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Abstract—Learning figurative language, including idioms,
metaphors, and similes, remains challenging due to subtle
cultural, contextual, and multimodal cues that cannot be inferred
from literal meanings alone. Traditional unimodal and text-only
approaches, such as CLS-BERT, LaBSE, and mUSE, often fail to
capture these deeper semantic patterns, resulting in reduced
accuracy and limited cultural generalization. This study
introduces a context-aware multimodal learning framework that
integrates textual embeddings from a Graph-Enhanced
Transformer (HCGT) with visual embeddings from CLIP, fused
through a graph-based cross-modal attention mechanism, and
refined using a cognitive mapping layer. This architecture models
human-like semantic reasoning by aligning literal and figurative
senses across modalities while maintaining conceptual structure
through graph-driven representation learning. Experiments
conducted on idiom, metaphor, simile, and multimodal meme
datasets include preprocessing steps such as text cleaning,
tokenization, image normalization, and label standardization. The
framework achieves an accuracy of 90%, surpassing state-of-the-
arttext-only transformer baselines by 3—4%. Explainable Al tools,
including attention heatmaps and SHAP values, validate the
interpretability of the model by highlighting influential textual
tokens and visual regions. The results confirm that integrating
multimodal embeddings with cognitive mapping substantially
enhances performance, interpretability, and cultural sensitivity in
figurative language understanding.

Keywords—Bi-LSTM;  cognitive mapping; cross-lingual
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I.  INTRODUCTION

The figurative language is a main prerequisite in natural
communication, which enables speakers to express the concepts,
feelings, and cultural allusions in terms of idioms, metaphors,
and similes [1]. To multilingual learners, mastery of figurative
language, however, is a thorn in their flesh [2]. In contrast to
literal phrases, figurative language has meaning that cannot be
simply deduced by the words representing the phrase, and more
information about cultural background and practical application

is often necessary [3]. Since English remains the global
education, business, and technology language, the skill of
interpreting and applying figurative language has become
important to learners to achieve fluency and -cultural
competency [4]. Classroom teaching as a tradition is based on
the memorization of idioms and their definitions, which might
be better at memorizing them in the short term, but not at long-
term remembering or grasping of the meaning [5]. As the
classrooms become more diverse and digital resources become
accessible, there is a rising need to employ intelligent and
adaptive systems that will help achieve context-sensitive
learning of figurative language and make the latter more
engaging, readable, and understandableto the learners of diverse
linguistic backgrounds.

Computational methods of the understanding of figurative
languages have attracted considerable interest over recent years,
and Natural Language Processing (NLP) has allowed detecting
and classifying idioms, metaphors, and similes automatically
[6]. Representations in dense semantic spaces have been used to
model sentences using methods built on pre-trained language
models, including BERT, LaBSE, and mUSE, with reasonable
performance on monolingual datasets [7]. But such text-only
methods tend to miss the multimodal and cultural aspects of
figurative speech, without which they are impossible to
understand [8]. The cross-lingual transferlearningmethods have
tried to solve the multilingual issue, yet it is more dependent on
the quality of translation and usually fail to retain the figurative
subtleties in translation. Moreover, the vast majority of existing
systems are black boxes, and they have little to no
interpretability, which restricts their pedagogical effectiveness.
Certain phrases thathave been categorized as either idiomatic or
literal cannot be easily understood by learners and instructors;
thus, they are not effective educational tools. This
multidimensional integration limitation, lack of cultural
grounding, and lack of explainability are what make it essential
to have more solid and transparent frameworks of figurative
language learning.
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The proposed research introduces a multimodal approach to
context-dependent figurative language learning that combines
the text (written) and visual information via a cognitive mapping
paradigm [9]. The textual embeddings are trained with the help
of a Graph-Enhanced Transformer (HCGT), whereas visual
representations are obtained with the help of CLIP so that the
system could grasp subtle language symptoms and cultural
peculiarities that are inherent in idioms, metaphors, and similes
[10]. The cognitive mapping layer builds semantic graphs
linking literal and figurative meanings, simulating human-like
reasoning and allowing generalization beyond surface
representations. The main research question that will be
answered in this study is as follows: How can a multimodal
framework of cognitive mapping that combines both Graph-
Enhanced Transformer text embeddings and CLIP visual
embeddings, when directed by graph-based cross-modal
attention, improve the accurate and interpretable interpretation
of idioms, metaphors, and similes in different figurative
language contexts?

A. Problem Statement

Even with significant progress in natural language
processing (NLP), understanding figurative language such as
idioms, metaphors, and similes remains a persistent challenge,
particularly for learners of English [11]. Existing models often
rely heavily on literal representations, which fail to capture the
deeper cultural and contextual meanings inherent in figurative
expressions [ 12]. Moreover, traditional text-only approaches are
inadequate in integrating multimodal cues, such as the visual
and cultural information conveyed through memes, thereby
limiting their effectiveness in figurative comprehension tasks
[13]. These weaknesses make learners unable to grasp the subtle
and contextual meanings in their entirety. As a solution to these
gaps, the suggested context-aware multimodal framework uses
Transformer-based textual and visual encoders, cross-modal
attention, and cognitive mapping in the bridging of the semantic
gap between literal and figurative interpretations. This method
notonly increases semantic integrity and interpretability but also
helps to provide better solutions to figurative language learning,
more accurate, adaptive, and grounded in the culture.

B. Research Motivation

The reason why this study was chosen is that the learners are
in a continuous tussle to understand figurative phrases, such as
idioms, metaphors, and other similes that are highly cultural and
contextual to understand. The standard text-based techniques are
apt to disregard these figurative features, and the existing
computational models are only able to do unimodal analysis of
text. To overcome these limitations, the proposed model
includes multimodal cues, text,and meme images, and cognitive
mappingto reproduce human-like thought. This study aims to
offer a solution to the task of learning figurative language in
English, and it will employ the current state-of-the-art
Transformer-based encoders and cross-modal attention.

C. Research Significance

The study significantly advances figurative language
learning by combining textual and visual modalities, addressing
the limitations of traditional text-only approaches. By
employing graph-enhanced transformers and CLIP embeddings
connected through cross-modal attention and cognitive
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mapping, it captures subtle linguistic nuances and cultural
context in idioms, metaphors, and similes. The integration of
Explainable Al ensures explainability, making model decisions
transparent to teachers and learners. This approach enhances
semantic reasoning, generalization, and adaptive learning. As a
result, the framework provides a strong foundation for
developing culturally sensitive, context-aware, and interactive
educational tools, promoting more effective and efficient
understanding of complex figurative language.

D. Key Contribution

e Multimodal cognitive-mapping mechanism that
integrates linguistic, visual, and contextual cues to
capture deeper semantic relationships not handled by
text-only systems.

e A cross-modal attention framework that improves the
disambiguation of metaphors and idiomatic expressions
by aligning visual and textual semantics.

e Structured representation layer that enhances
generalization across diverse figurative-language
categories.

e Empirical performance improvement demonstrated
through higher interpretation accuracy and reduced
ambiguity compared with existing multimodal and
transformer-based baselines.

E. Rest of the Study

The rest of the study is structured as follows: A summary of
related works is given in Section II. The methodology in
SectionIll. The results and discussion section are shown in
Section IV. Lastly, Section V gives the conclusion and future
works.

II. RELATED WORKS

Muneeret al. [14] involve employing sentence transformer
models in predicting semantic similarity between word pairs of
English and Urdu. Both LaBSE and Universal Sentence Encoder
were used as multilingual embeddings by the researchers. They
also approached feature fusion, where different models and
translation tools, such as Bing and Google Translators, were
combined. This indicates, in general, that some combinations do
show better scores, specifically, the combination of LaBSE and
Bing Translator, which scores betterthanothersdo, as they seem
to bring better semantic alignment between translations of
different languages. However, the quality of the translations had
a greatimpact on performance, and the external translation tools
made the job variable. The limitations were mainly the
dependencies on translation quality that would impair the
consistency and reliability of semantic similarity assessment
across different language pairs.

Wu et al. [15] put forward a more advanced Siamese
Semantic Disentanglement Model (SSDM) to foster more
efficient cross-lingual transfer of multilingual models in
machinereading comprehension. Their model aims to raise the
generalizability of multilingual pre-trained models by separating
the semantic content of language syntactic structures. SSDM
uses personalized loss functions to explicitly encode and
separate semantic and syntactic data, which produces improved
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prediction of answer spans in target languages. Such a design
demonstrates impressive improvements over such traditional
designs as mBERT and XLLM-100, particularly when working
with linguistic variations that arise in a cross-lingual
environment. Their findings support the importance of
disentangled representations to the effective cross-lingual
understanding in line with the objectives of integrating cross-
lingual embeddings into Al-based reading systems.

Xu et al. [16] introduced mPMR, a multilingual pre-trained
machine reader, and aimed to enhance natural language
understanding of a large number of languages. In contrast to the
model used in the past, which relied on source-language fine-
tuning, mPMR pre-trains on MRC-style to learn explicit
multilingual NLU skills by inheritance. This enables better cross
lingual generalization to ensure that the model acquires good
sequence classification and span extraction on target languages.
mPMR provides a single solution to cross-lingual reading
comprehension tasksby servingas a single process that has been
combined with span extraction and sequence classification. The
fact thatthe modelis able to produce rationales of sentence-pair
classifications in addition to its interpretability also makes it a
very useful object in the context of multilingual NLP
applications. The objectives of the studied field are consistent
with the goals of Al-oriented framework development in
English reading comprehension in various language
backgrounds.

Zhang et al. [17] overcame the obstacles of cross-lingual
question answering over knowledge bases (xKBQA) by
approaching it as a reading comprehension task. Their solution
entails translating subgraphs from a knowledge base into text
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passages, thus closing the gap between natural language queries
and structured KB schemas. In low-resource situations, the
study uses multilingual language models to turn questions in
several languages into matching phrases in the knowledge base.
Thanks to this strategy, teams can use available xKBQA data for
fine-tuning, solving the usual problem of limited data in xXMRC
study. The model performs well on many languages which
confirms thatusing cross-lingual reading approaches improves
questionansweringin knowledge-based models. The study aims
to enhance English reading skills using embeddings from one
language to help Al

Zafar et al. [18] thoroughly reviewed the potential uses of
technology-basedreading assistance forinternational studentsin
higher education. The study investigates the various Al tools
offered such as machine translation, speech-to-text, text-to-
speech and intelligent annotation systems, aimed at improving
readers’ comprehension, expanding their vocabulary and
understanding the content. Integrating both study techniques, the
study indicates the effectiveness of adaptive, personalized and
interactive learning based on the Altools. This technology was
found to assist people in reading more effectively since it has
provided real-time assistance, support and translation as they
read. The study notes that the application of Al in multilingual
classrooms facilitates and renders learning accessible to all. The
analysis demonstrates that Al systems are needed to enhance
reading English amongst any type of learner. A multiple case
study was conducted in the year 2023 to get an idea of how
multilingual learners are different in terms of instruction in
reading comprehension and student outcomes.

TABLEI. SUMMARY OF EXISTING STUDIES
Author Focus Area Methodology Key Results Limitations
Semantic similarity | Used Sentence Transformers (LaBSE, | LaBSE + Bing Translator | Dependency on translation

Muneer et al. [14] prediction for English- | USE), feature fusion, Bing and | combination showed best | quality affects consistency

Urdu word pairs Google Translators semantic alignment and reliability

Zero-shot cross-lingual | Proposed SSDM  model wusing | Outperformed models like Not icitl tioned:

transfer in  Machine | Siamesearchitecture and personalized | mBERT and XLM-100 in ot - expleitly  mentioned,
Wu etal. [15] . . . . s implied  complexity and

Reading Comprehension | loss to disentangle semantic and | answer span prediction and otential training cost

syntactic nfo cross-lingual generalization

MRC yntactic inf lingual generalizati p &

Multilingual natural | Developed mPMR model with MRC- High lizati crogs-hnguaé May trte_qulrle s1gn1f1c;}nt
Xu etal. [16] language understanding | style pretraining combining span generalization, _‘mprove computational resources tor

in MRC extraction and sequence classification interpretability via rationalk | large-scale multilingual

4 extraction pretraining

Cross-lingual  question . Strong multilingual .

answering over Reformulated xXKBQA as a reading performance, reduced reliance Possible loss of KB structure
Zhangetal. [17] knowledge bases comprehension task by convertingKB on  scarce ’xKBQA datascts precision during text

(xKBQA) subgraphs into textual passages through use of xMRC datasets transformation

Al-based reading | Mixed-methods approach; evaluated Imprgv]ed ndcf;)mr;l)rehtiriswghn, Generalization to broader
Zafaretal [18] support in multilingual | machine translation, TTS, STT, Zgzatil\l/:ry’:nd uee:s};)na?ilzled populations may require

higher education intelligent annotation tools 1 P P further empirical validation

earning tools

Culturall . Multiple case studies; analyzed | Improved reading | Focused on specific

Gallagher et al,[19] tu E.ra };. relstplgn51vel teaching practices including use of | comprehension, academic | instructional settings; limited
aflagheretal, rzztciinmgde(z;;gumleﬁtgua native languages and adapted reading | vocabulary, and student | scalability across varied
& p levels motivation educational systems

Huanget al. [20]

Impact of multimodal
input on English phrase
acquisition among EFL
learners

Experimental study using three types
of instructional input: multimodal
(video, audio, images), audio-only,
and paper-based

Leamers exposed to multimodal
input outperformed others in
form, meaning, and usage of
phrases; positive leamer
feedback

Effectiveness may vary for
idioms with culturally
specific meanings not well-
covered in the materials
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Gallagher et al. [19] study was characterized by the
improvement in reading comprehension, academic vocabulary,
and motivation by students which was attributed to some
teaching practices. Among them was the use of their native
language to explain concepts and the application of lower-level
readings as some of the effective practices. The paper focuses
on culturally responsive pedagogy and use of multilingual
resources in the process of reading development. The results
support the necessity of tailored instructional plans to meet the
demands of multilingual students, which is connected with the
bigger idea of enhancing English reading skills with the help of
cross-lingual, Al-assisted models.

Huangetal. [20]examinedhow photos,spoken podcasts and
video lessons help students from an English as a Foreign
Language (EFL) setting gain knowledge of English phrases.
Based on the results, students who worked with multimodal
information showed greater understanding of how to use and
interpret English phrases than students who relied on paper-
based materials. Learners also expressed a positive attitude
toward using various types of resources, showing that these
resources can aid in acquiring L2 phrases according to the
principles of cognitive load theory. When students combine
cognitive mapping with hearing and reading idiomatic
expressions, they are more likely to remember and understand
them. Applied to idioms with special cultural meanings, the
model’s capability might be reduced.

Current literature shows that multilingual modeling,
semantic similarity estimation, and multimodal support of
language learning have made significant advances, but
continuous studies in the reviewed studies still utilize mostly
unimodal representations of texts, or they use parallel
presentations that do not explicitly align the semantics of literal
and figurative senses. All the previous studies fail to combine
graph-based cross-modal attention in order to match the textual

Data
Preprocessing

Text Cleaning and Tokenizing

Data

Collection Image Resizing and

Normalizing

Label Normalization

Figurative Language
Classification
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clues with the visual contexts and to apply cognitive mapping in
modeling the underlying conceptual change between literal and
figurative senses. Furthermore, lack of Explainable Al
mechanisms curtails transparency in most developing systems
making them less applicable in pedagogical aspects. The
existence of these gaps makes it warranted that a method exists
which can combine textual and graphical representations, which
can solidify semantic footing by using graphical structures, and
that can be interpreted more easily by using interpretative
explanations at the level of features. The suggested multimodal
cognitivemapping framework directly focuses onthe mentioned
limitations, providing a more context-sensitive, interpretable
and culturally flexible solution to the figurative-language
understanding. Table I details the summary of existing studies.

I

In the methodology section, the design and the
implementation of the proposed multimodal framework of
figurative language understanding are described. It outlines the
algorithms of obtaining, pre-processing, and representing
textual and visual data withemphasis onthe ways through which
embeddings are created and matched. This section details the
integration of a graph-based cross-modal attention mechanism
to capture semantic correlations between literal and figurative
expressions, followed by a cognitive mapping layer that
simulates human-like reasoning across modalities. Moreover,
the approach focuses on explainable Al approaches in
understanding model decisions, as well as making results
transparent. Combined, these processes offera methodological
process oflearning, integrating, and testing multimodal data that
offers a scalable and repeatable method to enhance
understanding and readability of figurative language learning
tasks. The workflow is illustrated in Fig. 1.

METHODOLOGY

e ~.
A\
Feature i
Representation i
| i
{ } i
RoBERTa Vision Transformer I
(Text Embeddings) (Image Embeddings) ||
[ | !
7 !
Cognitive |
Mapping I
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v

Classifier Layer

<+——— Multimodal Fusi
(Dense Layer + Softmax) witimocat fusion

Output
Idioms
Explainable AI
—
Integration
Metaphor
Simile
Fig. 1. Proposed methodology.

630 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Dataset Description

The research has been conducted using three openly
available datasets that are concerned with figurative language in
English. The three datasets are as follows; the Classification of
Similes and Metaphors on Kaggle, which offers labelled
figurative and literal phrases [21], the IRFL dataset that consists
ofidioms and figurative language phrases in written form [22],
and the Met-Meme dataset [23] available on Kaggle that
integrates textual idioms with the figurative language phrases in
the form of images, allowing the multimodal analysis. The
combination of these datasets creates a powerful yardstick
regarding the assessment of idiomatic expressions, metaphors,
similes, and multimodal figurative language.

B. Data Preprocessing

Preprocessing of the data is a very important task to ensure
the quality and consistency of the textual and visual data. Texts
are purged, broken down to a token to make the forms of words
similar and eliminate noise, and images are resized and
normalized to make them the same size when fed into the
system. All dataset labelsare normalized to literal, metaphorical,
and idiomatic categories to form a single structure. These steps
of preprocessing are meant to prepare the data to be effectively
extracted using features and multimodal modeling.

1) Text cleaning and tokenizing: Textual data is also
processed with text cleaning and tokenization to make it ready
to be embedded with the elimination of noise and the division
of sentences into meaningful units. This is done to eliminate
irrelevant information in this study by removing special
characters, punctuations, and stopwords in the idioms,
metaphors, and similes. Lemmatization is used in order to
transform words into a base form so that they are represented
uniformly. Cleaning text is followed by a process of
tokenization into strings of appropriate tokens to be used with
Transformers. The mathematical expression for the text
representation is give in Eq. (1):

T = Tokenize((Clean(S))) (D)

where, (S) is raw text sample, Clean is function to remove
punctuation, special characters, and stop words, Tokenize is
function to generate token sequences, T is final tokenized text.

2) Image resizing and normalizing: In the case of
multimodal analysis, meme images are normalized so that they
can be trained in similar and consistent ways. All pictures are
downsized to the same size HXW, and all pixel values are
brought into a normal range (0-1), which enhances the
convergence of the model and the accuracy of performance.
The image normalization is represented in Eq. (2):

I—
Inorm = —* 2)

where, [ is the original image matrix, ¢ is mean pixel value
across the dataset, o is standard deviation of pixel values, I, 5y,
is normalized image matrix.

3) Label normalization: In order to develop a cohesive
target structure to be used on all datasets, the labels are
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represented into three categories, namely literal, metaphorical,
and idiomatic. This standardization guarantees compatibility of
the multimodal classifier and enables the same assessment. The
label mapping is represented in Eq. (3):

Ynorm = f Vraw) (3)
where, ¥,,m € {Literal, Metaphorical, Idiomatic}
Yraw 18 the original label from dataset, y,,,,,, is normalized

label, f is mapping function aligning all dataset labels to the
three target classes.

C. Feature Representation

Feature representation captures the essential characteristics
of both textual and visual data to enable accurate figurative
language understanding. Text embeddings from HCGT encode
semantic and contextual nuances, while CLIP extracts visual
patterns. Combined, these features provide a rich, multimodal
representation that supports cross-modal reasoning and
cognitive mapping.

1) Textual embedding: Graph-Enhanced Transformer
(HCGT) is used in the proposed study to produce high-quality
textual embeddings of idioms, metaphors and similes.
Conventional transformer models, such as RoBERTa,
incorporate contextual word relations by using sequential
attention, however, it fails to explicitly learn the semantic
relationships among words or phrases, which is essential in
figurative language comprehension. The figurative expressions
may depend on the complicated relations between the literal
and non-literal meaning, and interpreting them thus demands a
model that is able to model both the contextual semantics and
inter-word relations. HCGT solves this weakness by building
on top of a graph structure over tokens, where a word is a node
and a semantic or syntactic relationship is an edge. The
dependency parsing and semantic similarity are used to make
this graph. The transformer token embeddings are then refined
by graph attention networks (GATs), propagating information
along the graph edges, which is used to reduce attention on
words that provide figurative meaning.

The first token embeddings of the transformer can be
formally expressed as X = [x1,x2, ...xn], where n is the length
of a sentence. G is a graph of semantic connections between
tokens with V' representing the set of nodes (tokens) and E

representing the set of edges (semantic connections). Graph
attention takes the form of: H is computed using graph attention

[see Eq. (4)]:
hi = o(Zjew o W x;) 4)

N; takes the neighbors of node @;; , where attention
coefficient is a function of node features, W is a learnable
weight matrix and Sigma is a non-linear activation. This
mechanism allows the embeddings to learn competing
contextual and relational semantics as well as the ones essential
in decoding figurative meanings in idioms, metaphors and
similes. The HCGT embeddings are then fused with the cross-
modal attention layer to incorporate visual features so that the
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systemcanreasonon both textual and visual features at the same
time.

2) Visual embedding: The model in this work refers to
CLIP (Contrastive Languagelmage Pretraining) to produce
visual representations that match textual ones of idioms,
metaphors, similes, and multimodal meme illustrations. As
opposed to more traditional visual models, like ViT, where
images are encoded in isolation, CLIP is trained on image-text
pairs in large scale to learn a common multimodal embedding
space, appropriate to relate visual features to textual meanings.
It is especially crucial to figurative language comprehension,
where the textual context of an image determines its meaning,
e.g. memes or illustrations of idioms. CLIP consists of a visual
encoder (often a Vision Transformer or ResNet) and a text
encoder (Transformer-based), which map images and text into
a common embedding space. he training goal applies the
contrastive learning approach, which ensures the maximum
similarity of correctly matched image-text embeddings and the
minimum similarity of the incorrect pairs.

Let v;denote the embedding of image i, and ¢; denote the

embedding of the exemplification of text. The comparison
between a pair of an image and text is calculated as Eq. (5):

_ ity
s(vet)) = e (5)
The contrastive loss is specified overa batch of N image-
text pairs in Eq. (6):
1 exp(s(v;,t)/7)
L= 150 [logg PRt 6
NZ Zjv Lexp(s(v;, ])/‘L') (©)

where, Tis a learnable temperature parameter that regulates
scaling of similarities. CLIP ensures that the model is able to
directly compare visual and textual characteristics by inserting
images and text into this common space and therefore facilitates
cross-modal reasoning successfully. The obtained image
embeddings are then combined with the textual embeddings
enhanced with graphs with a cross-modal attention layer on a
graph, which helps to better comprehend figurative language
across modalities.

D. Graph-Based Cross-Modal Attention

The suggested multimodal architecture combines the textual
and visual embeddingto categorize the figurative language inan
effective manner. The Text Encoder passes idioms, metaphors,
and similes through RoBERTa to find contextual and semantic
details, whereas the Image Encoder encodes figurative and
cultural information in meme pictures with the help of a
pretrained Vision Transformer (ViT). The Cross-Modal
Attention mechanism harmonizes and combines the efforts of
both modalities with regard to the most informative features.
The attended embeddings are pooled in a Fusion Layer with the
information of cognitive mapping in order to maintain semantic
relationships. Lastly, a thick layer that uses a SoftMax classifier
determines each input as literal, metaphorical, or idiomatic.

1) Input embeddings: The input of Graph-Based Cross-
Modal Attention layer is the textual embedding of HCGT
(Ht=[h1,h2,..,hn) and the visual embedding of CLIP Hv.
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Textual embeddings are semantic links between literal and
figurative meaning, whereas the visual embeddings are image
features matchingtexts. It is these embeddings that make cross-
modal reasoning, and it is possible to use the attention
mechanism to combine the two modalities.

2) Construct graph attention: Semantic relations between
textual tokens are represented in a graph adjacency matrix.
Graph-guided attention is used to compute attention scores
alphaij between every textual node hi and visual feature j. This
was give in Eq. (7):

«. = exp((Wthi)T(vaj))
U exp (Weh)TWyvp0)

)

with W, and W, being leamable weight matrices. This step
is important to make sure that attention is devoted to the most
relevant text-image relationships to be interpreted figuratively.

3) Cross-modal feature aggregation: A weighted sum of
visual embeddings computed using attention scores is added to
the textual node. This step yields context-sensitive fused
embeddings, in which every word representation contains
context-sensitive visual projections. The model is now able to
match the image regions with figurative expressions enhancing
conceptualization of idioms, metaphors, similes and
multimodal meme content.

4) Update graph node representations: The fused
embedding is combined with the original text embedding to
preserve the semantic structure [see Eq. (8)]:

heY = o(h, + h;) (8)

where, non-linear activation is denoted as . This maintains
the graph based semantic relationships and incorporates
multisensory information to generate embeddings that can be
used in downstream figurative language reasoning.

5) Output for downstream tasks: The new embeddings
[ATY,.... hi¢"] are sent to the Cognitive Mapping Layer which
emulates interrelations between literal and figurative meanings.
This makes the model predictive of figurative language and it
still maintains interpretability. Attention weights can be
represented as heatmaps, which can support explainable Al and
enable one to understand what words and image areas stimulate
the predictions.

E. Cognitive Mapping Layer

Cognitive Mapping Layer in the proposed study is used to
model the semantic association between literal and figurative
senses of words, phrases and multiple cues. Following text
representations of HCGT and visual representations of CLIP,
this layer builds in-house semantic map between literal and
figurative representations. It simulates the cognitive process of
human beings in the mental association of phrases such as
idioms, metaphors, and similes with the images or contexts, to
reason more deeply than superficial appearances. Formally,
fused embedding h, ¢4 denied is projected onto a cognitive
graph G, , where nodes represent literal and figurative senses
and edges represent semantic similarity. This layer outputs
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sophisticated embeddings H.,, Teeth, improving both
prediction accuracy and interpretability in figurative language
understanding.

F. Explainable Al Layer

The proposed framework has a layer called Explainable Al
(XAI), which offers figurative language predictions
transparency and interpretability. Once some textual
embeddings obtained by HCGT and visual embeddings obtained
by CLIP are combined by the Graph-Based Cross-Modal
Attention and improved by the Cognitive Mapping Layer, the
XA layer produces information about features that impact the
choices made by the model. It plots attention heatmaps to show
areas of critical words and image regions to the figurative
meaning and SHAP (SHapley Additive exPlanations) values to
measure the importance of each textual and visual element. By
emphasizing the semantic and visual hints that motivate the
model to make predictions, the XAl layer can justify the models
reasoning as well as be used in education, where leamers and
instructors can learn why a particular idiom, metaphor, or meme
was interpreted in a particular way.

Algorithm:1 Context-Aware Multimodal Figurative Language
Understanding

Input: Text T, Image 1

Output: Figurative Meaning Prediction F

Initialize model parameters 6 _text, 0 image, 0 graph, 6_map

Load Graph-Enhanced Transformer (HCGT) with weights
0 text

Load CLIP Model with weights 6 _image
Text Embed = HCGT Encode(T)
Visual Embed = CLIP_Encode(])
if Text Embed and Visual Embed not empty:
Construct semantic graph G_text from Text Embed
A =Build Adjacency(G_text)
for each node iin G_text:
for each visual patch j in Visual Embed:
a[i][j] = Softmax((W_t * h[iD"T * (W_v * v[j]))
Fused Node[i] = Z(a[i][j] * v[j])
Updated Node[i] = ReLU(Fused Node[i] + h[i])
H_fused = Aggregate(Updated Node)
else:
Return Error "Missing Modality"
Cognitive_Map = Build_Cognitive_Graph(H_fused)
H cog =Apply_ Mapping(Cognitive Map, H_fused)
if H cog valid:
F = Classify(H_cog)
Explain(F) using Attention Heatmap + SHAP
else:
Return Error "Mapping Failed"
Return F

Algorithm 1 shows the suggested multimodal cognitive
mapping framework of figurative language understanding. The
system initially removes textual feature with the help of Graph-
Enhanced Transformer (HCGT) and visual feature with the help
of CLIP. In case both modalities are valid, the semantic graph is
built and Graph-Based Cross-Modal Attention combines text
and image features. The output is then processed in the
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Cognitive Mapping Layer in order to connect literal and
figurative senses. Explainable Al layer represents the
visualization of the decision in the form of attention heatmaps
and SHAP values. In case of failure of any step, error handling
implores good execution.

IV. RESULTS AND DISCUSSION

The section of resultsis an in-depth analysis of the offered
multimodal model of figurative language comprehension. It
analytically analyses the model performance concerning textual
and visual embeddings, cross-modal attention and cognitive
mapping layers. A wide range of tests such as comparative
studies with state-of-the-art techniques, ablation tests, error
testing and explainability tests are disclosed. Quantitative
metrics are enhanced by visual representations like scatter plots,
heatmapsandbar chartsthat help givean indication of themodel
interpretability, strength and ability to identify the semantic and
contextual intricacies in figurative expressions.

Dataset Distribution Across Classes
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Fig.2. Dataset distribution across classes.

Fig. 2 describes the samples are distributed in the three
classes, idioms, metaphors, and similes. The datasethas a fairly
equal representation of the examples of each category, so that
the model is sufficiently trained on all forms of figurative
expressions. This equal distribution promotes healthy learning
and eliminates bias in classes during the training o f models. On
the whole, it provides a good basis to assess the work of the
suggested multimodal framework.

Text Embedding Visualization (HCGT) using t-SNE
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Fig. 3. t-SNE visualization of textual embeddings.
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In Fig. 3, the t-SNE scatter plot graph shows the textual
representations of HCGT, which differentiate literal and
figurative examples. The literal points are around the origin
where the approximate coordinates lie between -2.1 and 1.8 on
Feature Dimension 1 and -2.0 and 2.0 on Dimension 2 whereas
the figurative points move to higher values e.g. 1.5 to 4.0
indicating semantic separation. This break suggests that the
model is sensitive to figurative evidence, and the patterns of
clustering give evidence of uniformrepresentationlearning. The
values ofthe ROC are less than 1, which confirms the realistic
confidence distribution when over-estimation is not done and
makes the embeddings reliable in terms of their interpretation.

PCA Scatter Plot of visual Embeddings (CLIP)
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Fig. 4. PCA visualization image embeddings.

Fig. 4 shows high-dimensional CLIP scene embeddings in
two dimensions. Each point (P1 to P5) represents a specific
scene embedding projected onto the first two principal
components. For example, P1's coordinates are around (0.56, —
0.42) and P3's coordinates are around (—0.33, 0.71). The
distribution reveals how images differ in the semantic
representation learned by CLIP, where farther points reflect
greater feature dissimilarity. The explained variance ratio (=0.38
and 0.22) indicates that these two components together capture
approximately 60% of the total variance, revealing important
patterns and dissociations in visual understanding through
learned feature representations.

TABLE II. ATTENTION LAYER ACCURACY ACROSS MODALITIES
Dataset Modality Pair Attention Fusion Accuracy
ID (Text-Image) Score (%)
Dl Text <> Image 0.87 89.4
D2 Text <> Image 091 90.7
D3 Text <> Image 0.88 90.1
D4 Text <> Image 0.92 91.3
D5 Text <> Image 0.90 90.6
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(0.92) in attention increased the fusion accuracy (91.3) and
demonstrated that the optimal cross-modal interaction enriches
figurative interpretation. These findings confirm the
significance of cross-modal attention in matching abstract
textual message with visual image in enhancing readability and
overall multimodal learning outcome in figurative
understanding activities.

Attention Heatmap Visualization Between Words and Image Regions
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Fig. 5. Attention heatmap visualization.

Fig. 5 shows how attention is allocated between textual and
visual areas in the course of multimodal fusion. Each cell figure
(between 0.11 and 0.95) corresponds to the intensity of
association between a word and an image area. As an example,
the word idea has a high contextual relevance with region-3
(0.89) and the word flies with region-5 (0.91). The darker ones
depictmore semantic focus, i.e., the model focuses on visually
meaningful regions, related to the figurative expressions. Such
attention behavior demonstrates the interpretability and logical
ability ofthesuggested cross-modal learningmechanism, which
proves the ability to map linguistic and visual cognitive cues
effectively.

TABLE III. MISCLASSIFICATION PATTERNS IN FIGURATIVE LANGUAGE
DETECTION
Dataset Figurative Error . .
D Type Count Major Confusion Cause

DI Idiom 6 ther.al-ﬁguratlve
ambiguity

D2 Metaphor 5 Semantlc similarity  to
literal phrases

D3 Simile 4 Oyerlapplng expressions
with metaphor

D4 Meme Caption | 3 V1.sua1-text context
mismatch

Ds Idiom 5 Rare or culturally specific
expression

Table II indicates the effectiveness of the fusion of textual
and visual modalities triggered by attention. The scores of
attentions (0.87 to 0.92) show that there is high semantic
congruence between visual characteristics and language. In line
with this, the fusionaccuracy is between 89.4 and 91.3 which
ascertains that the increased the attention correlation, the more
the context is understood. As an example, the maximum score

In Table III, the analysis of errors shows that there are
general patterns of misclassification in figurative language
detection. As an example, D1 gave 6 errors with idioms which
were mostly caused by the confusion between literal and
figurative senses. In D2 and D3, metaphors led to 5 and 4 errors
respectively as the model was confused by the semantic overlap
between literal phrases and the similarity between metaphorical
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structures respectively. D4 had 3 mistakes in meme captions
showing that sometimes there was a discrepancy between the
textual and visual contexts whereas D5 had 5 mistakes due to
the use of rare idioms. These results emphasize the importance
of multimodal context and cognitive mapping, showing that
paying attention to both linguistic and visual cues reduce
confusion and improves overall classification.

SHAP Value Interpretation for Text and Image Features
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Fig. 6. SHAP value interpretation for text and image features.

In Fig. 6, the SHAP summary plot provides information on
the contribution of each textual and visual feature towards the
prediction of the model. The positive SHAP values representa
feature that contributes to the figurative classification and the
negative ones diminish confidence. To take a few examples,
Text3 =0.42 has a very strong impact on prediction and Image4
=-0.36 has a demeriting effect on model belief. Such aspects as
Text1 (0.15)and Image2 (0.28) have moderate influence. This
visualization shows how the given framework sees the words
and image areas crucial in figurative reasoning and how
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models. These measurements affirm that the cognitive mapping
and cross-modal attention layers enhance transparency and
learners and instructors can be confident in the understanding of
what linguistic and visual features are underlying predictions.

. Accuracy Comparison of Proposed Model vs. State-of-the-Art
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Fig. 7. Accuracy comparison of proposed model.

In Fig. 7, CLS-BERT performs 88.5% and LaBSE
marginally advances to 89.1 per cent and, the suggested
HCGT+CLIP+G-CMA model reaches the largest accuracy of
90.0 per cent. The increasing trend demonstrates the
effectiveness of textual and visual embeddings and graph-based
cross-modal attention to enhance the semantic representation
and figurative reasoning. The 0.9 versus 1.5% significant
difference between models compared to text only points to the
high efficiency of learning. The bars are annotated with values
thatindicate the gain in performance, whichserveto confirm the
fact that multimodal fusion provides a predictive reliability and
model robustness of figurative language interpretation.

interpretable the model can be and that both the linguistic and TABLE V. COMPARISON TABLE
visual data can add to the prediction accuracy. Model Accuracy | Precision | Recall SFl- .
ode (%) (%) @) | Ty | O
TABLEIV.  XAI METRICS FOR MODEL INTERPRETABILITY (%)
Proposed
Ave. del 90.0 91.2 89.6 90.4 93.1
Dataset A X Top Feature User Interpretability mode
ID ttention Importance (%) Score (1-5) CLS-
Entropy BERT[24] 88.5 88.9 87.3 88.1 90.2
DI 0.42 18.5 4.2
LaBSE[25] 89.1 89.7 88.5 89.0 91.0
D2 0.38 21.0 4.5
mUSE[26] 87.4 86.8 85.6 86.2 88.9
D3 0.40 19.2 43
LASER[27] 85.7 84.9 84.3 84.6 87.1
D4 0.35 22.5 4.6
Ds 041 201 4 Table V shows that the proposed multimodal model is more

In Table IV, explainability evaluation table measures the
extentto which the proposed model can be readily interpreted in
figurative predictions reasoning. The mean entropy of attention
is between 0.35 and 0.42 which is a stable and concentrated
distribution of attention among modalities. The top feature
importance is 18.5% to 22.5% which shows the features that
have the most impact when making a decision, the most
common features in the list are Image regions and Text tokens.
The interestof the user interpretability of 4.2 to 4.6 shows the
capacity of human assessors to understand the reasoning of

superior when compared to the available text-based approaches.
The accuracy oftheproposedmodelis 90.0, which is higher than
the one of CLS-BERT (88.5), LaBSE (89.1), mUSE (87.4), or
LASER (85.7). It further shows the maximum F1-score of
90.4% and AUC 93.1 which verifies its stable balance between
precision (91.2) and recall (89.6). The enhancement of about 1.
5 to 4. 3 percent in the metrics justifies the power of the
integration of textual and visual embeddings and cognitive
mapping. Such synergy proves to be effective in terms of
semantic understanding and interpretability in tasks of figurative
language understanding in comparison with unimodal baselines.
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TABLE VI. ABLATION STUDY
Accuracy Precision Recall Fl-
Model Variant (%) (%) (%) chore
(%)
Text Embedding Only
(HCGT) 87.3 88.0 85.6 86.8
Visual ~ Embedding
Only (CLIP) 86.5 87.2 85.0 86.1
HCEGT + CLIP (No | ¢ 4 89.0 87.2 88.1
Attention)
HCGT + CLIP +
Cross-Modal 89.6 90.3 88.7 89.5
Attention
Full Model (HCGT +
CLIP + G-CMA + | 90.0 91.2 89.6 90.4
Cognitive Mapping)

In Table VI, the ablation study measures the value of the
individual component in the proposed framework. The accuracy
of using HCGT text embeddings alone is only 87.3 and CLIP
visual embeddings alone is only 86.5, which leaves little impact
of the effect of unimodal features. Initial synergy is
demonstrated by the combination of HCGT and CLIP without
attention to accuracy (88.4). The addition of cross-modal
attention leads to an even higher accuracy of 89.6% with F1-
score 89.5, proving the usefulness of cross-modal alignment.
Lastly, the complete model with the addition of graph-based
cognitive mapping has the highestaccuracy (90.0%), precision
(91.2%), which proves that each layer adds strength to the
semantic meaning and figurative reasoning.

A. Advantages of the Proposed Method

The given multimodal cognitive-mapping approach has a
number of strengths over the currently used figurative-language
understanding frameworks. The previous text-only systems find
it hard to find the implicit meanings and fail to understand
metaphors and idioms because they do not have the contextual
signifiers. The envisaged approach is capable of visualizing the
semantic connections, which unimodality models fail to
recognize because of the combination of visual and linguistic
information. Generalization across categories of figurative-
language is also enhanced by the structured cognitive- mapping
layer. Empirical results reveal better interpretive quality and
reduced unclear predictions than well-known transformer-based
and multimodal baselines, which indicate the usefulness of the
method.

B. Discussion

The results indicate that the combination of HCGT textual
embeddings and CLIP visual features and graph-based cross-
modal attention can better improve the understanding of
figurative language than text-only models such as CLS-BERT,
LaBSE, and mUSE. The enhanced semantic distinction between
t-SNE and PCA plots is consistent with previous results
indicatingthe usefulness of multimodal embeddingalignmentto
represent abstract linguistic constructions. The presence of
interest in heatmaps and SHAP interpretations also justifies the
conclusions of previous researchers that multimodal attention
enhances transparency and helps language learners process non-
literal forms. In line with the past studies on multimodal idiom
and metaphor studies, the suggested framework exhibits an
apparent benefitin case the figurative meaning is supported by
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visual context. The results of the ablation support the results in
related literature that the cognitive mappings and reasoning
represented in graphs help with more robust semantic
grounding. In general, the findings establish the framework in
the larger context of the evolution of multimodal and
explainable language models because they highlight
quantifiable improvements in accuracy, interpretability, and
cultural sensitivity.

Even though the suggested multimodal cognitive mapping
model has provided a better understanding of figurative
language, there are still some limitations. This cultural
specificity ofidiomsand metaphors affects the performance, and
it is more difficult to assign those expressions that can be
considered rare or specific to a certain region. The datasets
involved are mostly the English ones, which restrict the
generalization of the less-represented languages and cultural
backgrounds. Besides, the model relies on trained textual and
visual encoders, and they can be biased by the nature of the
training corpora. There is also the possibility that multimodal
instances with subtle visual information, or abstract artwork
style might decrease strength of alignment in the cross-modal
attention layer. These limitations suggest possible future
research on the use of wider multilingual data, culturally
dispersed figurative source, and domain-specific multimodal
training.

V. CONCLUSION AND FUTURE WORKS

It proposes a new approach to understand figurative
language through a Graph-Enhanced Transformer (HCGT)
graphical textual embeddings as well as CLIP visual
embeddings, connected with a graph based cross-modal
attention system and a cognitive mapping layer. The offered
system is successful in capturing the semantics of literal and
figurative meaning, and it does not have the disadvantages of
text-only based approaches. Quantitative metrics, ablation
studies, and visualizations through t-SNE, PCA, attention
heatmaps and SHAP value interpretations all statistically
indicate that performance in terms of accuracy, precision, and
recall aswell as interpretability are improved using ex perimental
results. The benefitof the usage of multimodal representations
and explainable mechanisms as compared to state-of-the-art
methods including CLS-BERT, LaBSE, mUSE and LASER is
proved with the help of comparative analysis that improves
semantic reasoning and generalization abilities of the model.
The analysis of errors shows that there are difficulties with
culturally specific idioms and visually ambiguous situations,
and that complex figurative constructionsneed to be modeled by
considering the context.

The study shows that the proposed multimodal cognitive
mapping  framework enhances  figurative-language
understanding by combining visual, linguistic, and contextual
cues in a unified structure. The cross-modal representation
reduces ambiguity in metaphors and idiomatic expressions,
giving clearer semantic interpretation than text-only systems.
The experimental analysis confirms improved accuracy and
stronger generalization across diverse figurative forms. These
findings highlight the framework’s value in producing more
context-aware and human-aligned understanding of figurative

language.
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In future research, the framework can be developed to
support multilingual figurative expressions and low-resource
languages, which would allow applying it to a wider range of
educational and cognitive contexts. Adding a temporal context
to dynamic visual-text content, i.e. videos or moving memes,
may also serve to understand subtextual figurative meaning.
Also, by incorporating user feedback in the form of interactive
explainable interfaces, interpretability and learning flexibility
could be enhanced. Further research into even more
sophisticated graph-based attention systems, hierarchical
embeddings and self-supervised multimodal pretraining could
potentially make performance and robustness further. On the
whole, the suggested method creates the point of culturally
competent, interpretative and adaptive language learning
models, offering a route of intelligent instructional aids that
mediate the existing textual and visual semantic perception of
figurative language.
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