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Abstract—The increasing complexity of modern smart grids
and the heterogeneity of multi-sensor data make anomaly
detection extremely challenging, as existing techniques struggle to
capture long-range spatial  dependencies,  cross-sensor
interactions, and unseen anomaly patterns. Conventional models
such as lIsolation Forest, Random Forest, GCAD, AT-GTL,
CVTGAD, and hybrid CNN-Transformer approaches often suffer
from limited generalization, weak multimodal fusion, and strong
dependence on labeled anomalies. To address these limitations,
this study introduces a novel Multimodal Graph Transformer
with Contrastive Self-Supervised Learning and Model-Agnostic
Meta-Learning (MGT-CGSSML), a uniquely integrated
framework designed to learn structural, attribute, and cross-
modal relationships simultaneously. The proposed method stands
out by combining multimodal graph encoding, dual-view
contrastive learning, and fast meta-adaptation, enabling the model
to rapidly identify new anomaly types with minimal labeled data.
Implemented in Python using PyTorch, the model is evaluated on
a multimodal smart grid dataset containing time-stamped voltage,
current, power factor, frequency, temperature, and humidity
measurements recorded at 15-minute intervals. Experimental
results demonstrate 96.5% accuracy, 95% precision, 95.5% recall,
and 95.2% F1-score, reflecting a 3-5% performance improvement
over advanced baseline models due to enhanced multimodal fusion
and meta-learning optimization. The study concludes that MGT-
CGSSML delivers a scalable, interpretable, and real-time
anomaly detection solution capable of supporting resilient and
adaptive  smart-grid  operations,  offering  substantial
advancements over existing methods.

Keywords—Adaptive detection; anomaly detection; contrastive
learning; graph transformer networks; smart grid

I.  INTRODUCTION

Interest in finding unusual patterns in graphs is growing in
data mining due to how often graph-based data is used to
represent systems like e-commerce and banking. For instance,
in the case of detecting fraud in e-commerce, these algorithms

can detect fraudulent sellers by analyzing both user attributes
(properties) and relational structure (connections) within the
graph [1]. Anomaly detection detects patterns that are
drastically different from normal observations. It is an
important task with increasing demand and usage in many
fields. There have been extensive research activities in anomaly
detection. Initially, graph anomaly detection was dependent on
domain knowledge and statistical methods, employing
manually designed features. This manual detection process
takes huge time and effort. Real-world graphs usually consist
of a large number of nodes and edges with multiple attributes,
so they are high-dimensional [2]. Identification of anomalies,
or outliers, entails finding observations whose values greatly
differ from the bulk of data. Sometimes, anomalies are
relegated to noise or errors despite potentially providing good
information. Identification of outliers may imply suspect data,
leading to biased estimates of parameters and erroneous results
[3]. Various anomaly detection techniques tend to have
different missing (FN) and false alarm (FP) detection rates,
leading to differences in detection ability. Although several of
these techniques adopt a generic, context-insensitive strategy,
they are more effective at detecting certain threats against
certain systems or applications [4]. By using artificial
intelligence, big data, cloud computing and 5G cellular
networks, the smart grid will modernize the power grid and help
manage electrical energy much better [5].

Al's ability to automatically adjust and optimize, enables it
to handle enormous volumes of data and, at the same time,
efficiently handle the nonlinear challenges involved in power
grid systems. This characteristic has led to widespread
application in the power industry, providing Al with a
considerable lead in current complex power grids [6]. In the
energy system field, these emerging terminals have already
created an essential physical basis for driving the transition to a
low-carbon smart grid [7]. However, smart technologies
becoming more common brings serious cyber threats due to the
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need for outdated systems like Industrial Control Systems and
Supervisory Control and Data Acquisition [8]. The three
primary components of the smart grid system are smart
management, smart infrastructure, and smart protection. Smart
management is the component that offers advanced control,
management services, and smart features. Its main objectives
are to augment energy efficiency, balance supply and demand,
reduce emissions, trim management expenses, and drive utility
growth [9].

In contrast, contextual anomalies have natural or usual
nearby structures, but attribute information that is warped or
anomalous. This heterogeneity makes it difficult to directly
apply anomaly detection techniques developed for attribute-
only data or straightforward network structures to attributed
networks. Consequently, an effective anomaly detection
approach needs to consider a range of anomalies. Additionally,
because of the high expense and effort involved in obtaining
ground-truth labels for anomalies, detection in attributed
networks is typically performed through unsupervised methods
[10]. The conclusions drawn from using SR-CNN and a
martingale model with time-series data are compared to identify
the best hybrid technique. The outcomes reveal that the
combination of these approaches with a classifier enhances
performance, enhancing analytical value and enhancing the
reliability of anomaly detection in smart metering consumption
data. Unlike plain network anomaly detection, anomaly
detection in attributed networks requires taking two main
sources of information into account: 1) the structural patterns
that indicate how the nodes are connected, as encoded in the
topology of the network, and 2) the node attribute or feature
distribution [11]. Although these methods have the advantage
of better performance, they tend to depend considerably on
unsupervised detection since the costly cost of creating labeled
ground truth anomalies is involved. Recent studies have proved
that attributed networks often include both anomalies in the
graph topology and node attributes. This study aims at creating
an integrated, adaptive, and less supervised graph transformer
system that can solve the particular challenge of the structural
and attribute-based anomalies in a dynamic smart grid setting
and provide better generalization, less reliance on labeled
training, and greater resistance to new abnormal behaviors.

A. Research Motivation

Smart grids are becoming targeted by more cyber-physical
threats and less predictable energy loads, and the ability to
detect anomalies accurately is critical to reliable and safe
operation. Single-modality approaches existing in the literature
do not exploit cross-sensor correlations, reducing
responsiveness to real-time anomalies. The motivation behind
this study is the necessity of an integrated, flexible system that
makes use of multimodal sensor data to allow detection of
subtle anomalies and proactive maintenance and cost-
effectiveness, and continuous power supply in complex
heterogeneous power systems.

B. Significance of the Study

This study enhances the resilience of smart grids by
integrating multiple sensor modes with the use of a Multimodal
Graph Transformer. The methodology increases the accuracy
of anomaly detection, predicts severe failures, and increases
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efficiency of operations. The utilities can minimize down time,
enhance energy predictions, and counter cyber-attacks. The
results can also be used to offer a scalable model to other large-
scale 10T systems with a need to conduct real-time, cross-modal
anomaly analysis, and eventually resulting in safer, smarter,
and more sustainable energy infrastructure on a global scale.

C. Key Contribution
The key contributions are presented as follows:

e Proposes a cross-modal graph transformer that models
long-range dependencies, as well as heterogeneous
smart grid sensors interactions.

e Designing a dual-view contrastive module that
improves structural and attribute anomaly separation
and requires little supervision.

e Integrates or combines meta-learning with quick
adaptation to new anomaly instances with highly small
labeled datasets.

e Developed a multimodal node encoding plan which
enhances the representation of anomalies in electrical
and contextual terms.

D. Rest of the Section

The rest of this study is structured as follows; Section Il is
a review of the related works on smart grid anomaly detection
and the latest developments in the area of graph-based learning
techniques. Section 1ll describes the problem statement.
Section 1V provides a detailed explanation of the methodology
proposed, including the framework design of the CGTN-
SSML. Experimental setup and results are described and
presented in Section V, where the proposed model is compared
to baseline approaches. Section VI concludes the research and
provides future work directions.

Il.  RELATED WORKS

Zhang et al. [12] introduce GCAD, a novel framework for
reliable anomaly detection in cloud environments that takes into
consideration the problem of unlabeled data and complex
topological relationships between servers. Its intent is to
improve detection by adding self-supervised learning to graph-
based modeling. The application is for large-scale cloud
environments where data is primarily unlabeled and
topologically organized. GCAD integrates data augmentation
and GraphGRU for spatiotemporal learning, contrastive
learning for representation learning, linear attention for global
correlation encoding, and reconstruction-based anomaly
scoring. The primary advantages are label -efficiency,
topological awareness, and increased detection accuracy. The
results of experiments reveal that GCAD is superior to recent
advanced approaches for two real-world datasets. However, the
disadvantages are computational complexity, dependency on
topology data, and limited interpretability.

Wang et al. [13] present AT-GTL, a self-attention-based
graph transformation learning system to detect multivariate
time series anomalies to overcome the inefficiency of shallow
GNNs with little transference of node information. It is
committed to such applications as banking, power systems, and
industry that require capturing the complex feature interactions.
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AT-GTL uses GATP block to aggregate global features and a
graph transformation learning pipeline that is optimized by
TCL to improve the learning of features at different viewpoints.
The given strategy enhances the quality of the sensing field and
representation. Three data sets were experimented upon, and
AT-GTL was more precise than the current methods. The
model boosts feature learning across the globe, integrity, and
accuracy of anomaly detection. However, it increases the
complexity of models, training costs, and may cause scalability
issues of large or changing graphs.

Xu et al. [14] solve the problem of identifying the graph
anomalies using a small number of annotated samples. It has a
meta-learning methodology, which aligns self-supervised
representations with few-shot supervised representations via bi-
level optimization. MetaGAD is successful in exploiting little-
known anomalies and keeping generalizability to unseen
anomalies, and it works better than the existing methods on
both real and synthetic anomaly datasets on six applications. It
has several benefits such as high few-shot learning, strong
generalization, and effective exploitation of unlabeled data.
Nevertheless, it has problems, including the reliance on
artificial data, the excessive load of meta-learning, and possible
scalability problems. In general, the MetaGAD is an effective
tool in the process of detecting anomalies in reality.

Zheng et al. [15] introduce SL-GAD, which uses self-
supervision in graph anomaly detection to solve problems that
existing approaches cannot and lack an accurate understanding
of graph data’s internal connections. It makes use of generative
attribute regression and multi-view contrastive learning to
detect any problems in both the attribute and structure spaces.
Every target node is put into its own subgraph, which a GNN
encoder uses to learn latent variables. Comprehensive studies
on six benchmark sets indicate that SL-GAD is much better
than current methods in performance. Its self-supervised nature
removes the requirement of labeled data while efficiently
identifying structural and attribute-based anomalies.

Lietal. [16] present CVTGAD, a new model that integrates
a reduced transformer with cross-view attention for UGAD. It
addresses the limitations of traditional UGAD methods,
including limited receptive fields and distinct view processing,
by capturing both intra-graph and inter-graph relationships and
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enabling direct interaction between different augmented views.
CVTGAD captures more abundant structural and feature data
by integrating GNNs and transformers within a consistent
framework. CVTGAD is the first to incorporate cross-view
attention into UGAD, enhancing anomaly detection both at the
node and graph levels. The model performs better than existing
approaches on 15 real-world bioinformatics, chemistry, and
social network datasets. The algorithm is effective in
identifying anomalies like dangerous chemicals or strange
materials. It does increase computational complexity, but does
not have a fine consideration of scalability for large graphs.

Sun et al. [17] suggest GTC, a new self-supervised graph
representation technique for heterogeneous graphs. The goal is
to improve the smoothness of deep GNNs by combining their
local passes with the Transformer’s global modeling approach.
The proposed architecture adopts a dual-encoder architecture
GNN for local views and a Transformer for global views and
applies  cross-view contrastive learning to enhance
representation learning. It presents two modules: Metapath-
aware Hop2Token and CG-Hetphormer, both for
heterogeneous graphs. GTC is self-supervised; thus labeled
data is not required. Experimental outcomes indicate that GTC
works better than state-of-the-art approaches on a wide range
of datasets. Its primary strengths are strong multi-hop
neighborhood encoding and better heterophilic graph handling.
Yet, the model can be more computationally complex and
require more tweaking.

Bai et al. [18] provide a hybrid CNN-transformer network
for the detection of power theft in smart grids. The model
addresses the shortcomings of existing methods by combining
a Dual-Scale Dual-Branch CNN for shallow, multi-scale
feature extraction with a Transformer with Gaussian Weighting
for deep temporal relationship capture. It targets non-technical
losses, such as power theft, which is both economically and
safety-wise risky. The hybrid approach outperforms
conventional hardware-based and data-driven approaches in
accuracy, robustness, and efficiency, and exhibits very high F1
and AUC scores. It shows scalability and robustness across
several datasets. The method might, however, involve increased
computational expenses and dependence on quality-labeled
data. Notwithstanding possible interpretability challenges, the
model is a significant advance in smart grid anomaly detection.

TABLE I. SUMMARY OF LITERATURE REVIEW
Author & Year Method / Model Key Strengths Limitations Connection
Zhang et al. [12] GCAD Label-efficient, topologically aware, | High computation, depe;r}ds on | Early self-superwsed graph
accurate topology, limited interpretability anomaly detection
Wang et al.[13] AT-GTL Captures - global features, better Compl.e.x, . high  training  cost, TransformerA improves global
representation scalability issues feature learning
Few-shot learning, generalizes well, | Heavy meta-learning, may rely on | Meta-learning trend for
Xuetal [14] MetaGAD uses unlabeled data artificial data anomaly detection
Detects  attribute &  structure | Computation cost, limited | Self-supervised labeled-data-
Zheng et al.[15] SL-GAD anomalies, no labels needed interpretability free detection
Lictal. [16] CVTGAD Capturgs intra- & inter-graph relations, High computation, limited scalability Cross-view attentlor} improves
cross-view attention node & graph detection
Multi-hop encoding, handles | Computationally complex, tuning | Global-local hybrid
Sunetal. [17] GTC heterophilic graphs, self-supervised needed architectures trend
Bai et al [18] CNN-Transformer | High accuracy, robust, scalable Needs labeled data, computational cost Hybrid C NN—Transforme_r for
smart grid anomaly detection
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The problem statement is consistent with the issues that
have been identified in the literature. The majority of the
existing research (as described by GCAD, SL-GAD, and AT-
GTL) also emphasizes the dependence on labeled data, high
computational cost, and low scalability, whereas others (as
described by MetaGAD) also underline the inability to adapt to
new anomalies with a small number of labeled samples. Hybrid
models like CNN-Transformer solutions also deal with the
issue of accuracy and robustness, but still need labeled data.
Together, these drawbacks, such as reliance on supervision,
lack of global feature learning, and bad adaptability, highlight
the necessity to have a flexible, self-supervised, meta-learning-
based graph transformer architecture such as CGTN-SSML to
detect smart grid anomalies in real-time. Table | presents the
summary of the literature review.

I1l.  PROBLEM STATEMENT

Smart grids have been made more complex, interconnected,
and data-intensive, and thus are highly susceptible to
abnormalities like cyber-attacks, equipment failures, and
abnormal consumption patterns [19]. Current anomaly
detection techniques based on either a fixed set of rules or
supervised learning do not generalize to such dynamic
environments because they are based on large labeled datasets
[20]. Ground-truth classification of anomalies is expensive and
time-consuming, and is not feasible in practice. Furthermore,
the majority of methods assume either structural or attribute
anomalies alone, without factoring in on both thus, high false
positives, low adaptability, and unreliable detection in practice
[21]. Although graph-based learning is promising, traditional
GNNs only learn local interactions and cannot represent long-

/
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range interactions that are important in the operation of a smart
grid. Existing techniques do not have mechanisms to be quickly
adapted to new types of anomalies as grid conditions change.
Thus, there is a need to have a powerful, dynamic, and flexible
anomaly detection framework that can detect anomalies with
minimal supervision and still remain applicable in real-time. To
overcome these issues, this study introduces CGTN-SSML, a
multimodal graph transformer system that combines the
concepts of contrastive self-supervised learning and meta-
learning, which can provide accurate, flexible, and efficient
anomaly detection in a contemporary smart grid.

IV. ADAPTIVE MULTIMODAL APPROACH FOR SMART GRID
MONITORING

The method involves using a particular kind of deep
learning model to send alerts in the smart grid, and because
sensor readings are considered, the immediate environment and
how the smart grid works, it forms graphs that show what is
observed and how the observations relate to space and time. A
Graph Transformer enables the capacity to relate vastly distant
fragments in space and time to grasp the complex systems in an
improved manner. In an attempt to reduce the shortage of
samples of abnormal behavior, self-supervised contrastive
learning was applied to establish types of behavior by
comparison to alternative depictions of behavior. An additional
way the team augmented the training data with data is to
distinguish between normal cases and abnormal cases, and the
model is evolved to be updated on variations to the grid through
meta-learning, which is essential to operationally detect the
anomalies that are both fast and robust.

Data Preprocessing

Graph
Construction

l

Contrastive Graph
Transformer

}

Self-supervised
Graph
Transformation

!

Anomaly
Classifier

Data
Augumentation

_

Self-supervised
Meta-Learning |

Output:

~_Anomaly/ Normal

Fig. 1. CGTN-SSML data flow and processing pipeline for smart grid anomaly detection.
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Fig. 1 explains how to use graph-based self-supervised
learning to find anomalies in information gathered by the smart
grid. To start, raw data from the smart grid is first cleaned and
made consistent. The data is then organized as a graph to record
the connections between each cell in the grid. Meanwhile, using
contrastive graph transformers and data augmentation methods
can teach the model to extract useful information from
contrasting graphs. Using the augmented data in the self-
supervised stage enables the model to adjust swiftly to fresh
anomalies in data without relying on any labels.

A. Dataset Collection

The sensors placed in the smart grid were used to collect
data every minute about voltage, current, power, frequency,

Vol. 16, No. 11, 2025

power factor, THD, temperature, and humidity. All records are
given dates and labels, as normal or anomalous, to facilitate an
analysis of the grid’s actions under many circumstances and
highlight anomalies and how the grid is performing [22]. Every
15 minutes, the smart grid system collects readings from time-
series sensors. Every record includes data on voltage, current,
power, temperature, and humidity. It shows the exact time that
each reading was recorded. The presence of 1 in the overload
column indicates an overload occurrence, whereas a 0 means
everything was working normally.

TABLE II. TIME-SERIES SAMPLE OF GRID MEASUREMENTS
Timestamp Voltage Current Power Temperature Humidity Overload
2024-01-01 00:00:00 232.48 5.12 1.19 17.84 64.52 0
2024-01-01 00:15:00 229.31 2221 5.09 18.75 49.67 1
2024-01-01 00:30:00 233.24 46.13 10.76 16.72 48.47 0
2024-01-01 00:45:00 237.62 47.65 11.32 15.36 75.77 0
2024-01-01 01:00:00 228.83 7.41 1.70 38.76 61.38 0

Table 11 shows sensor measurements of a smart grid system
collected every 15 minutes. Each row contains important
electrical metrics along with corresponding environmental
measurements, with a timestamp showing the precise time of
each measurement. The "Overload" column is indicated by a
value of 1 during an overload event and left blank otherwise.
This information is used for various purposes: to track power
consumption patterns, evaluate environmental factor influence,
and detect warning signs of grid stress or failure. Such precise,
time-stamped data records are essential for maintaining real-
time operational efficacy and for warning anomaly detection in
smart grids.

B. Data Preprocessing

To ensure the quality and fidelity of data input into the GTN
and MAML architecture, a large preparation plan had to be
developed for the smart grid sensor data. To support adaptive
anomaly detection, we prioritized temporal continuity,
structural representation, and normalization of features during
preprocessing.

1) Data acquisition: In each minute, sensors in the smart
grid collected readings on voltage, current, power, power
factor, frequency, total harmonic distortion, temperature, and
humidity. After reading the sensor values, each was assigned a
timestamp and labeled by the computer, which considered log
files and annotations provided by experts. Since these metrics
cover electricity and environmental data, they make it simpler
to identify various faults in the grid.

2) Data augmentation: To increase the generalization and
robustness of the model when small amounts of anomalies are
present, the current study used a graph-based data augmentation
process. The Time-Aware Variational Autoencoder could
generate synthetic features of the node graphs of the graph, and
at the same time preserve temporal features of the original grid

data and structural features of the original grid data. Also,
contrastive learning based augmentation was employed to
generate positive and negative sample pairings. They are then
used to train the model with a contrastive loss that encourages
the model to learn meaningful representations by drawing
similar (positive) graph views close and drawing dissimilar
(negative) views far apart in the representation space. The study
defines contrastive loss as given in Eq. (1):

exp(sim(z;,z;)/T)
1[k=118xXP(sim(z;,2)/T)

@)

In this contrastive paradigm, z;and z; represent the
embeddings of a positive sample pair—two enriched
perspectives of the same graph. Cosine similarity, defined as

T
ZiZj

Leontrast = —log TN
k=1

sim(z;, z;) = This quantifies the alignment of

Izglliz; 1
representations in the embedding space. The temperature
parameter 7 influences the concentration level of the
distribution, affecting the emphasis on hard negative values
during training. The contrastive loss is computed over a batch
of N samples, where each anchor z;is compared to 2N — 1
other samples from the batch. The indicator function
1,+; prevents the anchor from being compared to itself,
enabling appropriate distinction between graph configurations.

C. Graph Transformer Network

The smart grid is a dynamic and complicated system
consisting of many components, including sensors, substations,
transformers, and control units. These naturally correspond to
nodes in a network, with the edges representing actual power
lines, communication links, and logical relationships. This
graph-based model maintains both the structural and functional
properties of the grid and is thus well-suited for deep learning
models that are intended to operate on non-Euclidean data.
GNNs, such as GCNs and GATs, are primarily local
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neighborhood aggregation-based. Though very good at
modeling short-range dependencies, such models often do not
capture long-range or global interactions across the graph,
which is very important for smart grids where far-off elements
can affect each other under fault conditions. In order to breach
these limitations, employ GTNs, which model global
relationships present in graph-structured data like Transformer
architectures. Unlike GNNSs, which sample input from fixed
neighborhoods, GTNs employ a self-attention mechanism by

Vol. 16, No. 11, 2025

which each node can attend to every other node in the graph
irrespective of topological distance. This is achieved by
computing attention scores between pairs of nodes based on
learnt query, key, and value projections of their feature
representations, as well as structural bias terms derived from
the graph topology. Consequently, GTNs can effectively
capture both local and non-local dependencies, enabling more
precise detection of complex and distributed anomalies.

Graph Structure Graph Transformer o
li ontrastive
. (Wox))" (W) Learning
softmax; (—T + PE;
B =S Vdi
( .)\ \
- ; ent:
Graph G=(V.E)
Graph
embedding A
¥
C s Contrastive Loss
omrange > Contrastive Loss
Molding

Fig. 2. Architecture of the CGTN-SSML framework for smart grid anomaly detection.

Fig. 2 depicts the CGTN-SSML framework for smart grid
anomaly detection. It starts with graph structure learning of the
grid, then a Graph Transformer with multi-head self-attention
to learn global dependencies. Contrastive learning produces
informative graph views with limited labeled data. The two
contrastive loss paths train the model to discriminate normal
and anomalous patterns, and meta-learning boosts adaptability
to new anomalies with weak supervision.

1) Graph structure modeling: The smart grid is represented
by the graph G=(V,E), with V representing nodes and E
representing edges. Every node v;€V is paired with a feature
vector x; ER? containing sensor-level quantities like voltage,
current, frequency, and power factor. They represent the status
of an electric component at some location and point in time. In
contrast to Euclidean data spaces, graphs bring in non-trivial
spatial interactions that need to be preserved during learning.
To integrate topological information into the transformer
framework, we represent the graph structure using relative
positional encodings or graph Laplacian eigenvectors. These
encodings encode connection patterns and node distances,
enabling the model to recognize structurally important linkages
beyond local neighborhoods.

2) Final layer of GTN: In GTN, the multi-head self-
attention mechanism calculates interactions between all pairs of
nodes so that the model can learn dependencies across the

graph. The attention score between nodes v;and v; as given in
Eq. (2):

_ (WQXi)T(WKX )
a;j = softmax; (T]"'PEU 2
where, W, and Wy represents learnable weight

matrices, d; represents dimensionality of key vectors and PE;;
encodes the structural relationship v; and v;.

3) Multimodal graph transformer for cross-sensor fusion:
The concept of smart grids is dependent on both internal
electrical parameters and external environmental and
operational conditions like weather conditions, demand in a
region, and equipment conditions. In order to achieve these
broad influences, this study enhance the Graph Transformer
Network (GTN) with a Multimodal Graph Transformer (MGT)
that integrates and fuses environmental, heterogeneous sensor
modalities electrical, and contextual into a singular
representation.

The MGT uses different encoders on each modality and
integrates the two using a common graph attention mechanism,
unlike using a single-modality GTN that only uses electrical
measurements. This architecture enables the nodes to
communicate with each other on both spatial links as well as
modality channels to generate more rich embeddings that are
more likely to describe complex and real-life anomaly patterns.
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The MGT by modeling cross-modal correlations (e.g. the
temperature impact on voltage sag) improves the framework in
order to identify subtle or compound anomalies, and sets a more
robust baseline on which other contrastive learning and meta-
learning steps will be based.

a) Multimodal node encoding: In order to model various
streams of information per grid element, each node combines
electrical,  environmental and  optional  operational
characteristics. They are concatenated and projected into a
common space as in Eqg. (3):

x; =[x ™) %] 3)

where, xl.(e) includes electrical readings (power, current,
voltage), xl.(w) contains environmental data (humidity,
temperature), and xl.(") includes optional operational inputs
(demand forecasts, maintenance logs).

These are followed by transforming them by modality-
specific linear layers to a common dimension d. This combined
embedding maintains temporal consistency and keeps the
unique semantics of each modality.

b) Multimodal Self-Attention: Nodes are then able to
communicate after the coding process via a cross-modal self-
attention layer, which is able to capture both spatial and modal
dependencies using Eq. (4):

(Wox)' (Wix))
a;j = softmax; (% + y@(m;, m;) 4)
where, Wy, Wy are learnable projection matrices, d; key
dimension, m;, m; represent the modality tags and @ represents
inter-modality similarity with a scaling factor y.

It is a mechanism that allows each node to dynamically rank
neighbors based on electrical proximity, as well as modality
similarity that detects context-driven anomalies better.

Meta-Training

Target I
Task

Task T

MAML

Task T =—

— Task T =~

)

Parameter €
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4) Contrastive learning for self-supervision: To
compensate for the absence of labeled anomalies, we apply a
contrastive  learning  objective  during  self-supervised
pretraining. The key concept is to acquire representations that
cluster similar graph states and distinguish dissimilar ones. The
model learns contrastive loss when presented with an anchor
node, a positive instance v* (e.g., a temporally nearby or
structurally similar node) and a negative instance v, the model
maximizes the following contrastive loss as given in Eq. (5):

exp (sim(z,,,zv+ )/T)
Yvren exp(sim(zy,zyr) /T)

©)

where, z, is the embedding of node v, sim is cosine
similarity, T is a temperature hyperparameter, and V' is a set of
negative samples. This training enables the GTN to learn
meaningful representations without explicit anomaly labels.

D. Model-Agnostic Meta-Learning (MAML)

The topologies of smart grids are dynamic by nature, always
tend to change in terms of structure, load and pattern of
operation. These variations tend to produce various types of
anomalies, which have different time characteristics and spatial
distributions. When trained on observational data, traditional
machine learning methods are not very good at generalizing to
new types of anomalies, thus perform poorly in real operating
situations. In an effort to address this issue, the framework
proposed below utilizes MAML in order to achieve fast
adaptation to new anomaly detection tasks using limited labeled
samples. MAML is a gradient-based meta-learner, which
conditions itself on a set of original model parameters that can
be fine-tuned very quickly with only a small number of training
samples and gradient steps. This combination contributes a lot
to the generalizability capacity of the model to identify and act
upon new or emerging anomalies in smart grids with only
minimal supervision.

Leontrast = —lo

Adaption

4 "

Query sct

Inner loop
Support

set

J

Fig. 3. Meta-learning architecture for task adaptation.

Fig. 3 explains the conceptual representation of a meta-
learning structure, having two main components. This diagram

displays the implementation of Model-Agnostic Meta-Learning
or MAML in two steps: meta-training and adaptation. In the
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meta-training stage, the model is trained on a collection of
parallel tasks- one of which is the target task, and the rest are
the tasks associated with the target task in the process of
learning the general trends of anomalies in the smart grid. The
form of knowledge of these tasks is also condensed by an outer-
loop process of creating a powerful initial model. In the stage
of adaptation, this is tuned-up by mapping this acquired
knowledge. The support set provides small samples to quickly
tune the model through the inner loop and the query set further
tuned the model through the outer update. The model is able to
learn new types of anomalies in a short time and generalize the
model well through the process. The framework helps to
support solid and real-time anomaly detection using a small
number of labeled data by combining the two stages.

In this concept, all the anomaly classes or sub-regions of the
grid may be handled as a single task. A collection of such tasks
is sampled in the meta-training process in a way that they
resemble different scenarios of anomalies. The model obtains
the general parameters of the model, that is, 6, to task-specific
parameters of the model, that is, theta 6;, by the gradients
calculated based on the support set of each task given in Eq. (6)
as follows:

0 = 0 — aVeL?™°'() (6)

where, & means the initial model parameters, 6; means
adapted model parameters, @ means inner-loop learning rate,

VoL means the gradient of the loss function £ with
respect to the parameters 6.

In this case, @ the inner loop represents the learning rate,
and L is a task-specific loss function, typically derived from
either reconstruction loss or classification loss versus anomaly
labels. Once the adaptation process is done, the adapted
parameters theta i prime are tested on an independent query set.
The outer loop initial parameters in terms of 6 are updated
using the gradients of this test as given in Eq. (7):

6 0 — BV, T, LI (6)) @)

This update on an outer-loop causes generalization of the
task through learning of an initializing which generalizes well
after being updated with a small number of updates on new
tasks. The meta-learned initialization of the network to create
powerful priors @is used to detect emergent anomalies even on
incomplete or delayed labeled data.

Model-Agnostic Meta-Learning (MAML) is a meta-
learning algorithm that tries to enable quick adaptation of the
model to new tasks with minimal data. Instead of learning a
model using a single dataset, MAML learns it over a variety of
tasks so that it learns an overall parameter initialization. Both
this initialization can quickly be fine-tuned on new tasks by
simply doing a few gradient steps. In smart grids, where new
trends of anomalies are typical, MAML allows the model of
detecting anomalies to change in the most optimal way without
requiring a significant amount of labeled data to accomplish it.
The method works through two optimization tasks; the inner
loop of task-specific update that uses a small support set and an
outer loop that updates global parameters through a query set.
Nested optimization helps the model to achieve a
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generalization-specialization balance. The system can be
extended to facilitate more flexibility and resiliency with the
addition of self-supervised learning to MAML. Generally,
MAML offers successful real-time detection of anomalies in
smart grids that are dynamic.

E. Self-Supervised Learning

Due to the lack of labeled anomaly data in real-world smart
grids, supervised learning methods tend not to be generalized
and reliable. To eliminate this drawback, we adopt self-
supervised contrastive learning that uses the structured and
varied nature of the data to form pseudo-supervision. Let x; be
an original input (e.g., a node or subgraph capturing some of
the smart grid) and let x™™ and x® be two augmented
versions of the same input, and form a positive pair. The
contrastive learning goal isto align z; = f (xi(l)) and a positive

representation z; = f (xi(z)), the contrastive learning target
attempts to move z; and z; closer in the embedding space and
move away embeddings of negative samples z,, generated
from different inputs x;, # x;. The InfoNCE loss to train the
encoder f(-) The loss for a positive pair (z; z;) as given in
Eqg. (8):

exp(sim(z;,z;)/T)

L;=—lo
i I ST Ao (sim(zoz)/T)

(8)

where, £; means the contrastive loss for the anchor sample
z;, z; means anchor representation, z;means positive pair of z;.

Zl-TZj
lzillz;l
embeddings. The temperature hyperparameter 7 controls the
sharpness of the softmax. The indicator function 1y serves
to avoid the anchor from comparing to itself is used to prevent
the anchor comparing with itself. This formulation causes the
model to cause similarity to positive pairs and dissimilarity to
negatives.

Simulate sim(z;, z;) = is the cosine similarity of the

This goal will promote generalizable, yet discriminative
embeddings of the model that have the semantic property of
clumping states in a semantically coherent group, and clumping
irrelevant or out-of-distribution conditions in dissimilar groups.
The resulting feature space can then be easily fed to
downstream anomaly detectors such as MAML to detect few-
shot anomalies without having to explicitly label an anomaly.

F. Integration of GTN-MAML

Adaptive detection of anomalies in smart grids requires
incorporation of MAML architecture with the use of GTNs. The
complex spatial and structural association can be acquired by
the GTNs through models to capture the grid as the graph with
the main elements of the grid like transformers substations and
sensors being considered the nodes and the physical or
functional relationship among the components being
considered the edge. Here, anomaly detection is viewed as a
collection of related jobs, and each is associated with a grid
condition or region. Each of the anomaly detection jobs is
represented by a support set 7; . The inner loop of MAML trains
the GTN to be adaptable to a task by modifying its parameters
depending on the task offered in the inner loop Df"%™ and

Dfrein [see Eq. (9)]:
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0; = 0 — aV L™ (fp) )

Here, a is the learning rate for the inner loop, and fj is the
GTN model. The outer loop trains the original parameters 6 in
all the tasks with respect to the loss on query sets. The outer
loop trains the original parameters 0 of any task. It is an
approximation of the accuracy of this model on the query sets,
on each of the tasks with the model calculating a meta-loss
which it uses to adjust the original parameters as given in
Eqg. (10),

6 = argming Y, - L5 (fgil) (10)

The optimization process allows the model to identify a
powerful initial condition 6, O that can quickly adapt to new
tasks using sparse data. The assembly of the modeling of graph
-based dependencies of GTN and the quick adaptation of
MAML constitutes a highly effective model of anomaly
detection which fits well in dynamic and data insufficient
application fields such as smart grids setting. GTNs are a good
description of local and distant dependencies in smart grid
information to identify anomaly appropriately. MAML
continues to improve in that aspect since it can incorporate new
kinds of anomalies to that model using a small number of
samples. This cohesion provides good detection in dynamic
grid situations which are of low supervisions as a team. The
outcome is a very scalable and flexible architecture which can
be applied in the real-time anomaly detection of the smart grid.

Algorithm: 1 Multimodal Graph Transformer for Smart
Grid Anomaly Detection
Input: Sensor Data S = {Voltage, Current, PowerFactor, Frequency,
Temperature, Humidity}
Output: Anomaly Detection Result A
Initialize model parameters 6 MGT, 6_CGSS, 6 MAML
Load Multimodal Graph Transformer (MGT) with weights 8 MGT
Load Contrastive Self-Supervised Model (CGSS) with weights
6_CGSS
Load Meta-Learning Model (MAML) with weights 6 MAML
Preprocessed_S = Normalize(S)
Graph_S = Construct_Graph(Preprocessed_S)
Embeddings = MGT_Encode(Graph_S)
Embeddings = CGSS_Enhance(Embeddings)
if Embeddings not empty:
Adapted_Model = MAML_Adapt(Embeddings)
for each sensor_reading r in incoming_data:
r_embedding = MGT_Encode(r)
r_embedding = CGSS_Enhance(r_embedding)
anomaly_score = MAML_Predict(Adapted_Model,
r_embedding)
if anomaly_score >= Threshold:
A[r] = "Anomaly Detected"
Alert_Operator(r, anomaly_score)
else:
A[r] = "Normal"

else:

Return Error "Embedding Generation Failed"
Metrics = Evaluate(A, Ground_Truth)
Print Metrics {Accuracy, Precision, Recall, F1-Score}
Return A

Algorithm 1 outlines the procedure of a graph G (V, E)
development, with nodes being representatives of smart-grid
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sensors and edges being their physical or logical associations.
Concatenated electrical, environmental, and operational
features project all nodes with x[v] in them to a shared
dimension in a linear manner. Each training epoch will have the
following process repeated on the neighbor u of each node v:
the model will compute a multimodal self-attention score att.
There is an if-else statement which checks whether an attack is
greater than a relevance threshold: here, the neighbor gives an
update to the hidden state h[v]; otherwise, nothing is updated.
The proposed CGTN-SSML model relies upon a few
parameters. In meta learning, the rate of adaptation is
determined by learning rates, whereas in contrastive learning,
feature separation is determined by temperature. The richness
of global and local representations is determined by attention
heads and dimensions embedding. The modality weight vy
balances electrical and contextual features during fusion, and
the discrepancy threshold shapes the false-positive and false-
negative trade-off. Knowledge of these effects leads to the
stable learning, the effective optimization, and the credible
detection of anomalies in the dynamic smart-grid conditions.
The parameters of the optimization are adjusted only in case the
loss is enhanced (best_loss), with the assistance of the anomaly
detection loss (anomaly_loss). The routine restores the best
model that is able to recognize abnormalities of cross-sensors
in real-time smart-grids.

V. RESULT AND DISCUSSION

The given CGTN-SSML model can be useful in detecting
anomalies in smart grids, local and global dependencies
between sensor data of diverse type are detected. Multimodal
graph transformers, contrastive self-supervised learning, and
meta-learning are also combined together in the model to
provide high accuracy, precision, recall, and Fl-score. The
cross-modality attention analysis demonstrates the ability of the
model to give priority to the most important electrical and
environmental parameters. The computational -efficiency
ensures that the model could be applied in real-time due to the
fact that the model is robust and flexible in terms of adapting to
different operational environments and providing dynamic
smart-grid-monitoring model.

TABLE Ill.  SIMULATION PARAMETER
Parameter Value
Voltage, Current, Power, Frequency,
Input Modalities Power Factor, THD, Temperature,
Humidity
Self-S}lpeersed Learning Contrastive Learning (InfoNCE Loss)
Technique

Meta-Learning Model-Agnostic Meta-Learning (MAML)

Number of Tasks for MAML | 20 anomaly tasks

Inner Loop Learning Rate (o) | 0.01

Outer Loop Learning Rate () | 0.001

Batch Size 32
Epochs 100
Optimizer Adam

Evaluation Metrics Accuracy, Precision, Recall, F1-Score

Software Tools Python
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Table 111 describes that the main goal lies in improving the
identification of anomalies present in smart grids by using the
Contrastive Graph Transformer Network. It implements a
Graph Transformer Network (GTN) framework to learn
sophisticated relationships within data. Contrastive learning
and InfoNCE loss function are used by the model to learn
representations that are stable. MAML is employed by the
model to enable efficient adaptation to a new task. The provided
evaluation metrics are meant to enhance the model performance
in identifying anomalies within the smart grid setting.

A. Contrastive Loss Curve

Fig. 4 provides the loss curve of proposed MGT-SmartGrid
model. The training and validation loss decreases steadily with
the number of epochs (1.15 to 0.52 and 1.12 to 0.67
respectively) and convergence of the results is high and
overfitting is low. There is a sign of great generalization in that
the final training (0.52) and the validation loss (0.67) are very
close to each other. These values are justified by the fact that
the multimodal graph transformer is effective to learn cross-
sensor embeddings to enable the contrastive objective to
stabilize and not sacrifice the capacity to detect anomalies to
take place in different circumstances of the smart grid.

Training and Validation Contrastive Loss Curve (MGT-SmartGrid)

—e— Training Loss
—m— Validation Loss

Contrastive Loss
o =4 = [
@ o = =

=
4

o
@

0.5

25 5.0 75 10.0 125 15.0 17.5 20.0
Epoch

Fig. 4. Training and validation contrastive loss curve (MGT-SmartGrid).

B. Efficiency Analysis

Table 1V of computational efficiency reveals the trade-off
between the performance and the consummation of resources.
The proposed CGTN-SSML model takes 180 seconds to train,
which is comparatively higher than the time of the Random
Forest (90 s) and the SGD (120 s), but with higher accuracy in
identifying anomalies. Its time per sample to infer is 1.8 ms,
lower than AE-GRU-EE (2.0 ms) and it occupies 220 MB
memory which is a little large compared to Isolation Forest (120
MB). These results confirm that the recommendable
multimodal graph transformer is a trade-off between high
accuracy against moderate computation costs to implement the
smart-grid in real-time.

C. Cross-Modality Attention Statistics

Table V represents the multimodality attention distribution
of the Multiphasia Graph Transformer to sensor modalities. The
Voltage weighs the most (0.28) followed by Current (0.22) and
Power Factor (0.18). Such environmental factors such as
Temperature (0.10) and Humidity (0.10) are less focused, since
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they influence anomaly detection less. This demonstrates that
the model is more concerned with electrical measures, but it
also considers the environment, and this enhances the accuracy
of detection. This guarantees that there is high level of cross-
sensor fusion because it gives equal attention to ensure efficient
detection of anomaly in the dynamical smart-grid environment.

TABLE IV.  COMPUTATIONAL EFFICIENCY ANALYSIS
Methods Training Time In;z;eg:len'll)‘::ne Memory
(s) (ms) Usage (MB)
Isolation Forest
(IF) 45 0.8 120
SGD 120 1.5 180
Random Forest | 90 1.2 200
AE-GRU-EE 150 2.0 250
Proposed
CGTN-SSML 180 1.8 220
(Novel MGT)
TABLE V. CROSS-MODALITY ATTENTION WEIGHTS PER SENSOR
MODALITY
Sensor Modality Average Attention Weight
Voltage 0.28
Current 0.22
Power Factor 0.18
Frequency 0.12
Temperature 0.10
Humidity 0.10
Cross-Sensor Feature Importance - MGT-SmartGrid
Humidity
Temperature
Frequency
Power Factor
Current
Voltage

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Attention Weight

Fig. 5. Cross-sensor feature importance — MGT-SmartGrid.

Fig. 5 shows how each sensor modality contributes to the
process of identifying anomalies of the MGT-SmartGrid model.
The voltage weight is 0.28, then Current (0.22) and Power
Factor (0.18). Other less important yet significant are the
Frequency (0.12), Temperature (0.10) and Humidity (0.10).
The result of the model is a distribution that focuses on
electrical measurements with the environmental context, not to
mention, cross-sensor fusion that is effective. It confirms that
the weights of attention provide understandable outcomes of the
modalities that lead to correct and real-time detection of
anomalies.
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D. Anomaly Score

In Fig. 6, the analysis of the histogram reveals that there is
a clear distinction between the normal and abnormal
occurrences. Normal scores have been distributed around the
middle of 0.30, where most of the normal scores lie between the
range of 0.15-0.45, with abnormal scores lying around the range
of 0.80 between the 0.65-0.95 range. Indicating lines of each
group are dashed, and this is the testimony of the absence of
overlap and excellent discriminative capability. This
distribution attests that the MGT-SmartGrid model gives far
greater scores to the anomaly in the event of actual faults, in the
sense of making the practical thresholding of real-time
detection in heterogeneous sensor input without incurring
excessive false alarms.

Anomaly Score Histogram - MGT-SmartGrid Model
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Fig. 6. Anomaly score histogram — MGT-SmartGrid model.

E. Confusion Matrix

Fig. 7 shows that the MGT-SmartGrid model performs well
in terms of classification. This measure will offer an overall
accuracy of approximately 0.96 and will be highly sensitive to
the unusual grid conditions. The low off-diagonal values
confirm that the multimodal graph transformer is an effective
cross-sensor  correlation model, which enables high
discrimination to be attained in real-time with multimodal
recognition of normal and abnormal conditions along the smart
grid in cases where the data sources are heterogeneous, and the
process of occurrence is complex.

Confusion Matrix - Final MGT-SmartGrid Model

Actual
Normal

Anomaly

Ancmaly

|
Normal

Predicted

Fig. 7. Confusion matrix — final MGT-SmartGrid model.
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F. ROC Curve

In Fig. 8, the ROC curve is used to indicate the threshold of
the abnormal performance of the MGT-SmartGrid model that
is independent. The orange line is steeper towards the top-left
and has an AUC of 0.97, which indicates that the line has a good
discrimination of normal and abnormal events. Although the
low false positive rates (beneath 0.1) yield a true positive of
above 0.90, which is a high degree of sensitivity and specificity.
The huge gap between the ROC curve and the diagonal baseline
confirms the truth that the multimodal graph transformer is a
factor that greatly distinguishes the heterogeneous sensor
signals to determine the report of anomalies with high degree
of robustness and minimum error.

ROC Curve - Anomaly Detection (MGT-SmartGrid)
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Fig. 8. ROC curve —anomaly detection MGT-SmartGrid Model.

G. Ablation Study

Fig. 9 shows the contribution that each component makes to
the end accuracy. The overall model of MGT-SmartGrid
achieves 96.5% hit rate. The Multimodal Node Encoding
elimination accuracy is 93.2, the Contrastive Learning
elimination accuracy is 91.0 and the adaptation of MAML also
eliminates the accuracy at 89.4. Such results confirm the fact
that it is the combination of all three models- multimodal
fusion, contrastive representation learning and meta-learning
that causes the proposed framework to attain the high level of
anomaly detection and, therefore, the significance of each in
attaining real-time and robust smart grid monitoring.

H. Performance Metrics

In Fig. 10, the bar chart reveals the efficacy in categorizing
the suggested MGT-SmartGrid framework. Its accuracy is 0.96,
the precision and recall is 0.94 and 0.95, respectively, and the
total F1-score is even at 0.95. The big values are an indication
that the model is correct in identifying anomalies and most
likely not to miss or falsely identify anomalies. This silver slice
in metrics is sustainable predictive accuracy that supports the
idea that multimodal graph fusion is a significant enhancer of
the reliability of detection over the smart-grid dataset as
compared to the conventional single-modality or baseline
graph-transformer process.
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Fig. 9. Ablation study.
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Fig. 10. Classification performance evaluation metrics.

I. Comparative Analysis

Table VI demonstrates that the proposed CGTN-SSML
with Multimodal Graph Transformer has the best accuracy of
96.5% accuracy, 95% precision, 95.5% recall and 95.2% F1-
score compared to AE-GRU-EE (91.1% accuracy) and
Isolation Forest (92.2% accuracy). These values are witness to
the fact that the multimodal cross-sensor fusion and contrastive
self-supervision are the complements to the process of
anomalies detection of smart grid data. The combination of the
high accuracy and recall presents low false positives and false
negatives, and this is indicative of the high and reliable ability
to identify anomalies in real-time within a heterogeneous
environment.

TABLE VI.  COMPARISON OF PERFORMANCE METRICS
Accuracy Precision Recall Fl-
Methods Score
(%) (%) (COT A

Isolation Forest (IF) 922 943 89.9 9.0

[23]

SGD [24] 99.6 96.6 99.5 93.4

Random Forest [25] | 96.0 97.0 97.1 97.0

AE-GRU-EE [26] 91.1 95.1 96.0 95.0

Proposed CGTN-

SSML 96.5 95.0 95.5 95.2
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J. Discussion

The discussion reveals that Multimodal Graph Transformer
(MGBT) with Contrastive Self-Supervised Learning and
Model-Agnostic Meta-Learning (MAML) are significant
algorithms, which have the potential to enhance anomaly
detection in smart grids. The model can capture the spatial-
temporal relationship and the relationship between the cross-
sensor relationship and is highly accurate, precise and recalls
very high in diverse situations. The experiments conducted
during ablation, testify the fact that each element multimodal
node encoding, contrastive learning and meta-learning has an
important and necessary role to play. The significance of
features and cross-modality attention underlines that the model
has the capability of highlighting the key electrical and
environmental measures, which are able to deliver high quality
and real-time identification of irregularities.

VI. CONCLUSION AND FUTURE WORKS

The suggested adaptive anomaly detector model, which
incorporates multimodal graph transformers, contrastive self-
supervised learning, and model-agnostic meta-learning, proves
to be effective at modeling the complex sensor relationships,
cross-sensor heterogeneity and learning with scarce labeled
anomalies in smart grid settings. The cohesive architecture
captures  structural, operational and  environmental
dependencies in an effective manner, which leads to a regular
high performance in terms of accuracy, precision, recall and F1-
score. These findings collectively highlight the practical
importance of the model: it enhances early anomaly detection,
improves grid reliability, and supports scalable deployment in
large, dynamic environments where traditional supervised or
unimodel approaches struggle. In addition to the numerical
findings, the study demonstrates that each of the modules, such
as cross-modal fusion, dual-view contrastive learning, and
MAML adaptation, has a significant meaning to robustness,
interpretability, and responsiveness within the context of the
real-time operation principles. Although these are the strengths,
the study has some limitations. The time dynamics of the
anomalies is not explicitly modeled, which opens the possibility
of further modeling of long-term behavioral changes. The
multimodal fusion continues to make training moderately
resource-intensive, and control tests in the real world are not
backed by any live grid conditions. Targeting these areas can
also be used to develop more applicability and generalization.

Future studies should then aim at incorporating temporal
graph attention techniques to follow dynamically changing grid
processes more accurately and create lightweight multimodal
encoders to minimize computation costs about edge-level
implementation. The extension of the framework to real-time
pilot testing in active substations will assist in confirming the
stability in the situation of real disturbances. Moreover, a
combination of predictive maintenance and energy forecasting
can be developed on the same architecture which can form a
complete intelligent monitoring ecosystem for next-generation
smart grids.
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