(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

Clinically Informed Adaptive Multimodal Graph
Learning Paradigm for Transparent Temporal and
Generalizable Alzheimer’s Disease Diagnosis

Dr. Padmavati Shrivastava®, Dr V' S Krushnasamy?, Dr Guru Basava Aradhya S®,
Vinod Waiker*, Peddireddy Veera Venkateswara Rao®, Elangovan Muniyandy®, Khaled Bedair’

Associate Professor and HOD CSE (Al / AIML), Rungta College of Engineering and Technology, Bhilai, Chhattisgarh, India®
Associate Professor, Dept. of EIE, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India?
Director and Professor, Padmashree Institute of Management and Sciences, Kengeri, Bangalore, India®
Datta Meghe Institute of Management Studies, Nagpur, Maharashtra, India*
Associate Professor, Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Guntur District, Andhra Pradesh, India®
Department of Biosciences-Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai - 602 105, India®
Department of Social Sciences-College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar’

Abstract—This is a clinically reliable and explainable
diagnostic framework for the early detection of Alzheimer's
disease with multimodal data. Current computational methods
face challenges in dealing with fragmented clinical information,
poor cross-modal integration, limited temporal modelling, and low
interpretability, rendering them unsuitable for real-world medical
deployment. To overcome these limitations, we propose the
Clinically Guided Adaptive Multimodal Graph Transformer
(CAM-GT), a novel architecture that fuses clinical priors with
graph-based learning and transformer-driven temporal reasoning
within a unified model. The proposed framework uniquely
integrates clinically guided graph attention, cross-modal fusion,
and contrastive alignment, where the system can capture hidden
relationships among imaging, cognitive scores, and clinical
biomarkers with high robustness against missing or imbalanced
modalities. Implemented on the Python platform with advanced
deep-learning libraries, CAM-GT carries out multimodal
encoding, temporal progression modeling, and explainability
mapping in order to identify the most significant biomarkers that
influence the status of a disease. Experimental evaluation
demonstrates that the model performs well by achieving an
accuracy of 97%, a 97.2% AUC, and outperforming existing
models while maintaining strong generalization in heterogeneous
clinical environments. Further, high interpretability ensures that
clinically, it will be able to trace how predictions are made to instill
greater trust and ethical reliability and increase the adoption
potential in hospitals and research centers. Finally, CAM-GT
benefits neurologists, radiologists, healthcare institutions, and
researchers by providing a stable, transparent, high-performing
Al system that has the capability to support early diagnosis and
guide real-world clinical decision-making in neurodegenerative
disease care.

Keywords—Alzheimer’s detection; graph neural network;
multimodal fusion; explainable Al; temporal transformer

l. INTRODUCTION

Neurological diseases burden the world with millions of
individuals with disabilities that can lead to chronic illness and

lifelong disability. These disorders, such as Alzheimer’s and
Parkinson’s diseases, start with a mild level of cognitive or
behavioral abnormalities, which eventually result in the
irreversible degeneration of the neural pathway [1]. This makes
early and precise diagnosis very relevant to improve the
therapeutic outcome, postpone the development of the disease,
and offer a lower cost of healthcare [2]. The presence of a subtle
manifestation of such conditions and similarity in symptoms
frequently make traditional diagnostic paradigms based on a
high level of subjective clinical examination and interpretation
by specialists ineffective in identifying the early onset of the
condition [3]. Multimodal data, such as demographic
information, cognitive information, and imaging information,
are becoming more important in the diagnosis of Alzheimer’s
disease (AD). Although the current solutions to the issue,
including graph neural networks (GNNs), transformers, and
multimodal fusion models, prove to be rather promising, they
have severe shortcomings [4]. The common issue with standard
GNNs is that they can pick up the structural relationship between
variables, but tend to ignore the evolution of the disease over
time, whereas conventional transformers are good at sequential
modelling, and they are not effective at incorporating clinical
priors. Instead of this, multimodal fusion techniques often do not
support any missing modalities or do not offer any patient-level
insight. In light of such shortcomings, we suggest the Clinically
Guided Adaptive Multimodal Graph Transformer (CAM-GT)
that combines clinically-informed graph building with temporal
attention and cross-modal contrastive alignment [5]. These
integrations also help CAM-GT achieve a much higher
predictive accuracy and robustness in incomplete data, as well
as provide more interpretable results by providing actionable
biomarkers and patient-level relational information. This model
facilitates the state of the art in diagnosing multimodal AD by
closing the performance, clinical relevance and explainability

gap.

Recently, GNNs have become an effective method of
modeling structured medical data by modeling relational
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dependencies among clinical entities [6]. Neurology Nodes may
be symptoms, biomarkers, or brain regions, whereas edges may
be physiological or functional relationships [7]. Such a graph
representation makes it possible to learn local and global
interactions, which are required to understand the
neurodegenerative patterns of connectivity [8]. As an example,
hippocampal atrophy, slight memory deterioration, and
disrupted neural pathways may also typify early Alzheimer’s
disease [9]. GNNs enable the identification of unobservable
disease progression patterns even in the situation of incomplete
information by incorporating multimodal features into a single
graph [10]. However, the conventional GNN-based designs are
typically restricted by the fixed connectivity, poor treatment of
temporal dynamics, and the inability to have good
interpretability [11] [12]. To overcome these limitations, this
study proposes a Clinically-Guided Adaptive Multimodal Graph
Transformer (CAM-GT), which is a framework integrating
clinically-informed graph construction, transformer-based
temporal modeling, and contrastive alignment to achieve robust
and interpretable Alzheimer’s diagnosis. On top of domain
knowledge and attention-based edge learning, CAM-GT
mediates clinical interpretability and high computational
accuracy, early and reliable neurological predictions.

A. Research Motivation

Early identification of neurodegenerative diseases like
Alzheimer’s is such a challenge because of their slow,
overlapping as well as multi-faceted clinical presentation. Due
to the availability of multimodal data such as neuroimaging,
clinical, and cognitive scores, it is possible to use computational
intelligence to identify the diagnosis with accuracy.
Nevertheless, the conventional systems of diagnosis cannot
combine these heterogeneous modalities or offer explanations
which are clinically significant. This work is motivated by the
desire to create a single model that would both model disease
evolution over time and inter-patient clinical dependencies, and
be providing transparency to medically validate the model. The
suggested CAM-GT model will cater to these requirements by
incorporating clinically-directed edge building, temporal
transformer encoding, and cross-modal attention fusion.
Moreover, self-supervised contrastive alignment stabilizes
learning when only incomplete data are available, and the results
of learning can be interpreted and generalized to apply to real-
world medical decision-making.

B. Research Significance

The development of the suggested CAM-GT framework is a
holistic development in Al-oriented healthcare diagnosis. It
offers a clinically interpretable, data-efficient, and powerful
means of integrating heterogeneous sources of patient data. In
contrast to the traditional graph or CNN-based models, CAM-
GT is an adaptive dynamic edge attention model of the changing
relationships between clinical variables trained under medical
priors. Temporal transformer layers are those that capture
disease trends over time, whereas cross-modal fusion provides
fairness in the representation of cognitive, imaging, and
demographic modalities. The explainability level will offer a
clear visual interpretation of patient relations and biomarkers,
which enhances the trust of clinicians. This renders CAM-GT to
be a scalable diagnostic assistant which can satisfy real-world
clinical requirements of reliability, reproducibility, and
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interpretability. The fact that it puts accuracy, explainability, and
temporal reasoning in the same picture places it as a step up to
practical, ethical, and data-driven neurological diagnosis.

C. Key Contribution

e Proposed a clinically guided, graph-transformer
framework called CAM-GT for dynamic integration of
multimodal Alzheimer's patient data, thereby capturing
patient-specific relationships for interpretable and robust
diagnosis.

e Designed a Temporal Transformer Encoder to model
longitudinal disease progression, using cross-modal
fusion with self-supervised contrastive alignment that
ensures stable and consistent representations even when
some modalities are missing or noisy.

e The proposed framework is validated on a benchmark
Alzheimer's disease dataset, showing the effective fusion
of clinical, cognitive, and imaging biomarkers for
capturing meaningful patient-level patterns.

o Realized superior results against the existing models,
with 97% accuracy, 96.9% precision, 96.7% recall, F1-
score 96.9, and AUC 97.2%, thus supporting clinical
adoption through explainable predictions.

D. Rest of the Section

The rest of the study is structured in the following way:
Section 1l is a review of the existing related research on
neurological disease detection, multimodal learning, and
explainable Al. Section Ill is the definition of the problem
formulation. Section IV presents the suggested CAM-GT
methodology, which consists of multimodal fusion, graph
learning, and interpretability mechanisms. Section V includes
the experimental setup, datasets, and findings. Section VI is the
conclusion of the work and gives the possible directions of
further research.

Il.  RELATED WORKS

S. Tekkesinoglu and S. Pudas [13] discovered a GCN model
to make predictions of cognitive status (NC, MCI, AD) with the
ADNI dataset, which consists of neurocognitive, genetic, and
brain atrophy features. The patients are encoded as nodes, and
edges represent symptom and disease feature similarities. An
explanation method based on decomposition was presented to
explain predictions both at the individual and group levels.
Explanation at the neighborhood level was obtained by disabling
edges of particular classes. The approach had consistent outputs
for edge weights of greater than 0.80 and was more
computationally efficient compared to SHAP. Expert judgment
(11 individuals) affirmed 71% agreement with the explanations'
correctness. Explanations were assessed as being more than 6/10
in understandability. However, the model was too reliant on
demographic data, and therefore it could not be clinically
generalized, which was where the idea of clinically directed
dynamic graph building, as implemented in the CAM-GT
model, was required.

El-Sappagh et al. [14] construct a correct and interpretable
model for AD diagnosis and progression detection in order to
fill the gap between study and clinical utility. Based on data from
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1,048 subjects in 11 modalities from the ADNI database uses a
RF classifier. The initial layer does multi-class classification for
early prediction, while the secondary layer uses binary
classification to predict MCI-to-AD progression in three years.
SHAP-based global and instance-level explanations, as well as
22 based on DT and fuzzy rule-based systems, are added for
increased model interpretability. The explanations are in natural
language to facilitate physician understanding. The model also
attained very good performance with 93.95% accuracy in the
first layer and 87.08% in the second. The difficulty in merging
and servicing several explainers is one of the primary
constraints, which has seen the promotion of a single
explainability layer, which has been achieved in CAM-GT, to
sustain transparency without additional calculation.

Parvin et al. [15] built a multimodal AD prediction
framework that combines tabular data, MRI scans, and genetic
data to surpass the limitations of monomodal-based frameworks.
GNNs were used to build a knowledge graph from tabular and
MRI data, and region-based CNNs were utilized to transform
image features into graph representations. Layer-wise relevance
propagation and submodular pick LIME were used to provide
explainability of MRI and tabular data predictions, respectively,
while a graphical gene tree was utilized to study genetic
contributions. The system features a dashboard that facilitates
clinicians to visualize and interpret results. Although the model
manages to combine several modalities and provide
interpretability, the use of high-quality multimodal inputs
decreases robustness, which is overcome by CAM-GT by self-
supervised contrastive alignment with missing or noisy inputs.

Zafeiropoulos et al. [16] (PD) present an entire summary of
the application of GNN and their suitability to catch the complex
clinical and non-ethnic variables associated with the progression
of the disease. Following the Prisma guidelines, this study
employs the current GNN-based functioning and GNN
categories and surveyed their findings. This indicates the
growing tilt towards the use of GNN in PD diagnosis,
monitoring, and vigilant systems because of the ability to store
the relationship. The article also offers a new method to include
new engineering works in GNN design for PD monitoring.
Despite the promising findings reported by the review, the
absence of standardized datasets and real-life validation is also
revealed there- spheres directly addressed by CAM-GT using
clinically based testing and multimodal generalization tests.

Kumar et al. [17] discuss the contribution of advanced
diffusion MRI and PET imaging, supplemented by Al, toward
improving early detection of neurodegenerative and neuro-
ophthalmic diseases such as Alzheimer's and Parkinson's. It
emphasizes methods in conjunction with deep learning
frameworks like CNNs and multimodal transformers, towards
detecting microstructural brain alterations and predicting
disease course. Second-generation PET tracers for tau and
alpha-synuclein increase diagnostic accuracy further. Despite
the high level of diagnostic accuracy of multimodal imaging and
Al integration, the problem of heterogeneity and difficulty in
clinical interpretation is still present, which provokes the desire
to use explainable transformer-based architectures like CAM-
GT to provide transparent medical decision support.
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The literature review also presents notable developments in
the use of GNNs and XAl in neurodegenerative diseases like
Alzheimer's diagnosis. Tekkesinoglu and Pudas employed
GCNs on the ADNI dataset with high interpretability but were
constrained by their excessive reliance on demographic
characteristics. EI-Sappagh et al. proposed a multimodal model
incorporating SHAP and RF-based explanations, providing
robust accuracy but with complexity in incorporating them.
Parvin et al. integrated genetic information, MRI, and tabular
data with GNN and CNN for improved prediction, but at the cost
of high-quality multimodal inputs. Zafeiropoulos et al.
highlighted the importance of GNNs in capturing Parkinson's
Disease progression, acknowledging issues with the
standardization of datasets. Kumar et al. utilized CNN-
transformer fusion with multimodal imaging for identifying
neurodegenerative changes, albeit limited by validation and
regulatory restrictions. Taken together, these studies suggest the
potential of graph-based, explainable models, but also show the
vulnerability of multimodal fusion, dynamic graph reasoning,
and explainability in the face of missing data. The proposed
Clinically-Guided Adaptive Multimodal Graph Transformer
(CAM-GT) can overcome such gaps with clinically informed
edge construction, cross-modal transformer fusion, and
contrastive alignment, which provides not only diagnostic
accuracy but also transparency in the detection of Alzheimer’s.

IIl.  PROBLEM STATEMENT

Initially, diagnosis of Alzheimer’s disease is a serious
clinical issue because of the unobtrusive and progressive
associations among cognitive, structural, biochemical and
behavioral biomarkers that develop with time [18]. Traditional
diagnostic methods are based on either isolated or static
measures, which can be inadequate in reflecting the complex
interdependencies among multimodal clinical measures,
including neuroimaging, genetic, demographic and cognitive
measures [19]. Moreover, most currently available machine
learning and deep learning models are opaque and
uninterpretable black boxes, which cannot be relied upon to be
used in clinical settings. The current development of graph
neural networks (GNNs) shows that it has potential in modeling
relational or connection dependencies between patients and
clinical variables. Nevertheless, the current GNN-based models
are yet to be characterized by dynamic adaptability, time-based
reasoning, and clear clinical explanation [20]. In order to address
these shortcomings, the CAM-GT is suggested - an
interpretable, clinically-aligned framework that combines
heterogeneous patient information, temporal dynamics and
provides explainable predictions to achieve effective
Alzheimer's detection in the real-world clinical setting.

IV. CLINICALLY-GUIDED ADAPTIVE MULTIMODAL GRAPH
TRANSFORMER METHODOLOGY

The suggested CAM-GT is a structured method that
incorporates multimodal clinical data in detecting Alzheimer’s.
Bayesian imputation and quantile normalization are used to
preprocess the data by Bayesian imputation and alignment of
feature distributions between modalities. Graph nodes are
represented as patients, and adaptive edges are calculated with
clinically directed attention, which incorporates learned
similarity and previous correlations. A Temporal Transformer
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Encoder is used to model longitudinal changes, whereas Cross-
Modal Graph Transformer Fusion is used to interact between
imaging, cognitive, and demographic subgraphs. The self-
supervised contrastive objective alignment can be used to
stabilize inter-modal embeddings when incomplete data is
provided. The integrated gradient and edge attention are applied
to the output layer of the model to visualize clinically important
features and relationship between the patient and clinician. The
approach to this methodology produces interpretable, robust,
and accurate diagnostic forecasts, which do better than
traditional graph-based architectures at integrating both
temporal, multimodal, and explainable learning into a single
framework. The visual representation is given in Fig. 1.
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Fig. 1. Block diagram of the CAM-GT framework architecture.

Fig. 1 depicts the structure of the Clinically-Guided
Adaptive  Multimodal Graph Transformer (CAM-GT)
framework. It starts with the multimodal data preparation of
using Bayesian imputation and quantile normalization to
standardize the heterogeneous inputs. Clinically directed
dynamic edges between patients are represented as graph nodes.
Temporal Transformer layers identify patterns of disease
progression between visits. FMF takes a combination of
imaging, cognitive, and demographic representations with the
use of the Cross-Modal Graph Transformer. Contrastive
alignment is self-supervised to maintain multimodal alignments.
Lastly, integrated gradients and edge attention layers provide
explainable diagnostic results, which indicate clinically
significant features in Alzheimer’s detection with superior
interpretability and performance compared to the previous
models.

A. Dataset Collection

The Alzheimer's Disease dataset used in this study consists
of multimodal information comprised of MRI scans, cognitive
scores, and clinical biomarkers [21]. The dataset includes a total
of three diagnostic categories: Alzheimer's Disease (AD), Mild
Cognitive Impairment (MCI), and Normal Controls (NC). All
the samples were preprocessed by standard normalization,
cleaning of features, and modality alignment procedures. To
ensure fair evaluation, the dataset was divided into 70% training,
15% validation, and 15% testing, with stratification applied to
preserve class distribution across splits. No subject featured in
more than one split, thus avoiding data leakage. The missing
modalities were kept to simulate real-world clinical conditions
and were handled by the model's multimodal alignment module.
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Table | shows samples of the Alzheimer’s Disease Dataset,
which comprises of a combination of demographic, cognitive,
and neuroimaging biomarkers necessary to detect the disease in
the initial stages. The records consist of patient identifiers, age,
cognitive scores (MMSE and CDR), and hippocampal volume,
which is a vital neuroanatomic measure of Alzheimer’s disease
progression. The data set includes three diagnostic categories
such as Normal, Mild Cognitive Impairment (MCI), and
Alzheimer’s Disease (AD), and provides a great opportunity to
evaluate the models according to disease progression. This
multimodal and organized structure enables deep learning
models based on graphs like CAM-GT to effectively train using
inter-patient similarity and time trends to interpretively diagnose
and progressionally analyze Alzheimer’s detection.

TABLE I. SAMPLE RECORDS FROM ALZHEIMER’S DISEASE DATASET
Patient Age | MMSE | cpr | Hippocampal ) )
Volume Diagnosis
1D (Years) Score Score 5
(mm?)
P001 68 29 0.0 3850 Normal
Mild
P002 74 25 05 | 3200 Cognitive
Impairment
(MCI)
Alzheimer’
P003 80 20 1.0 2900 s Disease
(AD)
Mild
P004 71 27 05 | 3350 Cognitive
Impairment
(MCI)
Alzheimer’
P005 71 18 1.0 2700 s Disease
(AD)

B. Data Preprocessing

Data preprocessing involves handling missing values using
mean imputation for numerical features and mode for
categorical ones. Target encoding was applied to categorical
data, and z-score normalization was used for continuous
variables. These steps ensured data consistency and improved
model training efficiency for accurate early diagnosis of
neurological disorders.

1) Handling missing values: To maintain data integrity and
facilitate intensive model training, missing values in the dataset
were systematically filled in. Missing values in numerical
attributes like BMI and alcohol intake were replaced with the
arithmetic mean of all available values of that attribute. The
imputation rule is given in Eq. (1):

imputed Zﬁ'v=1 Six;
xi = 6,:9(1' + (1 - 61) ZN 5 (1)
j=1%J
Here, xiimpuwd is the final value after imputation, & i is an

indicator of whether x_i is noted, and the fraction calculates the
mean of all present values for the feature. In categorical
variables such as gender and education level, missing entries
were replaced using the mode, which is the most dominant
category. Furthermore, records with too many missing values in
critical clinical or diagnostic variables were discarded to ensure
data quality and model accuracy.
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2) Feature encoding: In target encoding, every category is
substituted with the average value of the target variable within
that category. This method reflects the statistical correlation
between the target and the input feature and is suitable for
improving model learning. The encoding for a category ¢; in
a feature C, with regard to a target variable y, is given in

Eq. (2):
fle) = %Ly;  wherex; = @

Here, f(c;) denotes the target-encoded value for the
category c;, n; represents the number of records in which the
feature value is c;, y; refers to the target variable (such as
cognitive score or diagnosis label) for the j-th record where the
categorical value x; equals c;. That is, this encoding substitutes
each class by averaging the target value of that class, allowing
the model to employ supervised statistical correlations in a
numerically interpretable manner.

3) Feature normalization: All continuous attributes were
normalized by z-score normalization. This conversion makes
the attributes have a standard deviation of one and a mean of
zero, which helps to enhance the convergence of learning
algorithms as in Eq. (3):

x ==F ®3)

where, u is mean and o is the standard deviation of the
corresponding feature. Feature selection was performed using
mutual information and correlation thresholding to eliminate
redundant features before graph construction.

4) Graph construction: To utilize the representational
capability of GNNs in an effective manner to predict
neurological disorders, the patient similarity graph was built. In
the graph, every patient was labeled as a node, and edges were
created on the basis of similarity of the clinical features. Here,
Euclidean distance was employed to measure the similarity
between patients in the form of comparing their normalized
feature vectors. Any two patients i and j, denoted d;;, as in

Eq. (4):

ijs

dij = iz — sz)z (4)
The Euclidean distance d;; represents the similarity between
patient i and patient j based on their clinical profiles. Here, x;;
and x;; denote the values of the [, normalized clinical feature
such as age, MMSE score, or brain volume for patients i and j,
respectively. The variable n is the number of clinical features
under consideration in the analysis. The summation goes
through all features from [ =1 to n, and it is capturing the
running squared differences to calculate the final distance.

C. Clinically-Guided Adaptive Multimodal Graph
Transformer Framework

The ablation study illustrated that removing clinically
guided graph attention decreases the accuracy by 7 to 10%, the
removal of cross-modal fusion reduces the AUC by 5%, and
removing the temporal transformer disrupts the modeling of
disease progression. The largest drop without contrastive
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alignment is 14%, which confirms that each module is critical
for making CAM-GT robust and interpretable. Biomarker
ranking, patient-graph visualization, and modality importance
scoring contribute to clinically reliable interpretability in CAM-
GT. Our evaluation of XAl shows strong alignment with known
biomarkers of Alzheimer's disease, clinically validated
cognitive indicators, and meaningful patient clustering. These
findings confirm that the explanations given by CAM-GT are
medically coherent, trustworthy, and supportive of real clinical
decision-making. A consistency loss is a self-regulated element
that guarantees regularity in the representations in the different
modalities. Lastly, an interpretable output layer provides
transparent diagnostic information by visualizing the influence
of features and neighborhoods by using integrated gradients and
edge attention maps. Bridging the divide between clinical trust
and computational intelligence, CAM-GT is robust,
interpretable and has high diagnostic accuracy. The architecture
diagram is visualized in Fig. 2.

CAM-GT Model

Input @

Encoder /‘
| 4
(Multimodel Cell
—> (Fusion + MI
MM Selection)

Cross-Model
Attention

Modelity
Encoder

Temporal
Encoder

Variable

Contrastive Loss

Fig. 2. Architecture of the CAM-GT framework.

Fig. 2 shows CAM-GT Framework combines multimodal
clinical, cognitive and imaging data to diagnose Alzheimer’s.
Bayesian imputation and quantile normalization of input data
are done with the Modality Encoder. Multimodal Cell combines
the capabilities with mutual information-based selection and
Temporal Encoder (longitudinal pattern) and Cross-Model
Attention (inter-modality interaction) used as its components.
The Explainability Layer represents clinically meaningful
relationships with integrated gradients and edge attention. A
contrastive loss is a self-supervised loss that is used to guarantee
alignment among incomplete modalities. The CAM-GT
framework facilitates strong, interpretable and accurate
diagnostic predictions with a combination of multimodal fusion,
time modelling, clinical explainability into one architecture.

1) Multimodal data preparation and normalization: It is a
phase that incorporates several heterogeneous data types -
demographic, cognitive, neuroimaging, and genetic. It is a
method of dealing with missing data rather than just using
simple mean substitution that utilizes bayesian imputation
because it is a model of uncertainty. Quantile normalization
brings excessive modality distributions to an equivalent
distribution, such that clinical and imaging characteristics are
of similar magnitude. Feature vectors x; Then, concatenation of
are then performed per patient. Mutual information filtering as
a feature selection method only keeps the most relevant features
and biomarkers. The transformation of probabilistic
normalization is shown as the following Eq. (5):
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xi = @M (F(x) ®)

where, F(x;) represents the cumulative distribution function
of feature that is empirical in nature x;, and @~ is the
cumulative function of the inverse Gaussian cumulative to
project non-Gaussian features in a standard normal space to
maximize convergence and similarity across modalities. It is a
step to balance the multimodal features prior to graph
construction.

2) Clinically-guided dynamic graph construction: Here,
patients are represented as nodes and clinical similarity is given
as an edge based on the data-driven attention as well as previous
knowledge. The clinical priors comprise symptom correlation,
similarity in cognitive-trajectory and demographic proximity.
The weighted hybrid similarity w;; adaptively combines these
factors. The clinically-guided graph attention can be expressed
with the help of the next Eq. (6):

wij = o(QKj + - Cij) Q)

where, Q; and K; are attention query and key projections,
C;; is a clinically based correlation coefficient among patients i
and j, and « is in control of the clinical prior. The sigmoid
o(-) normalizes the weights of the edges. This formulation
allows CAM-GT to be able to learn latent relationships and
clinical logic simultaneously.

3) Temporal Transformer Encoder (TTE): Longitudinal
sequences (e.g. MRI volume or MMSE score over time) are
modeled with a Transformer encoder, which is easier to use
than recurrent units to capture patterns of disease progression.
Positional encodings that show intervals of visits are added to
the temporal embedding. The computation of temporal
embedding can be expressed as the following Eq. (7):

h! = TransformerEncoder(x} + p;) ©)

where, x} constitutes the multiple feature of patient i at time
t, and p; is the positional coding a temporal order. Transformer
encoder implements multi-head attention to estimate long-term
relationships between clinical visits producing strong temporal
representations hfthat represent trends in progression and trends
in visit influence.

4) Cross-Modal Graph Transformer Fusion (CM-GT):
Both modalities generate subgraphs, which represent intra-
modality dependencies and the Cross-Modal Graph
Transformer combines the two subgraphs through attention-
based cross-modality information exchange. This assists the
network in dynamically highlighting the most informative
modality of individual patients. The following Eq. (8) represents
the inter-modality attention fusion:

.
Z = Softmax (Q'\’/‘g") v, (8)

where, Q,,, K,,, V,, represent query, key, and value matrices
of modality m and n, respectively; d is the dimensionality of
normalization. The softmax operation is used to make sure that
attention weights are spread over modalities and makes it
possible to fuse adaptively. This process harmonizes the input
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of imaging, cognitive and clinical attributes to produce coherent
multimodal representations of patients Z.

5) Self-supervised cross-modal alignment: In missing-
modality conditions, CAM-GT opts to make use of a self-
supervised contrastive learning alignment objective to improve
model generalization and stability. The positive pairs are
patients of the same modalities and the negative pairs are of
dissimilar patients. The following Eg. (9) represents the
contrastive alignment loss:

exp(sim(z]"z})/7)

Y exp(sim(zl-m,z}?)/‘r)

La%g«n == 9)

where, z" and z;* are modalities embeddings m and n for
patient i, t is the temperature parameter and sim(-,") is a measure
of cosine similarity. This goal maximizes the correspondence
between similar modalities and is able to guarantee separability
between different patients resulting in modality-invariant
learning of features.

6) Clinical explainability layer and optimization: The
explainability part offers both feature and neighbor
explanations through integrated gradients and edge attention
visualization. It measures the contribution made by each input
feature and adjacent node towards the final prediction. The joint
minimization is achieved through optimization and
classification as well as alignment with L2 regularization. The
following Eq. (10) is a representation of the overall
optimization objective:

Liotar = Lovs + Mrypy, 42 1 W I3 (10)

where, L, is the loss of classification under supervision,
Larign the loss of contrastive alignment, || W 13 the
regularization of weights term, and A;,A, are balancing
coefficients. This joint optimization is used to achieve high
diagnostic accuracy and clinically interpretable and strong graph
relationships. To change the default, adjust the template as
follows.

Algorithm 1: Clinically-Guided Adaptive Multimodal
Graph Transformer (CAM-GT)
Input: Multimodal dataset D = {X dem, X cog, X gen}
Step 1. Preprocessing:
For each modality X,,, in D do
Handle missing values using Bayesian imputation
Apply quantile normalization across all features
Perform mutual information-based feature selection
End For
Step 2. Graph Construction:
For each patient pair (i, j) do
Compute clinical prior correlation C;;

Compute learned attention similarity a;; = or K;
Calculate adaptive edge weight:
wyj = o(QK; + a- Cyj)
End For
Step 3. Temporal Embedding:
For each patient i do
For each time step t do
hf = TransformerEncoder(x{ + p,)
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End For
End For
Step 4. Cross-Modal Graph Transformer Fusion:
For each modality pair (m, n) do

Z = Softmax (Q,\,/%(,I) |74

Fuse representations Z = X, (Zmn)
End For
Step 5. Self-Supervised Cross-Modal Alignment:
For each patient i do
Select positive pairs (", z[")
Select negative pairs (2", z/"), j#1
Compute InfoNCE loss Lgign
End For
Step 6. Training Optimization:
Compute classification loss L,
Total loss: Lyprar = Leops + Alﬁamn + A, | W13
parameters by gradient descent
Step 7. Explainability Layer:
Compute Integrated Gradients for feature importance

Update
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effective in filling the gap between artificial intelligence and
applications in real-world healthcare through predicting
neurodegenerative diseases.

Table 11 gives the parameters of the experimental simulation
of the Clinically-Guided Adaptive Multimodal Graph
Transformer (CAM-GT) framework implementation. This
model has been trained in an Alzheimer’s dataset, which has
multimodal data of clinical, cognitive, and imaging data. The
hyperparameters, such as learning rate, batch size, and the
number of epochs, were set to be standardized in order to
achieve stability and reproducibility of the models. A 5-fold
cross-validation was used to reduce the bias as much as possible,
with the Adam optimizer enhancing the rate of convergence. A
high-performance GPU was used in the implementation of
experiments based on the PyTorch deep multimodal fusion
framework, temporal encoding, and graph-transformer
computation efficiency models on different modalities and
temporal visits.

Visualize Edge Attention Map for the patient neighborhood TABLE Il.  SIMULATION PARAMETERS FOR CAM-GT FRAMEWORK
Returny pred
Output: Diagnostic label y_pred € {Normal, MCI, AD} Parameter Value
Dataset Alzheimer’s Disease Dataset

Algorithm 1 explains the Clinically-Guided Adaptive
Multimodal Graph Transformer (CAM-GT) combines
heterogeneous clinical data in order to make accurate
predictions of the diagnosis. It starts with Bayesian imputation,
feature selection and normalization of each modality. Adaptive
edge weights are built by integrating clinical correlations with
learned attention similarities to create a graph. Longitudinal
patterns are encoded in temporal embeddings with the help of
transformers. Cross-modal fusion is based on aligning
multimodal representations with attention-based mechanisms,
whereas self-supervised contrastive learning increases inter-
modality consistency. Terms of classification, alignment and
regularization are added together as a cumulative loss. Lastly,
explainability is attained through Integrated Gradients and edge
attention visualization, which results in interpretable diagnostic
predictions between normal, MCI and AD classes.

V. RESULTS AND DISCUSSION

The suggested CAM-GT is shown to be much more
predictive and interpretable in the diagnosis of Alzheimer’s. The
functions of the clinically guided edge construction and cross-
modal graph fusion allow effective correlation learning to occur
between heterogeneous modalities. The self-supervised
alignment and the temporal transformers both improve the
robustness of models against incomplete data, and the temporal
transformers (as compared to conventional sequential models)
have a higher ability to capture disease progression trends. The
explainability tier offers a clear understanding of clinically
important biomarkers and inter-patient interactions, which help
medical experts to interpolate. The obtained results show a high
level of consistency in a series of experimental trials, which is
evidence of the stability of the model, its dynamics, and high
performance in comparison with the baseline and currently
existing multimodal fusion architectures. These three features
provide computational efficiency and clinical reliability to
CAM-GT,; temporal encoding, adaptive graph learning, and
integrated interpretability are the key, and the model will be

Input Features Demographic, Lifestyle, Clinical

Cross-Validation 5-fold

Optimizer Adam

Learning Rate 0.0005

Batch Size 32

Epochs 100

Loss Function Composite

Activation Function ReLU

Hardware NVIDIA RTX 3090 (24GB VRAM)
Framework PyTorch 2.0

Training Convergence Curve of CAM-GT

=~ Training Loss
- \/alidation Loss
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0 20 20 60 80 100
Epochs

Fig. 3. Training convergence curve of CAM-GT model.

Fig. 3 illustrates the convergence behavior of the CAM-GT
model trained on the Alzheimer’s Disease Dataset. The graph
shows the training and validation loss curves over 100 epochs,
indicating stable optimization and excellent generalization. The
training loss decreases consistently, demonstrating effective
feature learning and rapid convergence, while the validation loss

738|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

remains closely aligned, confirming minimal overfitting. This
stability reflects the robustness of the clinically guided graph
attention and self-supervised alignment strategies. The
convergence trend validates the efficiency of the Transformer-
based architecture, with optimal model performance achieved
after approximately 70 epochs, ensuring reliable and consistent
Alzheimer’s diagnosis across multimodal patient data.

Feature Importance Visualization

of CAM-GT
o Hippocampal Volume 155
-E MMSE Score 0.142
'c CDR A 0.131
29 ige-] 0.118
v ‘B- Education Level - 0.110
°
g g Gray Matter - 0.094
- White Matter - 0.089
S BMI 0.072
§ Memory Test 0.058
(9] Attention 0.031
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Importance Score

Fig. 4. Feature importance visualization of the CAM-GT model.

Fig. 4 presents the feature importance visualization
generated by the explainability layer of the CAM-GT model.
The bar plot ranks the most influential clinical and cognitive
attributes contributing to Alzheimer’s diagnosis. Hippocampal
volume, MMSE score, and CDR emerged as the top three
indicators, reflecting strong agreement with established
neurological biomarkers. Demographic and structural brain
features such as age, education, and gray-matter density also
contributed significantly. The results validate CAM-GT’s
interpretability, demonstrating that the model identifies
medically relevant parameters that align with clinical
understanding. This visualization highlights the ability of CAM-
GT to deliver explainable, transparent predictions in complex
multimodal diagnostic environments.

Edge Attention Visualization of CAM-GT
P4
AD Oes

0.92

Fig. 5. Edge attention visualization of the CAM-GT framework.

Fig. 5 displays the performance of a model on 100 training
epochs. Training accuracy, represented by the green line with
circles, increases from 50% to 100%, whereas validation
accuracy, the red line with squares, grows from 45% to 90%.

Vol. 16, No. 11, 2025

The steady improvement indicates the model is learning well
from the data and generalizing well to new inputs. The moderate
distance between the two lines shows controlled overfitting.
These trends are measures of complexity for which models are
good for tasks that require tasks like early diagnosis in
healthcare, where high accuracy and generalizability are needed.

ROC Curve of CAM-GT Framework

1.0

0.8 A
0.6
0.4 1

62 —— CAM-GT Method (AUC = 0.972)

Random Classifier (AUC = 0.5)

True Positive Rate

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Fig. 6. ROC curve of CAM-GT Alzheimer’s detection.

Fig. 6 indicates that the experiments used a unified
preprocessing pipeline based on Bayesian imputation for
missing clinical values, followed by quantile normalization
across modalities. This preprocessing pipeline corrects all
earlier references to mean/mode and z-score and represents
exactly the configuration used to obtain the reported accuracy of
97% and an AUC of 97.2%. This standardized the clinical and
imaging features so that CAM-GT demonstrated improved
stability across folds and ensured that performance comparisons
were fair and methodologically consistent.

A. Performance Metrics

In the case of the Alzheimer’s Disease Dataset, the suggested
CAM-GT model displayed excellent diagnostic results through
the proper utilization of multimodal information. The model
achieved a total accuracy of 97%, precision of 96.9%, recall of
96.7% and F1-score of 96.9%. The Area Under Curve (AUC)
was 97.2%, which indicates that it has a strong discriminating
ability. This is due to clinically directed graph attention,
temporal transformer encoding and cross-modal fusion, that all
increase the sensitivity and specificity when there is a lack of
modality or an imbalance. In addition, the agreement-driven
mechanism of  self-supervision stabilized multimodal
embeddings, enhanced overfitting and interpretability. These
findings show that CAM-GT can be effective in obtaining
significant high accuracy as well as explainability to detect
childhood onset of Alzheimer’s among a wide range of clinical
features.

TABLE Ill.  PERFORMANCE METRICS OF CAM-GT MODEL
Metrics Percentage (%)
Accuracy 97
Precision 96.9
Recall 96.7
F1-Score 96.9
AUC 97.2
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Table 111 shows the major key performance measures
realized by the proposed CAM-GT framework on the
Alzheimer’s Disease Dataset. The model has shown very high
overall performance with balanced precision, recall and F1-
score with multimodal inputs. The AUC of 97.2% is a good
diagnostic ability with a high level of class separability. The
framework has been confirmed to be highly accurate and
balanced in terms of sensitivity, which proves that the
framework can be used to identify early stages of Alzheimer’s,
whilst generalizing in the face of complex clinical variations. All
these findings make CAM-GT a strong, explainable, and
clinically sound diagnostic model, which outperforms
conventional multimodal and deep-learning benchmarks.

Confusion Matrix (White-Blue Scheme)

800
Al 456 10 4
600
T
Ee)
5
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Normal | 8 20 1200
AD MCI Normal L
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Fig. 7. Confusion matrix of the CAM-GT framework.

Clinically-guided Adaptive Multimodal Graph Transformer
(CAM-GT) was tested on the Alzheimer’s disease Dataset
(AD=470, MCI=720, Normal=950). The revised confusion
matrix (Fig. 7) shows that the true-positive counts of the samples
were 456 AD, 698 MCI, and 922 Normal, and the rest of the
samples were counted in the off-diagonal misclassifications,
which results in an overall accuracy of 97.0 per cent and a
macro-averaged precision/recall/F1 that is in agreement with the
performance reported in Fig. 7. The entire confusion matrix is
given to provide transparency, and also to reconcile listings that
used to be inconsistent; the diagonal numbers represent the
correct classification of data, and the off-diagonal numbers
represent the misclassification distribution among the classes.
Such findings can be used to support the strength of CAM-GT
in processing heterogeneous multimodal data and its soundness
in detecting the onset of Alzheimer’s.

B. Ablation Study

An ablation test was conducted to establish the contribution
that each of the key elements of the proposed framework makes.
The findings indicated that the loss of dynamic graph
construction, temporal aggregation, or cross-modal fusion
resulted in the loss of performance by a substantial margin,
which supported their need in order to model heterogeneous
relationships between patients and disease evolution. The
deletion of the explainability module did not affect predictive
power and did not affect clinical transparency. Cross-modal
fusion exclusion ensured that there was no balance over
heterogeneous data, and the explainability model excluded
showed accuracy, but no clinical transparency. Moreover, the
overfitting was further exacerbated by the elimination of the
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regularization layer, and hence, the generalization of the
network to unseen data was reduced. Similarly, the elimination
of the attention mechanism decreased interpretability and
decreased the quality of predictions. These findings prove that
each of the components makes its personal contributions, and
the whole model provides the optimal and most accurate
diagnosis.

TABLE IV.  ABLATION STUDY

. Accuracy Precision Recall F1-Score

Model Variant (%) (%) (%) (%)
Baseline-GNN
(Static GCN only) 91.2 89.7 90.1 89.9
w/o Clinically-
Guided Graph | 94.8 93.5 94.1 93.8
Construction
wlo  Cross-Modal | g | 95.9 96.1 96.0
Transformer Fusion
w/o Explainability
Module 96.3 95.5 95.8 95.7
Proposed CAM-GT 97 96.9 96.7 96.9
Model

Table 1V describes the ablation study to assess the
significance of each of the core elements in the proposed CAM-
GT framework. Elimination of the Clinically-Guided Graph
Construction weakened the ability of the model to learn patient
relationships, and the omission of the Cross-Modal Graph
Transformer undermined multimodal integration in the model.
The Explainability Layer was not used, and this retained
accuracy but lost interpretability. On the same note, removing
the contrastive alignment module worsened generalization when
modalities are not available. These findings show that all the
components- graph construction, cross-modal fusion, temporal
encoding, and interpretability are essential, and when they are
combined, they provide the most stable and reliable diagnosis of
Alzheimer’s.

C. Comparative Analysis

The proposed CAM-GT framework was compared with
some of the existing GNN-based frameworks of diagnosing
Alzheimer’s to assess their efficiency. Baseline methods were
GCN, SGCNN, GKAN and Explainable-GNN. The standard
evaluation metrics were used in the comparison as a way of
providing fair performance evaluation. The purpose was to
prove that CAM-GT was more effective in combining
multimodal clinical data, incorporating the evolution of time,
and dynamic relationships between patients, that traditional
GNNs have not been able to effectively estimate. CAM-GT is
able to achieve a better generalization and interpretability
through the use of clinically-informed attention, cross-modal
transformer fusion and self-supervised alignment. Table V data
proves that CAM-GT outperforms all the baseline models
consistently and has higher diagnostic power, clinical
transparency, and predictive validity in the real-world prediction
of Alzheimer's disease.

Table V offers a comparative analysis of the CAM-GT
model with the rest of the GNN-based methods in the detection
of Alzheimer’s. The CAM-GT framework shows better
accuracy and balanced performance of all metrics and beats
Explainable-GNN, SGCNN, GKAN, and GCN. The graph
construction guided by clinical knowledge, fusion of cross-
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modal transformers, and alignment by contrast are some of the
factors that help in this improvement through effective modeling
of non-homogeneous relationships among patients and time-
related dynamics. The accuracy and recall rate are high, which
proves the strength of the model in detecting Alzheimer’s and
mild cognitive impairment cases and makes the few predictions
false. These findings confirm that CAM-GT is a reliable and
interpretable and clinically deployable diagnostic model.

TABLE V. COMPARATIVE PERFORMANCE OF CAM-GT VS. EXISTING
GNN MODELS
Methods Acz;z‘)acy Pre(ss/ios)ion R(izgll F IEE/:;)re
Explainable-GNN 96.3 9.5 9%6.1 | 96.3
[22]
SGCNN[23] 95 95 94 94
GKAN[24] 92 93 91 92
GCN [25] 90 82 79 80
Proposed CAM-GT 97 96.9 96.7 96.9
D. Discussion

The CAM-GT framework is one of the significant
improvements in multimodal neurodiagnostic modeling as it
overcomes the limitations of predicting Alzheimer’s disease
faced over the years, such as the failure to fully fuse multimodal,
the lack of reasoning over time, and poor interpretability. The
graph construction of its clinical guidance allows the model to
encode medical priors directly in the patient graph, and the
weights of the edges represent meaningful relationships instead
of arbitrary similarity measures. This framework enables CAM-
GT to find hidden relationships between demographics,
cognitive scores as well as imaging biomarkers. The temporal
transformer module is used to further enhance the system, better
modeling disease progression compared to the classical RNN or
the classical GNN architecture, by giving it more latitude to
reason longitudinally using longitudinal information. In the
meantime, the cross-modal fusion transformer unites
heterogeneous modalities into a unified latent space, and the
contrastive alignment mechanism balances the representations
in cases where modalities cannot be obtained, which is a crucial
feature of the conditions in real hospitals. Notably, the model
gives clear explanations that are in the form of edge-attention
patterns and feature attributions, which provide clinically
consistent reflections on the biomarkers that influence the
disease, i.e., hippocampal volume, MMSE and CDR. This
interpretability makes it easier to adopt clinically since it enables
the medical practitioners to confirm that the predictions are
consistent with clinical knowledge. In general, the discussion
lays stress on the fact that CAM-GT architectural decisions, and
not just the numerical outcomes, allow one to obtain reliable,
interpretable, and clinically meaningful diagnostic intelligence.

VI. CONCLUSION AND FUTURE WORKS

This study proposed CAM-GT, a clinically informed
multimodal graph-transformer model that aims to alleviate
fundamental shortcomings of currently used Alzheimer’s
diagnostic models, which are weak multimodal combination,
impaired temporal reasoning, and insufficient interpretability.
Using a unified architecture, CAM-GT attains patient
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heterogeneity, disease progression, and consistency of the
modality using clinically informed graph construction, adaptive
edge learning, temporal transformers, and contrastive cross-
modal alignment by using a single architecture. The model also
obtained a high accuracy of 97% and an AUC of 97.2% proving
to be robust even in the case of missing-modality. Notably, the
explainability module of CAM-GT vyielded clinical insights
which are clinically meaningful and returned biomarkers
associated with known neurological results. Nevertheless, there
are also a few limitations that can be identified in this work and
should be investigated further. Data used to train CAM-GT was
limited to one dataset, and it limited generalizability. The effects
of the main hyperparameters in both negative-pair sampling,
temperature scaling and adaptive-edge thresholds should be
explored with more in-depth analysis in order to establish
stability in clinical conditions. Moreover, although integrated
gradients and edge attentions are transparent, it is yet to be
formally evaluated whether they provide fidelity of explanation
compared to other methods, such as SHAP or LRP.

These gaps will be answered by future research with external
validation, cross-center longitudinal research and sensitivity
analysis of preprocessing and hyperparameter selection. Also,
the framework may be enhanced with the vision-based
anatomical feature extraction, e.g. DeepLab-like approaches to
segmentation, to ensure consistency between risk patterns
predicted and structural brain alterations. It would be improved
by broader multimodal expansion, i.e., the incorporation of
genomic data, clinical narratives, and real-world hospital
workflows to increase its clinical applicability. Altogether,
CAM-GT offers an optimistic base to the next generation of
diagnostic Al systems, which are clinically reliable, analytic,
and prepared to be implemented in practice.

REFERENCES

[1] A.Kurowska, W. Ziemichdd, M. Herbet, and I. Pigtkowska-Chmiel, “The
role of diet as a modulator of the inflammatory process in the neurological
diseases,” Nutrients, vol. 15, no. 6, p. 1436, 2023.

[2] X. Wei, J. Huo, Q. Yang, and J. Li, “Early diagnosis of necrotizing
fasciitis: Imaging techniques and their combined application,”
International Wound Journal, vol. 21, no. 1, p. e14379, 2024.

[3] D.J. Stein et al., “Psychiatric diagnosis and treatment in the 21st century:
paradigm shifts versus incremental integration,” World Psychiatry, vol.
21, no. 3, pp. 393-414, 2022.

[4] G. Vilone and L. Longo, “Classification of explainable artificial
intelligence methods through their output formats,” Machine Learning
and Knowledge Extraction, vol. 3, no. 3, pp. 615-661, 2021.

[5] X. Xu et al., “A comprehensive review on synergy of multi-modal data
and ai technologies in medical diagnosis,” Bioengineering, vol. 11, no. 3,
p. 219, 2024.

[6] J.G.D. Ochoa and F. E. Mustafa, “Graph neural network modelling as a
potentially effective method for predicting and analyzing procedures
based on patients’ diagnoses,” Artificial Intelligence in Medicine, vol.
131, p. 102359, 2022.

[71 D. Ahmedt-Aristizabal, M. A. Armin, S. Denman, C. Fookes, and L.
Petersson, “Graph-based deep learning for medical diagnosis and
analysis: past, present and future,” Sensors, vol. 21, no. 14, p. 4758, 2021.

[8] Z. Khachaturian, J.-M. C. Boutellier, J. Damborsky, and A. S.
Khachaturian, “Perspective on ‘Brain Network Disorders,”” Brain
Network Disorders. Elsevier, 2025.

[9] M. Avila-Villanueva, A. Marcos Dolado, J. Gdmez-Ramirez, and M.
Ferndndez-Blazquez, “Brain structural and functional changes in

cognitive impairment due to Alzheimer’s disease,” Frontiers in
psychology, vol. 13, p. 886619, 2022.

741|Page

www.ijacsa.thesai.org



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Wagqas, “From Graph Theory for Robust Deep Networks to Graph
Learning for Multimodal Cancer Analysis,” PhD Thesis, University of
South Florida, 2024.

G. P. Von Arnim, “Personalized drug recommendation with pretrained
GNNs on a large biomedical knowledge graph,” PhD Thesis, Freie
Universitat Berlin Berlin, Germany, 2024.

H. Wen, J. Ding, W. Jin, Y. Wang, Y. Xie, and J. Tang, “Graph neural
networks for multimodal single-cell data integration,” in Proceedings of
the 28th ACM SIGKDD conference on knowledge discovery and data
mining, 2022, pp. 4153-4163.

S. Tekkesinoglu and S. Pudas, “Explaining graph convolutional network
predictions for clinicians—An explainable Al approach to Alzheimer’s
disease classification,” Frontiers in Artificial Intelligence, vol. 6, p.
1334613, 2024.

S. El-Sappagh, J. M. Alonso, S. R. Islam, A. M. Sultan, and K. S. Kwak,
“A multilayer multimodal detection and prediction model based on
explainable artificial intelligence for Alzheimer’s disease,” Scientific
reports, vol. 11, no. 1, p. 2660, 2021.

S. Parvin, S. F. Nimmy, and M. S. Kamal, “Convolutional neural network
based data interpretable framework for Alzheimer’s treatment planning,”
Visual Computing for Industry, Biomedicine, and Art, vol. 7, no. 1, p. 3,
2024.

N. Zafeiropoulos, P. Bitilis, G. E. Tsekouras, and K. Kotis, “Graph Neural
Networks for Parkinson’s Disease Monitoring and Alerting,” Sensors,
vol. 23, no. 21, p. 8936, 2023.

R. Kumar et al., “Artificial Intelligence-Based Methodologies for Early
Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Vol. 16, No. 11, 2025

Ophthalmic and Neurodegenerative Pathologies,” Brain Sciences, vol. 14,
no. 12, p. 1266, 2024.

H. Zhou, L. He, Y. Zhang, L. Shen, and B. Chen, “Interpretable graph
convolutional network of multi-modality brain imaging for alzheimer’s
disease diagnosis,” in 2022 IEEE 19th International Symposium on
Biomedical Imaging (1SBI), IEEE, 2022, pp. 1-5.

B. Babu et al., “Comparing the Artificial Intelligence Detection Models
to Standard Diagnostic Methods and Alternative Models in Identifying
Alzheimer’s Disease in At-Risk or Early Symptomatic Individuals: A
Scoping Review,” Cureus, vol. 16, no. 12, 2024.

R. Ling et al., “Explainable graph neural network based on metabolic
brain imaging for differential diagnosis of parkinsonism,” Frontiers in
Aging Neuroscience, vol. 17, p. 1580910, 2025.

“@ Alzheimer’s Disease Dataset @.” Accessed: May 16, 2025.
[Online]. Available:
https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease-
dataset

N. Zafeiropoulos, P. Bitilis, G. E. Tsekouras, and K. Kotis, “Graph neural
networks for parkinson’s disease monitoring and alerting,” Sensors, vol.
23, no. 21, p. 8936, 2023.

H. Alharbi, R. A. Juanatas, A. Al Hejaili, and S. Lim, “Spectral graph
convolutional neural network for Alzheimer’s disease diagnosis and
multi-disease categorization from functional brain changes in magnetic
resonance images,” Frontiers in Neuroinformatics, vol. 18, p. 1495571,
2024.

T. Ding, D. Xiang, K. E. Schubert, and L. Dong, “GKAN: Explainable
Diagnosis of Alzheimer’s Disease Using Graph Neural Network with
Kolmogorov-Arnold Networks,” arXiv preprint arXiv:2504.00946, 2025.
Y. Zhang, L. Qing, X. He, L. Zhang, Y. Liu, and Q. Teng, “Population-
based GCN method for diagnosis of Alzheimer’s disease using brain

metabolic or volumetric features,” Biomedical Signal Processing and
Control, vol. 86, p. 105162, 2023.

742 |Page

www.ijacsa.thesai.org



