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Abstract—The accelerating pace of digital transformation (DT) 

across industries demands accurate, transparent, and adaptable 

maturity evaluation frameworks capable of capturing complex 

organizational behaviors. Conventional fuzzy logic and decision 

tree-based maturity models cannot effectively represent the 

nonlinear dependencies among DT indicators and often produce 

inconsistent, opaque assessments. To overcome these limitations, 

this study proposes the TUMI (Transformer TabNet Unified 

Maturity Intelligence) framework, a novel hybrid deep learning 

architecture specifically designed for DT maturity assessment. 

The framework uniquely integrates FT-Transformer and TabNet, 

enabling simultaneous modeling of global feature dependencies 

through attention mechanisms and localized sparse feature 

selection aligned with DT maturity metrics. This domain-tailored 

hybridization goes beyond existing hybrid or ensemble 

approaches by supporting real-time readiness estimation, 

accommodating heterogeneous organizational indicators, and 

offering structured interpretability based on complementary 

attention weights and feature selection masks. The proposed 

model was trained using a multi-dimensional DT maturity dataset 

implemented in Python (PyTorch). Experimental results 

demonstrate strong predictive performance, with 97.0% accuracy, 

96.0% precision, 95.0% recall, and an AUC of 98.2%, 

representing an 8.5% improvement over traditional fuzzy and 

decision tree models. The interpretability provided by the 

combined mechanisms offers clearer insight into the 

organizational determinants influencing maturity progression. 

Overall, TUMI enhances transparency, diagnostic capability, and 

scalability, providing an evidence-based, explainable, and cross-

industry applicable solution for supporting organizations in 

evaluating and improving their digital transformation maturity. 

Keywords—Digital transformation; FT-Transformer; TabNet; 

maturity intelligence; deep learning 

I. INTRODUCTION 

DT has emerged as an important component of firm 
competitiveness due to its fundamental change in the way 
organizations have used technology to enhance operations, 

governance, and risk management [1]. In the case of publicly 
traded companies, digital maturity is positively correlated with 
the size of the market capitalization, investor trust, and 
sustainability by the market [2]. The latest progress in artificial 
intelligence (AI), cloud computing, and big data has increased 
the adoption pace - companies can create new business models 
and take strategic risks [3]. Nevertheless, evaluating the 
maturity of the process of DT, is one of the most challenging 
tasks of businesses that are subject to the control of financial 
indicators [4] The conventional models of maturity are 
basically the use of static checklists, expert views or qualitative 
surveys -all of which simplify the digital developments or are 
investment based but fail to encapsulate what [5]. Lastly, 
conventional approaches have a low propensity in considering 
uncertainty and linear relationships in organizational data [6]. 
The outcome is that more complex intelligent frameworks are 
required to take into account qualitative and quantitative cues, 
and give simpler, resilient, readable, and operational maturity 
analysis [7]. 

The most recent breakthroughs in artificial intelligence, 
particularly machine learning and deep learning, indicate 
potential for higher fidelity in organizational maturity 
assessments [8]. Ensemble techniques such as Random Forests 
and boosting methods are regarded as highly effective when 
working with structured datasets [9]. Challenges arise, though, 
as these techniques struggle to capture higher-order 
dependencies of features across environmental conditions [10]. 
Similarly, marker-based supervised classification deep learning 
methods, such as multilayer perceptrons, have the potential for 
predictive accuracy; however, they tend not to be explainable, 
and so create decreased buy-in in decision-making scenarios. 
Thus, a research gap exists where an advanced method 
improves performance while also providing explainability. To 
this end, researchers have begun to validate domain-specific 
models for structured, tabular datasets. FT-Transformer 
employs an attention mechanism to uncover complex feature 
interaction, whereas TabNet provides accuracy as well as 
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interpretability using feature selection masks. While both FT-
Transformer and TabNet are effective when used alone, they 
may not achieve their full potential. In order to address these 
limitations, the study proposes a new hybrid architecture that is 
vastly different as compared to the prior models of maturity 
assessment. The current deep learning, fuzzy-rule-based, and 
decision-tree methods fail to describe global aspects of feature 
dependencies and local sparse selection, as well as offer 
decision-tree specific interpretability in line with organizational 
indicators. FT-Transformer, combined with the TabNet TUMI 
framework, is the first to integrate both FT-Transformer and 
TabNet in domain-specific ways to support nonlinear maturity 
development, real-time evaluation needs, and multimodal 
enterprise information integration. This stance brings out the 
uniqueness of innovation and the methodological change that 
this study brings to the literature on maturity modeling. This 
research direction is also associated with a social impact, where 
the objectivity of an assessment of maturity can be provided by 
information, and will allow the digital transformation to be 
more fairly adopted by small and medium-sized businesses. 
The framework helps to enhance the access and equitableness 
of organizational readiness evaluation by reducing the reliance 
on specialized assessors and offering evidence-based 
information in an automated manner. In order to clearly define 
the objective of this work and fill in the existing research gap, 
the following research question is set: 

How can a hybrid deep learning framework integrating FT-
Transformer and TabNet enhance the accuracy and 
interpretability of digital transformation maturity assessment? 

A. Problem Statement 

The concept of DT maturity models is gaining traction in 
both academic and practitioner contexts; however, the majority 
of existing literature remains limited in significant ways. Most 
existing maturity models remain among the more traditional, 
qualitative frameworks, relying on descriptive scales and 
subjective expert evaluations, which limits their objectivity and 
industrial comparability [11]. Even when statistical or machine 
learning techniques have been utilized, the methods generally 
remain confined to more conventional, and often less-than-
efficient, classifiers to standardize complexity, while also 
overlooking the nonlinear relationships or interactions among 
multiple organizational factors (e.g., culture, leadership, tech 
investments, and innovation capability) that shape the 
experience of the organization. Moreover, the deep learning 
models are not interpretable. Deep learning may be more 
precise, though such models do not give much insight into 
decisions to be made by decision-makers. Moreover, the 
existing literature usually follows up on maturity at a certain 
point in time, neglecting the dynamic and changing process of 
DT [12]. These shortcomings address the fact that they require 
flexible, open and legitimate instruments that can offer a 
holistic view of organizational maturity. Thus, it is evident that 
there are gaps in the literature to develop hybrid deep learning 
systems that can enhance predictive performance and offer 
useful information to practitioners. It is significant that 
organizations should address these gaps to evaluate their 
progress in DT and establish evidence-based plans to continue 
working and stay competitive. 

B. Research Motivation 

This research is motivated by the immediate need to 
develop objective and intelligible models in the evaluation of 
maturity in DT. The current methods lack sufficient variance 
(predictive ability) or fail to report results on Dunner 
(decisions) with respect to evenly relevant features. This study 
aims to create a hybrid structure that makes use of the 
advantages of FT-Transformer in its capability to model 
complicated interactions between features and the 
understandable features of TabNet, since the overall model 
accuracy and clarity will allow organizations to make data-
driven and strategic choices to transform themselves. 

C. Research Significance 

This research is important in the sense that it creates a field 
of digital maturity measurement, which relies on the current 
state-of-the-art deep learning models. The hybrid system of FT-
Transformer and TabNet is beneficial to the academies and the 
industry, since it balances the war between performance and 
explainability that has been long held. The findings will enable 
organizations to be more accurate at determining 
transformation readiness and, furthermore, identify what 
contributes to or is associated with maturity. Overall, the study 
introduces a findable, clarifiable, and solid instrument to the DT 
agenda in industries. 

D. Key Contributions 

• Proposed a novel hybrid deep learning framework 
(TUMI) that integrates FT-Transformer and TabNet to 
effectively capture both global feature dependencies and 
localized feature importance for DT maturity 
assessment. 

• Introduced an attention-directed fusion scheme that 
interposes dense embeddings across the two branches, 
which better improves interpretability and model 
generalization across a wide range of organizational 
indicators. 

• Introduces a domain-tailored hybrid deep learning 
architecture that uniquely combines attention-driven 
global feature interaction modeling with sparse, stepwise 
feature selection for DT maturity evaluation. 

• Provides a two-level interpretability mechanism through 
Transformer attention maps and TabNet feature masks, 
offering more transparent maturity insights than current 
explainable AI methods in the DT domain. 

• Development of a scalable and open-source maturity 
assessment tool, deployed in Python, based on Python, 
PyTorch framework, to support data-driven, real-time 
decision-making in organizations that have embarked on 
digital transformation. 

The remainder of the study is organized as follows: 
Section II provides an extensive review of the related works 
that discusses the existing digital maturity models and their 
limitations. Section III elaborate on the proposed approach. 
Section IV present the experimental results and interpretation. 
The conclusion and future research directions, limitations, and 
recommendations are discussed in Section V. 
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II. RELATED WORKS 

Marín Díaz & Galdón Salvador [13] improve group 
decision-making within organizations undergoing DT by 
suggesting a new methodology that calculates the Digital 
Maturity Level (DML) through fuzzy logic and the Analytic 
Hierarchy Process (AHP). The approach applies a fuzzy 2-tuple 
linguistic model to deal with subjective judgments in a proper 
way and determine a strategic DT roadmap. A sample of 1,428 
Spanish SMEs was assessed and divided into three clusters to 
make recommendations based on firm size and digital mindset. 
The methodology centers on five broadly accepted criteria 
based on current literature to measure DML. The method's main 
benefit is its capability to manage linguistic ambiguity and 
produce cluster-based strategies for DT. The findings validate 
that firm size and digital thinking affect DML and 
transformation readiness strongly. The limitation of the model 
is, however, that it is geographically biased and requires 
validation across sectors and with newer technologies such as 
AI. 

Jafari & Van Looy [14] propose to investigate the 
applicability of a decision-tree method as an applied and 
effective instrument for organizations to self-measure their 
digital work maturity level, in addition to classical maturity 
models (MMs). An existing MM was chosen by the researchers 
and improved through creating a decision tree-based self-
assessment instrument. The research process entailed a two-
round field study with a large public sector organization to test 
the instrument's validity. In contrast to earlier research with 
poor factor coverage or practical tooling, this method offers an 
easy-to-use and practical tool for measuring digital maturity. It 
is also its strength as it can be easily used by practitioners 
without complex measurements and impedes the quick insights 
to be reached. The findings also indicate that decision trees can 
effectively group maturity levels and add to the DT strategies. 
However, the study has a weakness of concentrating on a single 
organization and sector, and general validation should be 
carried out through various sectors and types of organizations. 

ForouzeshNejad & Arabikhan [15] developed a data-driven 
maturity model to guarantee proper evaluation and forecasting 
of project management maturity levels of organizations. The 
methodology involves the use of the Fuzzy Best-Worst Method 
of combining expert-weighted indicators of 22 indicators in five 
categories, then a fuzzy inference system to label data, and a 
Gradient Boosting algorithm to build the predictive model. 
Besides, sensitivity analysis was conducted with SHAP 
(SHapley Additive exPlanations) to determine the impact of 
each indicator. Even though the size or origin of the dataset is 
not detailed, the model was constructed using real 
organizational data according to the structured indicators. The 
integration of domain knowledge with machine learning, a high 
level of interpretability (SHAP), and more than 98 per cent 
accuracy in its predictions are major advantages. The results 
highlight such major considerations as risk management, 
cooperation, and project scope clarity. The limitations of the 
study include a lack of transparency on the specifics of the 
dataset and generalizability in different sectors. 

Aras & Büyüközkan [16] propose to create a complete, 
industry-agnostic digital maturity model that will help 

organizations precisely measure their DT path and design goal-
congruent roadmaps. The researchers carried out a wide-
ranging systematic literature review employing the PRISMA 
method with the aid of a bibliometric analysis tool to aid in 
visualizing trends and gaps. Grounded on both academic and 
consultancy-based models' perspectives, a new hierarchical 
model with dimensions and sub-dimensions was mooted, which 
covered strategy, governance, and other aspects of 
transformation. Although the study does not employ a 
conventional dataset, it borrows from a broad corpus of 
literature for the development of the model. Its prime benefits 
are the widest applicability to various industries, thorough 
documentation of the DT life cycle, and enhanced depth of 
assessment in comparison to other models. The findings prove 
that the model fits the various transformation phases, 
supporting both public and private organizations. Limitations, 
however, are the absence of empirical validation in the form of 
actual case studies and the use of only literature for model 
development. 

Stoiber & Schönig [17] demonstrate that the enterprises of 
every industrial sector increasingly incorporate Internet of 
Things (IoT) technology into their operations to achieve a data-
centric transformation of their enterprises. Generation and 
utilization of detailed process data in real-time and linking of 
process entities provide an improvement and useful redesign of 
business processes of any type. Yet, a purposeful exploitation 
of IoT technology towards DT and Business Process 
Improvements (BPI) is difficult to achieve because of the 
intricacies involved in integrating IoT with existing processes. 
Organizations need proper guidance to assess and define their 
initiatives on IoT-based BPI. This study thus recommends an 
end-to-end IoT-based BPI Maturity Model that helps 
organizations ascertain their existing state and obtain help to 
optimize or build certain competencies. This study is a 
description of the systematic process of the maturity model 
development, including a wide literature review and a Delphi 
study covering six rounds. 

Malik, Chaudhary, & Srivastava [18] demonstrate the wide-
ranging influence and uses of DT in various engineering fields 
by illustrating its contribution to the automation of labor-
intensive processes and system optimization via digital tools 
and intelligent technologies. The research adopts a qualitative 
review approach, assessing 52 different DT applications with 
rich descriptions of methodologies, tools, state-of-the-art 
advances, and performance assessments through experiment or 
simulation. Although there is no particular dataset adopted, the 
editorial aggregates rich case-based facts across diverse 
industries. The main benefits are heightened system 
effectiveness, improved innovation, and scalability facilitated 
through AI, ML, and big data analytics. The outcomes highlight 
DT's worth in use cases such as digital twins, smart cities, 
health, and intelligent manufacturing. But limitations are the 
editorial style of the book, the absence of quantitative 
performance benchmarking across cases, and the requirement 
of harmonized frameworks for smooth DT adoption across 
industries. Standardization, interoperability, and real-time 
implementation issues are to be addressed in future work. 

Espadinha-Cruz & Reboredo [19] create a fuzzy system-
based maturity model to measure and direct the use of Additive 
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Manufacturing (AM) in organizations, considering the 
imprecision and vagueness that come with human judgment. 
No common dataset is used in the study, but it is rather based 
on professional knowledge, fuzzy rules, and assessments of the 
automotive industry. The novel approach brings together fuzzy 
set theory in order to reflect vagueness and rule-based 
reasoning to examine an array of AM maturity. It is one of the 
greatest strengths of the system since it is able to provide a 
flexible and detailed measurement than the rigid conventional 
models. It also supports strategic decision-making as it directs 
AM capabilities in relation to the company’s goals. In a real-
life scenario in the automotive industry, the system identified a 
moderate AM maturity of 3, which depicts AM supplementing 
the traditional methods. Another indication of significant gaps 
in the results was also the lack of employee competencies and 
training in AM technologies. This approach provides the 
possibility of constant monitoring and promotion of the 
integration of AM. However, the reliance of the model on rules 
developed by experts as well as subjective inputs can limit its 
feasibility in other industries in terms of scalability and 
objectivity. 

Chen et al. [20] developed a comprehensive IoT-based 
Business Process Improvement (BPI) Maturity Model that 
assists organizations in assessing their current level of 
integration of the IoT and identify ways of building up the 
capabilities. There was no specific dataset used, but the model 
was constructed based on literature and opinions presented by 
the experts. The methodology involved a thorough literature 
search and a six-round Delphi study to gather and consent to the 
expert opinion. The greatest advantage of the model is that it is 
systematic and flexible, and therefore, companies could assess 
and enhance their method of process improvement using the 
IoT systematically. It helps the decision-makers plan, prioritize 
as well as execute IoT strategies efficiently. The results show 
that the model is capable of determining the important features 
of IoT adoption and the maturity of BPI. It provides applicable 
suggestions that are applicable in various industrial settings. 
However, one of its shortcomings is that it has not been 
empirically tested against real organizational data, and this may 
restrict its applicability. Moreover, its subjectivity may also 
introduce subjectivity in the appraisal process since it is subject 
to expert opinion. 

Despite previous research on the use of fuzzy systems, 
AHP-based tools, rule-driven maturity models, and single deep 
learning architectures, none of them at the same time 
characterize non-linear feature relationships, sparse 
interpretability, and domain-specific maturity indicators. The 
current hybrid or explainable models do not have the capacity 
to incorporate high-dimensional organizational behavior, real-
time assessment systems, heterogeneous enterprise measures 
and structured interpretability that correspond directly to the 
measurement of DT maturity. The current TUMI framework 
addresses these flaws through the integration of FT-
Transformer relational modeling with sparse selection logic of 
TabNet to form a hybrid architecture that, to the best of our 
knowledge, has never been tried or empirically tested in the 
literature on maturity assessment. 

III. PROPOSED METHODOLOGY FOR DIGITAL 

TRANSFORMATION MATURITY ASSESSMENT 

The methodology proposed in this study presents TUMI– 
Transformer-based Unified Maturity Intelligence, a hybrid 
deep-learning framework to evaluate DT maturity in 
organizations. The methodology begins with a collection of 
survey data on organizations, which includes the variables of 
strategic direction, culture, technology usage, capability and 
skill of the workforce, and customer engagement. This data is 
then preprocessed with multiple data conditioning layers, such 
as addressing missing values, label encoding categorical 
variables, normalizing numerical features with Min-Max 
normalization, outlier detection and addressing, and addressing 
feature relevance, quality, and uncertainty prior to modeling. 
The hybrid modeling stage will consist of two branches 
operating in parallel: one branch will use the FT-Transformer 
with self-attention mechanisms to capture complex non-linear 
relationships amongst the features, and the other will use 
TabNet to perform a sparsity-inducing feature selection to 
discover the most influential maturity indicator features. The 
outputs of the two branches will be merged in a concatenation 
layer connecting the outputs of each branch, followed by fully 
connected layers producing either a categorical level of 
maturity or a continuous score of maturity. 

 
Fig. 1. Systematic architecture of the proposed model. 

Fig. 1 shows the structured architecture of the adapted 
TUMI hybrid model for measuring maturity in DT. The 
processes begin with data collection, followed by data 
preparation. Data preparation includes two branches, which 
process data in parallel: one using an FT-Transformer and the 
other using TabNet. FT-Transformer captures complex 
interactions amongst the features in a self-attentional manner, 
while TabNet focuses on the most important features with 
sparse feature selection processes. The output of the two 
branches is in this hybrid architecture concatenated and passed 
through fully connected layers to come up with maturity 
predictions. Such systematic architecture offers some degree of 
accuracy, interpretability and robustness that can be further 
benchmarked and generally improve such strategies to create 
maturity in DT. 

A. Data Collection 

The data applied in this study was taken by the publicly 
accessible Digital Transformation Dataset by AprajitByte on 
Kaggle [21]. The data contains organizational variables in 
cross-sectional form of different industries, and provides a 
summary of the DT implementations. The key features of the 
dataset are industry type, firm size, year of adoption of digital 
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tools, revenue and efficiency effects, digital skills training, and 
customer engagement perspective. These attributes will give 
insight into the extent to which DT is being followed and the 
effectiveness of these changes in the organizations. Missing 
data processing, categorical variables re-coding, and numerical 
variable feature normalization were the steps of the data 
remediation process to make the data reliable and consistent. 
The last dataset will enable the project teams to create and test 
machine-like learning models to test the maturity of DT and 
enable organizations with an ability to benchmark and track 
progress and change to enhance transformation within the 
organization. 

B. Data Preprocessing 

1) Missing value imputation: Addressing missing values is 

an important process to protect the integrity of the data and 

minimize bias in model training. Numerical variables suffering 

from missing values were imputed via the median, and 

categorical variables were imputed via the mode of each 

variable. More advanced methods, such as K-Nearest 

Neighbors (KNN) imputation or iterative imputation, may also 

be applied if missingness is a considerable amount. Maintaining 

proper imputation protects against unnecessarily dropping any 

record for the sake of data preservation, and using the data as a 

whole adds to training the models in a robust way, which is 

crucial to creating trustworthy predictions from the hybrid 

framework. The method for mean imputation is specified as in 

Eq. (1): 

𝑥𝑖 = {
𝑥𝑖,                                    𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔
1

𝑛
∑ 𝑥𝑗,        𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 𝑥𝑗 ∈ 𝑋 𝑛

𝑗=1
     (1) 

where, 𝑥𝑖 is the value of the feature for the ℎ 

𝑖 𝑡ℎ observation, 𝑋 is the set of non-missing values, and n is the 
total number of non-missing observations in that feature. 

2) Label encoding: Ordinal variables in the data, e.g., 

automation level and employee digital skills, were encoded as 

numbers through label encoding. This way, the model is aware 

of the inherent order between categories such as Low, Medium, 

and High. The levels were manually associated with integers in 

order to maintain semantic ranking, as shown in Eq. (2): 

𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = {
1,                    𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝐿𝑜𝑤
2,             𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝑀𝑒𝑑𝑖𝑢𝑚
3,                   𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 𝐻𝑖𝑔ℎ

     (2) 

This transformation prepares the data for decision tree 
classification and accurately analyzes levels of digital maturity. 

3) Min-Max normalization: Numerical features, such as 

dollar amounts invested, estimated percentages of adoption, 

and efficiency scores, were scaled using Min-Max 

normalization to a range of 0–1, to create a uniform scaling 

across features and avoid variables with relatively larger scales 

from dominating the learning procedure. Normalization 

encoding promotes faster convergence of hybrid models and 

keeps the performance stable while training FT-Transformer 

and TabNet architectures. For any numerical feature x, 

normalization is shown in Eq. (3): 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   (3) 

where, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥 are the minimum and maximum 
values of the feature, respectively. 

4) Outlier detection and treatment: Survey responses or 

numerical properties can have aberrant values that distort 

predictions and/or diminish performance. Outlier detection was 

conducted based on the Interquartile Range (IQR) method, 

where anything above the maximum or below the minimum of 

1.5×IQR is considered an outlier. Depending on the context of 

the outlier and its frequency, it was either capped (winsorized) 

or deleted altogether in the analysis, e.g., Horton et al. 2016. 

Detecting those values that are outliers and then dealing with 

those outliers will help alleviate the extreme values being 

forced upon the attention mechanism in more recent 

developments, such as FT-Transformer or the feature selection 

masks in TabNet, where better models can be developed going 

forward to develop a reliability metric for maturity assessment. 

The mathematical expression is shown in Eq. (4): 

𝑥 < 𝑄1 − 1.5 × 𝐼𝑄𝑅                               (4) 

where, 𝑄1  and 𝑄3  are the first and third quartiles, and 
𝐼𝑄𝑅 =  𝑄3 − 𝑄1. Identified outliers were capped or removed 
based on domain relevance and model sensitivity. 

5) Feature selection: In order to enhance the clarity and 

efficiency of the model, analyzed feature importance with 

TabNet's inherent attention masks and removed any low-

variance features. In addition, it had the option to use either 

Principal Component Analysis (PCA) or correlation-based 

selection to reduce variables with redundancy, which would 

improve model performance. Being able to prune the low-

importance features ensured the hybrid model obtained the 

most informative organizational features, reducing noise, while 

minimizing model complexity and retaining predictive 

accuracy. 

C. TUMI- Transformer Enhanced Maturity Intelligence 

The proposed TUMI framework will use a hybrid modeling 
approach to assess the DT maturity by combining FT-
Transformer and TabNet branches. This dual-branch structure 
allows the model to measure the complicated non-linear 
interactions between organizational characteristics, as well as 
concentrating on the most appropriate variables, thus having 
high predictive quality and interpretability. 

1) FT-Transformer for maturity level prediction: The FT-

Transformer division is designed for organized tabular data and 

uses self-attention methods to encode complex relationships 

between features. The branch applies densely, locating each of 

the input features. For example, categorical features (e.g., 

industry type, automation level) are converted to embeddings 

through trainable layers; numerical features (e.g., efficiency 

scores, percentage of digital adoption) are normalized to 

accommodate comparable scales. The essential process in the 
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FT-Transformer is self-attention, which allows the model to 

represent the relevance of each feature to all other features 

across the dataset. This process allows the branch to encode 

conditional dependence (e.g., technology adoption depends on 

workforce skills and engagement). The computation is written 

as follows in Eq. (5): 

𝐻𝑆𝐴 = softmax(
𝐿𝑀𝑇

√𝑑𝑀
)O                           (5) 

where, 𝐿 = 𝑋𝑊𝐿 , 𝑀 = 𝑋𝑊𝑀 , and 𝑂 = 𝑋𝑊𝑁 represent the 
query, key, and value matrices, respectively; 𝑑𝑀is the scaling 
factor for the dot-product, and 𝑋is the input feature matrix. The 
output 𝐻𝑆𝐴is a dense embedding vector that encodes the high-
level relationships among all organizational features, providing 
a contextual representation for subsequent prediction. 

2) TabNet branch for sparse feature selection: The branch 

of TabNet is concentrated on selecting sparse features. With the 

help of this algorithm, the model can focus on the most 

meaningful organizational features and dismiss irrelevant and 

noisy ones. TabNet computes input features by using a series of 

decision steps, and at every decision step, TabNet creates a 

sparse attention mask M_tto to choose a subset of features that 

are important to this step. Learnable weight matrices W_tto 

convert the selected features into embeddings. Embeddings of 

each decision step are added together to create an overall 

feature representation in Eq. (6): 

𝐻𝑇𝑎𝑏 = ∑ 𝑀𝑡
𝑇
𝑡=1 ⨀(𝑋𝑊𝑡 )                      (6) 

where, T is the number of decision steps, X  is the input 
feature matrix and ⊙ is the element-wise multiplication. The 

sparse masks achieve interpretability and reduce the 
computation, as the features that the mask identifies as 
significant will show which aspects of the organization have an 
effect on the DT maturity. As an example, it could be strategic 
alignment, the level of digital skills of employees, or the level 
of customer engagement. The sparse embedding H Tab 
summarizes all the important drivers of maturity, which will be 
incorporated with the FT-Transformer embedding when 
making a final prediction. 

3) Embedding integration and maturity estimation: Once 

embeddings from both branches are obtained, they are 

concatenated to form a single fused representation in Eq. (7): 

𝐻Fusion = [𝐻𝑆𝐴   ∥  𝐻𝑇𝑎𝑏]                       (7) 

The fused embedding is then subjected to fully connected 
layers with nonlinear activation functions like ReLU or GELU. 
These layers both smooth the feature presentation and project it 
to the output space. The ultimate forecast may either be 
categorical, where the organization is considered Low, 
Medium, or High in terms of its level of DT maturity, or 
continuous, whereby a numerical value is given of the overall 
level of maturity. The hybrid framework combines both 
attention-based feature learning and sparse selection, thus 
making it highly accurate as well as interpretable. Notably, it 
gives organizations an idea of what features contribute to 
maturity, which can be utilized in practice to prioritize digital 
transformation initiatives. The hybrid method is useful because 
it overcomes constraints of the previous models that are either 
not interpretable or unable to capture complex interactions 
between features, and hence TUMI is a powerful and scalable 
model to assess the maturity of DT in different organizations.

 
Fig. 2. Overall architecture of the TUMI hybrid model.

Fig. 2 depicts the whole architecture of the suggested TUMI 
paradigm for evaluating DT maturity. The model takes as input 

both categorical and numerical variables, which are processed 
in embedding layers, and subsequently transformed and fused 
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to learn complex relations. The FT-Transformer implements 
self-attention to learn feature dependencies, while TabNet 
performs sparse feature selection through its decision steps. 
There are a number of algorithmic parameters that affect the 
functioning of the proposed framework. The amount of 
attention heads, embedding dimension, and depth in the FT-
Transformer branch, the lower the values the less the 
representational capacity the model has and the higher the 
values, the higher the complexity of the model. In TabNet, the 
sparsity coefficient and number of decision steps are used to 
regulate the selectivity of the model to important maturity 
indicators which influence interpretability and stability. The 
fusion-weighting parameter controls the proportion of each 
branch, and the balance between the global attention-based 
reasoning and local sparse feature selection is regulated by the 
fusion-weighting parameter. These differences in parameters 
change the granularity of learned patterns, the strength of 
feature attribution, as well as the general predictive behavior, 
which is further evident in the ablation results. 

Algorithm 1: TUMI-Hybrid Model for Digital 

Transformation Maturity Assessment 

Input:   
    X → Organizational dataset (categorical and numerical features)   

    y → True maturity labels or scores   
    T → Number of TabNet decision steps   

    E → Number of training epochs   
    α → Learning rate   
 
Output:   

    ŷ → Predicted maturity level or maturity score   
 
Procedure: 

Preprocessing: 

    Handle missing values: 
        Impute numerical features using median 

        Impute categorical features using mode 
    Encode categorical variables using label or embedding encoding 

    Normalize numerical features using Min–Max scaling 
    Detect and treat outliers using the IQR method 
    Perform feature selection to remove redundant or low-variance 
features 

    Split dataset into training, validation, and test sets 

 
FT-Transformer Branch: 
    For each input sample x_i in X: 

        Generate embeddings e_i = Embed(x_i) 
    Compute self-attention matrices: 
        L = E × W_L        // Query projection 

        M = E × W_M        // Key projection 

        O = E × W_N        // Value projection 
    Compute attention output: 
        H_SA = softmax((L × Mᵀ) / sqrt(d_M)) × O 
    Derive high-dimensional embedding: 

        H_FT = f(H_SA) 

 
TabNet Branch: 
    Initialize H_Tab = 0 

    For t = 1 to T: 

        Compute sparse attention mask M_t = SparseAttn(X, W_t) 
        Generate decision step embedding: 

            h_t = M_t ⊙ (X × W_t) 
        Accumulate step embeddings: 

            H_Tab = H_Tab + h_t 
    Obtain dense TabNet representation: 
        H_Tab = g(H_Tab) 
 

Fusion and Prediction: 
    Concatenate embeddings from both branches: 
        H_Fusion = [H_FT || H_Tab] 
    Pass fused vector through fully connected layers: 

        Z = ReLU(H_Fusion × W₁ + b₁) 

    Generate output: 
        ŷ = Softmax(Z × W₂ + b₂) 
           or 

           ŷ = Linear (Z × W₂ + b₂) 
    Compute loss: 
        L = LossFunction(ŷ, y) 
 

Optimization: 
    For epoch = 1 to E: 

        Perform forward propagation 
        Compute gradients ∂L/∂θ 

        Update model parameters: 

            θ ← θ − α * ∇L 
        Evaluate on validation set 
 
Evaluation: 
    Apply trained model on test data 

    Compute performance metrics: 
    Return final predicted maturity level or score ŷ  

Algorithm 1 describes the hybrid framework to predict the 
maturity of the DT. The actions begin with pre-processing the 
survey data set that involves the imputation of missing values, 
label encoding, normalization, outlier treatment, and feature 
selection. The items are then fed separately into the FT-
transformer and TabNet branches to identify complex 
interactions between features and to prune a sparse set of 
feature selection, respectively. Both of the branches are fused 
with an embedding and after this process, they are sent to a fully 
connected layer to produce a final classification or score as per 
conditions. 

The study uses a hybrid TUMI approach that offers an 
evaluation of the DT maturity in organizations. The hybrid 
model is composed of two branches, which are working in 
parallel. The FT-Transformer part involves the self-attention of 
the interaction of many features that are nonlinear and complex 
in nature. The TabNet component is a sparse feature selection, 
but feature selection is conducted to develop the most 
significant features. The two branches’ embeddings are 
combined by a concatenation layer, and then passed through 
fully connected layers to either classify as either a maturity 
level or get a continuous maturity score. This dual-level 
interpretability offers more straightforward reasoning of 
maturity than traditional explainable AI methods of the 
maturity assessment, since the weights of attention allow 
highlighting global dependencies, whereas TabNet masks show 
step-wise localized features. Transparency Transformer 
attention weights support transparency by indicating global 
dependency structures and TabNet feature masks indicate 
localized indicator contributions, which provide a more rational 
maturity-based reasoning than traditional explainable AI 
techniques. The model is then assessed based on the common 
measures of performance and this gives a guideline in gauging 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 11, 2025 

726 | P a g e  
www.ijacsa.thesai.org 

the organizational maturity in DT in a way that is robust, 
interpretable and accurate. 

IV. RESULTS AND DISCUSSION 

The TUMI hybrid framework comprehensively exhibited 
the possibility of being a potential tool for evaluating the 
maturity of DT among organizations. The model was effective 
in the measurement of interrelations among various dimensions 
of the organization, including strategy, technology use, 
workforce capabilities, and customer involvement, which gives 
a clear measure of how to differentiate the level of maturity. 
The fusion of the TabNet model and the FT-Transformer model 
resulted in predictive capabilities as well as interpretability in 
the prediction of the driving factors of maturity. The analysis 
has shown tendencies and implications in various industries 
and, more precisely, on what variables in the organization 
became the drivers of DT maturity. On the whole, the study 
proves that the hybrid approach is a legitimate and trustworthy 
tool that organizations can use to estimate their position in their 
DT initiatives and their areas of need improvement, as well as 
allow them to make decisions more effectively in order to 
advance their transformation process. 

TABLE I.  PARAMETER SIMULATION 

Parameter Value / Range 

FT-Transformer Layers 2–4 

FT-Transformer Embedding 

Dimension 
64–128 

Attention Heads 4–8 

FT-Transformer Dropout 0.1–0.3 

Activation Function ReLU or GELU 

Optimizer Adam or AdamW 

Learning Rate 0.001–0.005 

TabNet Decision Steps (T) 3–5 

TabNet Feature Dimension 32–64 

Relaxation Factor 1.5 

Sparsity Regularization 0.001–0.005 

Batch Size 32–128 

Epochs 50–100 

Loss Function 
Cross-Entropy (classification), 

MSE (regression) 

Data Split 70% train, 15% validation, 15% test 

Early Stopping Patience 10 epochs 

Table I shows the parameters of the TUMI hybrid model for 
evaluating the maturity of the DT through simulation. It has 
preparation settings, FT-Transformer and TabNet settings and 
training parameters. All these parameters determine how the 
data is treated, the feature selection method, model architecture 
and optimization method to guarantee reproducibility, and 
performance. It gives a methodical reference to the 
experimental design and comprises the ranges and techniques 
applied during the prediction of maturity. 

A. Experimental Outcome 

The experimental testing of the TUMI hybrid model was 
worth it because it indicated that it can be used to predict DT 
maturity in various organizational contexts. The model was 
found to reliably define organizations of varying maturity 
levels, besides defining nuanced interactions along features, 
including strategy alignment, technology adoption, what the 
workforce is capable of, and customer engagement. Using the 
capabilities of FT-Transformer and TabNet, the hybrid 
framework allowed to make predictions accurately and at the 
same time, allowed to interpret and understand the most driving 
maturity. The experiments support the generality of the 
approach, with the different, adjusted data subsets providing the 
benchmarking of organizations and decision-making support of 
DT initiatives. On the whole, the findings represented a good 
argument that it presents an effective, scalable, and actionable 
opportunity to measure and improve the digital. 

 
Fig. 3. Parallel coordinates of organizational features. 

Fig. 3 presents a parallel co-ordinate plot, which compares 
the characteristics of organizations in the sphere of maturity. 
Each of the colored lines is an organization and contains such 
features as strategy, adoption of technology, skills of 
employees, and engagement with customers that are placed on 
parallel axes. A plot is one of the methods of monitoring several 
variables simultaneously that depicts both similarities and 
differences between maturity groups. This interpretation of the 
multiple characteristics makes it easier to interpret it since it 
displays the patterns, dependencies and significant differences 
and signifies the significant organizational strengths and 
weaknesses that relate to the outcome of the maturity of their 
DT. 

 
Fig. 4. Feature contributions to maturity levels. 
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Fig. 4 shows a stacked bar chart illustrating the contribution 
of various organizational features, including strategy, 
workforce skills, and technology adoption, at different maturity 
states. Each bar consists of an aggregated maturity category and 
is divided into stacked sections that shows the proportional 
weight of organizational features. This visualization illustrates 
how one or more features play a significant role at specific 
maturity stages; in this case, workforce skills recall this 
maturity state strongly, while technology adoption is a bigger 
contributor at later maturity stages. The stacked format 
provides a clear comparative display of the data, as the chart is 
able to display a cumulative and proportional contributions 
simultaneously. 

 
Fig. 5. Distribution of maturity levels. 

Fig. 5 shows a violin plot, which indicates the maturity 
scores distributed by low, medium, and high. Each shape of the 
violin represents probability density of the scores indicating 
both the spread and concentration of the scores. While the 
median and mean indicators demonstrate the central tendency 
of each maturity level and the shape provides an indication of 
variation, it is possible to quickly notice overlaps and 
differences between the levels with a horizontal comparison of 
the three groups ensemble, suggesting within and between 
groups the differences in maturity scores and an overall 
comparison on the status of the digitization efforts within the 
organization. 

 
Fig. 6. Distribution of technology adoption. 

Fig. 6 presents a histogram of technology adoption scores 
from organizations. The distribution illustrates adoption levels 

and how often organizations are at a given adoption level. Most 
organizations hover around the middle of the distribution. The 
width of the bars indicates variations in adoption - advanced 
adopters at the top and laggards at the bottom. The chart also 
allows a visual understanding of how organizations are 
distributed along the adoption continuum and patterns, 
concentrations, and outliers affecting DT maturity level. 

 
Fig. 7. Chart of organizational feature technology. 

Fig. 7 depicts the relative strength of the organizational 
characteristics that help it attain DT maturity. The dimensional 
elements of strategy, technology adoption, workforce 
competencies, customer engagement, and innovation are placed 
on the radial axes. The polygon that surrounds the 
organizational values on those traits shows the effectiveness of 
the organization by the distance to which it extends. With larger 
values extending further outwards, the visualization allows one 
to compare multiple dimensions in a compact way while 
simultaneously demonstrating strengths and weaknesses. The 
radar chart offers multiple dimensions of visual cognition to 
assess maturity profiles and to surface strategic improvement 
opportunities. 

 
Fig. 8. Surface of organizational features. 

Fig. 8 presents a 3D surface plot of the correlation between 
the strategy, technology adoption, and maturity results of the 
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organization. The curve is used to demonstrate the combination 
of and simultaneous inputs of two dimensions on the results of 
maturity. This draws nonlinear trends which would have not 
been drawn in case the plot is two dimensional. The highs and 
the lows of the surface demonstrate the various combinations 
of performance that may be high or low and even enable 
decision-makers to identify the critical points. On the whole, it 
enables the interactive view of DT maturity which will 
ultimately eliminate the complexity of various organizational 
determinants, and it is still intuitive. 

 
Fig. 9. Area of feature growth. 

Fig. 9 depict an area stack chart that shows the cumulative 
contributions of strategy, technology and workforce skills at 
various maturity levels. The color symbolizes a distinct feature 
with the thickness of the band of color giving relative 
significance at the stage. As an organization develops, the 
overall contribution also rises indicating that maturity will rise. 
The representation both defines clearly individual and 
combined contributing effects, and also allows the visual 
identification of features to be made promptly on what features 
are dominant at each stage (and to what degree). In general, this 
chart straightforwardly shows, it is possible to compare the 
maturity of an organization in terms of development stages. 

B. Performance Evaluation 

The TUMI framework showed high performance measures 
on its evaluation of the DT maturity evidenced by the 
experimental results of the framework. In particular, it was 97% 
accurate, 96% precise, 95% recall and 96 F1-score. The 
consistency, 97 percent, in the accuracy allows one to note that 
the framework can successfully categorize the position of 
organizational maturity and place it where it can be as 
accurately as possible reliably. Concerning accuracy, 97, also 
highlights the fact that the given framework could reduce false-
positives in the measurements. Recall (95%) is a measure that 
evaluates the framework ability to detect real maturity levels 
without excluding any significant classifications. Besides, F1 
score (98) implies that the approach can balance between 
precision and recall to provide satisfactory performance in both. 
These more powerful measures of performance indicate that the 
suggested TUMI architecture incorporates the latest state-of-
the-art features selection and attention-based methods to deliver 
credible, scalable, and accurate measurements. These 

performance metrics speak to its reliability as a decision-
support system for organizations in order to gain actionable 
intelligence from their DT maturity assessment. 

1) Accuracy: Accuracy can be defined as the ratio of 

correctly classified examples to all examples. Accuracy can be 

calculated as shown in Eq. (8): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (8) 

2) Precision: It indicates the reliability of positive 

predictions by measuring fraction of correctly identified 

positive instances among all of the predicted positives. 

Precision can be calculated as shown in Eq. (9): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (9) 

3) Recall: It is defined as true positive rate, and assesses 

how well a model is detecting the true positives. It can be 

calculated in Eq. (10): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (10) 

4) F1-Score: It is the harmonic mean of precision and 

recall. It can be calculated in Eq. (11): 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (11) 

where, TP represents the true positive, TN represents the 
true negative, FP represents the false positive, FN represents the 
False negative. 

TABLE II.  PERFORMANCE METRICS 

Metrics Value 

Accuracy 97 % 

Precision 96 % 

Recall (Sensitivity) 95 % 

F1 Score 96 % 

 

Fig. 10. Performance metrics. 

Fig. 10 and Table II displays the performance of the 
suggested classification model through four major evaluation 
metrics: Accuracy, Precision, Recall, and F1 Score. Each bar 
graphically shows the percentage value achieved by the model, 
representing high levels of performance on all of them. The 
model had an Accuracy of 97%, Precision of 96%, Recall of 
95%, and an F1 Score of 96%, collectively indicating its strong 
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capacity to accurately classify DT maturity levels. The uniform 
and high scores confirm the model's dependability and 
effectiveness in managing both balanced and imbalanced data 
situations with good prediction performance. 

C. Ablation Study 

The ablation study focuses on measuring the contribution of 
each main component of the TUMI framework (FT-
Transformer branch, TabNet branch, fusion strategy, and key 
hyperparameters / preprocessing steps) to overall predictive 
performance and interpretability. In this way, the ablation 
experiments help to show which components of the hybrid 
design are essential and which are optional and the tradeoffs 
(accuracy vs. complexity / interpretability). 

TABLE III.  ABLATION RESULTS 

Model 

Variant 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC 

(%) 

Full Model 

(FT + TabNet) 

97.0 96.0 95.0 96.0 98.2 

FT-

Transformer 

Only 

94.3 93.8 92.6 93.2 95.1 

TabNet Only 93.0 92.5 91.8 92.1 94.3 

Without 

Attention 

Mechanism 

92.1 91.6 90.9 91.2 93.8 

Without 

Sparsity 

Regularization 

94.8 94.1 93.2 93.6 95.9 

Early Fusion  

Strategy 

95.5 94.8 94.0 94.3 96.6 

Late Weighted  

Fusion 

96.4 95.8 94.9 95.3 97.5 

Table III is a summary of the ablation experiment that was 
done to assess the role of every architectural element in the 
proposed TUMI framework. This comparison shows the effect 
of deleting or changing such important mechanisms as 
attention, sparsity regularization, fusion strategies, on the 
overall effectiveness of the models. The result clearly shows, 
the full hybrid arrangement has the best performance, whereas 
simplified or partially disabled models demonstrate significant 
decrease in predictive presence. These results support the idea 
that the FT-Transformer as well as TabNet components, and the 
selected fusion strategy are fundamental and complementary to 
the goal of achieving the best accuracy and interpretability. 

D. Comparative Analysis 

The validation of the efficacy of computational frameworks 
can be conducted mainly through comparative analysis, 
particularly in cases where accuracy and interpretability are 
critical e.g. in the field of DT maturity assessment. By 
comparing proposed methodologies with tested methods 
through benchmarking, the scholars can discover strengths and 
reveal limitations and overall viability in a variety of 
organizational contexts. This segment gives a methodical 
similarity of different analytical models to the data of DT, their 
design ideology, methods of computation and applicability. It 
is easy to comprehend how the hybrid intelligence systems will 
help in changing assessment requirements through tabular 
presentation and structured visualization. The relative 

knowledge eventually increases the trust of model selection and 
tactical implementation. 

TABLE IV.  COMPARISON ANALYSIS 

Methods Accuracy 

Mamdani Fuzzy Inference + 

Spectral Transformation [22] 

91.43% 

Fuzzy AHP  [23] 92.4% 

Optimized Fuzzy Logic System [24] 95.7% 

Proposed TUMI  96% 

 
Fig. 11. Comparison with existing methods. 

Table IV and Fig. 11 indicate the accurateness of different 
methods to be employed to evaluate DT maturity. It indicates 
that Mamdani Fuzzy Inference with Spectral Transformation 
had a score of 91.43 and Fuzzy AHP had a score of 92.4 with a 
margin. In the meantime, Optimized Fuzzy Logic System 
scored much higher of 95.7 and was the most adaptable one. 
The TUMI framework proposed in this study was also more 
effective and efficient than any other method as it has scored 
96, which proves its ability to be very robust and efficient. 
Generally, the chart shows the gradual elimination of the 
methods since TUMI has incorporated superior mechanisms to 
attain a greater accuracy when assessing a DT maturity when 
compared to the use of conventional fuzzy-based techniques. 

E. Discussion 

The results of the proposed TUMI framework can positively 
affect the models of DT, and eventually, this tool will transform 
into a helpful solution to support organizations on their DT 
journeys. The approach could depict the complex feature 
dependencies and hierarchical decision boundaries by learning 
attention-based feature learning by using FT-Transformer and 
making structured decisions through TabNet. In this respect, 
TUMI outperformed existing fuzzy inference and multi-criteria 
decision-making models and showed merits of the model to 
overcome constraints of the traditional models that normally do 
not permit scaling in addition to actionable insight either on 
usability or flexibility to various datasets. The performance 
results with high metrics value, verify the robustness and 
reliability of the model as demonstrated in real-world scenarios. 
High-dimensional feature spaces allow the scalability of the 
framework due to the capacity to handle heterogeneous 
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organizational indicators and preserve the predictive behavior 
under high-dimensional feature spaces, which proves the 
flexibility to adaptable digital transformation scenarios. The 
architecture does not have any limitations on its sector, which 
is justified by the fact that it has been shown to perform well in 
different sectors, as indicated by its consistent performance in 
the diverse organizational attributes in the dataset, thus its high 
chances of cross-industry use in the maturity evaluation. The 
hybrid design was also a design which is interpretable, by 
methodology of feature selection, but is also predictive, by 
methodology of self-attention. This moderated methodology 
offered enlightenment on maturity to organizations that seek 
actionable knowledge that depicts the maturity phase of 
interventions. Although the model was a reflection of the 
traditional models which were attempting to surpass, the use of 
curated DT indicators is one of the areas that organizations can 
revisit and modernize as their practices evolve. Despite the high 
predictive ability and high level of interpretability of the 
framework, there are a number of limitations that are worth 
noting to put the results in perspective. The research is based on 
one publicly available dataset, which can limit the 
externalization of the findings to the other industries or 
organizations. Cross-sectional data is also disadvantageous in 
that it becomes difficult to provide dynamic or temporal 
changes of digital transformation maturity. Also, there are no 
real organizational case studies that would help validate the 
applicability of the model practically. It is also possible that 
with the dependence on predefined indicators, new or industry-
specific factors that are applicable to digital transformation get 
overlooked. These shortcomings bring out areas of 
improvement and enlargement in future research. 

V. CONCLUSION AND FUTURE WORK 

The TUMI framework aims at offering a useful and 
interpretable framework to quantify the digital transformation 
(DT) maturity by leveraging the advantageous characteristics 
of FT-Transformer and TabNet architectures. The architecture 
could encode attention-based co-embedding as well as sense 
sparse feature selection into a single joint process to recognize 
complex interrelationships between organizational indicators 
without loss of interpretable output. The experimental results of 
the research show that TUMI is unequivocally stronger than 
traditional fuzzy logic and decision tree approaches in terms of 
accuracy, precision, recall, F1 score and AUC score, and the 
focus on the model, which offers steady data-driven estimates 
of organizational maturity is important. In addition, the TUMI 
offers scalable, fast, and automated learning platform to replace 
the conventional rule-based maturity models as a response to 
concerns of subjectivity and opaqueness in current maturity 
assessment models. Despite the good performance 
demonstrated by TUMI, certain weaknesses are realized in this 
research. The former is that a single dataset has been used that 
restricts the extrapolation of the findings to the industries and 
other organizational settings. The second weakness is that the 
model essentially addresses the aspect of the digital maturity 
using fixed indicators devoid of any temporal or dynamic 
indicators of transformation behavior. The evaluation of 
interpretability and applicability in the perspective of a 
practitioner is also limited due to the lack of exterior expert 
validation. In addition to technical performance, the framework 

adds societal value by enhancing assessments subjectivity and 
makes digital transformation practices more adorable, 
especially to the SMEs and organizations with weak 
connections to expert analysts. It can be concluded that the 
TUMI framework is capable of successfully modeling complex 
organizational behaviors due to the synergy between global 
attention-based dependency modeling and sparse feature 
selection. The hybrid architecture is strong as it can be 
evidenced by the consistency in terms of accuracy, precision, 
recall and AUC. The practicality of the framework is reflected 
in the capacity of the framework to provide interpretable, 
stable, and data-driven maturity scores, which allow 
organizations to gain more diagnostic insights and minimize the 
use of subjective assessments by experts. Through the provision 
of scalable and automated assessment capability, TUMI 
delivers real-world value to support informed planning of 
digital transformation in the context of various industries. 

In this part, one can take into account various prospects of 
future studies. Additional development of the dataset by 
incorporation of cross-domain and multi-organizational case 
studies can help to increase the flexibility and strength of the 
model. A time-series or longitudinal modeling technique can be 
used to continuously monitor the digital maturity trajectory and 
provide the insight into the digital transformation journey and 
the future strategic trajectories. Furthermore, populating the 
model with a range of expert-in-the-loop validation and XAI 
elements, which will increase transparency, reliability, and 
acceptance in decision-making scenarios, can also be used as 
an addition to the model. By taking into account these concerns, 
future work can become more reliable, flexible, and practical, 
and one day, TUMI will become an efficient tool to support the 
process of digital transformation in organizations that will go 
on the way to its maturity. 
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