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Abstract—The increasing complexity of modern smart grids 

and the heterogeneity of multi-sensor data make anomaly 

detection extremely challenging, as existing techniques struggle to 

capture long-range spatial dependencies, cross-sensor 

interactions, and unseen anomaly patterns. Conventional models 

such as Isolation Forest, Random Forest, GCAD, AT-GTL, 

CVTGAD, and hybrid CNN-Transformer approaches often suffer 

from limited generalization, weak multimodal fusion, and strong 

dependence on labeled anomalies. To address these limitations, 

this study introduces a novel Multimodal Graph Transformer 

with Contrastive Self-Supervised Learning and Model-Agnostic 

Meta-Learning (MGT-CGSSML), a uniquely integrated 

framework designed to learn structural, attribute, and cross-

modal relationships simultaneously. The proposed method stands 

out by combining multimodal graph encoding, dual-view 

contrastive learning, and fast meta-adaptation, enabling the model 

to rapidly identify new anomaly types with minimal labeled data. 

Implemented in Python using PyTorch, the model is evaluated on 

a multimodal smart grid dataset containing time-stamped voltage, 

current, power factor, frequency, temperature, and humidity 

measurements recorded at 15-minute intervals. Experimental 

results demonstrate 96.5% accuracy, 95% precision, 95.5% recall, 

and 95.2% F1-score, reflecting a 3–5% performance improvement 

over advanced baseline models due to enhanced multimodal fusion 

and meta-learning optimization. The study concludes that MGT-

CGSSML delivers a scalable, interpretable, and real-time 

anomaly detection solution capable of supporting resilient and 

adaptive smart-grid operations, offering substantial 

advancements over existing methods. 

Keywords—Adaptive detection; anomaly detection; contrastive 

learning; graph transformer networks; smart grid 

I. INTRODUCTION 

Interest in finding unusual patterns in graphs is growing in 
data mining due to how often graph-based data is used to 
represent systems like e-commerce and banking. For instance, 
in the case of detecting fraud in e-commerce, these algorithms 

can detect fraudulent sellers by analyzing both user attributes 
(properties) and relational structure (connections) within the 
graph [1]. Anomaly detection detects patterns that are 
drastically different from normal observations.  It is an 
important task with increasing demand and usage in many 
fields. There have been extensive research activities in anomaly 
detection.  Initially, graph anomaly detection was dependent on 
domain knowledge and statistical methods, employing 
manually designed features.  This manual detection process 
takes huge time and effort. Real-world graphs usually consist 
of a large number of nodes and edges with multiple attributes, 
so they are high-dimensional [2]. Identification of anomalies, 
or outliers, entails finding observations whose values greatly 
differ from the bulk of data.  Sometimes, anomalies are 
relegated to noise or errors despite potentially providing good 
information.  Identification of outliers may imply suspect data, 
leading to biased estimates of parameters and erroneous results 
[3]. Various anomaly detection techniques tend to have 
different missing (FN) and false alarm (FP) detection rates, 
leading to differences in detection ability. Although several of 
these techniques adopt a generic, context-insensitive strategy, 
they are more effective at detecting certain threats against 
certain systems or applications [4]. By using artificial 
intelligence, big data, cloud computing and 5G cellular 
networks, the smart grid will modernize the power grid and help 
manage electrical energy much better [5]. 

AI's ability to automatically adjust and optimize, enables it 
to handle enormous volumes of data and, at the same time, 
efficiently handle the nonlinear challenges involved in power 
grid systems.  This characteristic has led to widespread 
application in the power industry, providing AI with a 
considerable lead in current complex power grids [6]. In the 
energy system field, these emerging terminals have already 
created an essential physical basis for driving the transition to a 
low-carbon smart grid [7]. However, smart technologies 
becoming more common brings serious cyber threats due to the 
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need for outdated systems like Industrial Control Systems and 
Supervisory Control and Data Acquisition [8]. The three 
primary components of the smart grid system are smart 
management, smart infrastructure, and smart protection. Smart 
management is the component that offers advanced control, 
management services, and smart features.  Its main objectives 
are to augment energy efficiency, balance supply and demand, 
reduce emissions, trim management expenses, and drive utility 
growth [9]. 

In contrast, contextual anomalies have natural or usual 
nearby structures, but attribute information that is warped or 
anomalous. This heterogeneity makes it difficult to directly 
apply anomaly detection techniques developed for attribute-
only data or straightforward network structures to attributed 
networks.  Consequently, an effective anomaly detection 
approach needs to consider a range of anomalies.  Additionally, 
because of the high expense and effort involved in obtaining 
ground-truth labels for anomalies, detection in attributed 
networks is typically performed through unsupervised methods 
[10]. The conclusions drawn from using SR-CNN and a 
martingale model with time-series data are compared to identify 
the best hybrid technique.  The outcomes reveal that the 
combination of these approaches with a classifier enhances 
performance, enhancing analytical value and enhancing the 
reliability of anomaly detection in smart metering consumption 
data. Unlike plain network anomaly detection, anomaly 
detection in attributed networks requires taking two main 
sources of information into account: 1) the structural patterns 
that indicate how the nodes are connected, as encoded in the 
topology of the network, and 2) the node attribute or feature 
distribution [11]. Although these methods have the advantage 
of better performance, they tend to depend considerably on 
unsupervised detection since the costly cost of creating labeled 
ground truth anomalies is involved. Recent studies have proved 
that attributed networks often include both anomalies in the 
graph topology and node attributes. This study aims at creating 
an integrated, adaptive, and less supervised graph transformer 
system that can solve the particular challenge of the structural 
and attribute-based anomalies in a dynamic smart grid setting 
and provide better generalization, less reliance on labeled 
training, and greater resistance to new abnormal behaviors. 

A. Research Motivation 

Smart grids are becoming targeted by more cyber-physical 
threats and less predictable energy loads, and the ability to 
detect anomalies accurately is critical to reliable and safe 
operation. Single-modality approaches existing in the literature 
do not exploit cross-sensor correlations, reducing 
responsiveness to real-time anomalies. The motivation behind 
this study is the necessity of an integrated, flexible system that 
makes use of multimodal sensor data to allow detection of 
subtle anomalies and proactive maintenance and cost-
effectiveness, and continuous power supply in complex 
heterogeneous power systems. 

B. Significance of the Study 

This study enhances the resilience of smart grids by 
integrating multiple sensor modes with the use of a Multimodal 
Graph Transformer. The methodology increases the accuracy 
of anomaly detection, predicts severe failures, and increases 

efficiency of operations. The utilities can minimize down time, 
enhance energy predictions, and counter cyber-attacks. The 
results can also be used to offer a scalable model to other large-
scale IoT systems with a need to conduct real-time, cross-modal 
anomaly analysis, and eventually resulting in safer, smarter, 
and more sustainable energy infrastructure on a global scale. 

C. Key Contribution 

The key contributions are presented as follows: 

 Proposes a cross-modal graph transformer that models 
long-range dependencies, as well as heterogeneous 
smart grid sensors interactions. 

 Designing a dual-view contrastive module that 
improves structural and attribute anomaly separation 
and requires little supervision. 

 Integrates or combines meta-learning with quick 
adaptation to new anomaly instances with highly small 
labeled datasets. 

 Developed a multimodal node encoding plan which 
enhances the representation of anomalies in electrical 
and contextual terms. 

D. Rest of the Section 

The rest of this study is structured as follows; Section II is 
a review of the related works on smart grid anomaly detection 
and the latest developments in the area of graph-based learning 
techniques. Section III describes the problem statement. 
Section IV provides a detailed explanation of the methodology 
proposed, including the framework design of the CGTN-
SSML. Experimental setup and results are described and 
presented in Section V, where the proposed model is compared 
to baseline approaches. Section VI concludes the research and 
provides future work directions. 

II. RELATED WORKS 

Zhang et al. [12] introduce GCAD, a novel framework for 
reliable anomaly detection in cloud environments that takes into 
consideration the problem of unlabeled data and complex 
topological relationships between servers. Its intent is to 
improve detection by adding self-supervised learning to graph-
based modeling. The application is for large-scale cloud 
environments where data is primarily unlabeled and 
topologically organized. GCAD integrates data augmentation 
and GraphGRU for spatiotemporal learning, contrastive 
learning for representation learning, linear attention for global 
correlation encoding, and reconstruction-based anomaly 
scoring. The primary advantages are label efficiency, 
topological awareness, and increased detection accuracy. The 
results of experiments reveal that GCAD is superior to recent 
advanced approaches for two real-world datasets. However, the 
disadvantages are computational complexity, dependency on 
topology data, and limited interpretability. 

Wang et al. [13] present AT-GTL, a self-attention-based 
graph transformation learning system to detect multivariate 
time series anomalies to overcome the inefficiency of shallow 
GNNs with little transference of node information. It is 
committed to such applications as banking, power systems, and 
industry that require capturing the complex feature interactions. 
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AT-GTL uses GATP block to aggregate global features and a 
graph transformation learning pipeline that is optimized by 
TCL to improve the learning of features at different viewpoints. 
The given strategy enhances the quality of the sensing field and 
representation. Three data sets were experimented upon, and 
AT-GTL was more precise than the current methods. The 
model boosts feature learning across the globe, integrity, and 
accuracy of anomaly detection. However, it increases the 
complexity of models, training costs, and may cause scalability 
issues of large or changing graphs. 

Xu et al. [14] solve the problem of identifying the graph 
anomalies using a small number of annotated samples. It has a 
meta-learning methodology, which aligns self-supervised 
representations with few-shot supervised representations via bi-
level optimization. MetaGAD is successful in exploiting little-
known anomalies and keeping generalizability to unseen 
anomalies, and it works better than the existing methods on 
both real and synthetic anomaly datasets on six applications. It 
has several benefits such as high few-shot learning, strong 
generalization, and effective exploitation of unlabeled data. 
Nevertheless, it has problems, including the reliance on 
artificial data, the excessive load of meta-learning, and possible 
scalability problems. In general, the MetaGAD is an effective 
tool in the process of detecting anomalies in reality. 

Zheng et al. [15] introduce SL-GAD, which uses self-
supervision in graph anomaly detection to solve problems that 
existing approaches cannot and lack an accurate understanding 
of graph data’s internal connections. It makes use of generative 
attribute regression and multi-view contrastive learning to 
detect any problems in both the attribute and structure spaces. 
Every target node is put into its own subgraph, which a GNN 
encoder uses to learn latent variables. Comprehensive studies 
on six benchmark sets indicate that SL-GAD is much better 
than current methods in performance.  Its self-supervised nature 
removes the requirement of labeled data while efficiently 
identifying structural and attribute-based anomalies. 

Li et al. [16] present CVTGAD, a new model that integrates 
a reduced transformer with cross-view attention for UGAD. It 
addresses the limitations of traditional UGAD methods, 
including limited receptive fields and distinct view processing, 
by capturing both intra-graph and inter-graph relationships and 

enabling direct interaction between different augmented views. 
CVTGAD captures more abundant structural and feature data 
by integrating GNNs and transformers within a consistent 
framework.  CVTGAD is the first to incorporate cross-view 
attention into UGAD, enhancing anomaly detection both at the 
node and graph levels.  The model performs better than existing 
approaches on 15 real-world bioinformatics, chemistry, and 
social network datasets. The algorithm is effective in 
identifying anomalies like dangerous chemicals or strange 
materials. It does increase computational complexity, but does 
not have a fine consideration of scalability for large graphs. 

Sun et al. [17] suggest GTC, a new self-supervised graph 
representation technique for heterogeneous graphs. The goal is 
to improve the smoothness of deep GNNs by combining their 
local passes with the Transformer’s global modeling approach.  
The proposed architecture adopts a dual-encoder architecture 
GNN for local views and a Transformer for global views and 
applies cross-view contrastive learning to enhance 
representation learning. It presents two modules: Metapath-
aware Hop2Token and CG-Hetphormer, both for 
heterogeneous graphs.  GTC is self-supervised; thus labeled 
data is not required.  Experimental outcomes indicate that GTC 
works better than state-of-the-art approaches on a wide range 
of datasets.  Its primary strengths are strong multi-hop 
neighborhood encoding and better heterophilic graph handling.  
Yet, the model can be more computationally complex and 
require more tweaking. 

Bai et al. [18] provide a hybrid CNN-transformer network 
for the detection of power theft in smart grids.  The model 
addresses the shortcomings of existing methods by combining 
a Dual-Scale Dual-Branch CNN for shallow, multi-scale 
feature extraction with a Transformer with Gaussian Weighting 
for deep temporal relationship capture.  It targets non-technical 
losses, such as power theft, which is both economically and 
safety-wise risky. The hybrid approach outperforms 
conventional hardware-based and data-driven approaches in 
accuracy, robustness, and efficiency, and exhibits very high F1 
and AUC scores. It shows scalability and robustness across 
several datasets. The method might, however, involve increased 
computational expenses and dependence on quality-labeled 
data.  Notwithstanding possible interpretability challenges, the 
model is a significant advance in smart grid anomaly detection. 

TABLE I. SUMMARY OF LITERATURE REVIEW 

Author & Year Method / Model Key Strengths Limitations Connection 

Zhang et al. [12] GCAD 
Label-efficient, topologically aware, 

accurate 

High computation, depends on 

topology, limited interpretability 

Early self-supervised graph 

anomaly detection 

Wang et al.[13] AT-GTL 
Captures global features, better 

representation 

Complex, high training cost, 

scalability issues 

Transformer improves global 

feature learning 

Xu et al. [14] MetaGAD 
Few-shot learning, generalizes well, 

uses unlabeled data 

Heavy meta-learning, may rely on 

artificial data 

Meta-learning trend for 

anomaly detection 

Zheng et al.[15] SL-GAD 
Detects attribute & structure 

anomalies, no labels needed 

Computation cost, limited 

interpretability 

Self-supervised labeled-data-

free detection 

Li et al. [16] CVTGAD 
Captures intra- & inter-graph relations, 

cross-view attention 
High computation, limited scalability 

Cross-view attention improves 

node & graph detection 

Sun et al. [17] GTC 
Multi-hop encoding, handles 

heterophilic graphs, self-supervised 

Computationally complex, tuning 

needed 

Global-local hybrid 

architectures trend 

Bai et al [18] CNN-Transformer High accuracy, robust, scalable Needs labeled data, computational cost 
Hybrid CNN-Transformer for 

smart grid anomaly detection 
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The problem statement is consistent with the issues that 
have been identified in the literature. The majority of the 
existing research (as described by GCAD, SL-GAD, and AT-
GTL) also emphasizes the dependence on labeled data, high 
computational cost, and low scalability, whereas others (as 
described by MetaGAD) also underline the inability to adapt to 
new anomalies with a small number of labeled samples. Hybrid 
models like CNN-Transformer solutions also deal with the 
issue of accuracy and robustness, but still need labeled data. 
Together, these drawbacks, such as reliance on supervision, 
lack of global feature learning, and bad adaptability, highlight 
the necessity to have a flexible, self-supervised, meta-learning-
based graph transformer architecture such as CGTN-SSML to 
detect smart grid anomalies in real-time. Table I presents the 
summary of the literature review. 

III. PROBLEM STATEMENT 

Smart grids have been made more complex, interconnected, 
and data-intensive, and thus are highly susceptible to 
abnormalities like cyber-attacks, equipment failures, and 
abnormal consumption patterns [19]. Current anomaly 
detection techniques based on either a fixed set of rules or 
supervised learning do not generalize to such dynamic 
environments because they are based on large labeled datasets 
[20]. Ground-truth classification of anomalies is expensive and 
time-consuming, and is not feasible in practice. Furthermore, 
the majority of methods assume either structural or attribute 
anomalies alone, without factoring in on both thus, high false 
positives, low adaptability, and unreliable detection in practice 
[21]. Although graph-based learning is promising, traditional 
GNNs only learn local interactions and cannot represent long-

range interactions that are important in the operation of a smart 
grid. Existing techniques do not have mechanisms to be quickly 
adapted to new types of anomalies as grid conditions change. 
Thus, there is a need to have a powerful, dynamic, and flexible 
anomaly detection framework that can detect anomalies with 
minimal supervision and still remain applicable in real-time. To 
overcome these issues, this study introduces CGTN-SSML, a 
multimodal graph transformer system that combines the 
concepts of contrastive self-supervised learning and meta-
learning, which can provide accurate, flexible, and efficient 
anomaly detection in a contemporary smart grid. 

IV. ADAPTIVE MULTIMODAL APPROACH FOR SMART GRID 

MONITORING 

The method involves using a particular kind of deep 
learning model to send alerts in the smart grid, and because 
sensor readings are considered, the immediate environment and 
how the smart grid works, it forms graphs that show what is 
observed and how the observations relate to space and time. A 
Graph Transformer enables the capacity to relate vastly distant 
fragments in space and time to grasp the complex systems in an 
improved manner. In an attempt to reduce the shortage of 
samples of abnormal behavior, self-supervised contrastive 
learning was applied to establish types of behavior by 
comparison to alternative depictions of behavior. An additional 
way the team augmented the training data with data is to 
distinguish between normal cases and abnormal cases, and the 
model is evolved to be updated on variations to the grid through 
meta-learning, which is essential to operationally detect the 
anomalies that are both fast and robust.

 
Fig. 1. CGTN-SSML data flow and processing pipeline for smart grid anomaly detection.
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Fig. 1 explains how to use graph-based self-supervised 
learning to find anomalies in information gathered by the smart 
grid. To start, raw data from the smart grid is first cleaned and 
made consistent. The data is then organized as a graph to record 
the connections between each cell in the grid. Meanwhile, using 
contrastive graph transformers and data augmentation methods 
can teach the model to extract useful information from 
contrasting graphs. Using the augmented data in the self-
supervised stage enables the model to adjust swiftly to fresh 
anomalies in data without relying on any labels. 

A. Dataset Collection 

The sensors placed in the smart grid were used to collect 
data every minute about voltage, current, power, frequency, 

power factor, THD, temperature, and humidity. All records are 
given dates and labels, as normal or anomalous, to facilitate an 
analysis of the grid’s actions under many circumstances and 
highlight anomalies and how the grid is performing [22]. Every 
15 minutes, the smart grid system collects readings from time-
series sensors. Every record includes data on voltage, current, 
power, temperature, and humidity. It shows the exact time that 
each reading was recorded. The presence of 1 in the overload 
column indicates an overload occurrence, whereas a 0 means 
everything was working normally.

TABLE II. TIME-SERIES SAMPLE OF GRID MEASUREMENTS 

Timestamp Voltage Current Power Temperature Humidity Overload 

2024-01-01 00:00:00 232.48 5.12 1.19 17.84 64.52 0 

2024-01-01 00:15:00 229.31 22.21 5.09 18.75 49.67 1 

2024-01-01 00:30:00 233.24 46.13 10.76 16.72 48.47 0 

2024-01-01 00:45:00 237.62 47.65 11.32 15.36 75.77 0 

2024-01-01 01:00:00 228.83 7.41 1.70 38.76 61.38 0 

 

Table II shows sensor measurements of a smart grid system 
collected every 15 minutes. Each row contains important 
electrical metrics along with corresponding environmental 
measurements, with a timestamp showing the precise time of 
each measurement. The "Overload" column is indicated by a 
value of 1 during an overload event and left blank otherwise. 
This information is used for various purposes: to track power 
consumption patterns, evaluate environmental factor influence, 
and detect warning signs of grid stress or failure. Such precise, 
time-stamped data records are essential for maintaining real-
time operational efficacy and for warning anomaly detection in 
smart grids. 

B. Data Preprocessing 

To ensure the quality and fidelity of data input into the GTN 
and MAML architecture, a large preparation plan had to be 
developed for the smart grid sensor data. To support adaptive 
anomaly detection, we prioritized temporal continuity, 
structural representation, and normalization of features during 
preprocessing. 

1) Data acquisition: In each minute, sensors in the smart 

grid collected readings on voltage, current, power, power 

factor, frequency, total harmonic distortion, temperature, and 

humidity. After reading the sensor values, each was assigned a 

timestamp and labeled by the computer, which considered log 

files and annotations provided by experts. Since these metrics 

cover electricity and environmental data, they make it simpler 

to identify various faults in the grid. 

2) Data augmentation: To increase the generalization and 

robustness of the model when small amounts of anomalies are 

present, the current study used a graph-based data augmentation 

process. The Time-Aware Variational Autoencoder could 

generate synthetic features of the node graphs of the graph, and 

at the same time preserve temporal features of the original grid 

data and structural features of the original grid data. Also, 

contrastive learning based augmentation was employed to 

generate positive and negative sample pairings. They are then 

used to train the model with a contrastive loss that encourages 

the model to learn meaningful representations by drawing 

similar (positive) graph views close and drawing dissimilar 

(negative) views far apart in the representation space. The study 

defines contrastive loss as given in Eq. (1): 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −𝑙𝑜𝑔
exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝒯)

∑ 1[𝑘≠1]exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝒯)
2𝑁
𝑘=1

  (1) 

In this contrastive paradigm, 𝑧𝑖⁡and 𝑧𝑗 represent the 

embeddings of a positive sample pair—two enriched 
perspectives of the same graph.  Cosine similarity, defined as 

𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑗) =
𝑧𝑖
𝑇𝑧𝑗

∥𝑧𝑖∥∥𝑧𝑗∥
 .This quantifies the alignment of 

representations in the embedding space.  The temperature 
parameter 𝜏 influences the concentration level of the 
distribution, affecting the emphasis on hard negative values 
during training. The contrastive loss is computed over a batch 
of 𝑁⁡samples, where each anchor 𝑧𝑖⁡is compared to 2𝑁 − 1 
other samples from the batch. The indicator function 
1𝑘≠𝑖⁡ prevents the anchor from being compared to itself, 
enabling appropriate distinction between graph configurations. 

C. Graph Transformer Network 

The smart grid is a dynamic and complicated system 
consisting of many components, including sensors, substations, 
transformers, and control units.  These naturally correspond to 
nodes in a network, with the edges representing actual power 
lines, communication links, and logical relationships. This 
graph-based model maintains both the structural and functional 
properties of the grid and is thus well-suited for deep learning 
models that are intended to operate on non-Euclidean data.  
GNNs, such as GCNs and GATs, are primarily local 
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neighborhood aggregation-based. Though very good at 
modeling short-range dependencies, such models often do not 
capture long-range or global interactions across the graph, 
which is very important for smart grids where far-off elements 
can affect each other under fault conditions. In order to breach 
these limitations, employ GTNs, which model global 
relationships present in graph-structured data like Transformer 
architectures.  Unlike GNNs, which sample input from fixed 
neighborhoods, GTNs employ a self-attention mechanism by 

which each node can attend to every other node in the graph 
irrespective of topological distance. This is achieved by 
computing attention scores between pairs of nodes based on 
learnt query, key, and value projections of their feature 
representations, as well as structural bias terms derived from 
the graph topology.  Consequently, GTNs can effectively 
capture both local and non-local dependencies, enabling more 
precise detection of complex and distributed anomalies.

 
Fig. 2. Architecture of the CGTN-SSML framework for smart grid anomaly detection.

Fig. 2 depicts the CGTN-SSML framework for smart grid 
anomaly detection. It starts with graph structure learning of the 
grid, then a Graph Transformer with multi-head self-attention 
to learn global dependencies. Contrastive learning produces 
informative graph views with limited labeled data. The two 
contrastive loss paths train the model to discriminate normal 
and anomalous patterns, and meta-learning boosts adaptability 
to new anomalies with weak supervision. 

1) Graph structure modeling: The smart grid is represented 

by the graph G=(V,E), with V representing nodes and E 

representing edges. Every node 𝑣𝑖∈𝑉⁡is paired with a feature 

vector 𝑥𝑖∈𝑅
𝑑  containing sensor-level quantities like voltage, 

current, frequency, and power factor. They represent the status 

of an electric component at some location and point in time. In 

contrast to Euclidean data spaces, graphs bring in non-trivial 

spatial interactions that need to be preserved during learning. 

To integrate topological information into the transformer 

framework, we represent the graph structure using relative 

positional encodings or graph Laplacian eigenvectors. These 

encodings encode connection patterns and node distances, 

enabling the model to recognize structurally important linkages 

beyond local neighborhoods. 

2) Final layer of GTN: In GTN, the multi-head self-

attention mechanism calculates interactions between all pairs of 

nodes so that the model can learn dependencies across the 

graph. The attention score between nodes 𝑣𝑖and⁡𝑣𝑗 as given in 

Eq. (2):  

⁡⁡⁡⁡⁡⁡𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 (
(𝑊𝑄𝑥𝑖)

𝑇
(𝑊𝐾𝑥𝑗)

√𝑑𝑘
+ 𝑃𝐸𝑖𝑗)  (2) 

where, 𝑊𝑄  and 𝑊𝐾  represents learnable weight 

matrices,⁡𝑑𝑘 represents dimensionality of key vectors and 𝑃𝐸𝑖𝑗 
encodes the structural relationship 𝑣𝑖 and 𝑣𝑗. 

3) Multimodal graph transformer for cross-sensor fusion: 

The concept of smart grids is dependent on both internal 

electrical parameters and external environmental and 

operational conditions like weather conditions, demand in a 

region, and equipment conditions. In order to achieve these 

broad influences, this study enhance the Graph Transformer 

Network (GTN) with a Multimodal Graph Transformer (MGT) 

that integrates and fuses environmental, heterogeneous sensor 

modalities electrical, and contextual into a singular 

representation. 

The MGT uses different encoders on each modality and 
integrates the two using a common graph attention mechanism, 
unlike using a single-modality GTN that only uses electrical 
measurements. This architecture enables the nodes to 
communicate with each other on both spatial links as well as 
modality channels to generate more rich embeddings that are 
more likely to describe complex and real-life anomaly patterns. 
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The MGT by modeling cross-modal correlations (e.g. the 
temperature impact on voltage sag) improves the framework in 
order to identify subtle or compound anomalies, and sets a more 
robust baseline on which other contrastive learning and meta-
learning steps will be based. 

a) Multimodal node encoding: In order to model various 

streams of information per grid element, each node combines 

electrical, environmental and optional operational 

characteristics. They are concatenated and projected into a 

common space as in Eq. (3): 

⁡𝑥𝑖 = [𝑥𝑖
(𝑒)⁡||𝑥𝑖

(𝑤)||⁡𝑥𝑖
(𝑜)
]                          (3) 

where, 𝑥𝑖
(𝑒)

includes electrical readings (power, current, 

voltage), 𝑥𝑖
(𝑤)

contains environmental data (humidity, 

temperature), and 𝑥𝑖
(𝑜)

includes optional operational inputs 

(demand forecasts, maintenance logs). 

These are followed by transforming them by modality-
specific linear layers to a common dimension d. This combined 
embedding maintains temporal consistency and keeps the 
unique semantics of each modality. 

b) Multimodal Self-Attention: Nodes are then able to 

communicate after the coding process via a cross-modal self-

attention layer, which is able to capture both spatial and modal 

dependencies using Eq. (4): 

⁡⁡⁡⁡⁡⁡𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 (
(𝑊𝑄𝑥𝑖)

𝑇
(𝑊𝐾𝑥𝑗)

√𝑑𝑘
+ 𝛾∅(𝑚𝑖 , 𝑚𝑗))         (4) 

where, 𝑊𝑄 , 𝑊𝐾  are learnable projection matrices, 𝑑𝑘  key 

dimension, 𝑚𝑖 , 𝑚𝑗 ⁡represent the modality tags and ∅ represents 

inter-modality similarity with a scaling factor 𝛾. 

It is a mechanism that allows each node to dynamically rank 

neighbors based on electrical proximity, as well as modality 

similarity that detects context-driven anomalies better. 

4) Contrastive learning for self-supervision: To 

compensate for the absence of labeled anomalies, we apply a 

contrastive learning objective during self-supervised 

pretraining.  The key concept is to acquire representations that 

cluster similar graph states and distinguish dissimilar ones.  The 

model learns contrastive loss when presented with an anchor 

node, a positive instance ⁡𝑣+  (e.g., a temporally nearby or 

structurally similar node) and a negative instance⁡𝑣−, the model 

maximizes the following contrastive loss as given in Eq. (5): 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑣,𝑧𝑣+)/𝒯)

∑ 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑣,𝑧𝑣′)/𝒯)𝑣′∈𝒩
        (5) 

where, 𝑧𝑣 is the embedding of node 𝑣 , sim is cosine 
similarity, 𝒯 is a temperature hyperparameter, and 𝒩⁡is a set of 
negative samples.  This training enables the GTN to learn 
meaningful representations without explicit anomaly labels. 

D. Model-Agnostic Meta-Learning (MAML) 

The topologies of smart grids are dynamic by nature, always 
tend to change in terms of structure, load and pattern of 
operation. These variations tend to produce various types of 
anomalies, which have different time characteristics and spatial 
distributions. When trained on observational data, traditional 
machine learning methods are not very good at generalizing to 
new types of anomalies, thus perform poorly in real operating 
situations. In an effort to address this issue, the framework 
proposed below utilizes MAML in order to achieve fast 
adaptation to new anomaly detection tasks using limited labeled 
samples. MAML is a gradient-based meta-learner, which 
conditions itself on a set of original model parameters that can 
be fine-tuned very quickly with only a small number of training 
samples and gradient steps. This combination contributes a lot 
to the generalizability capacity of the model to identify and act 
upon new or emerging anomalies in smart grids with only 
minimal supervision.

 
Fig. 3. Meta-learning architecture for task adaptation.

Fig. 3 explains the conceptual representation of a meta-
learning structure, having two main components. This diagram 

displays the implementation of Model-Agnostic Meta-Learning 
or MAML in two steps: meta-training and adaptation. In the 
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meta-training stage, the model is trained on a collection of 
parallel tasks- one of which is the target task, and the rest are 
the tasks associated with the target task in the process of 
learning the general trends of anomalies in the smart grid. The 
form of knowledge of these tasks is also condensed by an outer-
loop process of creating a powerful initial model. In the stage 
of adaptation, this is tuned-up by mapping this acquired 
knowledge. The support set provides small samples to quickly 
tune the model through the inner loop and the query set further 
tuned the model through the outer update. The model is able to 
learn new types of anomalies in a short time and generalize the 
model well through the process. The framework helps to 
support solid and real-time anomaly detection using a small 
number of labeled data by combining the two stages. 

In this concept, all the anomaly classes or sub-regions of the 
grid may be handled as a single task. A collection of such tasks 
is sampled in the meta-training process in a way that they 
resemble different scenarios of anomalies. The model obtains 
the general parameters of the model, that is, 𝜃, to task-specific 
parameters of the model, that is, theta ⁡𝜃𝑖

′ , by the gradients 
calculated based on the support set of each task given in Eq. (6) 
as follows:  

⁡𝜃𝑖
′ = 𝜃 − 𝛼∇𝜃ℒ𝒯𝑖

𝑠𝑦𝑚𝑏𝑜𝑙(𝜃)           (6) 

where, 𝜃  means the initial model parameters, ⁡𝜃𝑖
′  means 

adapted model parameters, 𝛼 means inner-loop learning rate, 

∇𝜃ℒ𝒯𝑖
𝑠𝑦𝑚𝑏𝑜𝑙

 means the gradient of the loss function ℒ  with 

respect to the parameters 𝜃. 

In this case, 𝛼⁡ the inner loop represents the learning rate, 
and ℒ is a task-specific loss function, typically derived from 
either reconstruction loss or classification loss versus anomaly 
labels. Once the adaptation process is done, the adapted 
parameters theta i prime are tested on an independent query set. 
The outer loop initial parameters in terms of 𝜃  are updated 
using the gradients of this test as given in Eq. (7): 

𝜃 ← 𝜃 − 𝛽∇𝜃 ∑ ℒ𝒯𝑖
𝑞𝑢𝑒𝑟𝑦(𝜃𝑖

′)𝑖                        (7) 

This update on an outer-loop causes generalization of the 
task through learning of an initializing which generalizes well 
after being updated with a small number of updates on new 
tasks. The meta-learned initialization of the network to create 
powerful priors 𝜃is used to detect emergent anomalies even on 
incomplete or delayed labeled data. 

Model-Agnostic Meta-Learning (MAML) is a meta-
learning algorithm that tries to enable quick adaptation of the 
model to new tasks with minimal data. Instead of learning a 
model using a single dataset, MAML learns it over a variety of 
tasks so that it learns an overall parameter initialization. Both 
this initialization can quickly be fine-tuned on new tasks by 
simply doing a few gradient steps. In smart grids, where new 
trends of anomalies are typical, MAML allows the model of 
detecting anomalies to change in the most optimal way without 
requiring a significant amount of labeled data to accomplish it. 
The method works through two optimization tasks; the inner 
loop of task-specific update that uses a small support set and an 
outer loop that updates global parameters through a query set. 
Nested optimization helps the model to achieve a 

generalization-specialization balance. The system can be 
extended to facilitate more flexibility and resiliency with the 
addition of self-supervised learning to MAML. Generally, 
MAML offers successful real-time detection of anomalies in 
smart grids that are dynamic. 

E. Self-Supervised Learning 

Due to the lack of labeled anomaly data in real-world smart 
grids, supervised learning methods tend not to be generalized 
and reliable. To eliminate this drawback, we adopt self-
supervised contrastive learning that uses the structured and 
varied nature of the data to form pseudo-supervision.  Let 𝑥𝑖 be 
an original input (e.g., a node or subgraph capturing some of 

the smart grid) and let  𝑥𝑖
(1)

 and  𝑥𝑖
(2)

 be two augmented 

versions of the same input, and form a positive pair. The 

contrastive learning goal is to align⁡𝑧𝑖 = 𝑓(𝑥𝑖
(1)) and a positive 

representation ⁡𝑧𝑗 = 𝑓(𝑥𝑖
(2)) , the contrastive learning target 

attempts to move 𝑧𝑖 and 𝑧𝑗 closer in the embedding space and 

move away embeddings of negative samples 𝑧𝑘, generated 
from different inputs 𝑥𝑘 ≠ 𝑥𝑖 . The InfoNCE loss to train the 

encoder  𝑓(⋅) The loss for a positive pair (𝑧𝑖 , 𝑧𝑗) as given in 

Eq. (8): 

ℒ𝑖 = −𝑙𝑜𝑔
exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝒯)

∑ 1[𝑘≠𝑖]exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝒯)
𝒩
𝑘=1

      (8) 

where, ℒ𝑖 means the contrastive loss for the anchor sample 
𝑧𝑖, 𝑧𝑖 means anchor representation, 𝑧𝑗means positive pair of 𝑧𝑖. 

Simulate sim(𝑧𝑖 , 𝑧𝑗) =
𝑧𝑖
𝑇𝑧𝑗

∥𝑧𝑖∥∥𝑧𝑗∥
 is the cosine similarity of the 

embeddings. The temperature hyperparameter  𝒯⁡controls the 
sharpness of the softmax.  The indicator function 1[𝑘≠𝑖]⁡serves 

to avoid the anchor from comparing to itself is used to prevent 
the anchor comparing with itself. This formulation causes the 
model to cause similarity to positive pairs and dissimilarity to 
negatives. 

This goal will promote generalizable, yet discriminative 
embeddings of the model that have the semantic property of 
clumping states in a semantically coherent group, and clumping 
irrelevant or out-of-distribution conditions in dissimilar groups. 
The resulting feature space can then be easily fed to 
downstream anomaly detectors such as MAML to detect few-
shot anomalies without having to explicitly label an anomaly. 

F. Integration of GTN-MAML 

Adaptive detection of anomalies in smart grids requires 
incorporation of MAML architecture with the use of GTNs. The 
complex spatial and structural association can be acquired by 
the GTNs through models to capture the grid as the graph with 
the main elements of the grid like transformers substations and 
sensors being considered the nodes and the physical or 
functional relationship among the components being 
considered the edge. Here, anomaly detection is viewed as a 
collection of related jobs, and each is associated with a grid 
condition or region. Each of the anomaly detection jobs is 
represented by a support set 𝒯𝑖⁡. The inner loop of MAML trains 
the GTN to be adaptable to a task by modifying its parameters 

depending on the task offered in the inner loop 𝒟𝑖
𝑡𝑟𝑎𝑖𝑛   and 

𝒟𝑖
𝑡𝑟𝑎𝑖𝑛 [see Eq. (9)]: 
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𝜃𝑖
′ = 𝜃 − 𝛼∇𝜃ℒ𝒯𝑖

𝑡𝑟𝑎𝑖𝑛(𝑓𝜃)         (9) 

Here, 𝛼⁡is the learning rate for the inner loop, and 𝑓𝜃 is the 
GTN model.  The outer loop trains the original parameters 𝜃 in 
all the tasks with respect to the loss on query sets. The outer 
loop trains the original parameters θ of any task. It is an 
approximation of the accuracy of this model on the query sets, 
on each of the tasks with the model calculating a meta-loss 
which it uses to adjust the original parameters as given in 
Eq. (10), 

𝜃∗ = arg𝑚𝑖𝑛𝜃 ∑ ℒ𝒯𝑖
𝑡𝑒𝑠𝑡 (𝑓𝜃𝑖

′)𝒯𝑖⁡∼𝓅(𝒯)
                 (10) 

The optimization process allows the model to identify a 
powerful initial condition θ, 0 that can quickly adapt to new 
tasks using sparse data. The assembly of the modeling of graph 
-based dependencies of GTN and the quick adaptation of 
MAML constitutes a highly effective model of anomaly 
detection which fits well in dynamic and data insufficient 
application fields such as smart grids setting. GTNs are a good 
description of local and distant dependencies in smart grid 
information to identify anomaly appropriately. MAML 
continues to improve in that aspect since it can incorporate new 
kinds of anomalies to that model using a small number of 
samples. This cohesion provides good detection in dynamic 
grid situations which are of low supervisions as a team. The 
outcome is a very scalable and flexible architecture which can 
be applied in the real-time anomaly detection of the smart grid. 

Algorithm: 1 Multimodal Graph Transformer for Smart 

Grid Anomaly Detection 
Input: Sensor Data S = {Voltage, Current, PowerFactor, Frequency, 

Temperature, Humidity} 

Output: Anomaly Detection Result A 

Initialize model parameters θ_MGT, θ_CGSS, θ_MAML 

Load Multimodal Graph Transformer (MGT) with weights θ_MGT 

Load Contrastive Self-Supervised Model (CGSS) with weights 

θ_CGSS 

Load Meta-Learning Model (MAML) with weights θ_MAML 

Preprocessed_S = Normalize(S) 

Graph_S = Construct_Graph(Preprocessed_S) 

Embeddings = MGT_Encode(Graph_S) 

Embeddings = CGSS_Enhance(Embeddings) 

if Embeddings not empty: 

    Adapted_Model = MAML_Adapt(Embeddings) 

    for each sensor_reading r in incoming_data: 

        r_embedding = MGT_Encode(r) 

        r_embedding = CGSS_Enhance(r_embedding) 

        anomaly_score = MAML_Predict(Adapted_Model, 

r_embedding) 

                if anomaly_score >= Threshold: 

            A[r] = "Anomaly Detected" 

            Alert_Operator(r, anomaly_score) 

        else: 

            A[r] = "Normal" 

else: 

    Return Error "Embedding Generation Failed" 

Metrics = Evaluate(A, Ground_Truth) 

Print Metrics {Accuracy, Precision, Recall, F1-Score} 

Return A 

Algorithm 1 outlines the procedure of a graph G (V, E) 
development, with nodes being representatives of smart-grid 

sensors and edges being their physical or logical associations. 
Concatenated electrical, environmental, and operational 
features project all nodes with x[v] in them to a shared 
dimension in a linear manner. Each training epoch will have the 
following process repeated on the neighbor u of each node v: 
the model will compute a multimodal self-attention score att. 
There is an if-else statement which checks whether an attack is 
greater than a relevance threshold: here, the neighbor gives an 
update to the hidden state h[v]; otherwise, nothing is updated. 
The proposed CGTN-SSML model relies upon a few 
parameters. In meta learning, the rate of adaptation is 
determined by learning rates, whereas in contrastive learning, 
feature separation is determined by temperature. The richness 
of global and local representations is determined by attention 
heads and dimensions embedding. The modality weight γ 
balances electrical and contextual features during fusion, and 
the discrepancy threshold shapes the false-positive and false-
negative trade-off. Knowledge of these effects leads to the 
stable learning, the effective optimization, and the credible 
detection of anomalies in the dynamic smart-grid conditions. 
The parameters of the optimization are adjusted only in case the 
loss is enhanced (best_loss), with the assistance of the anomaly 
detection loss (anomaly_loss). The routine restores the best 
model that is able to recognize abnormalities of cross-sensors 
in real-time smart-grids. 

V. RESULT AND DISCUSSION 

The given CGTN-SSML model can be useful in detecting 
anomalies in smart grids, local and global dependencies 
between sensor data of diverse type are detected. Multimodal 
graph transformers, contrastive self-supervised learning, and 
meta-learning are also combined together in the model to 
provide high accuracy, precision, recall, and F1-score. The 
cross-modality attention analysis demonstrates the ability of the 
model to give priority to the most important electrical and 
environmental parameters. The computational efficiency 
ensures that the model could be applied in real-time due to the 
fact that the model is robust and flexible in terms of adapting to 
different operational environments and providing dynamic 
smart-grid-monitoring model. 

TABLE III. SIMULATION PARAMETER 

Parameter Value 

Input Modalities 

Voltage, Current, Power, Frequency, 

Power Factor, THD, Temperature, 

Humidity 

Self-Supervised Learning 

Technique 
Contrastive Learning (InfoNCE Loss) 

Meta-Learning Model-Agnostic Meta-Learning (MAML) 

Number of Tasks for MAML 20 anomaly tasks 

Inner Loop Learning Rate (α) 0.01 

Outer Loop Learning Rate (β) 0.001 

Batch Size 32 

Epochs 100 

Optimizer Adam 

Evaluation Metrics Accuracy, Precision, Recall, F1-Score 

Software Tools Python 
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Table III describes that the main goal lies in improving the 
identification of anomalies present in smart grids by using the 
Contrastive Graph Transformer Network. It implements a 
Graph Transformer Network (GTN) framework to learn 
sophisticated relationships within data. Contrastive learning 
and InfoNCE loss function are used by the model to learn 
representations that are stable. MAML is employed by the 
model to enable efficient adaptation to a new task. The provided 
evaluation metrics are meant to enhance the model performance 
in identifying anomalies within the smart grid setting. 

A. Contrastive Loss Curve 

Fig. 4 provides the loss curve of proposed MGT-SmartGrid 
model. The training and validation loss decreases steadily with 
the number of epochs (1.15 to 0.52 and 1.12 to 0.67 
respectively) and convergence of the results is high and 
overfitting is low. There is a sign of great generalization in that 
the final training (0.52) and the validation loss (0.67) are very 
close to each other. These values are justified by the fact that 
the multimodal graph transformer is effective to learn cross-
sensor embeddings to enable the contrastive objective to 
stabilize and not sacrifice the capacity to detect anomalies to 
take place in different circumstances of the smart grid. 

 
Fig. 4. Training and validation contrastive loss curve (MGT-SmartGrid). 

B. Efficiency Analysis 

Table IV of computational efficiency reveals the trade-off 
between the performance and the consummation of resources. 
The proposed CGTN-SSML model takes 180 seconds to train, 
which is comparatively higher than the time of the Random 
Forest (90 s) and the SGD (120 s), but with higher accuracy in 
identifying anomalies. Its time per sample to infer is 1.8 ms, 
lower than AE-GRU-EE (2.0 ms) and it occupies 220 MB 
memory which is a little large compared to Isolation Forest (120 
MB). These results confirm that the recommendable 
multimodal graph transformer is a trade-off between high 
accuracy against moderate computation costs to implement the 
smart-grid in real-time. 

C. Cross-Modality Attention Statistics 

Table V represents the multimodality attention distribution 
of the Multiphasia Graph Transformer to sensor modalities. The 
Voltage weighs the most (0.28) followed by Current (0.22) and 
Power Factor (0.18). Such environmental factors such as 
Temperature (0.10) and Humidity (0.10) are less focused, since 

they influence anomaly detection less. This demonstrates that 
the model is more concerned with electrical measures, but it 
also considers the environment, and this enhances the accuracy 
of detection. This guarantees that there is high level of cross- 
sensor fusion because it gives equal attention to ensure efficient 
detection of anomaly in the dynamical smart-grid environment. 

TABLE IV. COMPUTATIONAL EFFICIENCY ANALYSIS 

Methods 
Training Time 

(s) 

Inference Time 

per Sample 

(ms) 

Memory 

Usage (MB) 

Isolation Forest 

(IF) 
45 0.8 120 

SGD 120 1.5 180 

Random Forest 90 1.2 200 

AE-GRU-EE 150 2.0 250 

Proposed 

CGTN-SSML 

(Novel MGT) 

180 1.8 220 

TABLE V. CROSS-MODALITY ATTENTION  WEIGHTS PER SENSOR 

MODALITY 

Sensor Modality Average Attention Weight 

Voltage 0.28 

Current 0.22 

Power Factor 0.18 

Frequency 0.12 

Temperature 0.10 

Humidity 0.10 

 
Fig. 5. Cross-sensor feature importance – MGT-SmartGrid. 

Fig. 5 shows how each sensor modality contributes to the 
process of identifying anomalies of the MGT-SmartGrid model. 
The voltage weight is 0.28, then Current (0.22) and Power 
Factor (0.18). Other less important yet significant are the 
Frequency (0.12), Temperature (0.10) and Humidity (0.10). 
The result of the model is a distribution that focuses on 
electrical measurements with the environmental context, not to 
mention, cross-sensor fusion that is effective. It confirms that 
the weights of attention provide understandable outcomes of the 
modalities that lead to correct and real-time detection of 
anomalies. 
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D. Anomaly Score 

In Fig. 6, the analysis of the histogram reveals that there is 
a clear distinction between the normal and abnormal 
occurrences. Normal scores have been distributed around the 
middle of 0.30, where most of the normal scores lie between the 
range of 0.15-0.45, with abnormal scores lying around the range 
of 0.80 between the 0.65-0.95 range. Indicating lines of each 
group are dashed, and this is the testimony of the absence of 
overlap and excellent discriminative capability. This 
distribution attests that the MGT-SmartGrid model gives far 
greater scores to the anomaly in the event of actual faults, in the 
sense of making the practical thresholding of real-time 
detection in heterogeneous sensor input without incurring 
excessive false alarms. 

 
Fig. 6. Anomaly score histogram – MGT-SmartGrid model. 

E. Confusion Matrix 

Fig. 7 shows that the MGT-SmartGrid model performs well 
in terms of classification. This measure will offer an overall 
accuracy of approximately 0.96 and will be highly sensitive to 
the unusual grid conditions. The low off-diagonal values 
confirm that the multimodal graph transformer is an effective 
cross-sensor correlation model, which enables high 
discrimination to be attained in real-time with multimodal 
recognition of normal and abnormal conditions along the smart 
grid in cases where the data sources are heterogeneous, and the 
process of occurrence is complex. 

 
Fig. 7. Confusion matrix – final MGT-SmartGrid model. 

F. ROC Curve 

In Fig. 8, the ROC curve is used to indicate the threshold of 
the abnormal performance of the MGT-SmartGrid model that 
is independent. The orange line is steeper towards the top-left 
and has an AUC of 0.97, which indicates that the line has a good 
discrimination of normal and abnormal events. Although the 
low false positive rates (beneath 0.1) yield a true positive of 
above 0.90, which is a high degree of sensitivity and specificity. 
The huge gap between the ROC curve and the diagonal baseline 
confirms the truth that the multimodal graph transformer is a 
factor that greatly distinguishes the heterogeneous sensor 
signals to determine the report of anomalies with high degree 
of robustness and minimum error. 

 
Fig. 8. ROC curve – anomaly detection MGT-SmartGrid Model. 

G. Ablation Study 

Fig. 9 shows the contribution that each component makes to 
the end accuracy. The overall model of MGT-SmartGrid 
achieves 96.5% hit rate. The Multimodal Node Encoding 
elimination accuracy is 93.2, the Contrastive Learning 
elimination accuracy is 91.0 and the adaptation of MAML also 
eliminates the accuracy at 89.4. Such results confirm the fact 
that it is the combination of all three models- multimodal 
fusion, contrastive representation learning and meta-learning 
that causes the proposed framework to attain the high level of 
anomaly detection and, therefore, the significance of each in 
attaining real-time and robust smart grid monitoring. 

H. Performance Metrics 

In Fig. 10, the bar chart reveals the efficacy in categorizing 
the suggested MGT-SmartGrid framework. Its accuracy is 0.96, 
the precision and recall is 0.94 and 0.95, respectively, and the 
total F1-score is even at 0.95. The big values are an indication 
that the model is correct in identifying anomalies and most 
likely not to miss or falsely identify anomalies. This silver slice 
in metrics is sustainable predictive accuracy that supports the 
idea that multimodal graph fusion is a significant enhancer of 
the reliability of detection over the smart-grid dataset as 
compared to the conventional single-modality or baseline 
graph-transformer process. 
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Fig. 9. Ablation study. 

 
Fig. 10. Classification performance evaluation metrics. 

I. Comparative Analysis 

Table VI demonstrates that the proposed CGTN-SSML 
with Multimodal Graph Transformer has the best accuracy of 
96.5% accuracy, 95% precision, 95.5% recall and 95.2% F1-
score compared to AE-GRU-EE (91.1% accuracy) and 
Isolation Forest (92.2% accuracy). These values are witness to 
the fact that the multimodal cross-sensor fusion and contrastive 
self-supervision are the complements to the process of 
anomalies detection of smart grid data. The combination of the 
high accuracy and recall presents low false positives and false 
negatives, and this is indicative of the high and reliable ability 
to identify anomalies in real-time within a heterogeneous 
environment. 

TABLE VI. COMPARISON OF PERFORMANCE METRICS 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Isolation Forest (IF) 

[23] 
92.2 94.3 89.9 92.0 

SGD [24] 99.6 96.6 99.5 93.4 

Random Forest [25] 96.0 97.0 97.1 97.0 

AE-GRU-EE [26] 91.1 95.1 96.0 95.0 

Proposed CGTN-

SSML 
96.5 95.0 95.5 95.2 

J. Discussion 

The discussion reveals that Multimodal Graph Transformer 
(MGBT) with Contrastive Self-Supervised Learning and 
Model-Agnostic Meta-Learning (MAML) are significant 
algorithms, which have the potential to enhance anomaly 
detection in smart grids. The model can capture the spatial-
temporal relationship and the relationship between the cross-
sensor relationship and is highly accurate, precise and recalls 
very high in diverse situations. The experiments conducted 
during ablation, testify the fact that each element multimodal 
node encoding, contrastive learning and meta-learning has an 
important and necessary role to play. The significance of 
features and cross-modality attention underlines that the model 
has the capability of highlighting the key electrical and 
environmental measures, which are able to deliver high quality 
and real-time identification of irregularities. 

VI. CONCLUSION AND FUTURE WORKS 

The suggested adaptive anomaly detector model, which 
incorporates multimodal graph transformers, contrastive self-
supervised learning, and model-agnostic meta-learning, proves 
to be effective at modeling the complex sensor relationships, 
cross-sensor heterogeneity and learning with scarce labeled 
anomalies in smart grid settings. The cohesive architecture 
captures structural, operational and environmental 
dependencies in an effective manner, which leads to a regular 
high performance in terms of accuracy, precision, recall and F1-
score. These findings collectively highlight the practical 
importance of the model: it enhances early anomaly detection, 
improves grid reliability, and supports scalable deployment in 
large, dynamic environments where traditional supervised or 
unimodel approaches struggle. In addition to the numerical 
findings, the study demonstrates that each of the modules, such 
as cross-modal fusion, dual-view contrastive learning, and 
MAML adaptation, has a significant meaning to robustness, 
interpretability, and responsiveness within the context of the 
real-time operation principles. Although these are the strengths, 
the study has some limitations. The time dynamics of the 
anomalies is not explicitly modeled, which opens the possibility 
of further modeling of long-term behavioral changes. The 
multimodal fusion continues to make training moderately 
resource-intensive, and control tests in the real world are not 
backed by any live grid conditions. Targeting these areas can 
also be used to develop more applicability and generalization. 

Future studies should then aim at incorporating temporal 
graph attention techniques to follow dynamically changing grid 
processes more accurately and create lightweight multimodal 
encoders to minimize computation costs about edge-level 
implementation. The extension of the framework to real-time 
pilot testing in active substations will assist in confirming the 
stability in the situation of real disturbances. Moreover, a 
combination of predictive maintenance and energy forecasting 
can be developed on the same architecture which can form a 
complete intelligent monitoring ecosystem for next-generation 
smart grids. 
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