings 

B. Data Preprocessing 

Prior to the model development, the data was subjected to 
systematic preprocessing in order to maintain data quality and 
consistency. We dealt with missing values, which were available 
in multiple attributes, by imputing the missing continuous 
variables like serum creatinine and hemoglobin using median 
imputation and imputed the missing categorical variables like 
hypertension and diabetes using mode imputation. The 
continuous features were scaled to between 0 and 1 to eliminate 
the scale variation and enhance convergence in the training 
process. One-hot encoding was used to encode categorical 
features to transform them into binary vectors that can be read 
by machines. Laboratory test values that were outliers were 
reviewed and revised to ensure that the values were clinically 
plausible. Lastly, stratified sampling was used to divide the 
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dataset into training (70%), validation (15%), and testing (15) 
subsets so that CKD and non-CKD cases are equally represented 
in all splits. This preprocessing shows strong and repeatable 
model testing. 

1) Missing Value Imputation: Medical datasets often 

contain missing entries due to irregular patient visits or 

unrecorded tests. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛}  be the dataset, 

where 𝑥𝑖 ∈ ℝ𝑑  is the feature vector for patient 𝑖 .  Handle 

missing values using view-aware imputation strategies: 

a) Mean/Meridian Imputation is given in Eq. (1), 

                       𝑥𝑖𝑗
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

=
1

|𝑆𝑗|
∑ 𝑥𝑘𝑗𝑘∈𝑆𝑗

                              (1) 

where, 𝑆𝑗  is the set of samples with available values for 

feature 𝑗. 

b) K-Nearest Neighbor (KNN) Imputation for more 

complex views is represented in Eq. (2) 

𝑥𝑖𝑗
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

=
1

𝑘
∑ 𝑥𝑝𝑗∈𝐾𝑁𝑁(𝑥𝑖)                                (2) 

2) Categorical encoding: Categorical features (e.g., 

gender, medication type) are transformed into numerical format 

using: 

a) One-Hot Encoding: If feature 𝑥𝑗 ∈ {𝐴, 𝐵, 𝐶}, then it is 

represented in Eq. (3) 

                                𝑥𝑗 → [1,0,0](for class A)                      (3) 

b) Label Encoding when ordinal relationships exist given 

in (4): 

                      𝑥𝑗 ∈ {Low, medium, high} → {0,1,2}        (4) 

c)  Feature Scaling: To ensure numerical stability and 

model convergence, features are normalized using Z-score 

normalization given in Eq. (5): 

                                           𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝜇𝑖𝑗

𝜎𝑗
                                (5) 

where, 𝜇𝑖𝑗  means Mean of feature 𝑗 , 𝜎𝑗  means standard 

deviation of feature 𝑗. 

3) Feature grouping for multi-view graphs: The features 

were then arranged in three separate categories after 

preprocessing to help in constructing the multi-view graphs. 

The demographic category consists of age, gender, and body 

mass index (BMI), which comprises fundamental patient 

features. The laboratory category includes clinical test 

outcomes like serum creatinine, hemoglobin, blood glucose and 

blood pressure, which reflect the biochemical condition of each 

patient. The category of clinical history includes the 

comorbidities such as diabetes, hypertension, anemia and other 

pertinent medical conditions. The groups of these three features 

were then utilized to create multi-view patient similarity 

graphs, on which learning patient embeddings with the MV-

GCN model is based. 

C. Multi-View Graph Construction 

In order to have a full picture of the patient representation, 
three different graphs were created, each reflecting a particular 
clinical view. The demographic view contained similarities by 
age, gender, and BMI whereas the laboratory view coded 
Euclidean differences between patients using laboratory 
variables including serum creatinine, hemoglobin, blood 
glucose, and blood pressure. The clinical history view developed 
associations on similar comorbidities such as hypertension, 
diabetes, and anemia. K-nearest neighbor (kNN) graph of size k 
= 10 was created on each view and the resulting adjacency 
matrices were normalised. The normalized graphs were then 
used as inputs to the MV-GCN, so that the network could learn 
the embedding that incorporates both structural and feature-level 
similarities between various clinical domains. 

1) MV-GCN: This model represents inter-patient 

relationships across multiple heterogeneous clinical data 

modalities using separate patient similarity graphs for every 

view. Each view represents data modalities like laboratory tests, 

comorbidities, or demographics. Each graph has patients as 

nodes and edges represent similarity in relation to relevant 

clinical features. Then apply Graph Convolutional Networks to 

each graph and obtain spatial embeddings based on information 

gathered from other neighbouring patients. All outputs are later 

combined using either concatenation or an attention-based 

method to produce a holistic multi-view patient representation 

that encodes complementary information across data 

modalities. 

The graph convolution operation at layer 𝑙  for view 𝑣  is 
defined as the Eq. (6), 

𝐻(𝑣,𝑙+1) = 𝜎(𝐷̃−
1

2𝐴̃(𝑣)𝐷̃−1/2𝐻(𝑣,𝑙)𝑊(𝑣,𝑙))            (6) 

where, 𝐻(𝑣,𝑙) is the node embedding matrix at layer 𝑙, 𝐴̃(𝑣) 

means the adjacency matrix with added self-connections, 𝐷̃ 
means the degree matrix, 𝜎 is the activation function. 

𝐻𝑓 = ∑ 𝛼𝑣𝐻𝑣𝑣                               (7) 

where, 𝛼𝑣  is the attention coefficient representing the 
importance of each view. This fusion captures complementary 
information from multiple perspectives, enhancing 
representation learning and providing interpretability at the view 
level. 

D. Attention-Based Fusion Module 

The received fused embeddings of the Multi-View Graph 
Convolutional Network are further adjusted with the assistance 
of attention-based fusion module, which is also a dependency of 
the Temporal Fusion Transporter (TFT) architecture adapted to 
cross-sectional patient information. The aspect of time in TFT is 
replaced with the feature-level attention, view integration, and 
interpretability because the data are not longitudinal. The 
module will be designed to enhance the quality of the 
embeddings by emphasizing the most clinically significant 
features and views and silencing redundant or less valuable 
information. The module has three major components. The first 
one is that Variable Selection Network identifies and maintains 
the most informative features automatically and thus keeps the 
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impact of noisy, or irrelevant, variables at a minimum. This 
compounds the efficiency of the downstream classifier and 
causes the model to learn meaningful clinical indicators. 
Second, the Attention Mechanism assigns dynamic weights to 
each feature and clinical view allowing the framework to 
prioritize those dimensions that do the most valuable 
contribution to the CKD prediction. Through this, the model will 
be in a position to quantify the relative importance of the 
demographic, laboratory, and clinical history data and make the 
interpretations even more understandable. Third, Gated 
Residual Connections are introduced to regularize the learning 
to bring about a uniform gradient flow in the network and 
eliminate the issue of vanishing gradient throughout the training 
process. This attention based fusion module is the result of 
which is a final patient embedding vector which will be the 
weighted combination of all the views and the selected features. 
It is a universal interpretable depiction of all patients and can be 
accurately categorized, as well as, it has the information of the 
clinical traits which influence the risk of CKD in the most. 
Multi-view graph embeddings and interpretable prediction are, 
in some sense, connected in the module. 

E. Classification Layer 

Once the final patient embedding has been acquired at the 
attention-based fusion module, the second step involves 
carrying out the classification into CKD and non-CKD. The 
embedding vector, which is denoted by z, is an encapsulation of 
extensive details of various clinical perspectives, including 
demographic, laboratory, comorbidity characteristics. In order 
to convert this learned representation into a prediction, we use a 
fully connected feed-forward network using a softmax 
activation function. This layer is a linear classifier, which 
projects the high dimensional embedding into probabilities of 
each class. Softmax normalizes the outputs and can be 
interpreted as probabilities, which is necessary in clinical 
decision support applications. 

"The classification operation may be stated as follows in 
Eq. (8): 

𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑍𝑏𝑐)                          (8) 

where, 𝑍 is the final embedding vector, 𝑊𝑐  is the weight 
matrix, 𝑏𝑐 is the bias vector, and 𝑦̂  represents the predicted 
probability distribution over the CKD and non-CKD classes. 

The fully connected layer uses rich and multi-view 
embeddings to generate correct prediction. Each of the elements 
in 𝑊𝑐 is trained to balance features of the embedding vector, and 
the bias 𝑏𝑐  moves the decision boundary accordingly. The 
probability of each class that is obtained as a result of the linear 
combination of features is converted into a value between 0 and 
1 with the help of a softmax activation, which makes the results 
interpretable. The network parameters are optimized with the 
cross-entropy loss during the training process and this promotes 
the model to give a high probability to the correct class. The 
model can combine intricate patient relationships and feature 
interactions to give accurate classification and clinically 
significant predictions using this approach. 

F. Training Procedure 

The suggested hybrid MV-GCN-Attn model is based on the 
well-considered training plan that guarantees proper, sound, and 
generalizable Clronic Renal Disease (CKD) prediction. Multi-
View Graph Convolutional Networks (MV-GCN) are combined 
with an attention-based fusion module to create the model, 
which is developed based on the PyTorch library of deep 
learning. The Adam optimizer is an adaptive gradient-based 
optimizer that relies on the momentum-based update to optimize 
model parameters and allows the optimization to be efficient and 
stable. The learning rate used is 0.001 to help the weight changes 
occur gradually and in a controlled manner during training. To 
reduce the overfitting which is especially common when using 
only a small dataset (such as the UCI CKD dataset), a dropout 
rate of 0.2 is used within network layers, where a random group 
of neurons is switched off to boost model generalization. Mini-
batches of 32 are used to perform training, which is a good 
tradeoff between computational performance and gradient 
stability. Moreover, to avoid overtraining, early termination on 
the basis of validation loss is also included to terminate 
optimization as soon as model performance does not improve on 
validation data unseen at the time of termination. Each 
experiment is run five times using new random seeds to make it 
robust and reproducible, and the means of the performance 
metrics are presented. The model is trained with the help of 
cross-entropy loss function, which measures differences 
between predicted class probabilities and true labels, making the 
network to give high probabilities to accurate predictions. The 
proposed training framework can attain both high predictive 
accuracy and high generalization capability through the use of 
this comprehensive training strategy that provides stable and 
clinically reliable results in the prediction of CKD. 

 
Fig. 2. Multi-View Graph Convolutional Network (MV-GCN) framework. 

The Fig. 2 shows the Multi-View Graph Convolutional 
Network (MV-GCN) system. Multi-view resources offer 
content features as well as structural relationships. Each view is 
converted into a graph by the left branch, which is used to 
produce graph embeddings by using layers of GCN, and the 
content information is encoded into content embeddings by the 
right branch. Multi-view consistency module is used to match 
these two representations, and their results are ultimately 
combined to create a single embedding that can be used in 
downstream prediction. 
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Algorithm 1: HADOX-Net for CKD Detection  

Start 

Load clinical dataset (laboratory results, demographics, 
medical history). 
Check for missing data: 

 If missing, impute using mean, median, or K-Nearest 
Neighbors (KNN). 

 Else, proceed to the next step. 

Convert categorical variables: 

 Use one-hot encoding or label encoding. 

Normalize numerical features: 

 Apply standard scaling (Z-score) or min-max 
scaling. 

Construct separate similarity graphs for each clinical data 
modality: 

 Nodes represent patients. 

 Edges represent similarity based on modality-
specific features. 

Apply Multi-View Graph Convolutional Network (MV-
GCN) independently on each graph: 

 Perform message passing to learn modality-specific 
embeddings. 

Fuse learned embeddings across views using attention-
based fusion: 

 Adaptively weight the importance of each view and 
feature to form a unified patient representation. 

Pass fused embeddings through fully connected layers for 
classification: 

 Predict CKD status as a risk probability. 

Quantify prediction uncertainty through probabilistic 
outputs. 

If prediction uncertainty is high: 

 Flag for clinical review. 

 Else, provide prediction for clinical decision-making. 

End  

 
 

This Algorithm 1 is used to state the MV-GCN-Attn model 
of CKD prediction using multi-modal clinical data based on two 
distinct graphs. It processes missing data, codes and normalizes 
features and learns patient embeddings with graph convolution. 
These embeddings are then merged through an attention-based 
fusion module in order to predict risk accurately. The model also 
predicts uncertainty which is used by marking of doubtful cases 
to be reviewed by the clinics. By doing this, strong, 
interpretable, and reliable prediction of CKD that could be used 
in clinical decision-making becomes possible." 

V. RESULT AND DISCUSSION 

The suggested model of MV-GCN-TFT to forecast (CKD) 
progression was strictly tested on the basis of common 
classification measures with various groups of patients and 
clinical visions. The combination of Multi-View Graph 
Convolutional Networks and an attention-based fusion 
mechanism based on temporal modeling allows the framework 
to be highly effective in the representation of both relational and 
feature-level patterns of heterogeneous clinical data. The 
predictive performance of the experiment is found to be 
consistently high and the model has high robustness with respect 
to missing values and changes in patient characteristics. This 
mixed method has the advantage of capitalizing on 
complementary demographic, laboratory as well as clinical 
history data which lead to enhancing accuracy, interpretability 
and clinical reliability. The visualization of the learned 
embeddings is another confirmation of the potential of the model 
as an AI-based decision support system, which is able to identify 
CKD at early stages of the disease. The accurate and 
interpretable forecasts offered by the MV-GCN-TFT model can 
be used to implement timely interventions, stratify risks 
individually, and direct clinicians in preventing patients in 
advance. Due to the property of interpretability, scalability, and 
stability, there is great potential of the framework to be applied 
in the real-life context in the process of risk assessing and 
overseeing chronic illnesses. 

TABLE I.  SIMULATION PARAMETER 

Parameter Value 

Dataset Source 
UCI CKD dataset (via Kaggle by 
Nitesh Yadav) 

Number of Instances 400 

Number of Features 24 

Data Modalities 
Laboratory Results, 
Demographics, Medical History 

Graph Convolutional Layers 
Multi-View Graph Convolutional 
Networks 

Graph Fusion Method 
Concatenation / Attention-Based 
Fusion 

Temporal Modeling 
Not Applicable – Cross-Sectional 
Data 

Feature Selection Mechanism Variable Selection Network 

Categorical Encoding 
One-Hot Encoding, Label 
Encoding 

Output Type 
Classification with Softmax 
(Probability Estimation) 

Software Tool 
Python (PyTorch for model 
development) 

The Table I provides the summary of the main parameters 
and settings employed in the CKD prediction study. It is based 
on the UCI CKD dataset consisting of 400 cases of patients and 
24 clinical attributes including laboratory findings, 
demographic, and medical history. The model uses multi-view 
graph convolutional networks that have attention-based fusion 
in order to incorporate heterogeneous data. Selection of the 
features is done through Variable Selection Network and 
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categorical variables are coded through one-hot and label 
encoding. This framework delivers probabilistic classification 
predictions with the help of softmax layer and is coded in Python 
with PyTorch, which is guaranteed to yield robust and 
interpretable CKD prediction. 

A. Performance Outcome 

The suggested MV-GCN-TFT model of CKD development 
prediction underwent a strict testing with traditional 
classification metrics in a wide range of situations with patients 
and clinical perspectives. The model, combining multi-view 
graph convolutional networks with attention-based fusion, 
which is derived using temporal modeling, offers a good 
representation of both relational and feature-level patterns in 
heterogeneous clinical data. Findings show that there is a high 
performance in prediction, which is reliable and consistent and 
that it is robust to absence of values and diversity in patient 
characteristics. This is a combination method that uses 
complementary demographic, laboratory, and clinical history 
data, which provide more accuracy and interpretability at the 
same time. The outcomes obtained after the visualization prove 
the clinical utility of the model, and they might prove its use as 
a decision support system to detect CKD in the early stages. 
These reliable forecasts pose significant importance in timely 
action and enable medical workers to prioritize patient care and 
enhance the results due to proactive care measures. 

 
Fig. 3. Training and validation loss over epochs. 

This Fig. 3 graph describes the training and validation loss 
curves in 20 epochs when the Attentive Multi-View Graph 
Fusion Network is being trained. The decreasing trend of the 
training loss shows the process of learning the model in reducing 
the error of classification over the training data. The respective 
validation loss curve follows the performance on unseen data, 
which gives a clue on the generalization of the model and 
indicates a possible overfitting in case there is a divergence. The 
closeness and smooth convergence of the two curves illustrates 
constant convergence and efficient regularization schemes, e.g. 
dropout and early stopping. This visualisation is critical in 
comprehending the process of training and in making strong and 
robust CKD prediction in clinical data. 

Fig. 4 histogram shows how the suggested model predicts 
CKD risk among the patient cohort. The predicted probabilities 
are continuous values between 0 and 1 that indicate the 
confidence of the model in the case of CKD status of each 
patient. The form of the distribution with the concentrate in the 
lower and high probability bins justifies the ability of the model 

to stratify patients into the risk groups effectively. Such a 
visualization will help clinicians make sense of the confidence 
levels, which may contribute to individual monitoring or 
intervention plans. The distinction between low risk and high-
risk patients is explicit, and this increases the clinical 
interpretability of the AI system. 

 
Fig. 4. Predicted CKD risk probability distribution. 

 
Fig. 5. Confusion matrix for classification result. 

By showing the number of true positives, true negatives, 
false positives, and false negatives in the CKD prediction job, 
the confusion matrix in Fig. 5 illustrates the classification's 
result. Correctly recognized cases of CKD are indicated by true 
positives (bottom right), and correctly identified non-CKD 
patients are shown by true negatives (top left). Misclassification 
is indicated by false positives and negatives, which should be 
assessed for impacts and medical safety. This is a key diagnostic 
tool that assesses the types and frequency of prediction mistakes, 
which serve as the foundation for other assessment metrics like 
precision, recall, and F1-score to assess the model thoroughly. 

Fig. 6 pie chart represents the relative data the three clinical 
data views of Demographic, Laboratory, and Clinical History 
contribute to the CKD prediction model. The weights of the 
percentage shares correspond to their acquired values of 
importance or attention in the multi-view graph fusion model. 
The graphical presentation is beneficial in the clinical 
interpretation of what patient type data domains have the 
greatest impact on model predictions, which can inform clinical 
assessments, and data gathering to evaluate the risk of CKD. 
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Fig. 6. Contribution of clinical data views. 

 
Fig. 7. Feature importance analysis. 

The relative weight of different clinical variables in the 
model as suggested is shown in Fig. 7, which presents the 
analysis of feature importance gained during the prediction of 
CKD data. Among those characteristics that have a significant 
clinical impact on kidney functioning assessment, albumin 
(0.32) and creatinine (0.27) were determined to be the most 
significant predictors. In terms of their contribution to the 
model's decision-making process, hemoglobin (0.07), age 
(0.05), and blood pressure (0.18) and glucose levels (0.10) were 
all predicted to be moderate. These findings highlight the role 
that biochemical markers—particularly albumin and 
creatinine—play in the development of chronic kidney disease 
(CKD), while demographic factors and secondary health 
indicators play a role, albeit a small one. 

The suggested Fig. 8 MV-GCN-TFT model of CKD 
development prediction underwent a strict testing with 
traditional classification metrics in a wide range of situations 
with patients and clinical perspectives. The model, combining 
multi-view graph convolutional networks with attention-based 
fusion, which is derived using temporal modeling, offers a good 
representation of both relational and feature-level patterns in 

heterogeneous clinical data. Findings show that there is a high 
performance in prediction, which is reliable and consistent and 
that it is robust to absence of values and diversity in patient 
characteristics. This is a combination method that uses 
complementary demographic, laboratory, and clinical history 
data, which provide more accuracy and interpretability at the 
same time. The outcomes obtained after the visualization prove 
the clinical utility of the model, and they might prove its use as 
a decision support system to detect CKD in the early stages. 
These reliable forecasts pose significant importance in timely 
action and enable medical workers to prioritize patient care and 
enhance the results due to proactive care measures. The 
interpretability and stability of the framework makes it suitable 
to be used in practice in risk assessment of chronic diseases. 

 
Fig. 8. Simulated serum creatine distribution. 

 
Fig. 9. Simulated serum creatine. 

Fig. 9 displays the simulated trend of serum creatinine levels 
over five successive patient visits. The graph demonstrates a 
consistent rise in creatinine from 1.1 on the initial visit to 2.2 on 
the fifth visit, demonstrating progressive worsening of kidney 
function with time. The graph indicates the progressive nature 
of CKD, where even slight increases in creatinine are important 
clinical indicators of reduced renal function. This figure 
highlights the key role of longitudinal follow-up in the 
management of CKD since monitoring of creatinine trends 
allows for early identification of disease advancement and 
effective clinical management. 
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Fig. 10. Accuracy-loss graph. 

Fig. 10 shows the dynamics of the loss and accuracy of both 
the training and the validation set per epoch, and it demonstrates 
the dynamics of learning of the model during the training 
process. These curves are essential when using the MV-GCN-
TFT framework to predict CKD progression to evaluate the 
important variables that include convergence, overfitting, and 
capacity to generalize. Ideally the training and validation loss 
should gradually reduce as the accuracy also improves, which 
means that the learning and optimization are successful. 
Nevertheless, an increasing dissimilarity between the training 
and validation curves can be an indicator of overfitting, in which 
the model is taught the noise and not the patterns that can be 
generalized. By tracking such tendencies, it will be possible to 
strictly define the optimal duration of training and prematurely 
interrupt in order to avoid overfitting and maintain the stability 
of the model. 

B. Performance Metrics 

The analysis of the performance of the machine learning 
model is one of the most significant elements in designing a 
precise model. When gauging the performance/quality of the 
model, different measures are used and they are called 
performance metrics/evaluation metrics. 

1) Accuracy: This gives an overall measurement of the 

accuracy of models in that the proportion of the number of 

correct models to the total amount of models that are made is 

calculated. In the multimodal sentiment analysis case, it 

indicates the comprehensive awareness of the model of the 

dissimilar input streams. The formula is provided in Eq. (9), 

Accuracy =
TP+TN

TP+TN+FP+FN
                         (9) 

2) Precision: It is the fraction of true positives compared to 

all the positives that are being predicted. In sentiment 

classification and emotion, it is a value that indicates the model 

does not give a false positive. It is computed using (10), 

Precision =
TP

TP+FP
                                 (10) 

3) Recall: It is also called sensitivity or true positive rate, 

which tells how many actual positives have been identified as 

such. Such a measure is especially imperative in situations 

where false negatives are expensive e.g when an unwanted 

feeling is misrecognized on a subtle expression face. It is 

calculated using Eq. (11), 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (11) 

4) F1-score: This balances precision and recall into one 

score, which is valuable especially when you need to analyze 

emotionally imbalanced data or some bipolar sentiment 

categories. It is derived using the harmonic mean as in Eq. (12), 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                  (12) 

TABLE II.  PERFORMANCE METRICS 

Metrics Percentage (%) 

Accuracy 91.0 

Precision 89.0 

Recall 92.0 

F1-score 90.0 

Table II metrics evidence strong predictive capacity of the 
model offered to classify CKD. The accuracy of 91.0% shows 
that most cases of patients were managed right by the model. 
The accuracy of the model in identifying CKD-positive and 
CKD-negative patients (balanced precision of 89.0 and recall of 
92.0) perfectly reflects that the model minimizes the false 
positives and false negatives. The F1-score of 90.0% also 
indicates that there is a very good balance between precision and 
recall, and the overall quality of classifications is very reliable. 
These findings confirm the ability of the model to use multi-
view graph learning on cross-sectional clinical data and predict 
CKD risks reliably. 

 
Fig. 11. Performance metrics bar chart. 

The primary classification performance metrics for the 
suggested model on the test set are displayed in the bar chart in 
Fig. 11. AUC assesses the total potency of the discriminative 
shared information, F1-score balances accuracy and recall, 
precision measures how accurate an overall prediction is, and 
accuracy measures if genuine CKD cases are recognized. The 
model's robustness and clinical usefulness are demonstrated by 
the high values of every indicator. Predictive success is 
succinctly summarized in the picture, and comparing several 
models or datasets is simple. 
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Fig. 12. Boxplot of metric variability across multiple runs. 

Fig. 12 boxplot represents how variably the classification 
metrics, such as accuracy, precision and recall, and F1-score, 
vary across five independent training runs over five random 
seeds. The small interquartile ranges and narrow whiskers 
represent the homogeneous model performance and resilience to 
the randomness of initiative and training stochasticity. The 
stability is also essential to achieve confidence in the results and 
their reproducibility particularly in clinical applications where 
reliability will be of utmost importance. 

 
Fig. 13. Metric trends over epochs. 

Fig. 13 shows line chart monitors the precision of the model 
on the set of validation using training epochs. Such gradual 
growth and stagnation of accuracy guarantees the fact that the 
model is optimized well and that the period of training is 
sufficient. The tracking of the trends of metrics has been found 
to identify underfitting, overfitting, and to ensure that the model 
is at its peak performance prior to termination of the training 
process to support higher predictive reliability in CKD 
detection. 

TABLE III.  COMPARATIVE ANALYSIS 

Method Accuracy 

GNN[24] 89.5 

Random Forest[25] 88.0 

CNN-based Model[26] 89.0 

Proposed MV-GCN-TFT 91.0 

Table III forwards the accuracy of the proposed framework 
MV-GCN-TFT against other existing ones used in predicting 
CKD. The values of adjusted accuracy of GNN, Random Forest, 
and CNN-based models are a bit lower, indicating the high 

quality of the offered solution. Having an accuracy of 91.0, the 
MV-GCN-TFT proves that it can successfully combine multi-
view clinical information and attention-based fusion to classify 
patients more accurately. Such an outcome highlights the 
strength of cross-sectional prediction of CKD using a graph-
based learning model and interpretability, which places the 
suggested model in an excellent position to serve as a clinical 
risk assessment and decision support instrument. 

 
Fig. 14. Performance comparison across different models. 

Fig. 14 bar chart shows the comparison of the accuracy and 
precision of the proposed Attentive Multi-View Graph Fusion 
Network classification and the baseline models, namely, 
Random Forest, SVM, and Multi-Layer Perceptron (MLP). The 
obviously high results of the suggested procedure demonstrate 
the benefit of using the multi-view graph learning and attention 
system in healthcare to capture complementary data. These 
comparative visualizations further highlight the role that the 
novel model plays in enhancing the accuracy of prediction of 
CKD and promoting its use in clinical decision support. 

C. Discussion 

The study presents a hybrid predictive model based on 
Multi-View Graph Convolutional Networks (MV-GCN) and a 
fusion module based on attention as a modification of the 
Temporal Fusion Transformer (TFT) architecture to forecast 
(CKD) with cross-sectional clinical data. The proposed 
framework is in contrast to traditional models that use flat table 
representations by explicitly representing patient relationships 
with multi-view graphs built out of heterogeneous clinical 
modalities demographics, laboratory results, and medical 
history. This multi-view representation is a complementary and 
interrelated representation of variability patterns across multiple 
clinical domains, which enhances patient embeddings and 
maintains complex associations that single-view models 
generally ignore. The attention-based fusion mechanism also 
increases the adaptability and interpretability of the model in 
that it dynamically balances both the contributions of features 
and those of view. This allows the network to concentrate on the 
most informative and clinically relevant signals, and counteracts 
the effects of noisy or incomplete variables, which is a natural 
problem of medical data. Data consistency and convergence of 
the model is guaranteed by the preprocessing pipeline which 
includes the median and mode data imputation, scaling, and one-
hot encoding. Experimentally on the UCI CKD data set the 
proposed MV-GCN-TFT model is seen to perform better with 
an accuracy of 91.0 and balanced F1-score, recall and precision. 
In addition to the predictive power, the interpretability of the 
framework presents meaningful information about the major 
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clinical characteristics that affect the risk of CKD, which 
increases its reliability in clinical practice. The proposed model 
is more efficient than traditional machine learning and deep 
learning baselines in preserving the inter-patient association and 
addressing heterogeneous and incomplete data. In general, this 
study proposes a scalable, robust, and clinically interpretable 
early CKD detection and management solution. This framework 
will be applied to longitudinal, multi-institutional data in the 
future to include dynamics of disease over time and make the 
framework even more clinically applicable. 

VI. CONCLUSION AND FUTURE WORKS 

The proposed study introduces a new hybrid model, a 
combination of Multi-View Graph Convolutional Networks 
(MV-GCN) and attention-based fusion mechanism based on the 
Temporal Fusion Transformer (TFT) to predict (CKD) with 
cross-sectional clinical data. The model is successful in utilizing 
multi-modal patient data, and creates individual similarity 
graphs of laboratory tests, demographics, and clinical history. 
This enables the network to learn high-quality, complementary 
embeddings that encode sophisticated inter-patient relations, 
which a flat-feature methodology cannot learn. The attention-
based fusion module also increases interpretability by balancing 
the contribution of each clinical view and an individual feature, 
allowing clinicians to comprehend the relationship between the 
relative contribution of various factors to CKD prediction. 
Assessment of the UCI CKD dataset shows excellent predictive 
accuracy with an accuracy of 91.0% with equal precision, recall, 
and F1-scores. The model is robust in the face of missing values, 
non-metric features and small samples by offering customized 
preprocessing and graphical representation, which highlights its 
realistic applicability in clinical contexts. Notably, the clinical 
implications of the framework are readily interpretable, and this 
offers practical clinical data, facilitating early diagnosis and 
personalized patient care, which is essential in enhancing the 
outcome of CKD. Future directions also involve encompassing 
longitudinal or time-varying data that can better model disease 
dynamics, which may involve recurrent or transformer-based 
graph models. Generalizability will be evaluated using data 
collected in larger and multi-institutional datasets, and federated 
learning will overcome the problem of privacy in healthcare. 
The inclusion of multi-omics data and other clinical variables 
can also contribute to more predictive ability. Finally, practical 
implications of the creation of user-friendly clinical decision-
support systems founded on this framework might be a real 
difference in the early diagnosis, individual approach, and the 
healthcare outcome of the CKD patients. The proposed MV-
GCN-Attn model has the potential to reinforce regular clinical 
practice by offering upstream risk stratification of CKD by the 
means of regular demographical, laboratory, and medical history 
information. Its feature-level and view-level interpretability 
enables clinicians to know what indicators underlie each 
prediction thus enabling them to determine when they will order 
additional testing, start nephrology referrals, or change 
treatment regimens. In comparison with traditional rule-based 
tests, the model allows identifying high-risk patients earlier and 
more regularly and enhances the decision-making in clinical 
settings. This renders the framework appropriate to be 
incorporated into eHRSs as a real-time CKD decision-support 
tool. 

Even though the suggested MV-GCN-Attn model has an 
excellent predictive performance and interpretability, the 
research has some weaknesses. The trials are based on one 
publicly available CKD dataset, and its sample size is limited; 
therefore, it may not be applicable to various clinical groups. 
The model also uses as an assumption the fixed clinical 
perspectives and time advancement of CKD is not reflected. 
Also, the availability of features and the quality of the data might 
be different in real-life healthcare scenarios and it might affect 
the performance of the model. Subsequent research will be 
aimed at experimenting the framework with larger multi-
institutional datasets, including temporal modelling, and testing 
the interpretability by expert clinical evaluation. 
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