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Abstract—Learning figurative language, including idioms, 

metaphors, and similes, remains challenging due to subtle 

cultural, contextual, and multimodal cues that cannot be inferred 

from literal meanings alone. Traditional unimodal and text-only 

approaches, such as CLS-BERT, LaBSE, and mUSE, often fail to 

capture these deeper semantic patterns, resulting in reduced 

accuracy and limited cultural generalization. This study 

introduces a context-aware multimodal learning framework that 

integrates textual embeddings from a Graph-Enhanced 

Transformer (HCGT) with visual embeddings from CLIP, fused 

through a graph-based cross-modal attention mechanism, and 

refined using a cognitive mapping layer. This architecture models 

human-like semantic reasoning by aligning literal and figurative 

senses across modalities while maintaining conceptual structure 

through graph-driven representation learning. Experiments 

conducted on idiom, metaphor, simile, and multimodal meme 

datasets include preprocessing steps such as text cleaning, 

tokenization, image normalization, and label standardization. The 

framework achieves an accuracy of 90%, surpassing state-of-the-

art text-only transformer baselines by 3–4%. Explainable AI tools, 

including attention heatmaps and SHAP values, validate the 

interpretability of the model by highlighting influential textual 

tokens and visual regions. The results confirm that integrating 

multimodal embeddings with cognitive mapping substantially 

enhances performance, interpretability, and cultural sensitivity in 

figurative language understanding. 

Keywords—Bi-LSTM; cognitive mapping; cross-lingual 

understanding; idiom acquisition; multimodal learning 

I. INTRODUCTION 

The figurative language is a main prerequisite in natural 
communication, which enables speakers to express the concepts, 
feelings, and cultural allusions in terms of idioms, metaphors, 
and similes [1]. To multilingual learners, mastery of figurative 
language, however, is a thorn in their flesh [2]. In contrast to 
literal phrases, figurative language has meaning that cannot be 
simply deduced by the words representing the phrase, and more 
information about cultural background and practical application 

is often necessary [3]. Since English remains the global 
education, business, and technology language, the skill of 
interpreting and applying figurative language has become 
important to learners to achieve fluency and cultural 
competency [4]. Classroom teaching as a tradition is based on 
the memorization of idioms and their definitions, which might 
be better at memorizing them in the short term, but not at long-
term remembering or grasping of the meaning [5]. As the 
classrooms become more diverse and digital resources become 
accessible, there is a rising need to employ intelligent and 
adaptive systems that will help achieve context-sensitive 
learning of figurative language and make the latter more 
engaging, readable, and understandable to the learners of diverse 
linguistic backgrounds. 

Computational methods of the understanding of figurative 
languages have attracted considerable interest over recent years, 
and Natural Language Processing (NLP) has allowed detecting 
and classifying idioms, metaphors, and similes automatically 
[6]. Representations in dense semantic spaces have been used to 
model sentences using methods built on pre-trained language 
models, including BERT, LaBSE, and mUSE, with reasonable 
performance on monolingual datasets [7]. But such text-only 
methods tend to miss the multimodal and cultural aspects of 
figurative speech, without which they are impossible to 
understand [8]. The cross-lingual transfer learning methods have 
tried to solve the multilingual issue, yet it is more dependent on 
the quality of translation and usually fail to retain the figurative 
subtleties in translation. Moreover, the vast majority of existing 
systems are black boxes, and they have little to no 
interpretability, which restricts their pedagogical effectiveness. 
Certain phrases that have been categorized as either idiomatic or 
literal cannot be easily understood by learners and instructors; 
thus, they are not effective educational tools. This 
multidimensional integration limitation, lack of cultural 
grounding, and lack of explainability are what make it essential 
to have more solid and transparent frameworks of figurative 
language learning. 
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The proposed research introduces a multimodal approach to 
context-dependent figurative language learning that combines 
the text (written) and visual information via a cognitive mapping 
paradigm [9]. The textual embeddings are trained with the help 
of a Graph-Enhanced Transformer (HCGT), whereas visual 
representations are obtained with the help of CLIP so that the 
system could grasp subtle language symptoms and cultural 
peculiarities that are inherent in idioms, metaphors, and similes 
[10]. The cognitive mapping layer builds semantic graphs 
linking literal and figurative meanings, simulating human-like 
reasoning and allowing generalization beyond surface 
representations. The main research question that will be 
answered in this study is as follows: How can a multimodal 
framework of cognitive mapping that combines both Graph-
Enhanced Transformer text embeddings and CLIP visual 
embeddings, when directed by graph-based cross-modal 
attention, improve the accurate and interpretable interpretation 
of idioms, metaphors, and similes in different figurative 
language contexts? 

A. Problem Statement 

Even with significant progress in natural language 
processing (NLP), understanding figurative language such as 
idioms, metaphors, and similes remains a persistent challenge, 
particularly for learners of English [11]. Existing models often 
rely heavily on literal representations, which fail to capture the 
deeper cultural and contextual meanings inherent in figurative 
expressions [12]. Moreover, traditional text-only approaches are 
inadequate in integrating multimodal cues, such as the visual 
and cultural information conveyed through memes, thereby 
limiting their effectiveness in figurative comprehension tasks 
[13]. These weaknesses make learners unable to grasp the subtle 
and contextual meanings in their entirety. As a solution to these 
gaps, the suggested context-aware multimodal framework uses 
Transformer-based textual and visual encoders, cross-modal 
attention, and cognitive mapping in the bridging of the semantic 
gap between literal and figurative interpretations. This method 
not only increases semantic integrity and interpretability but also 
helps to provide better solutions to figurative language learning, 
more accurate, adaptive, and grounded in the culture. 

B. Research Motivation 

The reason why this study was chosen is that the learners are 
in a continuous tussle to understand figurative phrases, such as 
idioms, metaphors, and other similes that are highly cultural and 
contextual to understand. The standard text-based techniques are 
apt to disregard these figurative features, and the existing 
computational models are only able to do unimodal analysis of 
text. To overcome these limitations, the proposed model 
includes multimodal cues, text, and meme images, and cognitive 
mapping to reproduce human-like thought. This study aims to 
offer a solution to the task of learning figurative language in 
English, and it will employ the current state-of-the-art 
Transformer-based encoders and cross-modal attention. 

C. Research Significance 

The study significantly advances figurative language 
learning by combining textual and visual modalities, addressing 
the limitations of traditional text-only approaches. By 
employing graph-enhanced transformers and CLIP embeddings 
connected through cross-modal attention and cognitive 

mapping, it captures subtle linguistic nuances and cultural 
context in idioms, metaphors, and similes. The integration of 
Explainable AI ensures explainability, making model decisions 
transparent to teachers and learners. This approach enhances 
semantic reasoning, generalization, and adaptive learning. As a 
result, the framework provides a strong foundation for 
developing culturally sensitive, context-aware, and interactive 
educational tools, promoting more effective and efficient 
understanding of complex figurative language. 

D. Key Contribution 

• Multimodal cognitive-mapping mechanism that 
integrates linguistic, visual, and contextual cues to 
capture deeper semantic relationships not handled by 
text-only systems. 

• A cross-modal attention framework that improves the 
disambiguation of metaphors and idiomatic expressions 
by aligning visual and textual semantics. 

• Structured representation layer that enhances 
generalization across diverse figurative-language 
categories. 

•  Empirical performance improvement demonstrated 
through higher interpretation accuracy and reduced 
ambiguity compared with existing multimodal and 
transformer-based baselines. 

E. Rest of the Study 

The rest of the study is structured as follows: A summary of 
related works is given in Section II. The methodology in 
Section III. The results and discussion section are shown in 
Section IV. Lastly, Section V gives the conclusion and future 
works. 

II. RELATED WORKS 

Muneer et al. [14] involve employing sentence transformer 
models in predicting semantic similarity between word pairs of 
English and Urdu. Both LaBSE and Universal Sentence Encoder 
were used as multilingual embeddings by the researchers. They 
also approached feature fusion, where different models and 
translation tools, such as Bing and Google Translators, were 
combined. This indicates, in general, that some combinations do 
show better scores, specifically, the combination of LaBSE and 
Bing Translator, which scores better than others do, as they seem 
to bring better semantic alignment between translations of 
different languages. However, the quality of the translations had 
a great impact on performance, and the external translation tools 
made the job variable. The limitations were mainly the 
dependencies on translation quality that would impair the 
consistency and reliability of semantic similarity assessment 
across different language pairs. 

Wu et al. [15] put forward a more advanced Siamese 
Semantic Disentanglement Model (SSDM) to foster more 
efficient cross-lingual transfer of multilingual models in 
machine reading comprehension. Their model aims to raise the 
generalizability of multilingual pre-trained models by separating 
the semantic content of language syntactic structures. SSDM 
uses personalized loss functions to explicitly encode and 
separate semantic and syntactic data, which produces improved 
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prediction of answer spans in target languages. Such a design 
demonstrates impressive improvements over such traditional 
designs as mBERT and XLM-100, particularly when working 
with linguistic variations that arise in a cross-lingual 
environment. Their findings support the importance of 
disentangled representations to the effective cross-lingual 
understanding in line with the objectives of integrating cross-
lingual embeddings into AI-based reading systems. 

Xu et al. [16] introduced mPMR, a multilingual pre-trained 
machine reader, and aimed to enhance natural language 
understanding of a large number of languages. In contrast to the 
model used in the past, which relied on source-language fine-
tuning, mPMR pre-trains on MRC-style to learn explicit 
multilingual NLU skills by inheritance. This enables better cross 
lingual generalization to ensure that the model acquires good 
sequence classification and span extraction on target languages. 
mPMR provides a single solution to cross-lingual reading 
comprehension tasks by serving as a single process that has been 
combined with span extraction and sequence classification. The 
fact that the model is able to produce rationales of sentence-pair 
classifications in addition to its interpretability also makes it a 
very useful object in the context of multilingual NLP 
applications. The objectives of the studied field are consistent 
with the goals of AI-oriented framework development in 
English reading comprehension in various language 
backgrounds. 

Zhang et al. [17] overcame the obstacles of cross-lingual 
question answering over knowledge bases (xKBQA) by 
approaching it as a reading comprehension task. Their solution 
entails translating subgraphs from a knowledge base into text 

passages, thus closing the gap between natural language queries 
and structured KB schemas. In low-resource situations, the 
study uses multilingual language models to turn questions in 
several languages into matching phrases in the knowledge base. 
Thanks to this strategy, teams can use available xKBQA data for 
fine-tuning, solving the usual problem of limited data in xMRC 
study. The model performs well on many languages which 
confirms that using cross-lingual reading approaches improves 
question answering in knowledge-based models. The study aims 
to enhance English reading skills using embeddings from one 
language to help AI. 

Zafar et al. [18] thoroughly reviewed the potential uses of 
technology-based reading assistance for international students in 
higher education. The study investigates the various AI tools 
offered such as machine translation, speech-to-text, text-to-
speech and intelligent annotation systems, aimed at improving 
readers’ comprehension, expanding their vocabulary and 
understanding the content. Integrating both study techniques, the 
study indicates the effectiveness of adaptive, personalized and 
interactive learning based on the AI tools. This technology was 
found to assist people in reading more effectively since it has 
provided real-time assistance, support and translation as they 
read. The study notes that the application of AI in multilingual 
classrooms facilitates and renders learning accessible to all. The 
analysis demonstrates that AI systems are needed to enhance 
reading English amongst any type of learner. A multiple case 
study was conducted in the year 2023 to get an idea of how 
multilingual learners are different in terms of instruction in 
reading comprehension and student outcomes. 

TABLE I.  SUMMARY OF EXISTING STUDIES 

Author Focus Area Methodology Key Results Limitations 

Muneer et al. [14] 

Semantic similarity  

prediction for English -

Urdu word pairs 

Used Sentence Transformers (LaBSE, 

USE), feature fusion, Bing and 

Google Translators 

LaBSE + Bing Translator 

combination showed best 

semantic alignment 

Dependency on translation 

quality affects consistency 

and reliability 

Wu et al. [15] 

Zero-shot cross-lingua l 

transfer in Machine 

Reading Comprehension 

(MRC) 

Proposed SSDM model using 

Siamese architecture and personalized 

loss to disentangle semantic and 

syntactic info 

Outperformed models like 

mBERT and XLM-100 in 

answer span prediction and 

cross-lingual generalization 

Not explicitly mentioned; 

implied complexity and 

potential training cost 

Xu et al. [16] 

Multilingual natural 

language understanding 

in MRC 

Developed mPMR model with MRC-

style pretraining combining span 

extraction and sequence classification 

High cross-lingua l 

generalization, improved 

interpretability via rationale 

extraction 

May require significant 

computational resources for 

large-scale multilingual 

pretraining 

Zhang et al. [17] 

Cross-lingual question 

answering over 

knowledge bases 

(xKBQA) 

Reformulated xKBQA as a reading 

comprehension task by converting KB 

subgraphs into textual passages 

Strong multilingual 

performance, reduced reliance 

on scarce xKBQA datasets 

through use of xMRC datasets 

Possible loss of KB structure 

precision during text 

transformation 

Zafar et al. [18] 

AI-based reading 

support in multilingual 

higher education 

Mixed-methods approach; evaluated 

machine translation, TTS, STT, 

intelligent annotation tools 

Improved comprehension, 

vocabulary, and fluency through 

adaptive and personalized 

learning tools 

Generalization to broader 

populations may require 

further empirical validation 

Gallagher et al.,[19] 

Culturally responsive 

teaching for multilingual 

reading development 

Multiple case studies; analyzed 

teaching practices including use of 

native languages and adapted reading 

levels 

Improved reading 

comprehension, academic 

vocabulary, and student 

motivation 

Focused on specific 

instructional settings; limited  

scalability across varied 

educational systems 

Huang et al. [20] 

Impact of multimodal 

input on English phrase 

acquisition among EFL 

learners 

Experimental study using three types 

of instructional input: multimodal 

(video, audio, images), audio-only, 

and paper-based 

Learners exposed to multimodal 

input outperformed others in 

form, meaning, and usage of 

phrases; positive learner 

feedback 

Effectiveness may vary for 

idioms with culturally 

specific meanings not well-

covered in the materials 
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Gallagher et al. [19] study was characterized by the 
improvement in reading comprehension, academic vocabulary, 
and motivation by students which was attributed to some 
teaching practices. Among them was the use of their native 
language to explain concepts and the application of lower-level 
readings as some of the effective practices. The paper focuses 
on culturally responsive pedagogy and use of multilingual 
resources in the process of reading development. The results 
support the necessity of tailored instructional plans to meet the 
demands of multilingual students, which is connected with the 
bigger idea of enhancing English reading skills with the help of 
cross-lingual, AI-assisted models. 

Huang et al. [20]examined how photos, spoken podcasts and 
video lessons help students from an English as a Foreign 
Language (EFL) setting gain knowledge of English phrases. 
Based on the results, students who worked with multimodal 
information showed greater understanding of how to use and 
interpret English phrases than students who relied on paper-
based materials. Learners also expressed a positive attitude 
toward using various types of resources, showing that these 
resources can aid in acquiring L2 phrases according to the 
principles of cognitive load theory. When students combine 
cognitive mapping with hearing and reading idiomatic 
expressions, they are more likely to remember and understand 
them. Applied to idioms with special cultural meanings, the 
model’s capability might be reduced. 

Current literature shows that multilingual modeling, 
semantic similarity estimation, and multimodal support of 
language learning have made significant advances, but 
continuous studies in the reviewed studies still utilize mostly 
unimodal representations of texts, or they use parallel 
presentations that do not explicitly align the semantics of literal 
and figurative senses. All the previous studies fail to combine 
graph-based cross-modal attention in order to match the textual 

clues with the visual contexts and to apply cognitive mapping in 
modeling the underlying conceptual change between literal and 
figurative senses. Furthermore, lack of Explainable AI 
mechanisms curtails transparency in most developing systems 
making them less applicable in pedagogical aspects. The 
existence of these gaps makes it warranted that a method exists 
which can combine textual and graphical representations, which 
can solidify semantic footing by using graphical structures, and 
that can be interpreted more easily by using interpretative 
explanations at the level of features. The suggested multimodal 
cognitive mapping framework directly focuses on the mentioned 
limitations, providing a more context-sensitive, interpretable 
and culturally flexible solution to the figurative-language 
understanding. Table I details the summary of existing studies. 

III. METHODOLOGY 

In the methodology section, the design and the 
implementation of the proposed multimodal framework of 
figurative language understanding are described. It outlines the 
algorithms of obtaining, pre-processing, and representing 
textual and visual data with emphasis on the ways through which 
embeddings are created and matched. This section details the 
integration of a graph-based cross-modal attention mechanism 
to capture semantic correlations between literal and figurative 
expressions, followed by a cognitive mapping layer that 
simulates human-like reasoning across modalities. Moreover, 
the approach focuses on explainable AI approaches in 
understanding model decisions, as well as making results 
transparent. Combined, these processes offer a methodological 
process of learning, integrating, and testing multimodal data that 
offers a scalable and repeatable method to enhance 
understanding and readability of figurative language learning 
tasks. The workflow is illustrated in Fig. 1.

 
Fig. 1. Proposed methodology. 
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A. Dataset Description 

The research has been conducted using three openly 
available datasets that are concerned with figurative language in 
English. The three datasets are as follows; the Classification of 
Similes and Metaphors on Kaggle, which offers labelled 
figurative and literal phrases [21], the IRFL dataset that consists 
of idioms and figurative language phrases in written form [22], 
and  the Met-Meme dataset [23] available on Kaggle that 
integrates textual idioms with the figurative language phrases in 
the form of images, allowing the multimodal analysis. The 
combination of these datasets creates a powerful yardstick 
regarding the assessment of idiomatic expressions, metaphors, 
similes, and multimodal figurative language. 

B. Data Preprocessing 

Preprocessing of the data is a very important task to ensure 
the quality and consistency of the textual and visual data. Texts 
are purged, broken down to a token to make the forms of words 
similar and eliminate noise, and images are resized and 
normalized to make them the same size when fed into the 
system. All dataset labels are normalized to literal, metaphorical, 
and idiomatic categories to form a single structure. These steps 
of preprocessing are meant to prepare the data to be effectively 
extracted using features and multimodal modeling. 

1) Text cleaning and tokenizing: Textual data is also 

processed with text cleaning and tokenization to make it ready 

to be embedded with the elimination of noise and the division 

of sentences into meaningful units. This is done to eliminate 

irrelevant information in this study by removing special 

characters, punctuations, and stopwords in the idioms, 

metaphors, and similes. Lemmatization is used in order to 

transform words into a base form so that they are represented 

uniformly. Cleaning text is followed by a process of 

tokenization into strings of appropriate tokens to be used with 

Transformers. The mathematical expression for the text 

representation is give in Eq. (1): 

𝑇 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒((𝐶𝑙𝑒𝑎𝑛(𝑆)))  (1) 

where, (𝑆) is raw text sample, 𝐶𝑙𝑒𝑎𝑛  is function to remove 
punctuation, special characters, and stop words, 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒  is 
function to generate token sequences, 𝑇 is final tokenized text. 

2) Image resizing and normalizing: In the case of 

multimodal analysis, meme images are normalized so that they 

can be trained in similar and consistent ways. All pictures are 

downsized to the same size HXW, and all pixel values are 

brought into a normal range (0-1), which enhances the 

convergence of the model and the accuracy of performance. 

The image normalization is represented in Eq. (2): 

𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝜇

𝜎
   (2) 

where, 𝐼 is the original image matrix, 𝜇 is mean pixel value 
across the dataset, 𝜎 is standard deviation of pixel values, 𝐼𝑛𝑜𝑟𝑚 
is normalized image matrix. 

3) Label normalization: In order to develop a cohesive 

target structure to be used on all datasets, the labels are 

represented into three categories, namely literal, metaphorical, 

and idiomatic. This standardization guarantees compatibility of 

the multimodal classifier and enables the same assessment. The 

label mapping is represented in Eq. (3): 

𝑦𝑛𝑜𝑟𝑚 = 𝑓(𝑦𝑟𝑎𝑤)   (3) 

where, 𝑦𝑛𝑜𝑟𝑚 ∈ {𝐿𝑖𝑡𝑒𝑟𝑎𝑙, 𝑀𝑒𝑡𝑎𝑝ℎ𝑜𝑟𝑖𝑐𝑎𝑙 , 𝐼𝑑𝑖𝑜𝑚𝑎𝑡𝑖𝑐} , 
𝑦𝑟𝑎𝑤  is the original label from dataset, 𝑦𝑛𝑜𝑟𝑚 is normalized 
label, 𝑓  is mapping function aligning all dataset labels to the 
three target classes. 

C. Feature Representation 

Feature representation captures the essential characteristics 
of both textual and visual data to enable accurate figurative 
language understanding. Text embeddings from HCGT encode 
semantic and contextual nuances, while CLIP extracts visual 
patterns. Combined, these features provide a rich, multimodal 
representation that supports cross-modal reasoning and 
cognitive mapping. 

1) Textual embedding: Graph-Enhanced Transformer 

(HCGT) is used in the proposed study to produce high-quality 

textual embeddings of idioms, metaphors and similes. 

Conventional transformer models, such as RoBERTa, 

incorporate contextual word relations by using sequential 

attention, however, it fails to explicitly learn the semantic 

relationships among words or phrases, which is essential in 

figurative language comprehension. The figurative expressions 

may depend on the complicated relations between the literal 

and non-literal meaning, and interpreting them thus demands a 

model that is able to model both the contextual semantics and 

inter-word relations. HCGT solves this weakness by building 

on top of a graph structure over tokens, where a word is a node 

and a semantic or syntactic relationship is an edge. The 

dependency parsing and semantic similarity are used to make 

this graph. The transformer token embeddings are then refined 

by graph attention networks (GATs), propagating information 

along the graph edges, which is used to reduce attention on 

words that provide figurative meaning. 

The first token embeddings of the transformer can be 
formally expressed as 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑛], where n is the length 
of a sentence. 𝐺 is a graph of semantic connections between 
tokens with 𝑉  representing the set of nodes (tokens) and E 
representing the set of edges (semantic connections). Graph 
attention takes the form of: 𝐻 is computed using graph attention 
[see Eq. (4)]: 

ℎ𝑖 = σ(∑ α𝑖𝑗𝑊𝑗∈𝒩(𝑖) 𝑥𝑗)                          (4) 

𝑁𝑖  takes the neighbors of node 𝛼𝑖𝑗 , where attention 

coefficient is a function of node features, 𝑊 is a learnable 
weight matrix and Sigma is a non-linear activation. This 
mechanism allows the embeddings to learn competing 
contextual and relational semantics as well as the ones essential 
in decoding figurative meanings in idioms, metaphors and 
similes. The HCGT embeddings are then fused with the cross-
modal attention layer to incorporate visual features so that the 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 11, 2025 

632 | P a g e  
www.ijacsa.thesai.org 

system can reason on both textual and visual features at the same 
time. 

2) Visual embedding: The model in this work refers to 

CLIP (Contrastive LanguageImage Pretraining) to produce 

visual representations that match textual ones of idioms, 

metaphors, similes, and multimodal meme illustrations. As 

opposed to more traditional visual models, like ViT, where 

images are encoded in isolation, CLIP is trained on image-text 

pairs in large scale to learn a common multimodal embedding 

space, appropriate to relate visual features to textual meanings. 

It is especially crucial to figurative language comprehension, 

where the textual context of an image determines its meaning, 

e.g. memes or illustrations of idioms. CLIP consists of a visual 

encoder (often a Vision Transformer or ResNet) and a text 

encoder (Transformer-based), which map images and text into 

a common embedding space. he training goal applies the 

contrastive learning approach, which ensures the maximum 

similarity of correctly matched image-text embeddings and the 

minimum similarity of the incorrect pairs. 

Let 𝒗𝒊denote the embedding of image 𝑖, and 𝒕𝒋  denote the 

embedding of the exemplification of text. The comparison 
between a pair of an image and text is calculated as Eq. (5): 

𝑠(𝑣𝑖, 𝑡𝑗) =
𝑣𝑖⋅𝑡𝑗

|𝑣𝑖| |𝑡𝑗|
                              (5) 

 The contrastive loss is specified over a batch of N image-
text pairs in Eq. (6): 

ℒ = −
1

𝑁
∑ [log

exp(𝑠(𝒗𝒊,𝒕𝒊)/𝜏)

∑ exp(𝑠(𝒗𝒊,𝒕𝒋)/𝜏)𝑁
𝑗=1

]𝑁
𝑖=1                    (6) 

where, τ is a learnable temperature parameter that regulates 
scaling of similarities. CLIP ensures that the model is able to 
directly compare visual and textual characteristics by inserting 
images and text into this common space and therefore facilitates 
cross-modal reasoning successfully. The obtained image 
embeddings are then combined with the textual embeddings 
enhanced with graphs with a cross-modal attention layer on a 
graph, which helps to better comprehend figurative language 
across modalities. 

D. Graph-Based Cross-Modal Attention 

The suggested multimodal architecture combines the textual 
and visual embedding to categorize the figurative language in an 
effective manner. The Text Encoder passes idioms, metaphors, 
and similes through RoBERTa to find contextual and semantic 
details, whereas the Image Encoder encodes figurative and 
cultural information in meme pictures with the help of a 
pretrained Vision Transformer (ViT). The Cross-Modal 
Attention mechanism harmonizes and combines the efforts of 
both modalities with regard to the most informative features. 
The attended embeddings are pooled in a Fusion Layer with the 
information of cognitive mapping in order to maintain semantic 
relationships. Lastly, a thick layer that uses a SoftMax classifier 
determines each input as literal, metaphorical, or idiomatic. 

1) Input embeddings: The input of Graph-Based Cross-

Modal Attention layer is the textual embedding of HCGT 

(Ht=[h1,h2,...,hn) and the visual embedding of CLIP 𝐻𝑣. 

Textual embeddings are semantic links between literal and 

figurative meaning, whereas the visual embeddings are image 

features matching texts. It is these embeddings that make cross-

modal reasoning, and it is possible to use the attention 

mechanism to combine the two modalities. 

2) Construct graph attention: Semantic relations between 

textual tokens are represented in a graph adjacency matrix. 

Graph-guided attention is used to compute attention scores 

alphaij between every textual node hi and visual feature j. This 

was give in Eq. (7): 

α𝑖𝑗 =
exp((𝑊𝑡ℎ𝑖)⊤(𝑊𝑣𝑣𝑗))

∑ 𝑒𝑥𝑝 ((𝑊𝑡ℎ𝑖)⊤(𝑊𝑣𝑣𝑘))𝑚
𝑘=1

                    (7) 

with 𝑊𝑡  and 𝑊𝑣 being learnable weight matrices. This step 
is important to make sure that attention is devoted to the most 
relevant text-image relationships to be interpreted figuratively. 

3) Cross-modal feature aggregation: A weighted sum of 

visual embeddings computed using attention scores is added to 

the textual node. This step yields context-sensitive fused 

embeddings, in which every word representation contains 

context-sensitive visual projections. The model is now able to 

match the image regions with figurative expressions enhancing 

conceptualization of idioms, metaphors, similes and 

multimodal meme content. 

4) Update graph node representations: The fused 

embedding is combined with the original text embedding to 

preserve the semantic structure [see Eq. (8)]: 

ℎ𝑖
new = σ(ℎ𝑖̃ + ℎ𝑖)                         (8) 

where, non-linear activation is denoted as σ. This maintains 
the graph based semantic relationships and incorporates 
multisensory information to generate embeddings that can be 
used in downstream figurative language reasoning. 

5) Output for downstream tasks: The new embeddings 

[ℎ1
new, . . . . ℎ𝑛

new] are sent to the Cognitive Mapping Layer which 

emulates interrelations between literal and figurative meanings. 

This makes the model predictive of figurative language and it 

still maintains interpretability. Attention weights can be 

represented as heatmaps, which can support explainable AI and 

enable one to understand what words and image areas stimulate 

the predictions. 

E. Cognitive Mapping Layer 

Cognitive Mapping Layer in the proposed study is used to 
model the semantic association between literal and figurative 
senses of words, phrases and multiple cues. Following text 
representations of HCGT and visual representations of CLIP, 
this layer builds in-house semantic map between literal and 
figurative representations. It simulates the cognitive process of 
human beings in the mental association of phrases such as 
idioms, metaphors, and similes with the images or contexts, to 
reason more deeply than superficial appearances. Formally, 
fused embedding ℎ𝑓𝑢𝑠𝑒𝑑 denied is projected onto a cognitive 
graph 𝐺𝑐 , where nodes represent literal and figurative senses 
and edges represent semantic similarity. This layer outputs 
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sophisticated embeddings 𝐻𝑐𝑜𝑔  Teeth, improving both 

prediction accuracy and interpretability in figurative language 
understanding. 

F. Explainable AI Layer 

The proposed framework has a layer called Explainable AI 
(XAI), which offers figurative language predictions 
transparency and interpretability. Once some textual 
embeddings obtained by HCGT and visual embeddings obtained 
by CLIP are combined by the Graph-Based Cross-Modal 
Attention and improved by the Cognitive Mapping Layer, the 
XAI layer produces information about features that impact the 
choices made by the model. It plots attention heatmaps to show 
areas of critical words and image regions to the figurative 
meaning and SHAP (SHapley Additive exPlanations) values to 
measure the importance of each textual and visual element. By 
emphasizing the semantic and visual hints that motivate the 
model to make predictions, the XAI layer can justify the models 
reasoning as well as be used in education, where learners and 
instructors can learn why a particular idiom, metaphor, or meme 
was interpreted in a particular way. 

Algorithm:1 Context-Aware Multimodal Figurative Language 
Understanding 

Input: Text T, Image I 

Output: Figurative Meaning Prediction F 

Initialize model parameters θ_text, θ_image, θ_graph, θ_map 

Load Graph-Enhanced Transformer (HCGT) with weights 
θ_text 

Load CLIP Model with weights θ_image 

Text_Embed = HCGT_Encode(T) 

Visual_Embed = CLIP_Encode(I) 

if Text_Embed and Visual_Embed not empty: 

    Construct semantic graph G_text from Text_Embed  

    A = Build_Adjacency(G_text) 

    for each node i in G_text: 

        for each visual patch j in Visual_Embed: 

            α[i][j] = Softmax((W_t * h[i])^T * (W_v * v[j])) 

        Fused_Node[i] = Σ(α[i][j] * v[j]) 

        Updated_Node[i] = ReLU(Fused_Node[i] + h[i]) 

    H_fused = Aggregate(Updated_Node) 

else: 

    Return Error "Missing Modality" 

Cognitive_Map = Build_Cognitive_Graph(H_fused) 

H_cog = Apply_Mapping(Cognitive_Map, H_fused) 

if H_cog valid: 

    F = Classify(H_cog) 

    Explain(F) using Attention_Heatmap + SHAP 

else: 

    Return Error "Mapping Failed" 

Return F 

Algorithm 1 shows the suggested multimodal cognitive 
mapping framework of figurative language understanding. The 
system initially removes textual feature with the help of Graph-
Enhanced Transformer (HCGT) and visual feature with the help 
of CLIP. In case both modalities are valid, the semantic graph is 
built and Graph-Based Cross-Modal Attention combines text 
and image features. The output is then processed in the 

Cognitive Mapping Layer in order to connect literal and 
figurative senses. Explainable AI layer represents the 
visualization of the decision in the form of attention heatmaps 
and SHAP values. In case of failure of any step, error handling 
implores good execution. 

IV. RESULTS AND DISCUSSION 

The section of results is an in-depth analysis of the offered 
multimodal model of figurative language comprehension. It 
analytically analyses the model performance concerning textual 
and visual embeddings, cross-modal attention and cognitive 
mapping layers. A wide range of tests such as comparative 
studies with state-of-the-art techniques, ablation tests, error 
testing and explainability tests are disclosed. Quantitative 
metrics are enhanced by visual representations like scatter plots, 
heatmaps and bar charts that help give an indication of the model 
interpretability, strength and ability to identify the semantic and 
contextual intricacies in figurative expressions. 

 
Fig. 2. Dataset distribution across classes. 

Fig. 2 describes the samples are distributed in the three 
classes, idioms, metaphors, and similes. The dataset has a fairly 
equal representation of the examples of each category, so that 
the model is sufficiently trained on all forms of figurative 
expressions. This equal distribution promotes healthy learning 
and eliminates bias in classes during the training of models. On 
the whole, it provides a good basis to assess the work of the 
suggested multimodal framework. 

 
Fig. 3. t-SNE visualization of textual embeddings. 
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In Fig. 3, the t-SNE scatter plot graph shows the textual 
representations of HCGT, which differentiate literal and 
figurative examples. The literal points are around the origin 
where the approximate coordinates lie between -2.1 and 1.8 on 
Feature Dimension 1 and -2.0 and 2.0 on Dimension 2 whereas 
the figurative points move to higher values e.g. 1.5 to 4.0 
indicating semantic separation. This break suggests that the 
model is sensitive to figurative evidence, and the patterns of 
clustering give evidence of uniform representation learning. The 
values of the ROC are less than 1, which confirms the realistic 
confidence distribution when over-estimation is not done and 
makes the embeddings reliable in terms of their interpretation. 

 
Fig. 4. PCA visualization image embeddings. 

Fig. 4 shows high-dimensional CLIP scene embeddings in 
two dimensions. Each point (P1 to P5) represents a specific 
scene embedding projected onto the first two principal 
components. For example, P1's coordinates are around (0.56, –
0.42) and P3's coordinates are around (–0.33, 0.71). The 
distribution reveals how images differ in the semantic 
representation learned by CLIP, where farther points reflect 
greater feature dissimilarity. The explained variance ratio (≈0.38 
and 0.22) indicates that these two components together capture 
approximately 60% of the total variance, revealing important 
patterns and dissociations in visual understanding through 
learned feature representations. 

TABLE II.  ATTENTION LAYER ACCURACY ACROSS MODALITIES 

Dataset 

ID 

Modality Pair 

(Text–Image) 

Attention 

Score 

Fusion Accuracy 

(%) 

D1 Text ↔ Image 0.87 89.4 

D2 Text ↔ Image 0.91 90.7 

D3 Text ↔ Image 0.88 90.1 

D4 Text ↔ Image 0.92 91.3 

D5 Text ↔ Image 0.90 90.6 

Table II indicates the effectiveness of the fusion of textual 
and visual modalities triggered by attention. The scores of 
attentions (0.87 to 0.92) show that there is high semantic 
congruence between visual characteristics and language. In line 
with this, the fusion accuracy is between 89.4 and 91.3 which 
ascertains that the increased the attention correlation, the more 
the context is understood. As an example, the maximum score 

(0.92) in attention increased the fusion accuracy (91.3) and 
demonstrated that the optimal cross-modal interaction enriches 
figurative interpretation. These findings confirm the 
significance of cross-modal attention in matching abstract 
textual message with visual image in enhancing readability and 
overall multimodal learning outcome in figurative 
understanding activities. 

 
Fig. 5. Attention heatmap visualization. 

Fig. 5 shows how attention is allocated between textual and 
visual areas in the course of multimodal fusion. Each cell figure 
(between 0.11 and 0.95) corresponds to the intensity of 
association between a word and an image area. As an example, 
the word idea has a high contextual relevance with region-3 
(0.89) and the word flies with region-5 (0.91). The darker ones 
depict more semantic focus, i.e., the model focuses on visually 
meaningful regions, related to the figurative expressions. Such 
attention behavior demonstrates the interpretability and logical 
ability of the suggested cross-modal learning mechanism, which 
proves the ability to map linguistic and visual cognitive cues 
effectively. 

TABLE III.  MISCLASSIFICATION PATTERNS IN FIGURATIVE LANGUAGE 

DETECTION 

Dataset 

ID 

Figurative 

Type 

Error 

Count 
Major Confusion Cause 

D1 Idiom 6 
Literal-figurative 

ambiguity 

D2 Metaphor 5 
Semantic similarity to 

literal phrases 

D3 Simile 4 
Overlapping expressions 

with metaphor 

D4 Meme Caption 3 
Visual-text context 

mismatch 

D5 Idiom 5 
Rare or culturally specific 

expression 

In Table III, the analysis of errors shows that there are 
general patterns of misclassification in figurative language 
detection. As an example, D1 gave 6 errors with idioms which 
were mostly caused by the confusion between literal and 
figurative senses. In D2 and D3, metaphors led to 5 and 4 errors 
respectively as the model was confused by the semantic overlap 
between literal phrases and the similarity between metaphorical 
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structures respectively. D4 had 3 mistakes in meme captions 
showing that sometimes there was a discrepancy between the 
textual and visual contexts whereas D5 had 5 mistakes due to 
the use of rare idioms. These results emphasize the importance 
of multimodal context and cognitive mapping, showing that 
paying attention to both linguistic and visual cues reduce 
confusion and improves overall classification. 

 
Fig. 6. SHAP value interpretation for text and image features. 

In Fig. 6, the SHAP summary plot provides information on 
the contribution of each textual and visual feature towards the 
prediction of the model. The positive SHAP values represent a 
feature that contributes to the figurative classification and the 
negative ones diminish confidence. To take a few examples, 
Text3 = 0.42 has a very strong impact on prediction and Image4 
= -0.36 has a demeriting effect on model belief. Such aspects as 
Text1 (0.15) and Image2 (0.28) have moderate influence. This 
visualization shows how the given framework sees the words 
and image areas crucial in figurative reasoning and how 
interpretable the model can be and that both the linguistic and 
visual data can add to the prediction accuracy. 

TABLE IV.  XAI METRICS FOR MODEL INTERPRETABILITY 

Dataset 

ID 

Avg. 

Attention 

Entropy 

Top Feature 

Importance (%) 

User Interpretability 

Score (1-5) 

D1 0.42 18.5 4.2 

D2 0.38 21.0 4.5 

D3 0.40 19.2 4.3 

D4 0.35 22.5 4.6 

D5 0.41 20.1 4.4 

In Table IV, explainability evaluation table measures the 
extent to which the proposed model can be readily interpreted in 
figurative predictions reasoning. The mean entropy of attention 
is between 0.35 and 0.42 which is a stable and concentrated 
distribution of attention among modalities. The top feature 
importance is 18.5% to 22.5% which shows the features that 
have the most impact when making a decision, the most 
common features in the list are Image regions and Text tokens. 
The interest of the user interpretability of 4.2 to 4.6 shows the 
capacity of human assessors to understand the reasoning of 

models. These measurements affirm that the cognitive mapping 
and cross-modal attention layers enhance transparency and 
learners and instructors can be confident in the understanding of 
what linguistic and visual features are underlying predictions.  

 
Fig. 7. Accuracy comparison of proposed model. 

In Fig. 7, CLS-BERT performs 88.5% and LaBSE 
marginally advances to 89.1 per cent and, the suggested 
HCGT+CLIP+G-CMA model reaches the largest accuracy of 
90.0 per cent. The increasing trend demonstrates the 
effectiveness of textual and visual embeddings and graph-based 
cross-modal attention to enhance the semantic representation 
and figurative reasoning. The 0.9 versus 1.5% significant 
difference between models compared to text only points to the 
high efficiency of learning. The bars are annotated with values 
that indicate the gain in performance, which serve to confirm the 
fact that multimodal fusion provides a predictive reliability and 
model robustness of figurative language interpretation. 

TABLE V.  COMPARISON TABLE 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC 

(%) 

Proposed 

model 
90.0 91.2 89.6 90.4 93.1 

CLS-

BERT[24] 
88.5 88.9 87.3 88.1 90.2 

LaBSE[25] 89.1 89.7 88.5 89.0 91.0 

mUSE[26] 87.4 86.8 85.6 86.2 88.9 

LASER[27] 85.7 84.9 84.3 84.6 87.1 

Table V shows that the proposed multimodal model is more 
superior when compared to the available text-based approaches. 
The accuracy of the proposed model is 90.0, which is higher than 
the one of CLS-BERT (88.5), LaBSE (89.1), mUSE (87.4), or 
LASER (85.7). It further shows the maximum F1-score of 
90.4% and AUC 93.1 which verifies its stable balance between 
precision (91.2) and recall (89.6). The enhancement of about 1. 
5 to 4. 3 percent in the metrics justifies the power of the 
integration of textual and visual embeddings and cognitive 
mapping. Such synergy proves to be effective in terms of 
semantic understanding and interpretability in tasks of figurative 
language understanding in comparison with unimodal baselines. 
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TABLE VI.  ABLATION STUDY 

Model Variant 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Text Embedding Only 

(HCGT) 
87.3 88.0 85.6 86.8 

Visual Embedding 

Only (CLIP) 
86.5 87.2 85.0 86.1 

HCGT + CLIP (No 

Attention) 
88.4 89.0 87.2 88.1 

HCGT + CLIP + 

Cross-Modal 

Attention 

89.6 90.3 88.7 89.5 

Full Model (HCGT + 

CLIP + G-CMA + 

Cognitive Mapping) 

90.0 91.2 89.6 90.4 

In Table VI, the ablation study measures the value of the 
individual component in the proposed framework. The accuracy 
of using HCGT text embeddings alone is only 87.3 and CLIP 
visual embeddings alone is only 86.5, which leaves little impact 
of the effect of unimodal features. Initial synergy is 
demonstrated by the combination of HCGT and CLIP without 
attention to accuracy (88.4). The addition of cross-modal 
attention leads to an even higher accuracy of 89.6% with F1-
score 89.5, proving the usefulness of cross-modal alignment. 
Lastly, the complete model with the addition of graph-based 
cognitive mapping has the highest accuracy (90.0%), precision 
(91.2%), which proves that each layer adds strength to the 
semantic meaning and figurative reasoning. 

A. Advantages of the Proposed Method 

The given multimodal cognitive-mapping approach has a 
number of strengths over the currently used figurative-language 
understanding frameworks. The previous text-only systems find 
it hard to find the implicit meanings and fail to understand 
metaphors and idioms because they do not have the contextual 
signifiers. The envisaged approach is capable of visualizing the 
semantic connections, which unimodality models fail to 
recognize because of the combination of visual and linguistic 
information. Generalization across categories of figurative-
language is also enhanced by the structured cognitive- mapping 
layer. Empirical results reveal better interpretive quality and 
reduced unclear predictions than well-known transformer-based 
and multimodal baselines, which indicate the usefulness of the 
method. 

B. Discussion 

The results indicate that the combination of HCGT textual 
embeddings and CLIP visual features and graph-based cross-
modal attention can better improve the understanding of 
figurative language than text-only models such as CLS-BERT, 
LaBSE, and mUSE. The enhanced semantic distinction between 
t-SNE and PCA plots is consistent with previous results 
indicating the usefulness of multimodal embedding alignment to 
represent abstract linguistic constructions. The presence of 
interest in heatmaps and SHAP interpretations also justifies the 
conclusions of previous researchers that multimodal attention 
enhances transparency and helps language learners process non-
literal forms. In line with the past studies on multimodal idiom 
and metaphor studies, the suggested framework exhibits an 
apparent benefit in case the figurative meaning is supported by 

visual context. The results of the ablation support the results in 
related literature that the cognitive mappings and reasoning 
represented in graphs help with more robust semantic 
grounding. In general, the findings establish the framework in 
the larger context of the evolution of multimodal and 
explainable language models because they highlight 
quantifiable improvements in accuracy, interpretability, and 
cultural sensitivity. 

Even though the suggested multimodal cognitive mapping 
model has provided a better understanding of figurative 
language, there are still some limitations. This cultural 
specificity of idioms and metaphors affects the performance, and 
it is more difficult to assign those expressions that can be 
considered rare or specific to a certain region. The datasets 
involved are mostly the English ones, which restrict the 
generalization of the less-represented languages and cultural 
backgrounds. Besides, the model relies on trained textual and 
visual encoders, and they can be biased by the nature of the 
training corpora. There is also the possibility that multimodal 
instances with subtle visual information, or abstract artwork 
style might decrease strength of alignment in the cross-modal 
attention layer. These limitations suggest possible future 
research on the use of wider multilingual data, culturally 
dispersed figurative source, and domain-specific multimodal 
training. 

V. CONCLUSION AND FUTURE WORKS 

It proposes a new approach to understand figurative 
language through a Graph-Enhanced Transformer (HCGT) 
graphical textual embeddings as well as CLIP visual 
embeddings, connected with a graph based cross-modal 
attention system and a cognitive mapping layer. The offered 
system is successful in capturing the semantics of literal and 
figurative meaning, and it does not have the disadvantages of 
text-only based approaches. Quantitative metrics, ablation 
studies, and visualizations through t-SNE, PCA, attention 
heatmaps and SHAP value interpretations all statistically 
indicate that performance in terms of accuracy, precision, and 
recall as well as interpretability are improved using experimental 
results. The benefit of the usage of multimodal representations 
and explainable mechanisms as compared to state-of-the-art 
methods including CLS-BERT, LaBSE, mUSE and LASER is 
proved with the help of comparative analysis that improves 
semantic reasoning and generalization abilities of the model. 
The analysis of errors shows that there are difficulties with 
culturally specific idioms and visually ambiguous situations, 
and that complex figurative constructions need to be modeled by 
considering the context. 

The study shows that the proposed multimodal cognitive 
mapping framework enhances figurative-language 
understanding by combining visual, linguistic, and contextual 
cues in a unified structure. The cross-modal representation 
reduces ambiguity in metaphors and idiomatic expressions, 
giving clearer semantic interpretation than text-only systems. 
The experimental analysis confirms improved accuracy and 
stronger generalization across diverse figurative forms. These 
findings highlight the framework’s value in producing more 
context-aware and human-aligned understanding of figurative 
language. 
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 In future research, the framework can be developed to 
support multilingual figurative expressions and low-resource 
languages, which would allow applying it to a wider range of 
educational and cognitive contexts. Adding a temporal context 
to dynamic visual-text content, i.e. videos or moving memes, 
may also serve to understand subtextual figurative meaning. 
Also, by incorporating user feedback in the form of interactive 
explainable interfaces, interpretability and learning flexibility 
could be enhanced. Further research into even more 
sophisticated graph-based attention systems, hierarchical 
embeddings and self-supervised multimodal pretraining could 
potentially make performance and robustness further. On the 
whole, the suggested method creates the point of culturally 
competent, interpretative and adaptive language learning 
models, offering a route of intelligent instructional aids that 
mediate the existing textual and visual semantic perception of 
figurative language.  
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