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Abstract—Heritage is seen as a key part of nations, including a 

broad variety of traditions, cultures, monuments, plants and 

animals, foods, music, and further. Regarding countries, their own 

heritages are defined by preservation, excavation, and restoration 

of historical assets that are important and show the nation's 

history. It comprises a wide range of physical objects and 

materials found in cultural institutions which are moveable 

heritage, as well as the heritage found in built environments which 

are immovable and natural landscapes. Previous studies on 

monument classification frequently used single small datasets, 

limiting accuracy and generalizability. This work introduces a 

proposed model and a thorough experimental comparison of 

widely used deep learning architectures, specifically 

Convolutional Neural Networks and Transformers beside our 

proposed model, for monument recognition in the cultural 

monument domain. It seeks to conduct a comparative experiment 

for selecting representatives from these two methodologies 

regarding their capacity for transferring information from a 

general dataset, like ImageNet, to heritage landmarks datasets of 

varying sizes. When we tested samples of the topologies ResNet, 

DenseNet, and Swin Transformer (Swin-T), we find that the 

proposed model had the best results, however ResNet-50 achieved 

comparable accuracy to Swin-T. 
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I. INTRODUCTION 

Heritage is regarded as a fundamental aspect of a nation, 
encompassing a diverse range of traditions, cultures, 
monuments, flora and fauna, culinary practices, languages, 
music, and more [1]. For countries, their own heritages are 
characterized by the preservation, excavation, and restoration 
of historical artifacts that hold significant value and represent 
the legacy of the nation [2]. 

Cultural heritage is a multifaceted tapestry that reflects our 
past, present, and future aspirations [3]. It broadly includes a 
diverse array of tangible items and materials found in cultural 
institutions as movable heritage, as well as the heritage 
embodied in constructed environments (immovable) and 
natural landscapes. As noted in several discussions, cultural 
heritage promotion and preservation have enormous potential 
to make life better, boost the economy, and make societies that 
are lively, creative, and rich [4]. 

Machine Learning (ML) alongside Deep Learning (DL) are 
used for classifying monuments images. Image classification 
(IC) is crucial for the effective recognition and comprehension 

of the diverse range of monuments found worldwide. By 
leveraging information and communication technology (ICT) 
tools to develop a digital library of monuments, alongside 
artificial intelligence (AI) for identifying historical sites, we 
create a connection to the past, shedding light on the 
significance of their architecture and history. This research has 
important societal implications. Tourist experiences can be 
improved by better monument recognition, which makes 
cultural heritage more approachable for both visitors and 
residents. Additionally, this supports preservation efforts by 
facilitating the evaluation of structural and conservation 
requirements. Moreover, this approach aids urban planning, 
allowing planners to identify monument locations and integrate 
that information into city development strategies, assuring 
which modern buildings and infrastructure projects respect the 
city's heritage history [5–8]. 

Numerous studies have recently demonstrated effective 
image classification for a variety of applications. Despite the 
significance of this area, there is a notable lack of research 
focused specifically on the classification or recognition of 
tangible cultural heritage, such as monuments [9]. While DL 
has enabled automated monument recognition, existing 
approaches exhibit critical limitations: (1) reliance on single-
architecture models that cannot capture complementary visual 
features, (2) evaluation on small datasets of <5,000 images 
limiting generalizability, and (3) lack of adaptive feature 
integration mechanisms [5-12]. 

In this work, we perform an experimental comparison of 
prevalent DL architectures, particularly Convolutional Neural 
Networks (CNNs) plus Transformers, for monument 
recognition within the cultural heritage domain. We use a fine-
tuning strategy that is specific to the task of classifying 
monuments in our method. It is very important that the system 
can learn new tasks with only a few training samples, since 
getting a lot of annotated data is very expensive. We look at the 
architectures of ResNet-50 [10], DenseNet-121 [11], and Swin 
Transformer (Swin-T) [12] and compare their results to 
monument classification with respect to accuracy and 
computational complexity. We adjust and test these models on 
two datasets of heritage monuments. 

1) Research problem: How can architecture-level fusion 

combine complementary CNN strengths for superior 

monument recognition while maintaining computational 

efficiency? CNNs excel at local spatial features while 
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modernized ConvNets capture global context—monuments 

require both for distinguishing similar architectural structures. 

2) Why fusion is necessary: EfficientNet-B4 uses 

compound scaling with squeeze-and-excitation attention for 

local textures and architectural details. ConvNeXt-Tiny 

employs depthwise separable convolutions for global semantic 

representations. Monuments require: (a) local features 

distinguishing similar styles, (b) global context for structural 

configurations, and (c) adaptive weighting based on input 

characteristics. No single architecture addresses all three 

requirements. 

3) Contributions: This study offers the following 

contributions: (1) Methodological: We propose a dual-branch 

fusion architecture combining EfficientNet-B4 and ConvNeXt-

Tiny with an adaptive feature fusion module. Unlike existing 

single-architecture approaches [9, 17, 20] or static ensemble 

methods [15, 24] that use fixed-weight averaging, our learnable 

gating mechanism dynamically adjusts branch contributions (α, 

β) based on input characteristics, enabling texture-focused or 

context-focused processing as needed. 

4) Empirical: We conduct comprehensive evaluation 

across two heritage datasets of varying scales—Egypt-v1 

(7,778 images, 41 classes) and Pisa (1,227 images, 12 

classes)—and establish systematic baselines comparing 

ResNet-50, DenseNet-121, and Swin-T under consistent 

experimental protocols. 

5) Practical: The proposed model achieves 99.77% 

accuracy on Egypt-v1, supporting real-world applications 

including automated monument cataloging for preservation 

agencies, enhanced mobile tourism guides, and urban planning 

systems that integrate heritage site data into city development 

strategies. 

The rest of this paper is set up like this. In Section II, there 
is a comprehensive review of the literature. The tested 
architectures are in Section III. Then, section IV talks about the 
two datasets' features. While Section V and VI is all about the 
proposed model and experimental settings. Moreover, the 
results that were achieved are explained in Section VII.  
Section VIII provides discussion and interpretation of findings. 
Section IX concludes with limitations and future directions. 

II. COMPREHENSIVE LITERATURE REVIEW 

Research in DL-based monument recognition has evolved 
significantly over recent years, with approaches broadly 
categorized into three methodological paradigms: CNN-based 
methods, Transformer-based methods, and hybrid/ensemble 
approaches. This section systematically reviews representative 
works within each category, critically analyzes their limitations 
particularly regarding dataset scale, and identifies the research 
gaps that motivate our proposed fusion architecture, as shown 
in Table I and discussed. 

Boyadzhiev et al. [13] performed a comparative analysis of 
several deep neural network architectures, which comprised 
both CNNs and Vision Transformers (ViTs), for the heritage 
image classification. Their results demonstrated the strong 
effectiveness of these models, reporting classification 

accuracies of approximately 96.8% for VGG11, 97.4% for 
ResNet34, 97.8% for DenseNet, 98.0% for PoolFormer, 97.9% 
for ViT, and 98.8% for Swin Transformer. While these findings 
offer insightful information about the relative performance of 
different architectures in cultural heritage applications, it had 
limitations due to the small dataset of only 1,227 images 
representing 12 monuments for the Pisa dataset [14]. 

Sasithradevi et al. [9] created the MonuNet model, which is 
a specialized deep learning model. MonuNet solves the 
problem of sorting through old pictures of Kolkata's important 
buildings. It was trained over a carefully chosen dataset of 13 
heritage locations, each with 50 photos to make sure there was 
a fair representation. MonuNet used Dense and attention 
modules for parallel-spatial channels to make feature extraction 
and classification more accurate. The model did better than 
typical DenseNet models, with an accuracy of 89%, a precision 
of 86.77%, and a recall of 86.61%. These results demonstrated 
MonuNet's effectiveness in heritage image classification and its 
potential applications in cultural preservation, tourism, and 
urban planning. While MonuNet performed well in classifying 
Kolkata's heritage monuments, it had limitations due to the 
small dataset of only 50 images per site, which would affect 
generalizability. 

Djelliout and Aliane [15] proposed a Multi-CNN model for 
the multi-classification of cultural historical monuments, 
addressing various dimensions such as monument identity, 
architectural type, and historical period. Using the AlgHeritage 
dataset [16], containing over 20k images of 90 distinct 
monuments, the Multi-CNN model integrated several CNN 
architectures including DenseNet169, MnasNet, and 
GoogleNet. The classification accuracy attained by the model 
was 94.52%, surpassing other single models like DenseNet169 
with accuracy of 93.70%, MnasNet accuracy of 92.80%, and 
GoogleNet accuracy of 88.18%. These results indicated the 
superior performance of the Multi-CNN model in recognizing 
and categorizing heritage monuments, demonstrating its 
potential for applications in heritage conservation, 
documentation, and tourism. Despite its 94.52% accuracy, the 
Multi-CNN model's reliance on the AlgHeritage dataset limited 
generalization, and its computational complexity requires more 
resources compared to single models. 

Khandelwal et al. [17] introduced a study focusing upon the 
effective classification of historical sites utilizing various CNN 
architectures. The authors tested ResNet50, 
InceptionResNetV2, EfficientNetB1, EfficientNetB3, and 
MobileNetV2 on a set of 24 Indian monuments. There were 
4,895 photos in the dataset, and to make the model work better, 
data augmentation and hyperparameter tuning were applied. 
MobileNetV2 was the best of the models examined, with 
95.58% for the validation accuracy and 99.90% for the training 
accuracy. It showed which is the best model for classifying 
monuments. Their work demonstrated the transfer learning and 
fine-tuning work well regarding the monument recognition. 
This means that deep learning models like MobileNetV2 can 
classify objects with a high degree of accuracy with only a few 
parameters, making them useful for real-time applications. 
MobileNetV2 had a validation accuracy of 95.58%, which was 
better than other models. However, it relied on data 
augmentation and hyperparameter tuning, which shows that it 
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is not very scalable. The model also showed evidence of mild 
overfitting because it was trained on a dataset that was not very 
big. 

Kukreja et al. [18] proposed a hybrid DL model regarding 
the multi-classification of Indian cultural sites utilizing a real-
phase image dataset. The model combined CNNs alongside 
with Long Short-Term Memory (LSTM) networks for 
classifying images of monuments. They did two key things: 
they did a binary classification of heritage along with non-
heritage monuments, which was 92.37% accurate, and a multi-
classification task that divided monuments into four groups, 

which was 95.89% accurate. This hybrid model showed high 
efficiency in monument recognition as well as classification, 
supporting the preservation and awareness of cultural heritage. 
Kukreja et al. used a dataset of 3,000 images from four 
prominent Indian monuments, and their model outperformed 
traditional classification methods in respect to accuracy as well 
as classification performance, as demonstrated by precision, 
recall, and F1 scores. Despite achieving 95.89% accuracy in 
multi-classification, their proposed hybrid model faced 
limitations due to the small dataset of only 3,000 images, which 
would hinder its ability to generalize to a broader range of 
monuments. 

TABLE I. LITERATURE REVIEW 

Ref. Dataset Model Metric Result in Percentage format Limitation 

[13] 
Pisa dataset 

[14] 

VGG,  

ResNet,  

DenseNet,  

PoolFormer, 

ViT,  

Swin-T 

Accuracy 

VGG11≈ 96.8, 

ResNet34 ≈ 97.4, 

DenseNet ≈ 97.8, 

PoolFormer ≈ 98.0, 

ViT ≈ 97.9, 

Swin-T ≈ 98.8 

A limitation is that its small dataset of 

only 1,227 images representing 12 

monuments, may limit its generalization 

to other monuments or larger datasets. 

[9] 
Heritage Sites 

in Kolkata 

MonuNet,  

DenseNet201,  

DenseNet169,  

DenseNet121 

Accuracy, 

Precision, 

Recall 

MonuNet, 89, 87.8, 86.6 

DenseNet201, 79, 73.5, 74.6  

DenseNet169, 85, 83.2, 82.6  

DenseNet121, 85, 83.2, 81.6 

Limited by the small dataset of only 50 

images across 13 sites, which may affect 

generalizability. 

[15] 
AlgHeritage 

dataset [16] 

GoogleNet, 

Densenet169, 

MnasNet, 

Multi-CNN 

Accuracy 

GoogleNet, 73.1  

Densenet169, 88.2  

MnasNet, 86.7  

Multi-CNN, 92.1 

The proposed model's reliance on the 

dataset limits generalization, and its 

computational complexity requires more 

resources compared to single models. 

[17] 

24 types of 

Indian 

monuments 

ResNet-50, 

InceptionResNetV2, 

EfficientNetB3, 

EfficientNetB1, 

MobileNetV2 

Accuracy 

ResNet-50, 12.8  

InceptionResNetV2, 99.7  

EfficientNetB3, 91.8  

EfficientNetB1, 95.4  

MobileNetV2, 99.9 

The model showed signs of moderate 

overfitting due to the relatively small 

dataset used for training. 

[18] 

Indian heritage 

monument 

dataset 

CNNs 

With 

LSTM 

Precision,  

Recall,  

F1-score 

Class One, 92.6, 95.2, 93.8  

Class Two, 95.1, 94.1, 94.6  

Class Three, 95.4, 95, 93.2  

Class Four, 96.1, 93.4, 93.9 

Limited by the small dataset of only 3k 

images, which may hinder its ability to 

generalize to a broader range of 

monuments. 

[19] 
Real-phase 

Indian dataset 
MLP 

Precision,  

Recall,  

F1-score 

Class One, 95.8, 98.7, 96.4  

Class Two, 95.6, 89.3, 91.9  

Class Three, 91.9, 93.6, 92.0  

Class Four, 95.6, 93.7, 94.0 

Limited by the small dataset of 10k 

images, which may restrict its ability to 

generalize across more diverse heritage 

categories. 

[20] 

Egypt 

Monuments 

Dataset v1 

ResNet50, 

Inception V3, 

LeNet5 

Accuracy 

ResNet-50, 99.1 

InceptionV3, 90.9  

LeNet5, 92.6 

It is relatively small size of 7,778 

images, which may hinder the 

generalization of models when applied 

to a broader set of monuments beyond 

the Egyptian context. 

[21] 

UMS 

landmark 

dataset [22], 

Scene-15 

dataset [23] 

EFFNET 1,  

EFFNET 2,  

RESNet152 

Accuracy 

EFFNET 1: {LSVM:100, CNN (2D): 100, CNN 

(1D): 100, GBDT: 100,SGD: 100, MLP: 44} 

EFFNET 2: {LSVM: 94, CNN (2D), 95, CNN 

(1D): 100, GBDT: 100, SGD: 100 , MLP: 12} 

RESNet152: {LSVM: 100, CNN (2D): 85, CNN 

(1D): 100, GBDT: 100} 

 

EFFNET 1: {LSVM: 94, CNN (2D): 85, CNN 

(1D): 94, GBDT: 68, SGD: 68, MLP: 43} 

EFFNET 2: {LSVM: 94, CNN (2D): 91, CNN 

(1D): 92, GBDT: 66, SGD: 92, MLP: 40} 

RESNet152: {LSVM: 62, CNN (2D): 58, CNN 

(1D): 62, GBDT: 41} 

A limitation of the proposed model is 

that while it achieves high accuracy, the 

extra pre-processing for feature 

reduction increases computational 

overhead, which may affect scalability 

in larger or more complex environments. 

[24] 

Indian dataset 

of 4.5k 

heritage 

palaces 

Hybrid CNN-SVM 

model 

Precision,  

Recall,  

F1-score 

Class One, 88.7, 69.4, 93.8  

Class Two, 84.9, 71, 94.6  

Class Three, 85.2, 72.4, 93.2  

Class Four, 81.1, 72.4, 93.9 

A limitation is that its small dataset of 

4.5k images may limit its generalization 

to other monuments or larger datasets. 
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Kukreja et al. [19] employed a DL-based Multi-Layer 
Perceptron (MLP) model regarding the multi-classification of 
heritage Indian images. It was trained over a dataset of 10k 
images, categorized into four heritage classes: animals, birds, 
monuments, and paintings. Their work utilized data 
augmentation methods to improve the dataset, and the MLP 
model achieved notable results. In the binary classification task, 
differentiating among the heritage and non-heritage images, 
their model attained an accuracy of 94.32%. For the multi-
classification task, the model achieved an accuracy of 95.43%, 
with animal heritage images yielding the highest performance 
metrics, including a precision of 95.84%, recall of 98.65%, and 
F1-score of 96.37%. These outputs showed that the model 
worked well for recognizing and classifying heritage, which 
helps protect and raise awareness of cultural heritage using 
digital solutions. Despite achieving 95.43% accuracy in multi-
classification, the proposed MLP model proposed was limited 
by the small dataset of 10k images, which would restrict its 
ability to generalize across more diverse heritage categories. 

Hassan et al. [20] introduced the Egypt Monuments Dataset 
v1, a comprehensive for image classification plus instance-level 
recognition of Egyptian monuments and heritage sites. This 
dataset consists of 7,778 images across 41 categories, including 
famous monuments for example tombs, heritage-sites, and 
statues. The authors evaluated the performance of several DL 
models, including ResNet50, Inception V3, and LeNet5, on this 
dataset. ResNet50 achieved the highest accuracy with 99.13%, 
followed by LeNet5 with 92.64%, and Inception V3 with 
90.90%. These results demonstrated the dataset’s potential for 
advancing the classification and recognition of heritage 
monuments, particularly with respect to real-world applications 
in Egyptology and cultural heritage preservation. Despite the 
strong performance of ResNet50, achieving 99.13% accuracy, 
the Egypt Monuments Dataset v1 faced limitations due to its 
relatively small size of about 7k images, which would hinder 
the generalization of models when applied to a broader set of 
monuments beyond the Egyptian context. 

Razali et al. [21] developed a lightweight DL-based 
landmark recognition model for smart tourism integrating CNN 
with Linear Discriminant Analysis (LDA).  It was trained over 
the UMS Landmark dataset [22] and the Scene-15 dataset [23] 
to identify tourist landmarks and public scenes. The best feature 
extractor was EfficientNet (EFFNET), which got a flawless 
classification accuracy of 100% on the UMS dataset and 
94.26% on the Scene-15 dataset. Additionally, the use of LDA 
decreased the number of dimensions of the features by over 
90% avoiding compromising classification performance. This 
approach demonstrated a significant reduction in computational 
complexity while preserving a high level of accuracy, which 
makes it perfect for smart tourism applications in real time. A 
limitation of their proposed model was that while it achieved 
high accuracy, the extra pre-processing for feature reduction 
increased computational overhead, which would affect 
scalability in larger or more complex environments. 

Kumar et al. [24] employed a hybrid approach integrating 
CNN with Support Vector Machines (SVM) for the multi-
classification of Indian heritage palaces. This dataset, 
consisting of 4,500 images of various heritage palaces, was pre-
processed and divided to 75% training and 25% testing sets. 

This hybrid CNN-SVM model achieved impressive results, 
with a classification accuracy of 97% for features like grand 
fountains and Doric pillars. Precision, recall, and F1-scores 
were also evaluated, with Class 1 which is grand fountains 
achieving a precision of 88.73% and recall of 69.44%, while 
Class 2 which is Doric pillars showed a precision of 84.94% 
and recall of 71.01%. This work demonstrated the effectiveness 
of the hybrid model for heritage monument classification and 
offered a valuable tool for cultural heritage preservation and 
analysis. The limitation of Kumar et al.'s model was that its 
small dataset of 4.5k images would limit its generalization to 
other monuments or larger datasets. 

The literature reveals four critical gaps motivating our 
fusion approach: 

1) Feature complementarity neglect: Existing studies 

evaluate single architectures in isolation. CNNs excel at local 

textures and spatial hierarchies, while modernized ConvNets 

and Transformers capture global relationships. Monument 

recognition requires both capabilities, yet no work combines 

architectures with complementary inductive biases. 

2) Static feature integration: Hybrid approaches use naive 

strategies (ensemble voting, concatenation, fixed-weight 

averaging) that cannot adapt to input characteristics. Effective 

fusion requires adaptive mechanisms that dynamically weight 

contributions based on whether an image demands textural 

detail or global context understanding. 

3) Insufficient dataset scale analysis: Studies report results 

on single datasets without examining how architectures scale 

across varying data availability (650 to 20,000+ images), 

conflating memorization with generalization. 

4) Lack of modern architecture combinations: State-of-

the-art architectures (EfficientNet's compound scaling, 

ConvNeXt's modernized design) remain unexplored in fusion 

configurations despite offering complementary strengths suited 

for monument recognition. 

In summary, CNNs sacrifice global context for local 
discrimination, Transformers exhibit the inverse trade-off, and 
existing hybrids lack adaptive integration. These gaps motivate 
our dual-branch fusion combining EfficientNet-B4 and 
ConvNeXt-Tiny with learnable gating and channel attention. 

III. TESTED ARCHITECTURES 

CNNs and Transformers architectures are the two primary 
deep learning paradigms that have dominated computer vision 
research in recent years. CNNs are distinguished by their strong 
generalization ability in image-related tasks and comparatively 
low computational cost. Convolutional layers' translation-
invariance and locality characteristics, which offer a potent 
inductive bias, are the source of this effectiveness. 
Transformer-based models have attracted much interest lately 
for their capacity to use attention mechanisms for capturing 
global relationships and long-range dependencies. However, 
attention layers' scalability in practical applications are limited 
by their computational complexity, which increases 
quadratically with input size. In order to solve this, Tay et al. 
[25] have proposed a number of effective Transformer variants 
that maintain competitive performance by substituting lighter 
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alternatives. Despite these advances, Transformers are often 
less robust in terms of generalization and typically require 
large-scale pre-training to achieve strong results Csordás et al. 
[26]. Fortunately, pre-trained models from both paradigms are 
widely available and can be fine-tuned on domain-specific 
datasets, enabling their application to diverse real-world 
scenarios. 

In this study, to highlight the task of monument recognition 
for cultural heritage applications, we go beyond the limitation 
of previous studies that relied solely on the Pisa dataset. To 
ensure greater diversity and robustness, we incorporate two 
additional monument datasets alongside Pisa, enabling a 
broader and more challenging benchmark. We focus our 
comparative experimental analysis on three representative 

architectures: ResNet-50, DenseNet-121, and Swin-T. Each 
model is optimized for the particular monument classification 
tasks after being pre-trained on ImageNet, allowing us to 
compare their effectiveness and transferability across different 
datasets. The ability to adapt to new tasks from few available 
training samples remains crucial, given the cost and difficulty 
of collecting large-scale annotated cultural heritage datasets. 
Furthermore, Table II shows how many parameters and how 
much computing power in Floating Point Operations per 
Second (FLOPS) each model needs to process data. 
Researchers typically use FLOPS to compare models. A model 
with lower FLOPS is lighter, faster, and more efficient, whereas 
a model with higher FLOPS is heavier, slower, and uses more 
resources [10-12]. 

TABLE II. COMPARISON OF THE NUMBER OF PARAMETERS  AND THE COMPUTING COST (IN FLOPS) OF DIFFERENT MODELS 

Model # Parameters FLOPS 

ResNet-50 (v1) ~ 25M 3.80 x 109 

DenseNet-121 ~ 8M 2.91 x 109 

Swin-T ~ 28M 4.50 x 109 
 

IV. DATASETS CHARACTERISTICS 

Two datasets of cultural monuments or heritage landmarks 
were considered for this study: the Egypt Monuments Dataset 
v1 (EGYPTv1) [20] and the Pisa Dataset [14]. Dataset 
Selection Rationale: These datasets were strategically selected 
based on four criteria: (1) Scale diversity—Egypt-v1 (7,778 
images, 41 classes) represents a large-scale dataset while Pisa 
(1,227 images, 12 classes) represents a small-scale dataset, 
enabling evaluation of model behavior across varying data 
availability conditions; (2) Geographic and cultural diversity—
the datasets cover distinct heritage contexts (Ancient Egyptian 
monuments vs. Italian Renaissance/Medieval architecture), 
testing cross-cultural generalization; (3) Public availability and 
reproducibility—both datasets are publicly accessible, enabling 
reproducible research; (4) Benchmark relevance—Egypt-v1 is 
the first dedicated Egyptian heritage dataset with established 
baselines [20], while Pisa is a widely-used benchmark in 
cultural heritage recognition literature [13, 14]. This dual-
dataset approach addresses a key limitation of prior studies that 
evaluated on single datasets, conflating memorization with 
generalization. More details will be provided in the next 
subsection. 

A. EGYPT-v1 Dataset 

A benchmark standard for ILR and fine-grained IC across 
the ancient Egyptian monuments field, is the Egypt-v1 dataset, 
which was first presented by Hassan et al. [20]. It is the first 
dataset devoted to Egyptian heritage sites, containing 7,778 
photos from 6 of Egypt's 28 governorates, representing 41 
different monument classes. Luxor is home to about 37% of the 
monuments with more than 2,000 photos, whereas Cairo is 
home to about 27%. The dataset includes various categories 
such as pyramids, temples, statues, busts, and heritage sites, 
sourced manual and semi-automated primarily from different 

platforms like YouTube, and Wikimedia Commons. The 
images reflect diverse conditions, including indoor and outdoor 
settings, various lighting scenarios, and angles, enhancing the 
applicability of the dataset to real-world challenges, as shown 
in Fig. 1. 

Three deep learning models, ResNet50, InceptionV3, and 
LeNet5, were evaluated in EGYPT-v1, achieving test 
precisions of 99.13%, 90.90%, and 92.64%, respectively. 
ResNet50 demonstrated the highest performance and 
scalability, achieving 97.43% accuracy on unseen data with 
over 35,000 images. This dataset supports a broad range of 
applications, including conservation and Egyptology, and 
provides a foundation for future work in monument 
recognition, such as object detection and larger-scale 
expansions. 

B. Pisa Dataset 

The Pisa Dataset, introduced by Amato et al. [14], is a 
curated collection of 1,227 images depicting 12 cultural 
heritage sites and monuments in Pisa, Italy. These images were 
sourced from the online photo-sharing platform Flickr, and 
their corresponding IDs and labels are publicly accessible at 
https://falchi.isti.cnr.it/pisaDataset/, as illustrated in Fig. 2. 

The dataset was developed to support research on 
monument recognition in images, a task that presents 
challenges due to variations in viewpoint, lighting, and image 
quality. To address this, the authors explored k-Nearest 
Neighbors (kNN) based classification plus landmark 
recognition techniques, proposing two novel methods that 
combine kNN with local visual descriptors. Notably, through 
the use of similarity search access methods, their first approach 
makes it possible to perform standard kNN classification more 
efficiently by introducing a more lenient definition of image-
to-image similarity based on local features. 

https://falchi.isti.cnr.it/pisaDataset/
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Fig. 1. Samples from three classes of the EGYPTv1 benchmark dataset [20]. 

 
Fig. 2. Samples from 12 classes of the Pisa dataset [14]. 

V. PROPOSED MODEL 

Monument recognition is a difficult challenge for computer 
vision since models have to identify the difference between 
architectural objects that look identical while dealing with 
changes in viewing angles, illumination, occlusion, and scale. 
Traditional single-architecture methods, whether they use pure 
CNNs or Vision Transformers, frequently have trouble getting 
all the visual features needed for strong monument 
categorization. CNNs are great at finding local spatial 
hierarchies and textural patterns because of their inductive 
biases. Modern ConvNet [28] systems, like ConvNeXt, use 
design ideas from Vision Transformers to get more global 
contextual information. The proposed work presents an 
innovative dual-branch fusion design that synergistically 
integrates EfficientNet-B4 [29] and ConvNeXt-Tiny, 
capitalizing on the complementing capabilities of both 
architectural paradigm as shown in Fig. 3. EfficientNet-B4 uses 
efficient compound scaling and squeeze-and-excitation 
attention mechanisms to learn discriminative local features 
well. ConvNeXt-Tiny, on the other hand, uses modernized 
convolutional designs with depthwise separable convolutions 
and layer normalization to make stronger semantic 
representations. This paper suggests an adaptive feature fusion 
module with learnable gating mechanisms and channel 
attention that dynamically weights the contribution of each 
branch based on the characteristics of the input, rather than just 
combining features from both networks. This smart fusion 

method lets the model concentrate EfficientNet features for 
areas with a lot of texture and ConvNeXt features for scenes 
that need a richer awareness of the context. This leads to better 
monument recognition over a wide range of datasets. 

A. Dual-Branch Features 

The proposed architecture uses a parallel dual-branch 
topology in which both branches process the same input image 
at the same time through separate pathways. The first branch 
uses EfficientNet-B4, a compound-scaled convolutional neural 
network that uses a principled compound coefficient to 
systematically change the depth, breadth, and resolution of the 
network. EfficientNet-B4 uses mobile inverted bottleneck 
convolution (MBConv) blocks with squeeze-and-excitation 
(SE) modules that change the responses of features in each 
channel by using global average pooling and then two fully 
connected layers with sigmoid activation. This architecture 
takes 224×224 RGB images and processes them via seven 
stages of MBConv blocks, each of which reduces the image's 
spatial resolution. In the end, it creates 1792-dimensional 
feature representations that contain detailed information on the 
image's spatial hierarchies and textures. 

The second branch includes ConvNeXt-Tiny, which is a 
modernized version of standard ConvNet architecture that uses 
certain design ideas from Vision Transformers while still being 
able to conduct convolutions efficiently. ConvNeXt uses depth-
wise separable convolutions with bigger 7×7 kernels, inverted 
bottleneck structures where channel expansion happens in the 
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middle layers, and GELU activation functions instead of ReLU. 
ConvNeXt makes a "purer" convolutional route by replacing 
batch normalization with layer normalization and using fewer 
activation functions and normalizing layers. The ConvNeXt-
Tiny version processes the same 224×224 input through four 
steps of hierarchical feature extraction. This creates 768-
dimensional feature vectors that capture more global semantic 
information and contextual links than typical CNNs. Both 
branches start with ImageNet pre-trained weights, which 
provide them robust feature representations learnt from more 
than 1.2 million pictures in 1000 categories. This transfer 
learning method speeds up convergence and makes 
generalization better, which is especially useful for monument 
recognition because training datasets are usually smaller than 
those for generic object recognition. The dual-branch design 
makes it possible to do both branches at the same time, which 
makes it possible to use the GPU efficiently through batch 
processing while keeping the computation manageable. The 
total inference time is still similar to that of single-architecture 
techniques because the dual-branch design may be done in 
parallel. 

 
Fig. 3. Our proposed model architecture. 

B. Adaptive Feature Fusion Mechanism 

The main novel aspect about this architecture is the adaptive 
feature fusion module. This module uses a smart gating and 
attention mechanism to merge the different feature 
representations from EfficientNet-B4 of 1792-D and 
ConvNeXt-Tiny of 768-D. This module learns to change how 
much each branch contributes based on the input 
characteristics, which is different from naive concatenation or 
simple weighted averaging. This lets the model focus on 
EfficientNet features for texture-heavy monument details or 
ConvNeXt features when a broader architectural context is 
more useful. 

The fusion process starts with two separate projection layers 
that turn both feature vectors into a shared 1024-dimensional 
space. This is done with fully connected layers, batch 
normalization, ReLU activation, and dropout regularization 
(rate=0.3). These projections make sure that the dimensions are 
compatible and let each branch learn how to change features in 
a way that is specific to the task. At the same time, the initial 
heterogeneous features which are 1792-D and 768-D, are 
combined to make a 2560-dimensional vector that goes into a 
gating network. 

The gating network has a bottleneck architecture with two 
fully connected layers. The first layer uses ReLU activation and 
light dropout which is 0.15 to compress the 2560-D 
concatenated features to 640 dimensions (4× reduction). The 
second layer projects to 2 dimensions that show how important 
each branch is. A softmax activation makes sure that the values 
of these gates add up to one. This makes a normalized 
weighting scheme where α is the EfficientNet contribution and 
β is the ConvNeXt contribution where α + β = 1.0. These learnt 
gate values change the projected features by multiplying them 
by each other, creating weighted representations that adaptively 
highlight the most informative branch for each input sample. 

After gating, the weighted features from both branches are 
combined to make a 2048-dimensional representation. This 
representation then goes through channel-wise attention 
refinement, which is based on Squeeze-and-Excitation 
networks. This attention module has a global average pooling 
operation, followed by two fully connected layers. The first 
layer has an 8× channel reduction ratio, while the second layer 
has ReLU activation. The last layer has sigmoid activation for 
the final attention weights. These learned attention weights do 
channel-wise recalibration by lowering the importance of less 
informative feature channels and raising the importance of 
more discriminative ones. Finally, a projection layer uses a 
fully connected layer with batch normalization, ReLU 
activation, and dropout of 0.3 to turn the attention-modulated 
2048-D features into a smaller 1024-D fused representation. 
This is the final unified feature vector that goes into the 
classification head. 

This multi-stage fusion strategy—projection, gating, 
concatenation, attention, and final projection—lets the model 
do advanced feature integration that goes much beyond basic 
combination methods. The learnable gating mechanism makes 
the model easier to understand by showing which architectural 
branch has a bigger effect on predictions for different forms of 
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input. The channel attention, on the other hand, allows for more 
precise feature refining within the fused representation. 

C. Classification Head 

The classification head uses a three-layer multi-layer 
perceptron (MLP) with successive dimensionality reduction to 
turn the 1024-dimensional fused features into class predictions. 
The first fully connected layer goes from 1024 to 512 
dimensions. Then, batch normalization is used to make training 
more stable, ReLU activation is used to make it non-linear, and 
dropout regularization where the rate equals 0.2, is used to stop 
overfitting. The second layer also normalizes, activates, and 
regularizes the data in the same way, but it cuts down on the 
number of dimensions from 512 to 256. The last layer makes 
logits for the 10 monument classes by projecting from 256 
dimensions in a straight line. 

Xavier (Glorot) uniform initialization is used to set the 
weights for all fully connected layers in the classification head. 
This method uses a uniform distribution with variance that is 
scaled by the number of input and output units. This way of 
starting helps keep the activation magnitudes the same across 
layers and speeds up convergence. The bias terms start off at 
zero. The three-layer design is not too deep, so it balances 
expressiveness with regularization. This avoids the problems of 
diminishing returns and overfitting that come with deeper 
classification heads while still giving it enough capacity to learn 
complex decision boundaries in the 1024-dimensional fused 
feature space. 

Dropout with a modest 0.2 probability during training 
enables unpredictable regularization by randomly zeroing 
activations. This forces the network to learn redundant 
representations and makes it better at generalizing. Batch 
normalization layers use running statistics calculated across 
mini-batches to normalize activations. This lowers internal 
covariate shift and makes it possible to use larger learning rates. 
Although there are some theoretical concerns about how batch 
normalization and dropout work together, they do improve 
performance in this architecture by providing complementary 
regularization effects. Batch normalization deals with 
distribution shift while dropout encourages feature redundancy. 

D. Training Methodology and Optimization 

The proposed model uses an end-to-end fine-tuning 
technique, which means that all layers, including the pre-trained 
EfficientNet-B4 and ConvNeXt-Tiny backbones, can be trained 
from the beginning of training. This method is different from 
frozen-backbone or gradual unfreezing methods since it lets the 
whole network change its representations to better recognize 
monuments. End-to-end fine-tuning usually works better 
because it lets low-level feature extractors specialize for the 
target domain. However, it needs greater computational power 
and careful regularization to avoid catastrophic forgetting of 
pre-trained features. 

The ImageNet pre-trained weights give a good starting point 
by encoding general visual ideas gained from real photos, such 
as edges, textures, and sections of objects. Monument images 
have a lot in common with ImageNet when it comes to how 
they look, such as building textures, geometric patterns, and 
outside scene aspects. This makes transfer learning work very 

well. However, monument-specific elements such as old stone 
weathering patterns, hieroglyphic details, and particular 
architectural styles necessitate domain adaptation, hence 
validating the comprehensive fine-tuning approach. 

The training procedure uses many regularization methods to 
find a compromise between adaptability and keeping pre-
trained knowledge. These include dropout in the fusion module 
of 0.3 and classifier of 0.2, label smoothing in the loss function 
which is ε=0.1, and weight decay in the optimizer of 0.01. 
These strategies stop overfitting while letting the model get 
better at recognizing monuments. The dropout rates are not 
sufficient, which keeps the quality of the pre-trained features 
while still giving the benefits of regularization. 

With a smoothing parameter of ε=0.1, label smoothing 
cross-entropy loss trains the model. This stops the network from 
being too sure of its predictions. Standard cross-entropy with 
hard labels makes the model want to give the right class a 
probability of 1.0 and all other classes a probability of 0.0. This 
could lead to predictions that are overly confident, which hurts 
generalization and calibration. Label smoothing changes hard 
targets [0, 0, 1, 0, 0, ...] into soft targets. The true class gets a 
probability of 1-ε, whereas the wrong classes each get ε/(K-1), 
where K is the number of classes. 

For monument recognition with 10 classes and ε=0.1, the 
true class gets a probability of 0.90, and each of the 9 wrong 
classes gets a probability of about 0.011. This smoothing has a 
number of benefits: it stops the model from pushing logits to 
extreme values, which makes the predicted probabilities more 
accurate; it encourages the representations in the penultimate 
layer to group more closely around class centroids; and it acts 
as a kind of implicit regularization that helps the model work 
better on unseen data. 

VI. EXPERIMENTAL SETTING 

All the experiments are implemented with the two 
architecture-for monument recognition tasks using stratified k-
fold cross-validation on two heritage cultural datasets with 
comprehensive GPU-optimized training infrastructure. These 
experiments are performed using PyTorch v2.7.1+cu118, 
Python v3.9, GPU of NVIDIA GeForce RTX 3060 Ti and 
TorchVision v0.22.1+cu118 and augmentation is done using 
TorchVision v2 API. Each network architecture was pre-trained 
on ImageNet, along with it was fine-tuned over two datasets. 

1) Data preparation: It involves cleaning images with 

minimum 200-pixel shorter edge requirements, stratified 

splitting into 80% train-test and 20% validation sets, with 

further 80-20 subdivision of train-test data for each fold, 

ensuring balanced class distributions across all partitions. 

2) Baseline: It utilizes ImageNet pre-trained ResNet50, 

DenseNet121 architectures alongside the final fully-connected 

layer replaced and Xavier-initialized for the specific number of 

monument classes identified in the two datasets respectively. 

Fine-tuning employs end-to-end training of the entire network 

with transfer learning from ImageNet weights, allowing all 

layers to be updated during training rather than freezing 

backbone features. 
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3) Data augmentation: It applies comprehensive 

transformation pipeline including resize to 256x256, random 

resized crop to 224x224 with scale range 0.533-1.875, 

AutoAugment [27] with ImageNet policy, random horizontal 

flipping, color jitter (brightness= 0.1, contrast= 0.1, saturation= 

0.1, hue= 0.05). Finally, each image is normalized using 

ImageNet statistics where the mean equals [0.485, 0.456, 

0.406]; while the standard deviation equals [0.229, 0.224, 

0.225]). 

4) Training algorithm: It uses the AdamW optimizer with 

1e-4 for a learning rate, 1e-2for a weight decay, 32 for a batch 

size, cosine annealing for learning rate scheduling, label 

smoothing cross-entropy loss of ε=0.1, and mixed precision 

training with gradient scaling. It runs for 10 demo epochs per 

fold with a GPU-resident dataset architecture that pre-loads all 

images directly to GPU memory to avoid data loading 

bottlenecks and get the best computational efficiency. 

VII. RESULTS 

The experimental assessment encompassed three deep 
learning baselines—ResNet-50, DenseNet-121, and Swin-T—
and our suggested fusion model, characterized as a dual-branch 
fusion architecture that synergistically combines EfficientNet-
B4 and ConvNeXt-Tiny. We tested these models on two 
datasets: Egypt-v1, which has 41 classes and more than 7,000 
photos, and Pisa, which has 1,227 images of 12 monuments. 
We used standard classification metrics to quantify 
performance on both the testing and validation sets. 

1) Overall performance: The proposed dual-branch fusion 

model achieved the highest testing accuracy on Egypt-v1 at 

99.77%, marginally outperforming ResNet-50 of 99.75% and 

Swin-T of 99.59%. The proposed model demonstrated 

exceptional balance with precision of 99.69%, recall of 99.21%, 

and F1-score of 99.35%. On the Pisa dataset, Swin-T achieved 

the best testing performance with 99.22% accuracy, followed 

by DenseNet-121 of 97.66%, ResNet-50 of 96.88%, and the 

proposed model of 96.43%. However, the proposed model 

excelled in validation on Pisa with 98.93% accuracy, surpassing 

Swin-T of 98.75% and ResNet-50 of 98.12%, indicating 

superior generalization capability on this smaller dataset, as 

shown in Fig. 4. 

2) Model comparison: As explained in Table III, 

DenseNet-121 showed the weakest performance on Egypt-v1 

with only 92.19% testing accuracy and significant precision 

challenges of 84.42%, resulting in the lowest F1-score of 

85.86%. However, it demonstrated a notable recovery on Pisa, 

achieving 97.66% testing accuracy and improving to 96.25% 

validation accuracy. Swin-T exhibited strong and consistent 

performance across both datasets, achieving near-identical 

validation accuracy to ResNet-50 on Egypt-v1 both at 99.67% 

while demonstrating exceptional metrics on Pisa with balanced 

precision-recall trade-offs precision of 99.56%, recall of 

99.36%. ResNet-50 maintained robust performance with 

99.75% testing accuracy on Egypt-v1 and strong generalization 

evidenced by its 99.67% validation accuracy. 

TABLE III. COMPARISON OF MODEL PERFORMANCE METRICS, UNDERLINED TEXT SHOWS THE BEST VALUES 

Model Dataset 
Testing Validation 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

ResNet-50 
Egypt-v1 99.75 99.71 99.83 99.76 99.67 99.39 99.51 99.44 

Pisa 96.88 97.61 94.50 95.55 98.12 98.12 95.91 96.53 

DenseNet-121 
Egypt-v1 92.19 84.42 90.91 85.86 93.75 95.04 93.18 91.14 

Pisa 97.66 98.37 95.19 96.02 96.25 97.08 93.55 94.74 

Swin-T 
Egypt-v1 99.59 99.40 98.48 98.71 99.67 99.51 99.67 99.56 

Pisa 99.22 99.56 99.36 99.44 98.75 99.17 96.67 97.48 

Our Proposed 
Egypt-v1 99.77 99.69 99.21 99.35 99.61 99.55 99.12 99.32 

Pisa 96.43 95.88 95.04 95.27 98.93 98.83 98.97 98.84 

 

Fig. 4. Accuracy evaluated of each fine-tuned network using the testing and validation data. 
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3) Performance consistency: Most models maintained 

strong balance between precision and recall, with F1-scores 

closely aligned to overall accuracy metrics. The validation 

results demonstrated consistent performance patterns, with the 

proposed model showing particularly strong generalization on 

Pisa where the validation accuracy is 98.93% and the testing is 

96.43%, indicating effective handling of the smaller dataset. All 

top-performing models which are ResNet-50, Swin-T, and the 

proposed model achieved validation accuracies above 99.6% on 

Egypt-v1, confirming robust generalization on the larger, more 

diverse dataset. Notably, the proposed model achieved the best 

testing-validation consistency on Egypt-v1 with only a 0.16% 

gap, demonstrating minimal overfitting. 

VIII. DISCUSSION 

1) Interpretation of results: The proposed dual-branch 

fusion model achieved the highest accuracy (99.77%) on 

Egypt-v1, demonstrating that adaptive architecture-level fusion 

effectively captures complementary features—local textures 

via EfficientNet-B4 and global context via ConvNeXt-Tiny. 

The minimal testing-validation gap (0.16%) indicates the 

learnable gating mechanism successfully prevents overfitting 

by dynamically balancing branch contributions rather than 

relying on fixed weights. 

2) Performance variation across datasets: On the smaller 

Pisa dataset, Swin-T outperformed our model in testing 

accuracy (99.22% vs. 96.43%), suggesting that transformer 

architectures may be more effective when training data is 

limited due to their pre-trained global attention mechanisms. 

However, our model's superior validation accuracy (98.93% vs. 

98.75%) indicates better generalization capability. This 

discrepancy suggests the fusion approach benefits more from 

larger, diverse datasets where complementary feature learning 

can be fully exploited, while transformers leverage their 

extensive pre-training when fine-tuning data is scarce. 

3) Comparison with existing methods: Unlike static 

ensemble approaches [15, 24] that assign fixed weights to each 

architecture, our adaptive gating mechanism learns input-

dependent weights (α, β). This explains the consistent 

performance across diverse monument types—textured 

monuments (carved temples, weathered stone surfaces) benefit 

from higher EfficientNet contribution, while structurally 

distinct monuments (pyramids, towers) leverage ConvNeXt's 

global context understanding. DenseNet-121's poor 

performance on Egypt-v1 (92.19%) but recovery on Pisa 

(97.66%) suggests its dense connectivity pattern is better suited 

for smaller datasets with fewer classes. 

4) Computational trade-offs: The ~60M parameter count 

represents a practical limitation for edge deployment compared 

to ResNet-50's 25M parameters. However, the parallel dual-

branch design enables efficient GPU utilization, maintaining 

inference times comparable to single-architecture approaches. 

For resource-constrained applications such as mobile tourism 

guides, knowledge distillation could compress the model while 

preserving fusion benefits. 

5) Implications for heritage preservation: The high 

accuracy achieved on Egypt-v1 supports practical deployment 

in automated monument cataloging systems, reducing manual 

annotation effort for preservation agencies. The model's 

robustness across varying lighting conditions and viewpoints 

(evidenced by Egypt-v1's diverse image sources from YouTube 

and Wikimedia Commons) suggests suitability for real-world 

tourism and documentation applications where image quality 

varies significantly. 

6) Limitations of the current study: Several factors may 

limit the generalizability of our findings: (1) both datasets 

represent well-documented heritage sites with relatively clear 

images—performance on degraded or partially occluded 

monuments remains unexplored; (2) the evaluation is limited to 

classification tasks without addressing detection or 

segmentation; (3) the two datasets, while geographically 

diverse, represent Western and Middle Eastern heritage 

traditions—Asian, African, and American heritage sites may 

exhibit different visual characteristics requiring further 

validation. 

IX. CONCLUSION AND FUTURE WORK 

This study addressed the limitations of single-architecture 
approaches for monument recognition by proposing a dual-
branch fusion architecture combining EfficientNet-B4 and 
ConvNeXt-Tiny with adaptive feature integration. The 
proposed approach provides a foundation for scalable heritage 
recognition systems that can support global cultural 
preservation efforts, enhance tourist experiences through 
accurate mobile guides, and assist urban planners in integrating 
heritage considerations into city development. 

1) Key findings: The proposed model achieved 99.77% 

accuracy on Egypt-v1, outperforming ResNet-50 (99.75%) and 

Swin-T (99.59%), with the best testing-validation consistency 

(0.16% gap), demonstrating minimal overfitting. On the smaller 

Pisa dataset, the model showed superior generalization (98.93% 

validation accuracy vs. 98.75% for Swin-T), confirming 

effective handling of limited training data. 

2) Contributions summary: Methodologically, this work 

introduced the first adaptive architecture-level fusion with 

learnable gating for monument recognition, unlike static 

ensemble methods in prior work. Empirically, we established 

reproducible benchmarks across two heritage datasets of 

varying scales. Practically, the high accuracy supports 

automated monument cataloging for preservation agencies, 

mobile tourism applications, and urban planning systems. 

3) Advancement over existing methods: Unlike single-

architecture approaches [9, 17, 20] that sacrifice either local or 

global features, and unlike static ensemble methods [15, 24] 

with fixed weighting, our adaptive fusion dynamically adjusts 

branch contributions based on input characteristics—achieving 

complementary feature integration previously unavailable for 

heritage recognition. 

4) Limitations: Despite the promising results, the proposed 

model exhibits several limitations that warrant 
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acknowledgment: 1) Computational overhead with ~60M 

parameters against 25M for ResNet-50); 2) Evaluation limited 

to Egyptian/Italian heritage; 3) Fixed backbone selection not 

systematically optimized; 4) Limited interpretability analysis; 

5) Future work: Based on our experimental findings and 

identified limitations, we propose the following concrete 

research directions: 1) Neural architecture search for optimal 

backbone combinations; 2) Multi-branch extensions with 

Vision Transformers; 3) Cross-cultural evaluation on larger 

heritage datasets; 4) Attention visualization for interpretability 

5) Self-supervised pre-training for small datasets. 

In conclusion, the proposed dual-branch fusion architecture 
demonstrates that architecture-level integration with adaptive 
feature fusion can enhance monument recognition 
performance, particularly on larger datasets. The approach's 
modular design facilitates future extensions and adaptations, 
providing a foundation for continued advancement in heritage 
monument recognition systems. We anticipate that addressing 
the identified limitations through the proposed future work 
directions will further improve the practical applicability of 
deep learning-based monument recognition for cultural 
heritage preservation. 
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