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Abstract—Heritage is seen as a key part of nations, including a
broad variety of traditions, cultures, monuments, plants and
animals, foods, music, and further. Regarding countries, their own
heritages are defined by preservation, excavation, and restoration
of historical assets that are important and show the nation's
history. It comprises a wide range of physical objects and
materials found in cultural institutions which are moveable
heritage, as well as the heritage found in built environments which
are immovable and natural landscapes. Previous studies on
monument classification frequently used single small datasets,
limiting accuracy and generalizability. This work introduces a
proposed model and a thorough experimental comparison of
widely used deep learning architectures, specifically
Convolutional Neural Networks and Transformers beside our
proposed model, for monument recognition in the cultural
monument domain. It seeks to conduct a comparative experiment
for selecting representatives from these two methodologies
regarding their capacity for transferring information from a
general dataset, like ImageNet, to heritage landmarks datasets of
varying sizes. When we tested samples of the topologies ResNet,
DenseNet, and Swin Transformer (Swin-T), we find that the
proposed model had the best results, however ResNet-50 achieved
comparable accuracy to Swin-T.
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l. INTRODUCTION

Heritage is regarded as a fundamental aspect of a nation,
encompassing a diverse range of traditions, cultures,
monuments, flora and fauna, culinary practices, languages,
music, and more [1]. For countries, their own heritages are
characterized by the preservation, excavation, and restoration
of historical artifacts that hold significant value and represent
the legacy of the nation [2].

Cultural heritage is a multifaceted tapestry that reflects our
past, present, and future aspirations [3]. It broadly includes a
diverse array of tangible items and materials found in cultural
institutions as movable heritage, as well as the heritage
embodied in constructed environments (immovable) and
natural landscapes. As noted in several discussions, cultural
heritage promotion and preservation have enormous potential
to make life better, boost the economy, and make societies that
are lively, creative, and rich [4].

Machine Learning (ML) alongside Deep Learning (DL) are
used for classifying monuments images. Image classification
(IC) is crucial for the effective recognition and comprehension
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of the diverse range of monuments found worldwide. By
leveraging information and communication technology (ICT)
tools to develop a digital library of monuments, alongside
artificial intelligence (Al) for identifying historical sites, we
create a connection to the past, shedding light on the
significance of their architecture and history. This research has
important societal implications. Tourist experiences can be
improved by better monument recognition, which makes
cultural heritage more approachable for both visitors and
residents. Additionally, this supports preservation efforts by
facilitating the evaluation of structural and conservation
requirements. Moreover, this approach aids urban planning,
allowing planners to identify monument locations and integrate
that information into city development strategies, assuring
which modern buildings and infrastructure projects respect the
city's heritage history [5-8].

Numerous studies have recently demonstrated effective
image classification for a variety of applications. Despite the
significance of this area, there is a notable lack of research
focused specifically on the classification or recognition of
tangible cultural heritage, such as monuments [9]. While DL
has enabled automated monument recognition, existing
approaches exhibit critical limitations: (1) reliance on single-
architecture models that cannot capture complementary visual
features, (2) evaluation on small datasets of <5,000 images
limiting generalizability, and (3) lack of adaptive feature
integration mechanisms [5-12].

In this work, we perform an experimental comparison of
prevalent DL architectures, particularly Convolutional Neural
Networks (CNNs) plus Transformers, for monument
recognition within the cultural heritage domain. We use a fine-
tuning strategy that is specific to the task of classifying
monuments in our method. It is very important that the system
can learn new tasks with only a few training samples, since
getting a lot of annotated data is very expensive. We look at the
architectures of ResNet-50 [10], DenseNet-121 [11], and Swin
Transformer (Swin-T) [12] and compare their results to
monument classification with respect to accuracy and
computational complexity. We adjust and test these models on
two datasets of heritage monuments.

1) Research problem: How can architecture-level fusion
combine complementary CNN strengths for superior
monument recognition while maintaining computational
efficiency? CNNs excel at local spatial features while
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modernized ConvNets capture global context—monuments
require both for distinguishing similar architectural structures.

2) Why fusion is necessary: EfficientNet-B4 uses
compound scaling with squeeze-and-excitation attention for
local textures and architectural details. ConvNeXt-Tiny
employs depthwise separable convolutions for global semantic
representations. Monuments require: (a) local features
distinguishing similar styles, (b) global context for structural
configurations, and (c) adaptive weighting based on input
characteristics. No single architecture addresses all three
requirements.

3) Contributions: This study offers the following
contributions: (1) Methodological: We propose a dual-branch
fusion architecture combining EfficientNet-B4 and ConvNeXt-
Tiny with an adaptive feature fusion module. Unlike existing
single-architecture approaches [9, 17, 20] or static ensemble
methods [15, 24] that use fixed-weight averaging, our learnable
gating mechanism dynamically adjusts branch contributions (o,
B) based on input characteristics, enabling texture-focused or
context-focused processing as needed.

4) Empirical: We conduct comprehensive evaluation
across two heritage datasets of varying scales—Egypt-vl
(7,778 images, 41 classes) and Pisa (1,227 images, 12
classes)—and establish systematic baselines comparing
ResNet-50, DenseNet-121, and Swin-T under consistent
experimental protocols.

5) Practical: The proposed model achieves 99.77%
accuracy on Egypt-vl, supporting real-world applications
including automated monument cataloging for preservation
agencies, enhanced mobile tourism guides, and urban planning
systems that integrate heritage site data into city development
strategies.

The rest of this paper is set up like this. In Section 11, there
is a comprehensive review of the literature. The tested
architectures are in Section Il1. Then, section 1V talks about the
two datasets' features. While Section V and VI is all about the
proposed model and experimental settings. Moreover, the
results that were achieved are explained in Section VII.
Section VIII provides discussion and interpretation of findings.
Section IX concludes with limitations and future directions.

II.  COMPREHENSIVE LITERATURE REVIEW

Research in DL-based monument recognition has evolved
significantly over recent years, with approaches broadly
categorized into three methodological paradigms: CNN-based
methods, Transformer-based methods, and hybrid/ensemble
approaches. This section systematically reviews representative
works within each category, critically analyzes their limitations
particularly regarding dataset scale, and identifies the research
gaps that motivate our proposed fusion architecture, as shown
in Table I and discussed.

Boyadzhiev et al. [13] performed a comparative analysis of
several deep neural network architectures, which comprised
both CNNs and Vision Transformers (ViTs), for the heritage
image classification. Their results demonstrated the strong
effectiveness of these models, reporting classification
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accuracies of approximately 96.8% for VGG11, 97.4% for
ResNet34, 97.8% for DenseNet, 98.0% for PoolFormer, 97.9%
for ViT, and 98.8% for Swin Transformer. While these findings
offer insightful information about the relative performance of
different architectures in cultural heritage applications, it had
limitations due to the small dataset of only 1,227 images
representing 12 monuments for the Pisa dataset [14].

Sasithradevi et al. [9] created the MonuNet model, which is
a specialized deep learning model. MonuNet solves the
problem of sorting through old pictures of Kolkata's important
buildings. It was trained over a carefully chosen dataset of 13
heritage locations, each with 50 photos to make sure there was
a fair representation. MonuNet used Dense and attention
modules for parallel-spatial channels to make feature extraction
and classification more accurate. The model did better than
typical DenseNet models, with an accuracy of 89%, a precision
of 86.77%, and a recall of 86.61%. These results demonstrated
MonuNet's effectiveness in heritage image classification and its
potential applications in cultural preservation, tourism, and
urban planning. While MonuNet performed well in classifying
Kolkata's heritage monuments, it had limitations due to the
small dataset of only 50 images per site, which would affect
generalizability.

Djelliout and Aliane [15] proposed a Multi-CNN model for
the multi-classification of cultural historical monuments,
addressing various dimensions such as monument identity,
architectural type, and historical period. Using the AlgHeritage
dataset [16], containing over 20k images of 90 distinct
monuments, the Multi-CNN model integrated several CNN
architectures including DenseNet169, MnasNet, and
GoogleNet. The classification accuracy attained by the model
was 94.52%, surpassing other single models like DenseNet169
with accuracy of 93.70%, MnasNet accuracy of 92.80%, and
GoogleNet accuracy of 88.18%. These results indicated the
superior performance of the Multi-CNN model in recognizing
and categorizing heritage monuments, demonstrating its
potential for applications in heritage conservation,
documentation, and tourism. Despite its 94.52% accuracy, the
Multi-CNN model's reliance on the AlgHeritage dataset limited
generalization, and its computational complexity requires more
resources compared to single models.

Khandelwal et al. [17] introduced a study focusing upon the
effective classification of historical sites utilizing various CNN
architectures. The authors tested ResNet50,
InceptionResNetV2, EfficientNetB1, EfficientNetB3, and
MobileNetV2 on a set of 24 Indian monuments. There were
4,895 photos in the dataset, and to make the model work better,
data augmentation and hyperparameter tuning were applied.
MobileNetVV2 was the best of the models examined, with
95.58% for the validation accuracy and 99.90% for the training
accuracy. It showed which is the best model for classifying
monuments. Their work demonstrated the transfer learning and
fine-tuning work well regarding the monument recognition.
This means that deep learning models like MobileNetV2 can
classify objects with a high degree of accuracy with only a few
parameters, making them useful for real-time applications.
MobileNetV2 had a validation accuracy of 95.58%, which was
better than other models. However, it relied on data
augmentation and hyperparameter tuning, which shows that it
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is not very scalable. The model also showed evidence of mild
overfitting because it was trained on a dataset that was not very
big.

Kukreja et al. [18] proposed a hybrid DL model regarding
the multi-classification of Indian cultural sites utilizing a real-
phase image dataset. The model combined CNNs alongside
with Long Short-Term Memory (LSTM) networks for
classifying images of monuments. They did two key things:
they did a binary classification of heritage along with non-
heritage monuments, which was 92.37% accurate, and a multi-
classification task that divided monuments into four groups,
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which was 95.89% accurate. This hybrid model showed high
efficiency in monument recognition as well as classification,
supporting the preservation and awareness of cultural heritage.
Kukreja et al. used a dataset of 3,000 images from four
prominent Indian monuments, and their model outperformed
traditional classification methods in respect to accuracy as well
as classification performance, as demonstrated by precision,
recall, and F1 scores. Despite achieving 95.89% accuracy in
multi-classification, their proposed hybrid model faced
limitations due to the small dataset of only 3,000 images, which
would hinder its ability to generalize to a broader range of
monuments.

TABLE I. LITERATURE REVIEW
Ref. Dataset Model Metric Result in Percentage format Limitation
VGG, VGG11=96.8,
ResNet, ResNet34 = 97.4, A limitation is that its small dataset of
[13] Pisa  dataset | DenseNet, Accuracy DenseNet =~ 97.8, only 1,227 images representing 12
[14] PoolFormer, PoolFormer = 98.0, monuments, may limit its generalization
VIT, ViT = 97.9, to other monuments or larger datasets.
Swin-T Swin-T = 98.8
MonuNet, MonuNet, 89, 87.8, 86.6 i
Heritage Sites | DenseNet201, Accuracy, DenseNet201, 79, 73.5, 74.6 Limited by the small dataset of only 50
1 | in Kolkata DenseNet169 Precision, DenseNet169, 85, 83.2, 82.6 images across 13 sites, which may affect
DenseNet121 Recall DenseNet121, 85, 83.2, 81.6 generalizability.
GoogleNet, GoogleNet, 73.1 The proposed model's reliance on the
[15] AlgHeritage Densenet169, Accuracy Densenet169, 88.2 dataset limits generalization, and its
dataset [16] MnasNet, MnasNet, 86.7 computational complexity requires more
Multi-CNN Multi-CNN, 92.1 resources compared to single models.
ResNet-50, ResNet-50, 12.8
24 types of | InceptionResNetV2, InceptionResNetV2, 99.7 The model showed signs of moderate
[17] | Indian EfficientNetB3, Accuracy EfficientNetB3, 91.8 overfitting due to the relatively small
monuments EfficientNetB1, EfficientNetB1, 95.4 dataset used for training.
MobileNetV2 MobileNetV2, 99.9
Indian heritage | CNNs Precision, g:ass _IC_)ne, %2561 %321 %i% !_imited by _the small _datase_t of oln_ly 3K
[18] | monument With Recall ass Two, 95.1, 94.1, 94. images, which may hinder its ability to
dataset LSTM Fl-score Class Three, 95.4, 95, 93.2 generalize to a broader range of
Class Four, 96.1, 93.4, 93.9 monuments.
Precision Class One, 95.8, 98.7, 96.4 !_imited by_ the small c_iate_lset o_f_ 10k
[19] Regl-phase MLP Recall ' Class Two, 95.6, 89.3, 91.9 images, which may restrict its ability to
Indian dataset Fl-scc;re Class Three, 91.9, 93.6, 92.0 general!ze across more diverse heritage
Class Four, 95.6, 93.7, 94.0 categories.
It is relatively small size of 7,778
Egypt ResNet50, ResNet-50, 99.1 images, which may hinder the
[20] | Monuments Inception V3, Accuracy InceptionV3, 90.9 generalization of models when applied
Dataset v1 LeNet5 LeNet5, 92.6 to a broader set of monuments beyond
the Egyptian context.
EFFNET 1: {LSVM:100, CNN (2D): 100, CNN
(1D): 100, GBDT: 100,SGD: 100, MLP: 44}
EFFNET 2: {LSVM: 94, CNN (2D), 95, CNN
(1D): 100, GBDT: 100, SGD: 100, MLP: 12} L .
UMS RESNet152: {LSVM: 100, CNN (2D): 85, CNN | A limitation of the proposed model is
landmark EFFNET 1, (1D): 100, GBDT: 100} that while it achleve_s high accuracy, the
[21] | dataset [22], EFFNET 2, Accuracy (rexéra fi pre-processing for tf(igiturel
Scene-15 RESNet152 EFFNET 1: {LSVM: 94, CNN (2D): 85, CNN | reouction ncreases computationa
dataset [23] (1D): 94, GBDT: 68, SGD: 68, MLP: 43} o f;:‘e;d(')r‘mfg c?;ylzfgﬁiﬁgﬂ;be':g
EFFNET 2: {LSVM: 94, CNN (2D): 91, CNN g P '
(1D): 92, GBDT: 66, SGD: 92, MLP: 40}
RESNet152: {LSVM: 62, CNN (2D): 58, CNN
(1D): 62, GBDT: 41}
o ek Hybrid CNN-svim | Precision. Clos ?&i’,ss%,@gf ry A limitation is that its small dataset of
[24] heri Recall, 4.5k images may limit its generalization
eritage model Class Three, 85.2, 72.4, 93.2
palaces F1-score Class Four, 81.1, 72.4, 93.9 to other monuments or larger datasets.
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Kukreja et al. [19] employed a DL-based Multi-Layer
Perceptron (MLP) model regarding the multi-classification of
heritage Indian images. It was trained over a dataset of 10k
images, categorized into four heritage classes: animals, birds,
monuments, and paintings. Their work utilized data
augmentation methods to improve the dataset, and the MLP
model achieved notable results. In the binary classification task,
differentiating among the heritage and non-heritage images,
their model attained an accuracy of 94.32%. For the multi-
classification task, the model achieved an accuracy of 95.43%,
with animal heritage images yielding the highest performance
metrics, including a precision of 95.84%, recall of 98.65%, and
F1-score of 96.37%. These outputs showed that the model
worked well for recognizing and classifying heritage, which
helps protect and raise awareness of cultural heritage using
digital solutions. Despite achieving 95.43% accuracy in multi-
classification, the proposed MLP model proposed was limited
by the small dataset of 10k images, which would restrict its
ability to generalize across more diverse heritage categories.

Hassan et al. [20] introduced the Egypt Monuments Dataset
v1, a comprehensive for image classification plus instance-level
recognition of Egyptian monuments and heritage sites. This
dataset consists of 7,778 images across 41 categories, including
famous monuments for example tombs, heritage-sites, and
statues. The authors evaluated the performance of several DL
models, including ResNet50, Inception V3, and LeNet5, on this
dataset. ResNet50 achieved the highest accuracy with 99.13%,
followed by LeNet5 with 92.64%, and Inception V3 with
90.90%. These results demonstrated the dataset’s potential for
advancing the classification and recognition of heritage
monuments, particularly with respect to real-world applications
in Egyptology and cultural heritage preservation. Despite the
strong performance of ResNet50, achieving 99.13% accuracy,
the Egypt Monuments Dataset v1 faced limitations due to its
relatively small size of about 7k images, which would hinder
the generalization of models when applied to a broader set of
monuments beyond the Egyptian context.

Razali et al. [21] developed a lightweight DL-based
landmark recognition model for smart tourism integrating CNN
with Linear Discriminant Analysis (LDA). It was trained over
the UMS Landmark dataset [22] and the Scene-15 dataset [23]
to identify tourist landmarks and public scenes. The best feature
extractor was EfficientNet (EFFNET), which got a flawless
classification accuracy of 100% on the UMS dataset and
94.26% on the Scene-15 dataset. Additionally, the use of LDA
decreased the number of dimensions of the features by over
90% avoiding compromising classification performance. This
approach demonstrated a significant reduction in computational
complexity while preserving a high level of accuracy, which
makes it perfect for smart tourism applications in real time. A
limitation of their proposed model was that while it achieved
high accuracy, the extra pre-processing for feature reduction
increased computational overhead, which would affect
scalability in larger or more complex environments.

Kumar et al. [24] employed a hybrid approach integrating
CNN with Support Vector Machines (SVM) for the multi-
classification of Indian heritage palaces. This dataset,
consisting of 4,500 images of various heritage palaces, was pre-
processed and divided to 75% training and 25% testing sets.
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This hybrid CNN-SVM model achieved impressive results,
with a classification accuracy of 97% for features like grand
fountains and Doric pillars. Precision, recall, and F1-scores
were also evaluated, with Class 1 which is grand fountains
achieving a precision of 88.73% and recall of 69.44%, while
Class 2 which is Doric pillars showed a precision of 84.94%
and recall of 71.01%. This work demonstrated the effectiveness
of the hybrid model for heritage monument classification and
offered a valuable tool for cultural heritage preservation and
analysis. The limitation of Kumar et al.'s model was that its
small dataset of 4.5k images would limit its generalization to
other monuments or larger datasets.

The literature reveals four critical gaps motivating our
fusion approach:

1) Feature complementarity neglect: Existing studies
evaluate single architectures in isolation. CNNs excel at local
textures and spatial hierarchies, while modernized ConvNets
and Transformers capture global relationships. Monument
recognition requires both capabilities, yet no work combines
architectures with complementary inductive biases.

2) Static feature integration: Hybrid approaches use naive
strategies (ensemble voting, concatenation, fixed-weight
averaging) that cannot adapt to input characteristics. Effective
fusion requires adaptive mechanisms that dynamically weight
contributions based on whether an image demands textural
detail or global context understanding.

3) Insufficient dataset scale analysis: Studies report results
on single datasets without examining how architectures scale
across varying data availability (650 to 20,000+ images),
conflating memorization with generalization.

4) Lack of modern architecture combinations: State-of-
the-art architectures (EfficientNet's compound scaling,
ConvNeXt's modernized design) remain unexplored in fusion
configurations despite offering complementary strengths suited
for monument recognition.

In summary, CNNs sacrifice global context for local
discrimination, Transformers exhibit the inverse trade-off, and
existing hybrids lack adaptive integration. These gaps motivate
our dual-branch fusion combining EfficientNet-B4 and
ConvNeXt-Tiny with learnable gating and channel attention.

I1l.  TESTED ARCHITECTURES

CNNs and Transformers architectures are the two primary
deep learning paradigms that have dominated computer vision
research in recent years. CNNs are distinguished by their strong
generalization ability in image-related tasks and comparatively
low computational cost. Convolutional layers' translation-
invariance and locality characteristics, which offer a potent
inductive bias, are the source of this effectiveness.
Transformer-based models have attracted much interest lately
for their capacity to use attention mechanisms for capturing
global relationships and long-range dependencies. However,
attention layers' scalability in practical applications are limited
by their computational complexity, which increases
quadratically with input size. In order to solve this, Tay et al.
[25] have proposed a number of effective Transformer variants
that maintain competitive performance by substituting lighter
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alternatives. Despite these advances, Transformers are often
less robust in terms of generalization and typically require
large-scale pre-training to achieve strong results Csordas et al.
[26]. Fortunately, pre-trained models from both paradigms are
widely available and can be fine-tuned on domain-specific
datasets, enabling their application to diverse real-world
scenarios.

In this study, to highlight the task of monument recognition
for cultural heritage applications, we go beyond the limitation
of previous studies that relied solely on the Pisa dataset. To
ensure greater diversity and robustness, we incorporate two
additional monument datasets alongside Pisa, enabling a
broader and more challenging benchmark. We focus our
comparative experimental analysis on three representative
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architectures: ResNet-50, DenseNet-121, and Swin-T. Each
model is optimized for the particular monument classification
tasks after being pre-trained on ImageNet, allowing us to
compare their effectiveness and transferability across different
datasets. The ability to adapt to new tasks from few available
training samples remains crucial, given the cost and difficulty
of collecting large-scale annotated cultural heritage datasets.
Furthermore, Table Il shows how many parameters and how
much computing power in Floating Point Operations per
Second (FLOPS) each model needs to process data.
Researchers typically use FLOPS to compare models. A model
with lower FLOPS is lighter, faster, and more efficient, whereas
a model with higher FLOPS is heavier, slower, and uses more
resources [10-12].

TABLE II. COMPARISON OF THE NUMBER OF PARAMETERS AND THE COMPUTING COST (IN FLOPS) OF DIFFERENT MODELS
Model # Parameters FLOPS
ResNet-50 (v1) ~25M 3.80 x 10°
DenseNet-121 ~8M 2.91 x 10°
Swin-T ~28M 4.50 x 10°

IV. DATASETS CHARACTERISTICS

Two datasets of cultural monuments or heritage landmarks
were considered for this study: the Egypt Monuments Dataset
vl (EGYPTv1l) [20] and the Pisa Dataset [14]. Dataset
Selection Rationale: These datasets were strategically selected
based on four criteria: (1) Scale diversity—Egypt-vl (7,778
images, 41 classes) represents a large-scale dataset while Pisa
(1,227 images, 12 classes) represents a small-scale dataset,
enabling evaluation of model behavior across varying data
availability conditions; (2) Geographic and cultural diversity—
the datasets cover distinct heritage contexts (Ancient Egyptian
monuments vs. ltalian Renaissance/Medieval architecture),
testing cross-cultural generalization; (3) Public availability and
reproducibility—both datasets are publicly accessible, enabling
reproducible research; (4) Benchmark relevance—Egypt-v1 is
the first dedicated Egyptian heritage dataset with established
baselines [20], while Pisa is a widely-used benchmark in
cultural heritage recognition literature [13, 14]. This dual-
dataset approach addresses a key limitation of prior studies that
evaluated on single datasets, conflating memorization with
generalization. More details will be provided in the next
subsection.

A. EGYPT-v1 Dataset

A benchmark standard for ILR and fine-grained IC across
the ancient Egyptian monuments field, is the Egypt-v1 dataset,
which was first presented by Hassan et al. [20]. It is the first
dataset devoted to Egyptian heritage sites, containing 7,778
photos from 6 of Egypt's 28 governorates, representing 41
different monument classes. Luxor is home to about 37% of the
monuments with more than 2,000 photos, whereas Cairo is
home to about 27%. The dataset includes various categories
such as pyramids, temples, statues, busts, and heritage sites,
sourced manual and semi-automated primarily from different

platforms like YouTube, and Wikimedia Commons. The
images reflect diverse conditions, including indoor and outdoor
settings, various lighting scenarios, and angles, enhancing the
applicability of the dataset to real-world challenges, as shown
in Fig. 1.

Three deep learning models, ResNet50, InceptionV3, and
LeNet5, were evaluated in EGYPT-vl, achieving test
precisions of 99.13%, 90.90%, and 92.64%, respectively.
ResNet50 demonstrated the highest performance and
scalability, achieving 97.43% accuracy on unseen data with
over 35,000 images. This dataset supports a broad range of
applications, including conservation and Egyptology, and
provides a foundation for future work in monument
recognition, such as object detection and larger-scale
expansions.

B. Pisa Dataset

The Pisa Dataset, introduced by Amato et al. [14], is a
curated collection of 1,227 images depicting 12 cultural
heritage sites and monuments in Pisa, Italy. These images were
sourced from the online photo-sharing platform Flickr, and
their corresponding IDs and labels are publicly accessible at
https://falchi.isti.cnr.it/pisaDataset/, as illustrated in Fig. 2.

The dataset was developed to support research on
monument recognition in images, a task that presents
challenges due to variations in viewpoint, lighting, and image
quality. To address this, the authors explored k-Nearest
Neighbors (kKNN) based classification plus landmark
recognition techniques, proposing two novel methods that
combine KNN with local visual descriptors. Notably, through
the use of similarity search access methods, their first approach
makes it possible to perform standard KNN classification more
efficiently by introducing a more lenient definition of image-
to-image similarity based on local features.
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Fig. 2. Samples from 12 classes of the Pisa dataset [14].

V. PROPOSED MODEL

Monument recognition is a difficult challenge for computer
vision since models have to identify the difference between
architectural objects that look identical while dealing with
changes in viewing angles, illumination, occlusion, and scale.
Traditional single-architecture methods, whether they use pure
CNNs or Vision Transformers, frequently have trouble getting
all the wvisual features needed for strong monument
categorization. CNNs are great at finding local spatial
hierarchies and textural patterns because of their inductive
biases. Modern ConvNet [28] systems, like ConvNeXt, use
design ideas from Vision Transformers to get more global
contextual information. The proposed work presents an
innovative dual-branch fusion design that synergistically
integrates  EfficientNet-B4 [29] and ConvNeXt-Tiny,
capitalizing on the complementing capabilities of both
architectural paradigm as shown in Fig. 3. EfficientNet-B4 uses
efficient compound scaling and squeeze-and-excitation
attention mechanisms to learn discriminative local features
well. ConvNeXt-Tiny, on the other hand, uses modernized
convolutional designs with depthwise separable convolutions
and layer normalization to make stronger semantic
representations. This paper suggests an adaptive feature fusion
module with learnable gating mechanisms and channel
attention that dynamically weights the contribution of each
branch based on the characteristics of the input, rather than just
combining features from both networks. This smart fusion

method lets the model concentrate EfficientNet features for
areas with a lot of texture and ConvNeXt features for scenes
that need a richer awareness of the context. This leads to better
monument recognition over a wide range of datasets.

A. Dual-Branch Features

The proposed architecture uses a parallel dual-branch
topology in which both branches process the same input image
at the same time through separate pathways. The first branch
uses EfficientNet-B4, a compound-scaled convolutional neural
network that uses a principled compound coefficient to
systematically change the depth, breadth, and resolution of the
network. EfficientNet-B4 uses mobile inverted bottleneck
convolution (MBConv) blocks with squeeze-and-excitation
(SE) modules that change the responses of features in each
channel by using global average pooling and then two fully
connected layers with sigmoid activation. This architecture
takes 224x224 RGB images and processes them via seven
stages of MBConv blocks, each of which reduces the image's
spatial resolution. In the end, it creates 1792-dimensional
feature representations that contain detailed information on the
image's spatial hierarchies and textures.

The second branch includes ConvNeXt-Tiny, which is a
modernized version of standard ConvNet architecture that uses
certain design ideas from Vision Transformers while still being
able to conduct convolutions efficiently. ConvNeXt uses depth-
wise separable convolutions with bigger 7x7 kernels, inverted
bottleneck structures where channel expansion happens in the
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middle layers, and GELU activation functions instead of ReLU.
ConvNeXt makes a "purer" convolutional route by replacing
batch normalization with layer normalization and using fewer
activation functions and normalizing layers. The ConvNeXt-
Tiny version processes the same 224x224 input through four
steps of hierarchical feature extraction. This creates 768-
dimensional feature vectors that capture more global semantic
information and contextual links than typical CNNs. Both
branches start with ImageNet pre-trained weights, which
provide them robust feature representations learnt from more
than 1.2 million pictures in 1000 categories. This transfer
learning method speeds up convergence and makes
generalization better, which is especially useful for monument
recognition because training datasets are usually smaller than
those for generic object recognition. The dual-branch design
makes it possible to do both branches at the same time, which
makes it possible to use the GPU efficiently through batch
processing while keeping the computation manageable. The
total inference time is still similar to that of single-architecture
techniques because the dual-branch design may be done in
parallel.

INPUT IMAGE
(224x224x3)
Maonument Heritage Cultural Image

768-D Features

Gating Mechanism
(Softmax Gate)

==l
==
AU )

Channel Attention
(SE-style Madule)

CLASSIFICATION HEAD
FC: 1024 — 512 — 256
BatchNorm + ReLU

Dropout (0.2)

OUTPUT LAYER

Fig. 3. Our proposed model architecture.
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B. Adaptive Feature Fusion Mechanism

The main novel aspect about this architecture is the adaptive
feature fusion module. This module uses a smart gating and
attention mechanism to merge the different feature
representations from EfficientNet-B4 of 1792-D and
ConvNeXt-Tiny of 768-D. This module learns to change how
much each branch contributes based on the input
characteristics, which is different from naive concatenation or
simple weighted averaging. This lets the model focus on
EfficientNet features for texture-heavy monument details or
ConvNeXt features when a broader architectural context is
more useful.

The fusion process starts with two separate projection layers
that turn both feature vectors into a shared 1024-dimensional
space. This is done with fully connected layers, batch
normalization, ReLU activation, and dropout regularization
(rate=0.3). These projections make sure that the dimensions are
compatible and let each branch learn how to change features in
a way that is specific to the task. At the same time, the initial
heterogeneous features which are 1792-D and 768-D, are
combined to make a 2560-dimensional vector that goes into a
gating network.

The gating network has a bottleneck architecture with two
fully connected layers. The first layer uses ReL U activation and
light dropout which is 0.15 to compress the 2560-D
concatenated features to 640 dimensions (4x reduction). The
second layer projects to 2 dimensions that show how important
each branch is. A softmax activation makes sure that the values
of these gates add up to one. This makes a normalized
weighting scheme where a. is the EfficientNet contribution and
B is the ConvNeXt contribution where o + p = 1.0. These learnt
gate values change the projected features by multiplying them
by each other, creating weighted representations that adaptively
highlight the most informative branch for each input sample.

After gating, the weighted features from both branches are
combined to make a 2048-dimensional representation. This
representation then goes through channel-wise attention
refinement, which is based on Squeeze-and-Excitation
networks. This attention module has a global average pooling
operation, followed by two fully connected layers. The first
layer has an 8x channel reduction ratio, while the second layer
has ReLU activation. The last layer has sigmoid activation for
the final attention weights. These learned attention weights do
channel-wise recalibration by lowering the importance of less
informative feature channels and raising the importance of
more discriminative ones. Finally, a projection layer uses a
fully connected layer with batch normalization, RelLU
activation, and dropout of 0.3 to turn the attention-modulated
2048-D features into a smaller 1024-D fused representation.
This is the final unified feature vector that goes into the
classification head.

This multi-stage fusion strategy—projection, gating,
concatenation, attention, and final projection—Ilets the model
do advanced feature integration that goes much beyond basic
combination methods. The learnable gating mechanism makes
the model easier to understand by showing which architectural
branch has a bigger effect on predictions for different forms of
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input. The channel attention, on the other hand, allows for more
precise feature refining within the fused representation.

C. Classification Head

The classification head uses a three-layer multi-layer
perceptron (MLP) with successive dimensionality reduction to
turn the 1024-dimensional fused features into class predictions.
The first fully connected layer goes from 1024 to 512
dimensions. Then, batch normalization is used to make training
more stable, ReL U activation is used to make it non-linear, and
dropout regularization where the rate equals 0.2, is used to stop
overfitting. The second layer also normalizes, activates, and
regularizes the data in the same way, but it cuts down on the
number of dimensions from 512 to 256. The last layer makes
logits for the 10 monument classes by projecting from 256
dimensions in a straight line.

Xavier (Glorot) uniform initialization is used to set the
weights for all fully connected layers in the classification head.
This method uses a uniform distribution with variance that is
scaled by the number of input and output units. This way of
starting helps keep the activation magnitudes the same across
layers and speeds up convergence. The bias terms start off at
zero. The three-layer design is not too deep, so it balances
expressiveness with regularization. This avoids the problems of
diminishing returns and overfitting that come with deeper
classification heads while still giving it enough capacity to learn
complex decision boundaries in the 1024-dimensional fused
feature space.

Dropout with a modest 0.2 probability during training
enables unpredictable regularization by randomly zeroing
activations. This forces the network to learn redundant
representations and makes it better at generalizing. Batch
normalization layers use running statistics calculated across
mini-batches to normalize activations. This lowers internal
covariate shift and makes it possible to use larger learning rates.
Although there are some theoretical concerns about how batch
normalization and dropout work together, they do improve
performance in this architecture by providing complementary
regularization effects. Batch normalization deals with
distribution shift while dropout encourages feature redundancy.

D. Training Methodology and Optimization

The proposed model uses an end-to-end fine-tuning
technique, which means that all layers, including the pre-trained
EfficientNet-B4 and ConvNeXt-Tiny backbones, can be trained
from the beginning of training. This method is different from
frozen-backbone or gradual unfreezing methods since it lets the
whole network change its representations to better recognize
monuments. End-to-end fine-tuning usually works better
because it lets low-level feature extractors specialize for the
target domain. However, it needs greater computational power
and careful regularization to avoid catastrophic forgetting of
pre-trained features.

The ImageNet pre-trained weights give a good starting point
by encoding general visual ideas gained from real photos, such
as edges, textures, and sections of objects. Monument images
have a lot in common with ImageNet when it comes to how
they look, such as building textures, geometric patterns, and
outside scene aspects. This makes transfer learning work very
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well. However, monument-specific elements such as old stone
weathering patterns, hieroglyphic details, and particular
architectural styles necessitate domain adaptation, hence
validating the comprehensive fine-tuning approach.

The training procedure uses many regularization methods to
find a compromise between adaptability and keeping pre-
trained knowledge. These include dropout in the fusion module
of 0.3 and classifier of 0.2, label smoothing in the loss function
which is €=0.1, and weight decay in the optimizer of 0.01.
These strategies stop overfitting while letting the model get
better at recognizing monuments. The dropout rates are not
sufficient, which keeps the quality of the pre-trained features
while still giving the benefits of regularization.

With a smoothing parameter of €=0.1, label smoothing
cross-entropy loss trains the model. This stops the network from
being too sure of its predictions. Standard cross-entropy with
hard labels makes the model want to give the right class a
probability of 1.0 and all other classes a probability of 0.0. This
could lead to predictions that are overly confident, which hurts
generalization and calibration. Label smoothing changes hard
targets [0, O, 1, 0, 0, ...] into soft targets. The true class gets a
probability of 1-¢, whereas the wrong classes each get &/(K-1),
where K is the number of classes.

For monument recognition with 10 classes and €=0.1, the
true class gets a probability of 0.90, and each of the 9 wrong
classes gets a probability of about 0.011. This smoothing has a
number of benefits: it stops the model from pushing logits to
extreme values, which makes the predicted probabilities more
accurate; it encourages the representations in the penultimate
layer to group more closely around class centroids; and it acts
as a kind of implicit regularization that helps the model work
better on unseen data.

VI. EXPERIMENTAL SETTING

All the experiments are implemented with the two
architecture-for monument recognition tasks using stratified k-
fold cross-validation on two heritage cultural datasets with
comprehensive GPU-optimized training infrastructure. These
experiments are performed using PyTorch v2.7.1+cull8,
Python v3.9, GPU of NVIDIA GeForce RTX 3060 Ti and
TorchVision v0.22.1+cull8 and augmentation is done using
TorchVision v2 API. Each network architecture was pre-trained
on ImageNet, along with it was fine-tuned over two datasets.

1) Data preparation: It involves cleaning images with
minimum 200-pixel shorter edge requirements, stratified
splitting into 80% train-test and 20% validation sets, with
further 80-20 subdivision of train-test data for each fold,
ensuring balanced class distributions across all partitions.

2) Baseline: It utilizes ImageNet pre-trained ResNet50,
DenseNet121 architectures alongside the final fully-connected
layer replaced and Xavier-initialized for the specific number of
monument classes identified in the two datasets respectively.
Fine-tuning employs end-to-end training of the entire network
with transfer learning from ImageNet weights, allowing all
layers to be updated during training rather than freezing
backbone features.

667|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

3) Data augmentation: It applies comprehensive
transformation pipeline including resize to 256x256, random
resized crop to 224x224 with scale range 0.533-1.875,
AutoAugment [27] with ImageNet policy, random horizontal
flipping, color jitter (brightness= 0.1, contrast= 0.1, saturation=
0.1, hue= 0.05). Finally, each image is normalized using
ImageNet statistics where the mean equals [0.485, 0.456,
0.406]; while the standard deviation equals [0.229, 0.224,
0.225)).

4) Training algorithm: It uses the AdamW optimizer with
1e*for a learning rate, 1e-for a weight decay, 32 for a batch
size, cosine annealing for learning rate scheduling, label
smoothing cross-entropy loss of £=0.1, and mixed precision
training with gradient scaling. It runs for 10 demo epochs per
fold with a GPU-resident dataset architecture that pre-loads all
images directly to GPU memory to avoid data loading
bottlenecks and get the best computational efficiency.

VII. RESULTS

The experimental assessment encompassed three deep
learning baselines—ResNet-50, DenseNet-121, and Swin-T—
and our suggested fusion model, characterized as a dual-branch
fusion architecture that synergistically combines EfficientNet-
B4 and ConvNeXt-Tiny. We tested these models on two
datasets: Egypt-v1, which has 41 classes and more than 7,000
photos, and Pisa, which has 1,227 images of 12 monuments.
We used standard classification metrics to quantify
performance on both the testing and validation sets.
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1) Overall performance: The proposed dual-branch fusion
model achieved the highest testing accuracy on Egypt-vl at
99.77%, marginally outperforming ResNet-50 of 99.75% and
Swin-T of 99.59%. The proposed model demonstrated
exceptional balance with precision of 99.69%, recall of 99.21%,
and F1-score of 99.35%. On the Pisa dataset, Swin-T achieved
the best testing performance with 99.22% accuracy, followed
by DenseNet-121 of 97.66%, ResNet-50 of 96.88%, and the
proposed model of 96.43%. However, the proposed model
excelled in validation on Pisa with 98.93% accuracy, surpassing
Swin-T of 98.75% and ResNet-50 of 98.12%, indicating
superior generalization capability on this smaller dataset, as
shown in Fig. 4.

2) Model comparison: As explained in Table III,
DenseNet-121 showed the weakest performance on Egypt-v1l
with only 92.19% testing accuracy and significant precision
challenges of 84.42%, resulting in the lowest Fl-score of
85.86%. However, it demonstrated a notable recovery on Pisa,
achieving 97.66% testing accuracy and improving to 96.25%
validation accuracy. Swin-T exhibited strong and consistent
performance across both datasets, achieving near-identical
validation accuracy to ResNet-50 on Egypt-v1 both at 99.67%
while demonstrating exceptional metrics on Pisa with balanced
precision-recall trade-offs precision of 99.56%, recall of
99.36%. ResNet-50 maintained robust performance with
99.75% testing accuracy on Egypt-v1 and strong generalization
evidenced by its 99.67% validation accuracy.

TABLE Ill.  COMPARISON OF MODEL PERFORMANCE METRICS, UNDERLINED TEXT SHOWS THE BEST VVALUES
Testing Validation
Model Dataset — —
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
ResNet-50 Egypt-vl 99.75 99.71 99.83 99.76 99.67 99.39 99.51 99.44
esNet-
Pisa 96.88 97.61 94.50 95.55 98.12 98.12 95.91 96.53
Egypt-vl 92.19 84.42 90.91 85.86 93.75 95.04 93.18 91.14
DenseNet-121 -
Pisa 97.66 98.37 95.19 96.02 96.25 97.08 93.55 94.74
Swin-T Egypt-vl 99.59 99.40 98.48 98.71 99.67 99.51 99.67 99.56
win-
Pisa 99.22 99.56 99.36 99.44 98.75 99.17 96.67 97.48
Egypt-vl 99.77 99.69 99.21 99.35 99.61 99.55 99.12 99.32
Our Proposed -
Pisa 96.43 95.88 95.04 95.27 98.93 98.83 98.97 98.84

Testing Comparison of Model

ResNet-50
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40
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20
10

Accuracy

DenseNet-121 Swin-T Our proposed

model

W Egypt-vl mPisa

Accuracy

Validation Comparison of Madel

ResNet-50

DenseNet-121 Swin-T Our proposed

model

HEgypt-vl M Pisa

Fig. 4. Accuracy evaluated of each fine-tuned network using the testing and validation data.

668|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

3) Performance consistency: Most models maintained
strong balance between precision and recall, with F1-scores
closely aligned to overall accuracy metrics. The validation
results demonstrated consistent performance patterns, with the
proposed model showing particularly strong generalization on
Pisa where the validation accuracy is 98.93% and the testing is
96.43%, indicating effective handling of the smaller dataset. All
top-performing models which are ResNet-50, Swin-T, and the
proposed model achieved validation accuracies above 99.6% on
Egypt-v1, confirming robust generalization on the larger, more
diverse dataset. Notably, the proposed model achieved the best
testing-validation consistency on Egypt-v1l with only a 0.16%
gap, demonstrating minimal overfitting.

VIIIl. DiscussION

1) Interpretation of results: The proposed dual-branch
fusion model achieved the highest accuracy (99.77%) on
Egypt-v1, demonstrating that adaptive architecture-level fusion
effectively captures complementary features—Ilocal textures
via EfficientNet-B4 and global context via ConvNeXt-Tiny.
The minimal testing-validation gap (0.16%) indicates the
learnable gating mechanism successfully prevents overfitting
by dynamically balancing branch contributions rather than
relying on fixed weights.

2) Performance variation across datasets: On the smaller
Pisa dataset, Swin-T outperformed our model in testing
accuracy (99.22% vs. 96.43%), suggesting that transformer
architectures may be more effective when training data is
limited due to their pre-trained global attention mechanisms.
However, our model's superior validation accuracy (98.93% vs.
98.75%) indicates better generalization capability. This
discrepancy suggests the fusion approach benefits more from
larger, diverse datasets where complementary feature learning
can be fully exploited, while transformers leverage their
extensive pre-training when fine-tuning data is scarce.

3) Comparison with existing methods: Unlike static
ensemble approaches [15, 24] that assign fixed weights to each
architecture, our adaptive gating mechanism learns input-
dependent weights (o, PB). This explains the consistent
performance across diverse monument types—textured
monuments (carved temples, weathered stone surfaces) benefit
from higher EfficientNet contribution, while structurally
distinct monuments (pyramids, towers) leverage ConvNeXt's
global context understanding. DenseNet-121's  poor
performance on Egypt-vl (92.19%) but recovery on Pisa
(97.66%) suggests its dense connectivity pattern is better suited
for smaller datasets with fewer classes.

4) Computational trade-offs: The ~60M parameter count
represents a practical limitation for edge deployment compared
to ResNet-50's 25M parameters. However, the parallel dual-
branch design enables efficient GPU utilization, maintaining
inference times comparable to single-architecture approaches.
For resource-constrained applications such as mobile tourism
guides, knowledge distillation could compress the model while
preserving fusion benefits.
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5) Implications for heritage preservation: The high
accuracy achieved on Egypt-v1 supports practical deployment
in automated monument cataloging systems, reducing manual
annotation effort for preservation agencies. The model's
robustness across varying lighting conditions and viewpoints
(evidenced by Egypt-v1's diverse image sources from YouTube
and Wikimedia Commons) suggests suitability for real-world
tourism and documentation applications where image quality
varies significantly.

6) Limitations of the current study: Several factors may
limit the generalizability of our findings: (1) both datasets
represent well-documented heritage sites with relatively clear
images—performance on degraded or partially occluded
monuments remains unexplored; (2) the evaluation is limited to
classification tasks without addressing detection or
segmentation; (3) the two datasets, while geographically
diverse, represent Western and Middle Eastern heritage
traditions—Asian, African, and American heritage sites may
exhibit different visual characteristics requiring further
validation.

IX. CONCLUSION AND FUTURE WORK

This study addressed the limitations of single-architecture
approaches for monument recognition by proposing a dual-
branch fusion architecture combining EfficientNet-B4 and
ConvNeXt-Tiny with adaptive feature integration. The
proposed approach provides a foundation for scalable heritage
recognition systems that can support global cultural
preservation efforts, enhance tourist experiences through
accurate mobile guides, and assist urban planners in integrating
heritage considerations into city development.

1) Key findings: The proposed model achieved 99.77%
accuracy on Egypt-v1, outperforming ResNet-50 (99.75%) and
Swin-T (99.59%), with the best testing-validation consistency
(0.16% gap), demonstrating minimal overfitting. On the smaller
Pisa dataset, the model showed superior generalization (98.93%
validation accuracy vs. 98.75% for Swin-T), confirming
effective handling of limited training data.

2) Contributions summary: Methodologically, this work
introduced the first adaptive architecture-level fusion with
learnable gating for monument recognition, unlike static
ensemble methods in prior work. Empirically, we established
reproducible benchmarks across two heritage datasets of
varying scales. Practically, the high accuracy supports
automated monument cataloging for preservation agencies,
mobile tourism applications, and urban planning systems.

3) Advancement over existing methods: Unlike single-
architecture approaches [9, 17, 20] that sacrifice either local or
global features, and unlike static ensemble methods [15, 24]
with fixed weighting, our adaptive fusion dynamically adjusts
branch contributions based on input characteristics—achieving
complementary feature integration previously unavailable for
heritage recognition.

4) Limitations: Despite the promising results, the proposed
model  exhibits  several limitations that  warrant
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acknowledgment: 1) Computational overhead with ~60M
parameters against 25M for ResNet-50); 2) Evaluation limited
to Egyptian/Italian heritage; 3) Fixed backbone selection not
systematically optimized; 4) Limited interpretability analysis;

5) Future work: Based on our experimental findings and
identified limitations, we propose the following concrete
research directions: 1) Neural architecture search for optimal
backbone combinations; 2) Multi-branch extensions with
Vision Transformers; 3) Cross-cultural evaluation on larger
heritage datasets; 4) Attention visualization for interpretability
5) Self-supervised pre-training for small datasets.

In conclusion, the proposed dual-branch fusion architecture
demonstrates that architecture-level integration with adaptive
feature fusion can enhance monument recognition
performance, particularly on larger datasets. The approach's
modular design facilitates future extensions and adaptations,
providing a foundation for continued advancement in heritage
monument recognition systems. We anticipate that addressing
the identified limitations through the proposed future work
directions will further improve the practical applicability of
deep learning-based monument recognition for cultural
heritage preservation.
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