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Abstract—The accelerating pace of digital transformation (DT)
across industries demands accurate, transparent, and adaptable
maturity evaluation frameworks capable of capturing complex
organizational behaviors. Conventional fuzzy logic and decision
tree-based maturity models cannot effectively represent the
nonlinear dependencies among DT indicators and often produce
inconsistent, opaque assessments. To overcome these limitations,
this study proposes the TUMI (Transformer TabNet Unified
Maturity Intelligence) framework, a novel hybrid deep learning
architecture specifically designed for DT maturity assessment.
The framework uniquely integrates FT-Transformer and TabNet,
enabling simultaneous modeling of global feature dependencies
through attention mechanisms and localized sparse feature
selection aligned with DT maturity metrics. This domain-tailored
hybridization goes beyond existing hybrid or ensemble
approaches by supporting real-time readiness estimation,
accommodating heterogeneous organizational indicators, and
offering structured interpretability based on complementary
attention weights and feature selection masks. The proposed
model was trained using a multi-dimensional DT maturity dataset
implemented in Python (PyTorch). Experimental results
demonstrate strong predictive performance, with 97.0% accuracy,
96.0% precision, 95.0% recall, and an AUC of 98.2%,
representing an 8.5% improvement over traditional fuzzy and
decision tree models. The interpretability provided by the
combined mechanisms offers clearer insight into the
organizational determinants influencing maturity progression.
Overall, TUMI enhances transparency, diagnostic capability, and
scalability, providing an evidence-based, explainable, and cross-
industry applicable solution for supporting organizations in
evaluating and improving their digital transformation maturity.

Keywords—Digital transformation; FT-Transformer; TabNet;
maturity intelligence; deep learning

L INTRODUCTION

DT has emerged as an important component of firm
competitiveness due to its fundamental change in the way
organizations have used technology to enhance operations,

governance, and risk management [1]. In the case of publicly
traded companies, digital maturity is positively correlated with
the size of the market capitalization, investor trust, and
sustainability by the market [2]. The latest progress in artificial
intelligence (Al), cloud computing, and big data has increased
the adoption pace - companies can create new business models
and take strategic risks [3]. Nevertheless, evaluating the
maturity of the process of DT, is one of the most challenging
tasks of businesses that are subject to the control of financial
indicators [4] The conventional models of maturity are
basically the use of static checklists, expert views or qualitative
surveys -all of which simplify the digital developments or are
investment based but fail to encapsulate what [5]. Lastly,
conventional approaches have a low propensity in considering
uncertainty and linear relationships in organizational data [6].
The outcomeis that more complex intelligent frameworks are
required to take into account qualitative and quantitative cues,
and give simpler, resilient, readable, and operational maturity
analysis [7].

The most recent breakthroughs in artificial intelligence,
particularly machine learning and deep learning, indicate
potential for higher fidelity in organizational maturity
assessments [8]. Ensemble techniques such as Random Forests
and boosting methods are regarded as highly effective when
working with structured datasets [9]. Challenges arise, though,
as these techniques struggle to capture higher-order
dependencies of features across environmental conditions [10].
Similarly, marker-based supervised classification deep learning
methods, such as multilayer perceptrons, have the potential for
predictive accuracy; however, they tend not to be explainable,
and so create decreased buy-in in decision-making scenarios.
Thus, a research gap exists where an advanced method
improves performance while also providing explainability. To
this end, researchers have begun to validate domain-specific
models for structured, tabular datasets. FT-Transformer
employs an attention mechanism to uncover complex feature
interaction, whereas TabNet provides accuracy as well as
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interpretability using feature selection masks. While both FT-
Transformer and TabNet are effective when used alone, they
may not achieve their full potential. In order to address these
limitations, the study proposes a new hybrid architecture that is
vastly different as compared to the prior models of maturity
assessment. The current deep learning, fuzzy-rule-based, and
decision-tree methods fail to describe global aspects of feature
dependencies and local sparse selection, as well as offer
decision-treespecificinterpretability in line with organizational
indicators. FT-Transformer, combined with the TabNet TUMI
framework, is the first to integrate both FT-Transformer and
TabNet in domain-specific ways to support nonlinear maturity
development, real-time evaluation needs, and multimodal
enterprise information integration. This stance brings out the
uniqueness of innovation and the methodological change that
this study brings to the literature on maturity modeling. This
research direction is also associated with a social impact, where
the objectivity ofan assessment of maturity can be provided by
information, and will allow the digital transformation to be
more fairly adopted by small and medium-sized businesses.
The framework helps to enhance the access and equitableness
of organizational readiness evaluation by reducing the reliance
on specialized assessors and offering evidence-based
information in an automated manner. In order to clearly define
the objective of this work and fill in the existing research gap,
the following research question is set:

How can a hybrid deep learning framework integrating FT-
Transformer and TabNet enhance the accuracy and
interpretability of digital transformation maturity assessment?

A. Problem Statement

The concept of DT maturity models is gaining traction in
both academic and practitioner contexts; however, the majority
of existing literature remains limited in significant ways. Most
existing maturity models remain among the more traditional,
qualitative frameworks, relying on descriptive scales and
subjective expert evaluations, which limits their objectivity and
industrial comparability [11]. Even when statistical or machine
learning techniques have been utilized, the methods generally
remain confined to more conventional, and often less-than-
efficient, classifiers to standardize complexity, while also
overlooking the nonlinear relationships or interactions among
multiple organizational factors (e.g., culture, leadership, tech
investments, and innovation capability) that shape the
experience of the organization. Moreover, the deep learning
models are not interpretable. Deep learning may be more
precise, though such models do not give much insight into
decisions to be made by decision-makers. Moreover, the
existing literature usually follows up on maturity at a certain
point in time, neglecting the dynamic and changing process of
DT [12]. These shortcomings address the fact that they require
flexible, open and legitimate instruments that can offer a
holistic view of organizational maturity. Thus, it is evident that
there are gaps in the literature to develop hybrid deep learning
systems that can enhance predictive performance and offer
useful information to practitioners. It is significant that
organizations should address these gaps to evaluate their
progress in DT and establish evidence-based plans to continue
working and stay competitive.
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B. Research Motivation

This research is motivated by the immediate need to
develop objective and intelligible models in the evaluation of
maturity in DT. The current methods lack sufficient variance
(predictive ability) or fail to report results on Dunner
(decisions) with respect to evenly relevant features. This study
aims to create a hybrid structure that makes use of the
advantages of FT-Transformer in its capability to model
complicated interactions between features and the
understandable features of TabNet, since the overall model
accuracy and clarity will allow organizations to make data-
driven and strategic choices to transform themselves.

C. Research Significance

This research is important in the sense that it creates a field
of digital maturity measurement, which relies on the current
state-of-the-art deep learningmodels. The hybridsystem of FT-
Transformer and TabNet is beneficial to the academies and the
industry, since it balances the war between performance and
explainability that has been long held. The findings will enable
organizations to be more accurate at determining
transformation readiness and, furthermore, identify what
contributes to or is associated with maturity. Overall, the study
introduces a findable, clarifiable, and solid instrumentto the DT
agenda in industries.

D. Key Contributions

e Proposed a novel hybrid deep learning framework
(TUMI) that integrates FT-Transformer and TabNet to
effectively capture both global feature dependencies and
localized feature importance for DT maturity
assessment.

e Introduced an attention-directed fusion scheme that
interposes dense embeddings across the two branches,
which better improves interpretability and model
generalization across a wide range of organizational
indicators.

e Introduces a domain-tailored hybrid deep learning
architecture that uniquely combines attention-driven
global feature interaction modeling with sparse, stepwise
feature selection for DT maturity evaluation.

e Provides a two-level interpretability mechanism through
Transformer attention maps and TabNet feature masks,
offering more transparent maturity insights than current
explainable Al methods in the DT domain.

e Development of a scalable and open-source maturity
assessment tool, deployed in Python, based on Python,
PyTorch framework, to support data-driven, real-time
decision-making in organizations that have embarked on
digital transformation.

The remainder of the study is organized as follows:
Section II provides an extensive review of the related works
that discusses the existing digital maturity models and their
limitations. Section Il elaborate on the proposed approach.
Section IV present the experimental results and interpretation.
The conclusion and future research directions, limitations, and
recommendations are discussed in Section V.
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1I. RELATED WORKS

Marin Diaz & Galdéon Salvador [13] improve group
decision-making within organizations undergoing DT by
suggesting a new methodology that calculates the Digital
Maturity Level (DML) through fuzzy logic and the Analytic
Hierarchy Process (AHP). The approach applies a fuzzy 2 -tuple
linguistic model to deal with subjective judgments in a proper
way and determine a strategic DT roadmap. A sample of 1,428
Spanish SMEs was assessed and divided into three clusters to
make recommendations based on firm size and digital mindset.
The methodology centers on five broadly accepted criteria
based on currentliterature to measure DML. The method's main
benefit is its capability to manage linguistic ambiguity and
produce cluster-based strategies for DT. The findings validate
that firm size and digital thinking affect DML and
transformation readiness strongly. The limitation of the model
is, however, that it is geographically biased and requires
validation across sectors and with newer technologies such as
AL

Jafari & Van Looy [14] propose to investigate the
applicability of a decision-tree method as an applied and
effective instrument for organizations to self-measure their
digital work maturity level, in addition to classical maturity
models (MMs). An existing MM was chosen by the researchers
and improved through creating a decision tree-based self-
assessment instrument. The research process entailed a two-
round field study with a large public sector organization to test
the instrument's validity. In contrast to earlier research with
poor factor coverage or practical tooling, this method offers an
easy-to-use and practical tool for measuring digital maturity. It
is also its strength as it can be easily used by practitioners
without complex measurements and impedes the quick insights
to be reached. The findings also indicate that decision trees can
effectively group maturity levels and add to the DT strategies.
However, the studyhas a weakness of concentratingon a single
organization and sector, and general validation should be
carried out through various sectors and types of organizations.

ForouzeshNejad & Arabikhan [15] developed a data-driven
maturity model to guarantee proper evaluation and forecasting
of project management maturity levels of organizations. The
methodology involves the use of the Fuzzy Best-Worst Method
ofcombiningexpert-weighted indicators of 22 indicatorsin five
categories, then a fuzzy inference system to label data, and a
Gradient Boosting algorithm to build the predictive model.
Besides, sensitivity analysis was conducted with SHAP
(SHapley Additive exPlanations) to determine the impact of
each indicator. Even though the size or origin of the datasetis
not detailed, the model was constructed using real
organizational data according to the structured indicators. The
integration of domain knowledge with machinelearning, a high
level of interpretability (SHAP), and more than 98 per cent
accuracy in its predictions are major advantages. The results
highlight such major considerations as risk management,
cooperation, and project scope clarity. The limitations of the
study include a lack of transparency on the specifics of the
dataset and generalizability in different sectors.

Aras & Biiyiikozkan [16] propose to create a complete,
industry-agnostic digital maturity model that will help
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organizations precisely measure their DT path and design goal-
congruent roadmaps. The researchers carried out a wide-
ranging systematic literature review employing the PRISMA
method with the aid of a bibliometric analysis tool to aid in
visualizing trends and gaps. Grounded on both academic and
consultancy-based models' perspectives, a new hierarchical
model with dimensions and sub-dimensions was mooted, which
covered strategy, governance, and other aspects of
transformation. Although the study does not employ a
conventional dataset, it borrows from a broad corpus of
literature for the development of the model. Its prime benefits
are the widest applicability to various industries, thorough
documentation of the DT life cycle, and enhanced depth of
assessment in comparison to other models. The findings prove
that the model fits the various transformation phases,
supporting both public and private organizations. Limitations,
however, are the absence of empirical validation in the form of
actual case studies and the use of only literature for model
development.

Stoiber & Schonig [17] demonstrate that the enterprises of
every industrial sector increasingly incorporate Internet of
Things (IoT) technology into their operations to achieve a data-
centric transformation of their enterprises. Generation and
utilization of detailed process data in real-time and linking of
process entities provide an improvement and useful redesign of
business processes of any type. Yet, a purposeful exploitation
of IoT technology towards DT and Business Process
Improvements (BPI) is difficult to achieve because of the
intricacies involved in integrating loT with existing processes.
Organizations need proper guidance to assess and define their
initiatives on loT-based BPL This study thus recommends an
end-to-end loT-based BPI Maturity Model that helps
organizations ascertain their existing state and obtain help to
optimize or build certain competencies. This study is a
description of the systematic process of the maturity model
development, includinga wide literature review and a Delphi
study covering six rounds.

Malik, Chaudhary, & Srivastava[ 1 8] demonstrate the wide-
ranging influence and uses of DT in various engineering fields
by illustrating its contribution to the automation of labor-
intensive processes and system optimization via digital tools
and intelligent technologies. The research adopts a qualitative
review approach, assessing 52 different DT applications with
rich descriptions of methodologies, tools, state-of-the-art
advances, and performance assessments through experiment or
simulation. Although there is no particular dataset adopted, the
editorial aggregates rich case-based facts across diverse
industries. The main benefits are heightened system
effectiveness, improved innovation, and scalability facilitated
through Al ML, and bigdata analytics. The outcomes highlight
DT's worth in use cases such as digital twins, smart cities,
health, and intelligent manufacturing. But limitations are the
editorial style of the book, the absence of quantitative
performance benchmarking across cases, and the requirement
of harmonized frameworks for smooth DT adoption across
industries. Standardization, interoperability, and real-time
implementation issues are to be addressed in future work.

Espadinha-Cruz & Reboredo [19] create a fuzzy system-
based maturity model to measure and direct the use of Additive
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Manufacturing (AM) in organizations, considering the
imprecision and vagueness that come with human judgment.
No common dataset is used in the study, but it is rather based
on professional knowledge, fuzzy rules, and assessments of the
automotive industry. The novel approach brings together fuzzy
set theory in order to reflect vagueness and rule-based
reasoning to examine an array of AM maturity. It is one of the
greatest strengths of the system since it is able to provide a
flexible and detailed measurement than the rigid conventional
models. It also supports strategic decision-making as it directs
AM capabilities in relation to the company’s goals. In a real-
life scenario in the automotive industry, the system identified a
moderate AM maturity of 3, which depicts AM supplementing
the traditional methods. Another indication of significant gaps
in the results was also the lack of employee competencies and
training in AM technologies. This approach provides the
possibility of constant monitoring and promotion of the
integration of AM. However, the reliance of the model on rules
developed by experts as well as subjective inputs can limit its
feasibility in other industries in terms of scalability and
objectivity.

Chen et al. [20] developed a comprehensive loT-based
Business Process Improvement (BPI) Maturity Model that
assists organizations in assessing their current level of
integration of the IoT and identify ways of building up the
capabilities. There was no specific dataset used, but the model
was constructed based on literature and opinions presented by
the experts. The methodology involved a thorough literature
search anda six-round Delphi study to gather and consent to the
expert opinion. The greatest advantage of the model is that it is
systematic and flexible, and therefore, companies could assess
and enhance their method of process improvement using the
IoT systematically. It helps the decision-makers plan, prioritize
as well as execute loT strategies efficiently. The results show
that the model is capable of determining the important features
of IoT adoption and the maturity of BPI. It provides applicable
suggestions that are applicable in various industrial settings.
However, one of its shortcomings is that it has not been
empiricallytested againstreal organizational data, and thismay
restrict its applicability. Moreover, its subjectivity may also
introduce subjectivity in the appraisal process since it is subject
to expert opinion.

Despite previous research on the use of fuzzy systems,
AHP-based tools, rule-driven maturity models, and single deep
learning architectures, none of them at the same time
characterize non-linear feature relationships, sparse
interpretability, and domain-specific maturity indicators. The
current hybrid or explainable models do not have the capacity
to incorporate high-dimensional organizational behavior, real-
time assessment systems, heterogeneous enterprise measures
and structured interpretability that correspond directly to the
measurement of DT maturity. The current TUMI framework
addresses these flaws through the integration of FT-
Transformer relational modeling with sparse selection logic of
TabNet to form a hybrid architecture that, to the best of our
knowledge, has never been tried or empirically tested in the
literature on maturity assessment.
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II1. PROPOSED METHODOLOGY FOR DIGITAL
TRANSFORMATION MATURITY ASSESSMENT

The methodology proposed in this study presents TUME-
Transformer-based Unified Maturity Intelligence, a hybrid
deep-learning framework to evaluate DT maturity in
organizations. The methodology begins with a collection of
survey data on organizations, which includes the variables of
strategic direction, culture, technology usage, capability and
skill of the workforce, and customer engagement. This data is
then preprocessed with multiple data conditioning layers, such
as addressing missing values, label encoding categorical
variables, normalizing numerical features with Min-Max
normalization, outlier detection and addressing, and addressing
feature relevance, quality, and uncertainty prior to modeling.
The hybrid modeling stage will consist of two branches
operating in parallel: one branch will use the FT-Transformer
with self-attention mechanisms to capture complex non-linear
relationships amongst the features, and the other will use
TabNet to perform a sparsity-inducing feature selection to
discover the most influential maturity indicator features. The
outputs of the two branches will be merged in a concatenation
layer connecting the outputs of each branch, followed by fully
connected layers producing either a categorical level of
maturity or a continuous score of maturity.

< =
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values variables data
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‘ Output Layer

Fig. 1.

Fig. 1 shows the structured architecture of the adapted
TUMI hybrid model for measuring maturity in DT. The
processes begin with data collection, followed by data
preparation. Data preparation includes two branches, which
process data in parallel: one using an FT-Transformer and the
other using TabNet. FT-Transformer captures complex
interactions amongst the features in a self-attentional manner,
while TabNet focuses on the most important features with
sparse feature selection processes. The output of the two
branches is in this hybrid architecture concatenated and passed
through fully connected layers to come up with maturity
predictions. Such systematic architecture offers some degree of
accuracy, interpretability and robustness that can be further
benchmarked and generally improve such strategies to create
maturity in DT.

A. Data Collection

The data applied in this study was taken by the publicly
accessible Digital Transformation Dataset by AprajitByte on
Kaggle [21]. The data contains organizational variables in
cross-sectional form of different industries, and provides a
summary of the DT implementations. The key features of the
datasetare industry type, firm size, year of adoption of digital
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tools, revenue and efficiency effects, digital skills training, and
customer engagement perspective. These attributes will give
insight into the extent to which DT is being followed and the
effectiveness of these changes in the organizations. Missing
data processing, categorical variables re-coding, and numerical
variable feature normalization were the steps of the data
remediation process to make the data reliable and consistent.
The last dataset will enable the project teams to create and test
machine-like learning models to test the maturity of DT and
enable organizations with an ability to benchmark and track
progress and change to enhance transformation within the
organization.

B. Data Preprocessing

1) Missing value imputation: Addressing missing values is
an important process to protect the integrity of the data and
minimize bias in model training. Numerical variables suffering
from missing values were imputed via the median, and
categorical variables were imputed via the mode of each
variable. More advanced methods, such as K-Nearest
Neighbors (KNN) imputation or iterative imputation, may also
be appliedif missingnessis a considerable amount. Maintaining
properimputation protects against unnecessarily dropping any
record forthe sake of data preservation, and using the data as a
whole adds to training the models in a robust way, which is
crucial to creating trustworthy predictions from the hybrid
framework. The method for mean imputation is specified as in

Eq. (1):

X,
X; =131
l n
; j:lx'l

where, x; is the value of the feature for the h
i*" observation, X is the set of non-missing values, and n is the
total number of non-missing observations in that feature.

if x; is not missing

(1

if x; is missing and x; € X

2) Label encoding: Ordinal variables in the data, e.g.,
automation level and employee digital skills, were encoded as
numbers through label encoding. This way, the model is aware
of the inherent order between categories such as Low, Medium,
and High. The levels were manually associated with integers in
order to maintain semantic ranking, as shown in Eq. (2):

1, if category = Low
Encoded value =1 2, if category = Medium (2)
3, if category = High

This transformation prepares the data for decision tree
classification and accurately analyzes levels of digital maturity.

3) Min-Max normalization: Numerical features, such as
dollar amounts invested, estimated percentages of adoption,
and efficiency scores, were scaled using Min-Max
normalization to a range of 0—1, to create a uniform scaling
across features and avoid variables with relatively larger scales
from dominating the learning procedure. Normalization
encoding promotes faster convergence of hybrid models and
keeps the performance stable while training FT-Transformer
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and TabNet architectures. For any numerical feature x,
normalization is shown in Eq. (3):
X —Xmin (3)

X . =
normalized

“ Xmax~Xmin
where, x,,;, and x,,,, are the minimum and maximum

values of the feature, respectively.

4) Outlier detection and treatment: Survey responses or
numerical properties can have aberrant values that distort
predictions and/or diminish performance. Outlier detection was
conducted based on the Interquartile Range (IQR) method,
where anything above the maximum or below the minimum of
1.5%IQR is considered an outlier. Depending on the context of
the outlier and its frequency, it was either capped (winsorized)
or deleted altogether in the analysis, e.g., Horton et al. 2016.
Detecting those values that are outliers and then dealing with
those outliers will help alleviate the extreme values being
forced upon the attention mechanism in more recent
developments, such as FT-Transformer or the feature selection
masks in TabNet, where better models can be developed going
forward to develop a reliability metric for maturity assessment.
The mathematical expression is shown in Eq. (4):

x <Q, —15x IQR (4)

where, Q; and Q; are the first and third quartiles, and
IQR = Q3 — Q. Identified outliers were capped or removed
based on domain relevance and model sensitivity.

5) Feature selection: In order to enhance the clarity and
efficiency of the model, analyzed feature importance with
TabNet's inherent attention masks and removed any low-
variance features. In addition, it had the option to use either
Principal Component Analysis (PCA) or correlation-based
selection to reduce variables with redundancy, which would
improve model performance. Being able to prune the low-
importance features ensured the hybrid model obtained the
most informative organizational features, reducing noise, while
minimizing model complexity and retaining predictive
accuracy.

C. TUMI- Transformer Enhanced Maturity Intelligence

The proposed TUMI framework will use a hybrid modeling
approach to assess the DT maturity by combining FT-
Transformer and TabNet branches. This dual-branch structure
allows the model to measure the complicated non-linear
interactions between organizational characteristics, as well as
concentrating on the most appropriate variables, thus having
high predictive quality and interpretability.

1) FT-Transformer for maturity level prediction: The FT-
Transformer division is designed for organized tabular data and
uses self-attention methods to encode complex relationships
between features. The branch applies densely, locating each of
the input features. For example, categorical features (e.g.,
industry type, automation level) are converted to embeddings
through trainable layers; numerical features (e.g., efficiency
scores, percentage of digital adoption) are normalized to
accommodate comparable scales. The essential process in the
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FT-Transformer is self-attention, which allows the model to
represent the relevance of each feature to all other features
across the dataset. This process allows the branch to encode
conditional dependence (e.g., technology adoption depends on
workforce skills and engagement). The computation is written
as follows in Eq. (5):

M7
Hg, = softmax(\/T_)O %)
M

where, L = XW;, M = XW,,, and O = XWyrepresent the
query, key, and value matrices, respectively; d,,is the scaling
factor for the dot-product, and Xis the input feature matrix. The
output Hg 4is a dense embedding vector that encodes the high-
level relationships among all organizational features, providing
a contextual representation for subsequent prediction.

2) TabNet branch for sparse feature selection: The branch
of TabNet is concentrated on selecting sparse features. With the
help of this algorithm, the model can focus on the most
meaningful organizational features and dismiss irrelevant and
noisy ones. TabNet computes input features by using a series of
decision steps, and at every decision step, TabNet creates a
sparse attention mask M_tto to choose a subset of features that
are important to this step. Learnable weight matrices W_tto
convert the selected features into embeddings. Embeddings of
each decision step are added together to create an overall
feature representation in Eq. (6):

Hrgp = Z=1Mt®(XVVt) (6)

where, Tis the number of decision steps, X is the input
feature matrix and © is the element-wise multiplication. The
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sparse masks achieve interpretability and reduce the
computation, as the features that the mask identifies as
significant will show which aspects ofthe organization have an
effect on the DT maturity. As an example, it could be strategic
alignment, the level of digital skills of employees, or the level
of customer engagement. The sparse embedding H Tab
summarizes all the important drivers of maturity, which will be
incorporated with the FT-Transformer embedding when
making a final prediction.

3) Embedding integration and maturity estimation: Once
embeddings from both branches are obtained, they are
concatenated to form a single fused representation in Eq. (7):

Hpygion = [Hsa | Hrgpl (7)

The fused embedding is then subjected to fully connected
layers with nonlinear activation functions like ReLU or GELU.
These layers both smooth the feature presentation and project it
to the output space. The ultimate forecast may either be
categorical, where the organization is considered Low,
Medium, or High in terms of its level of DT maturity, or
continuous, whereby a numerical valueis given of the overall
level of maturity. The hybrid framework combines both
attention-based feature learning and sparse selection, thus
making it highly accurate as well as interpretable. Notably, it
gives organizations an idea of what features contribute to
maturity, which can be utilized in practice to prioritize digital
transformation initiatives. The hybrid method is useful because
it overcomes constraints of the previous models that are either
not interpretable or unable to capture complex interactions
between features, and hence TUMI is a powerful and scalable
model to assess the maturity of DT in different organizations.

Concatenate and add
CLS token

} \, ©0C

Contextual
Embeddings

Linear

Output
—Transformer; —
—

Fig. 2.

Fig. 2 depicts the whole architecture of the suggested TUMI
paradigm for evaluating DT maturity. The model takes as input
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Overall architecture of the TUMI hybrid model.

both categorical and numerical variables, which are processed
in embedding layers, and subsequently transformed and fused
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to learn complex relations. The FT-Transformer implements
self-attention to learn feature dependencies, while TabNet
performs sparse feature selection through its decision steps.
There are a number of algorithmic parameters that affect the
functioning of the proposed framework. The amount of
attention heads, embedding dimension, and depth in the FT-
Transformer branch, the lower the values the less the
representational capacity the model has and the higher the
values, the higher the complexity of the model. In TabNet, the
sparsity coefficient and number of decision steps are used to
regulate the selectivity of the model to important maturity
indicators which influence interpretability and stability. The
fusion-weighting parameter controls the proportion of each
branch, and the balance between the global attention-based
reasoning and local sparse feature selection is regulated by the
fusion-weighting parameter. These differences in parameters
change the granularity of learned patterns, the strength of
feature attribution, as well as the general predictive behavior,
which is further evident in the ablation results.

Algorithm 1: TUMI-Hybrid Model for
Transformation Maturity Assessment
Input:
X — Organizational dataset (categorical and numerical features)
y — True maturity labels or scores
T — Number of TabNet decision steps
E — Number of training epochs
o — Learning rate

Digital

Output:
¥ — Predicted maturity level or maturity score

Procedure:
Preprocessing:
Handle missing values:
Impute numerical features using median
Impute categorical features using mode
Encode categorical variables using label or embedding encoding
Normalize numerical features using Min—Max scaling
Detect and treat outliers using the IQR method
Perform feature selection to remove redundant or low-variance
features
Split dataset into training, validation, and test sets

FT-Transformer Branch:
For each input sample x_iin X:
Generate embeddings e 1= Embed(x 1)
Compute self-attention matrices:

L=ExW L // Query projection
M=ExW M // Key projection
O=ExW_N // Value projection

Compute attention output:

H_SA =softmax((L x M7) / sqrt(d_M)) x O
Derive high-dimensional embedding:

H FT=f(H SA)

TabNet Branch:
Initialize H Tab =0
Fort=1to T:
Compute sparse attention mask M t = SparseAttn(X, W t)
Generate decision step embedding:
ht=MtO XxW_t)
Accumulate step embeddings:
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H Tab=H Tab+h t
Obtain dense TabNet representation:
H Tab =g(H Tab)

Fusion and Prediction:
Concatenate embeddings from both branches:
H Fusion=[H FT||H Tab]
Pass fused vector through fully connected layers:
Z =ReLU(H_Fusion x Wi +b1)
Generate output:
¥ = Softmax(Z x W2 + bz)
or
¥ = Linear (Z x W2 + b2)
Compute loss:
L = LossFunction(y, y)

Optimization:
For epoch =1 to E:
Perform forward propagation
Compute gradients 0L/00
Update model parameters:
0«—0—a*VL
Evaluate on validation set

Evaluation:
Apply trained model on test data
Compute performance metrics:
Return final predicted maturity level or score §

Algorithm 1 describes the hybrid framework to predict the
maturity of the DT. The actions begin with pre-processing the
survey data set that involves the imputation of missing values,
label encoding, normalization, outlier treatment, and feature
selection. The items are then fed separately into the FT-
transformer and TabNet branches to identify complex
interactions between features and to prune a sparse set of
feature selection, respectively. Both of the branches are fused
withan embeddingand afterthis process, they are sent to a fully
connected layer to produce a final classification or score as per
conditions.

The study uses a hybrid TUMI approach that offers an
evaluation of the DT maturity in organizations. The hybrid
model is composed of two branches, which are working in
parallel. The FT-Transformer part involves the self-attention of
the interaction of many features that are nonlinear and complex
in nature. The TabNet component is a sparse feature selection,
but feature selection is conducted to develop the most
significant features. The two branches’ embeddings are
combined by a concatenation layer, and then passed through
fully connected layers to either classify as either a maturity
level or get a continuous maturity score. This dual-level
interpretability offers more straightforward reasoning of
maturity than traditional explainable AI methods of the
maturity assessment, since the weights of attention allow
highlighting global dependencies, whereas TabNet masks show
step-wise localized features. Transparency Transformer
attention weights support transparency by indicating global
dependency structures and TabNet feature masks indicate
localized indicator contributions, which provide a more rational
maturity-based reasoning than traditional explainable Al
techniques. The model is then assessed based on the common
measures of performance and this gives a guideline in gauging
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the organizational maturity in DT in a way that is robust,
interpretable and accurate.

IV. RESULTS AND DISCUSSION

The TUMI hybrid framework comprehensively exhibited
the possibility of being a potential tool for evaluating the
maturity of DT among organizations. The model was effective
in the measurement of interrelations among various dimensions
of the organization, including strategy, technology use,
workforce capabilities, and customer involvement, which gives
a clear measure of how to differentiate the level of maturity.
The fusion ofthe TabNet model and the FT-Transformer model
resulted in predictive capabilities as well as interpretability in
the prediction of the driving factors of maturity. The analysis
has shown tendencies and implications in various industries
and, more precisely, on what variables in the organization
became the drivers of DT maturity. On the whole, the study
proves that the hybrid approach is a legitimate and trustworthy
tool that organizations can use to estimate their position in their
DT initiatives and their areas of need improvement, as well as
allow them to make decisions more effectively in order to
advance their transformation process.

TABLEI. PARAMETER SIMULATION
Parameter Value / Range
FT-Transformer Layers 2-4
Fl_"-Traqsformer Embedding 64-128
Dimension
Attention Heads 4-8
FT-Transformer Dropout 0.1-0.3
Activation Function ReLU or GELU

Optimizer Adam or AdamW
Leaming Rate 0.001-0.005
TabNet Decision Steps (T) 3-5

TabNet Feature Dimension 32-64
Relaxation Factor 1.5

Sparsity Regularization 0.001-0.005
Batch Size 32-128

Epochs 50-100

Cross-Entropy
MSE (regression)

70% train, 15% validation, 15% test

: classification
Loss Function ( )

Data Split

Early Stopping Patience 10 epochs

TableI shows the parameters of the TUMI hybrid model for
evaluating the maturity of the DT through simulation. It has
preparation settings, FT-Transformer and TabNet settings and
training parameters. All these parameters determine how the
data is treated, the feature selection method, model architecture
and optimization method to guarantee reproducibility, and
performance. It gives a methodical reference to the
experimental design and comprises the ranges and techniques
applied during the prediction of maturity.
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A. Experimental Outcome

The experimental testing of the TUMI hybrid model was
worth it because it indicated that it can be used to predict DT
maturity in various organizational contexts. The model was
found to reliably define organizations of varying maturity
levels, besides defining nuanced interactions along features,
including strategy alignment, technology adoption, what the
workforce is capable of, and customer engagement. Using the
capabilities of FT-Transformer and TabNet, the hybrid
framework allowed to make predictions accurately and at the
same time, allowed to interpret and understand the most driving
maturity. The experiments support the generality of the
approach, with the different, adjusted data subsets providing the
benchmarkingoforganizations and decision-making support of
DT initiatives. On the whole, the findings represented a good
argument that it presents an effective, scalable, and actionable
opportunity to measure and improve the digital.

Parallel Coordinates of Features

— Hgh

/ T~

W

Strategy Technology Adoption Workforce Skills

Features

Customer Engagement
Fig. 3. Parallel coordinates of organizational features.

Fig. 3 presents a parallel co-ordinate plot, which compares
the characteristics of organizations in the sphere of maturity.
Each of the colored lines is an organization and contains such
features as strategy, adoption of technology, skills of
employees, and engagement with customers that are placed on
parallel axes. Aplotis one of the methods of monitoring several
variables simultaneously that depicts both similarities and
differences between maturity groups. This interpretation of the
multiple characteristics makes it easier to interpret it since it
displays the patterns, dependencies and significant differences
and signifies the significant organizational strengths and
weaknesses that relate to the outcome of the maturity of their
DT.

Feature Contribution to Maturity Levels

W Strategy
s Workforce skills
14 1 mmm Technology Adoption

Contribution Score

Medium
Maturity Levels

Fig.4. Feature contributions to maturity levels.
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Fig. 4 shows a stacked bar chartillustrating the contribution
of various organizational features, including strategy,
workforce skills, and technology adoption, at different maturity
states. Each bar consists of an aggregated maturity category and
is divided into stacked sections that shows the proportional
weight of organizational features. This visualization illustrates
how one or more features play a significant role at specific
maturity stages; in this case, workforce skills recall this
maturity state strongly, while technology adoptionis a bigger
contributor at later maturity stages. The stacked format
provides a clear comparative display of the data, as the chart is
able to display a cumulative and proportional contributions
simultaneously.

Distribution of Maturity Levels

10

Values

Low Medium High
Maturity Category

Fig. 5. Distribution of maturity levels.

Fig. 5 shows a violin plot, which indicates the maturity
scores distributed by low, medium, and high. Each shape of the
violin represents probability density of the scores indicating
both the spread and concentration of the scores. While the
median and mean indicators demonstrate the central tendency
of each maturity level and the shape provides an indication of
variation, it is possible to quickly notice overlaps and
differences between the levels with a horizontal comparison of
the three groups ensemble, suggesting within and between
groups the differences in maturity scores and an overall
comparison on the status of the digitization efforts within the
organization.

Distribution of Technology Adoption

Frequency

a0 50 60
Technology Adoption Score

Fig. 6. Distribution of technology adoption.

Fig. 6 presents a histogram of technology adoption scores
from organizations. The distribution illustrates adoption levels
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and how often organizations are ata given adoption level. Most
organizations hoveraround the middle of the distribution. The
width of the bars indicates variations in adoption - advanced
adopters at the top and laggards at the bottom. The chart also
allows a visual understanding of how organizations are
distributed along the adoption continuum and patterns,
concentrations, and outliers affecting DT maturity level.

Radar Chart of Organizational Features
Technology

Workfoyte

Strategy

Engagemen’

Fig.7. Chart of organizational feature technology.

Fig. 7 depicts the relative strength of the organizational
characteristics that help it attain DT maturity. The dimensional
elements of strategy, technology adoption, workforce
competencies, customerengagement,and innovationare placed
on the radial axes. The polygon that surrounds the
organizational values on those traits shows the effectiveness of
the organizationby the distance to which it extends. With larger
values extending further outwards, the visualization allows one
to compare multiple dimensions in a compact way while
simultaneously demonstrating strengths and weaknesses. The
radar chart offers multiple dimensions of visual cognition to
assess maturity profiles and to surface strategic improvement
opportunities.

3D Surface of Organizational Features

Fig. 8.

Surface of organizational features.

Fig. 8 presents a 3D surface plot of the correlation between
the strategy, technology adoption, and maturity results of the
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organization. The curve is used to demonstrate the combination
of'and simultaneous inputs of two dimensions on the results of
maturity. This draws nonlinear trends which would have not
been drawn in case the plot is two dimensional. The highs and
the lows of the surface demonstrate the various combinations
of performance that may be high or low and even enable
decision-makers to identify the critical points. On the whole, it
enables the interactive view of DT maturity which will
ultimately eliminate the complexity of various organizational
determinants, and it is still intuitive.

Stacked Area of Feature Growth

B Strategy
Technology
14 1 e Workforce

Contribution Score

Stage 1 Stage 3
Maturity Stages

Fig.9. Area of feature growth.

Fig. 9 depict an area stack chart that shows the cumulative
contributions of strategy, technology and workforce skills at
various maturity levels. The color symbolizes a distinct feature
with the thickness of the band of color giving relative
significance at the stage. As an organization develops, the
overall contribution also rises indicating that maturity will rise.
The representation both defines clearly individual and
combined contributing effects, and also allows the visual
identification of features to be made promptly on what features
are dominantateach stage (and to what degree). In general, this
chart straightforwardly shows, it is possible to compare the
maturity of an organization in terms of development stages.

B. Performance Evaluation

The TUMI framework showed high performance measures
on its evaluation of the DT maturity evidenced by the
experimental results of the framework. In particular, it was 97%
accurate, 96% precise, 95% recall and 96 F1-score. The
consistency, 97 percent, in the accuracy allows one to note that
the framework can successfully categorize the position of
organizational maturity and place it where it can be as
accurately as possiblereliably. Concerning accuracy, 97, also
highlights the factthat the given framework could reduce false-
positives in the measurements. Recall (95%) is a measure that
evaluates the framework ability to detect real maturity levels
without excluding any significant classifications. Besides, F1
score (98) implies that the approach can balance between
precisionand recall to provide satisfactory performancein both.
These more powerful measures of performance indicate that the
suggested TUMI architecture incorporates the latest state-of-
the-art features selection andattention-based methods to deliver
credible, scalable, and accurate measurements. These

Vol. 16, No. 11, 2025

performance metrics speak to its reliability as a decision-
support system for organizations in order to gain actionable
intelligence from their DT maturity assessment.

1) Accuracy: Accuracy can be defined as the ratio of
correctly classified examples to all examples. Accuracy can be
calculated as shown in Eq. (8):

TP+TN

Accuracy = ——
y TP+TN+FP+FN

®)

2) Precision: It indicates the reliability of positive
predictions by measuring fraction of correctly identified
positive instances among all of the predicted positives.
Precision can be calculated as shown in Eq. (9):

TP
TP+FP

Precision = 9

3) Recall: 1t is defined as true positive rate, and assesses
how well a model is detecting the true positives. It can be
calculated in Eq. (10):

Recall = —— (10)

TP+FN

4) Fl-Score: 1t is the harmonic mean of precision and
recall. It can be calculated in Eq. (11):

2XPrecisionxRecall
F1 — Score = Zocsiomxecar (11)

Precision+Recall
where, TP represents the true positive, TN represents the

true negative, FPrepresentsthe false positive, FN represents the
False negative.

TABLEII. PERFORMANCE METRICS
Metrics Value
Accuracy 97 %
Precision 96 %
Recall (Sensitivity) 95 %
F1 Score 96 %
Model Performance Metrics
100 T ) 5% 50

a0

60

Percentage (%)

Accuracy Precision Recall F1 Score

Fig. 10. Performance metrics.

Fig. 10 and Table II displays the performance of the
suggested classification model through four major evaluation
metrics: Accuracy, Precision, Recall, and F1 Score. Each bar
graphically shows the percentage value achieved by the model,
representing high levels of performance on all of them. The
model had an Accuracy of 97%, Precision of 96%, Recall of
95%, and an F1 Score 0f96%, collectively indicating its strong
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capacity to accurately classify DT maturity levels. The uniform
and high scores confirm the model's dependability and
effectiveness in managing both balanced and imbalanced data
situations with good prediction performance.

C. Ablation Study

The ablation study focuses on measuring the contribution of
each main component of the TUMI framework (FT-
Transformer branch, TabNet branch, fusion strategy, and key
hyperparameters / preprocessing steps) to overall predictive
performance and interpretability. In this way, the ablation
experiments help to show which components of the hybrid
design are essential and which are optional and the tradeoffs
(accuracy vs. complexity / interpretability).

TABLE III. ABLATION RESULTS
Model Accuracy Precision | Recall F1- AUC
Variant (%) (%) (%) Score (%)
(%)
Full Model | 97.0 96.0 95.0 96.0 98.2
(FT + TabNet)
FT- 943 93.8 92.6 93.2 95.1
Transformer
Only
TabNet Only 93.0 92.5 91.8 92.1 94.3
Without 92.1 91.6 90.9 91.2 93.8
Attention
Mechanism
Without 94.8 94.1 932 93.6 95.9
Sparsity
Regularization
Early Fusion | 95.5 94.8 94.0 94.3 96.6
Strategy
Late Weighted | 96.4 95.8 94.9 95.3 97.5
Fusion

Table III is a summary of the ablation experiment that was
done to assess the role of every architectural element in the
proposed TUMI framework. This comparison shows the effect
of deleting or changing such important mechanisms as
attention, sparsity regularization, fusion strategies, on the
overall effectiveness of the models. The result clearly shows,
the full hybrid arrangement has the best performance, whereas
simplified or partially disabled models demonstrate significant
decrease in predictive presence. These results support the idea
thatthe FT-Transformer as well as TabNet components, and the
selected fusion strategy are fundamental and complementary to
the goal of achieving the best accuracy and interpretability.

D. Comparative Analysis

The validation of the efficacy of computational frameworks
can be conducted mainly through comparative analysis,
particularly in cases where accuracy and interpretability are
critical e.g. in the field of DT maturity assessment. By
comparing proposed methodologies with tested methods
through benchmarking, the scholars can discover strengths and
reveal limitations and overall viability in a variety of
organizational contexts. This segment gives a methodical
similarity of different analytical models to the data of DT, their
design ideology, methods of computation and applicability. It
is easy to comprehend how the hybrid intelligence systems will
help in changing assessment requirements through tabular
presentation and structured visualization. The relative
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knowledge eventually increases thetrust of model selectionand
tactical implementation.

TABLEIV.  COMPARISON ANALYSIS
Methods Accuracy
Mamdani Fuzzy Inference + | 91.43%
Spectral Transformation [22]
Fuzzy AHP [23] 92.4%
Optimized Fuzzy Logic System [24] | 95.7%
Proposed TUMI 96%

Accuracy Comparison of Methods

Proposed TUMI 96.00
Optimized Fuzzy Logic System 95.70
w
g
o
£
s
7]
=
Fuzzy AHP 92.40
Mamdani Fuzzy Inference + Spectral Transformation 91.43
86 88 920 92 94 96 98 100

Accuracy

Fig. 11. Comparison with existing methods.

Table IV and Fig. 11 indicate the accurateness of different
methods to be employed to evaluate DT maturity. It indicates
that Mamdani Fuzzy Inference with Spectral Transformation
had a score 0of 91.43 and Fuzzy AHP had a score of 92.4 with a
margin. In the meantime, Optimized Fuzzy Logic System
scored much higher of 95.7 and was the most adaptable one.
The TUMI framework proposed in this study was also more
effective and efficient than any other method as it has scored
96, which proves its ability to be very robustand efficient.
Generally, the chart shows the gradual elimination of the
methods since TUMI has incorporated superior mechanisms to
attain a greater accuracy when assessinga DT maturity when
compared to the use of conventional fuzzy-based techniques.

E. Discussion

The results ofthe proposed TUMI framework can positively
affectthe models of DT,and eventually, this tool will transform
into a helpful solution to support organizations on their DT
journeys. The approach could depict the complex feature
dependencies and hierarchical decision boundaries by learning
attention-based feature learning by using FT-Transformer and
making structured decisions through TabNet. In this respect,
TUMI outperformed existing fuzzy inference and multi-criteria
decision-making models and showed merits of the model to
overcome constraints of the traditional models that normally do
not permit scaling in addition to actionable insight either on
usability or flexibility to various datasets. The performance
results with high metrics value, verify the robustness and
reliability ofthe model as demonstrated in real-world scenarios.
High-dimensional feature spaces allow the scalability of the
framework due to the capacity to handle heterogeneous
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organizational indicators and preserve the predictive behavior
under high-dimensional feature spaces, which proves the
flexibility to adaptable digital transformation scenarios. The
architecture does not have any limitations on its sector, which
is justified by the fact that it has been shown to perform well in
differentsectors, as indicated by its consistent performance in
the diverse organizational attributes in the dataset, thus its high
chances of cross-industry use in the maturity evaluation. The
hybrid design was also a design which is interpretable, by
methodology of feature selection, but is also predictive, by
methodology of self-attention. This moderated methodology
offered enlightenment on maturity to organizations that seek
actionable knowledge that depicts the maturity phase of
interventions. Although the model was a reflection of the
traditional models which were attempting to surpass, the use of
curated DT indicators is one of the areas that organizations can
revisitandmodernize as their practices evolve. Despite the high
predictive ability and high level of interpretability of the
framework, there are a number of limitations that are worth
notingto puttheresults in perspective. The research is basedon
one publicly available dataset, which can limit the
externalization of the findings to the other industries or
organizations. Cross-sectional data is also disadvantageous in
that it becomes difficult to provide dynamic or temporal
changes of digital transformation maturity. Also, there are no
real organizational case studies that would help validate the
applicability of the model practically. It is also possible that
with the dependence on predefined indicators, new or industry-
specific factors that are applicable to digital transformation get
overlooked. These shortcomings bring out areas of
improvement and enlargement in future research.

V. CONCLUSION AND FUTURE WORK

The TUMI framework aims at offering a useful and
interpretable framework to quantify the digital transformation
(DT) maturity by leveraging the advantageous characteristics
of FT-Transformer and TabNet architectures. The architecture
could encode attention-based co-embedding as well as sense
sparse feature selection into a single joint process to recognize
complex interrelationships between organizational indicators
withoutloss of interpretable output. The experimental results of
the research show that TUMI is unequivocally stronger than
traditional fuzzy logic and decision tree approaches in terms of
accuracy, precision, recall, F1 score and AUC score, and the
focus on the model, which offers steady data-driven estimates
of organizational maturity is important. In addition, the TUMI
offers scalable, fast,and automated learning platformto replace
the conventional rule-based maturity models as a response to
concems of subjectivity and opaqueness in current maturity
assessment models. Despite the good performance
demonstrated by TUMI, certain weaknesses are realized in this
research. The former is that a single dataset has been used that
restricts the extrapolation of the findings to the industries and
other organizational settings. The second weakness s that the
model essentially addresses the aspect of the digital maturity
using fixed indicators devoid of any temporal or dynamic
indicators of transformation behavior. The evaluation of
interpretability and applicability in the perspective of a
practitioner is also limited due to the lack of exterior expert
validation. In addition to technical performance, the framework
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adds societal value by enhancing assessments subjectivity and
makes digital transformation practices more adorable,
especially to the SMEs and organizations with weak
connections to expert analysts. It can be concluded that the
TUMI framework is capable of successfully modeling complex
organizational behaviors dueto the synergy between global
attention-based dependency modeling and sparse feature
selection. The hybrid architecture is strong as it can be
evidenced by the consistency in terms of accuracy, precision,
recall and AUC. The practicality of the framework is reflected
in the capacity of the framework to provide interpretable,
stable, and data-driven maturity scores, which allow
organizations to gain more diagnosticinsightsand minimize the
use of subjectiveassessments by experts. Through the provision
of scalable and automated assessment capability, TUMI
delivers real-world value to support informed planning of
digital transformation in the context of various industries.

In this part, one can take into account various prospects of
future studies. Additional development of the dataset by
incorporation of cross-domain and multi-organizational case
studies can help to increase the flexibility and strength of the
model. A time-series or longitudinal modeling technique canbe
used to continuously monitor the digital maturity trajectory and
provide the insight into the digital transformation journey and
the future strategic trajectories. Furthermore, populating the
model with a range of expert-in-the-loop validation and XAl
elements, which will increase transparency, reliability, and
acceptance in decision-making scenarios, can also be used as
an addition to the model. By taking into account these concerns,
future work can become more reliable, flexible, and practical,
and one day, TUMI will become an efficient tool to support the
process of digital transformation in organizations that will go
on the way to its maturity.
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