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Abstract—This is a clinically reliable and explainable 

diagnostic framework for the early detection of Alzheimer's 

disease with multimodal data. Current computational methods 

face challenges in dealing with fragmented clinical information, 

poor cross-modal integration, limited temporal modelling, and low 

interpretability, rendering them unsuitable for real-world medical 

deployment. To overcome these limitations, we propose the 

Clinically Guided Adaptive Multimodal Graph Transformer 

(CAM-GT), a novel architecture that fuses clinical priors with 

graph-based learning and transformer-driven temporal reasoning 

within a unified model. The proposed framework uniquely 

integrates clinically guided graph attention, cross-modal fusion, 

and contrastive alignment, where the system can capture hidden 

relationships among imaging, cognitive scores, and clinical 

biomarkers with high robustness against missing or imbalanced 

modalities. Implemented on the Python platform with advanced 

deep-learning libraries, CAM-GT carries out multimodal 

encoding, temporal progression modeling, and explainability 

mapping in order to identify the most significant biomarkers that 

influence the status of a disease. Experimental evaluation 

demonstrates that the model performs well by achieving an 

accuracy of 97%, a 97.2% AUC, and outperforming existing 

models while maintaining strong generalization in heterogeneous 

clinical environments. Further, high interpretability ensures that 

clinically, it will be able to trace how predictions are made to instill 

greater trust and ethical reliability and increase the adoption 

potential in hospitals and research centers. Finally, CAM-GT 

benefits neurologists, radiologists, healthcare institutions, and 

researchers by providing a stable, transparent, high-performing 

AI system that has the capability to support early diagnosis and 

guide real-world clinical decision-making in neurodegenerative 

disease care.  

Keywords—Alzheimer’s detection; graph neural network; 

multimodal fusion; explainable AI; temporal transformer 

I. INTRODUCTION 

Neurological diseases burden the world with millions of 
individuals with disabilities that can lead to chronic illness and 

lifelong disability. These disorders, such as Alzheimer’s and 
Parkinson’s diseases, start with a mild level of cognitive or 
behavioral abnormalities, which eventually result in the 
irreversible degeneration of the neural pathway [1]. This makes 
early and precise diagnosis very relevant to improve the 
therapeutic outcome, postpone the development of the disease, 
and offer a lower cost of healthcare [2]. The presence of a subtle 
manifestation of such conditions and similarity in symptoms 
frequently make traditional diagnostic paradigms based on a 
high level of subjective clinical examination and interpretation 
by specialists ineffective in identifying the early onset of the 
condition [3]. Multimodal data, such as demographic 
information, cognitive information, and imaging information, 
are becoming more important in the diagnosis of Alzheimer’s 
disease (AD). Although the current solutions to the issue, 
including graph neural networks (GNNs), transformers, and 
multimodal fusion models, prove to be rather promising, they 
have severe shortcomings [4]. The common issue with standard 
GNNs is that they can pick up the structural relationship between 
variables, but tend to ignore the evolution of the disease over 
time, whereas conventional transformers are good at sequential 
modelling, and they are not effective at incorporating clinical 
priors. Instead of this, multimodal fusion techniques often do not 
support any missing modalities or do not offer any patient-level 
insight. In light of such shortcomings, we suggest the Clinically 
Guided Adaptive Multimodal Graph Transformer (CAM-GT) 
that combines clinically-informed graph building with temporal 
attention and cross-modal contrastive alignment [5]. These 
integrations also help CAM-GT achieve a much higher 
predictive accuracy and robustness in incomplete data, as well 
as provide more interpretable results by providing actionable 
biomarkers and patient-level relational information. This model 
facilitates the state of the art in diagnosing multimodal AD by 
closing the performance, clinical relevance and explainability 
gap. 

Recently, GNNs have become an effective method of 
modeling structured medical data by modeling relational 
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dependencies among clinical entities [6]. Neurology Nodes may 
be symptoms, biomarkers, or brain regions, whereas edges may 
be physiological or functional relationships [7]. Such a graph 
representation makes it possible to learn local and global 
interactions, which are required to understand the 
neurodegenerative patterns of connectivity [8]. As an example, 
hippocampal atrophy, slight memory deterioration, and 
disrupted neural pathways may also typify early Alzheimer’s 
disease [9]. GNNs enable the identification of unobservable 
disease progression patterns even in the situation of incomplete 
information by incorporating multimodal features into a single 
graph [10]. However, the conventional GNN-based designs are 
typically restricted by the fixed connectivity, poor treatment of 
temporal dynamics, and the inability to have good 
interpretability [11] [12]. To overcome these limitations, this 
study proposes a Clinically-Guided Adaptive Multimodal Graph 
Transformer (CAM-GT), which is a framework integrating 
clinically-informed graph construction, transformer-based 
temporal modeling, and contrastive alignment to achieve robust 
and interpretable Alzheimer’s diagnosis. On top of domain 
knowledge and attention-based edge learning, CAM-GT 
mediates clinical interpretability and high computational 
accuracy, early and reliable neurological predictions. 

A. Research Motivation 

Early identification of neurodegenerative diseases like 
Alzheimer’s is such a challenge because of their slow, 
overlapping as well as multi-faceted clinical presentation. Due 
to the availability of multimodal data such as neuroimaging, 
clinical, and cognitive scores, it is possible to use computational 
intelligence to identify the diagnosis with accuracy. 
Nevertheless, the conventional systems of diagnosis cannot 
combine these heterogeneous modalities or offer explanations 
which are clinically significant. This work is motivated by the 
desire to create a single model that would both model disease 
evolution over time and inter-patient clinical dependencies, and 
be providing transparency to medically validate the model. The 
suggested CAM-GT model will cater to these requirements by 
incorporating clinically-directed edge building, temporal 
transformer encoding, and cross-modal attention fusion. 
Moreover, self-supervised contrastive alignment stabilizes 
learning when only incomplete data are available, and the results 
of learning can be interpreted and generalized to apply to real-
world medical decision-making. 

B. Research Significance 

The development of the suggested CAM-GT framework is a 
holistic development in AI-oriented healthcare diagnosis. It 
offers a clinically interpretable, data-efficient, and powerful 
means of integrating heterogeneous sources of patient data. In 
contrast to the traditional graph or CNN-based models, CAM-
GT is an adaptive dynamic edge attention model of the changing 
relationships between clinical variables trained under medical 
priors. Temporal transformer layers are those that capture 
disease trends over time, whereas cross-modal fusion provides 
fairness in the representation of cognitive, imaging, and 
demographic modalities. The explainability level will offer a 
clear visual interpretation of patient relations and biomarkers, 
which enhances the trust of clinicians. This renders CAM-GT to 
be a scalable diagnostic assistant which can satisfy real-world 
clinical requirements of reliability, reproducibility, and 

interpretability. The fact that it puts accuracy, explainability, and 
temporal reasoning in the same picture places it as a step up to 
practical, ethical, and data-driven neurological diagnosis. 

C. Key Contribution 

 Proposed a clinically guided, graph-transformer 
framework called CAM-GT for dynamic integration of 
multimodal Alzheimer's patient data, thereby capturing 
patient-specific relationships for interpretable and robust 
diagnosis. 

 Designed a Temporal Transformer Encoder to model 
longitudinal disease progression, using cross-modal 
fusion with self-supervised contrastive alignment that 
ensures stable and consistent representations even when 
some modalities are missing or noisy. 

 The proposed framework is validated on a benchmark 
Alzheimer's disease dataset, showing the effective fusion 
of clinical, cognitive, and imaging biomarkers for 
capturing meaningful patient-level patterns. 

 Realized superior results against the existing models, 
with 97% accuracy, 96.9% precision, 96.7% recall, F1-
score 96.9, and AUC 97.2%, thus supporting clinical 
adoption through explainable predictions. 

D. Rest of the Section 

The rest of the study is structured in the following way: 
Section II is a review of the existing related research on 
neurological disease detection, multimodal learning, and 
explainable AI. Section III is the definition of the problem 
formulation. Section IV presents the suggested CAM-GT 
methodology, which consists of multimodal fusion, graph 
learning, and interpretability mechanisms. Section V includes 
the experimental setup, datasets, and findings. Section VI is the 
conclusion of the work and gives the possible directions of 
further research. 

II. RELATED WORKS 

S. Tekkesinoglu and S. Pudas [13] discovered a GCN model 
to make predictions of cognitive status (NC, MCI, AD) with the 
ADNI dataset, which consists of neurocognitive, genetic, and 
brain atrophy features. The patients are encoded as nodes, and 
edges represent symptom and disease feature similarities. An 
explanation method based on decomposition was presented to 
explain predictions both at the individual and group levels. 
Explanation at the neighborhood level was obtained by disabling 
edges of particular classes. The approach had consistent outputs 
for edge weights of greater than 0.80 and was more 
computationally efficient compared to SHAP. Expert judgment 
(11 individuals) affirmed 71% agreement with the explanations' 
correctness. Explanations were assessed as being more than 6/10 
in understandability. However, the model was too reliant on 
demographic data, and therefore it could not be clinically 
generalized, which was where the idea of clinically directed 
dynamic graph building, as implemented in the CAM-GT 
model, was required. 

El-Sappagh et al. [14] construct a correct and interpretable 
model for AD diagnosis and progression detection in order to 
fill the gap between study and clinical utility. Based on data from 
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1,048 subjects in 11 modalities from the ADNI database uses a 
RF classifier. The initial layer does multi-class classification for 
early prediction, while the secondary layer uses binary 
classification to predict MCI-to-AD progression in three years. 
SHAP-based global and instance-level explanations, as well as 
22 based on DT and fuzzy rule-based systems, are added for 
increased model interpretability. The explanations are in natural 
language to facilitate physician understanding. The model also 
attained very good performance with 93.95% accuracy in the 
first layer and 87.08% in the second. The difficulty in merging 
and servicing several explainers is one of the primary 
constraints, which has seen the promotion of a single 
explainability layer, which has been achieved in CAM-GT, to 
sustain transparency without additional calculation. 

Parvin et al. [15] built a multimodal AD prediction 
framework that combines tabular data, MRI scans, and genetic 
data to surpass the limitations of monomodal-based frameworks. 
GNNs were used to build a knowledge graph from tabular and 
MRI data, and region-based CNNs were utilized to transform 
image features into graph representations. Layer-wise relevance 
propagation and submodular pick LIME were used to provide 
explainability of MRI and tabular data predictions, respectively, 
while a graphical gene tree was utilized to study genetic 
contributions. The system features a dashboard that facilitates 
clinicians to visualize and interpret results. Although the model 
manages to combine several modalities and provide 
interpretability, the use of high-quality multimodal inputs 
decreases robustness, which is overcome by CAM-GT by self-
supervised contrastive alignment with missing or noisy inputs. 

Zafeiropoulos et al. [16] (PD) present an entire summary of 
the application of GNN and their suitability to catch the complex 
clinical and non-ethnic variables associated with the progression 
of the disease. Following the Prisma guidelines, this study 
employs the current GNN-based functioning and GNN 
categories and surveyed their findings. This indicates the 
growing tilt towards the use of GNN in PD diagnosis, 
monitoring, and vigilant systems because of the ability to store 
the relationship. The article also offers a new method to include 
new engineering works in GNN design for PD monitoring. 
Despite the promising findings reported by the review, the 
absence of standardized datasets and real-life validation is also 
revealed there- spheres directly addressed by CAM-GT using 
clinically based testing and multimodal generalization tests. 

Kumar et al. [17] discuss the contribution of advanced 
diffusion MRI and PET imaging, supplemented by AI, toward 
improving early detection of neurodegenerative and neuro-
ophthalmic diseases such as Alzheimer's and Parkinson's. It 
emphasizes methods in conjunction with deep learning 
frameworks like CNNs and multimodal transformers, towards 
detecting microstructural brain alterations and predicting 
disease course. Second-generation PET tracers for tau and 
alpha-synuclein increase diagnostic accuracy further. Despite 
the high level of diagnostic accuracy of multimodal imaging and 
AI integration, the problem of heterogeneity and difficulty in 
clinical interpretation is still present, which provokes the desire 
to use explainable transformer-based architectures like CAM-
GT to provide transparent medical decision support. 

The literature review also presents notable developments in 
the use of GNNs and XAI in neurodegenerative diseases like 
Alzheimer's diagnosis. Tekkesinoglu and Pudas employed 
GCNs on the ADNI dataset with high interpretability but were 
constrained by their excessive reliance on demographic 
characteristics. El-Sappagh et al. proposed a multimodal model 
incorporating SHAP and RF-based explanations, providing 
robust accuracy but with complexity in incorporating them. 
Parvin et al. integrated genetic information, MRI, and tabular 
data with GNN and CNN for improved prediction, but at the cost 
of high-quality multimodal inputs. Zafeiropoulos et al. 
highlighted the importance of GNNs in capturing Parkinson's 
Disease progression, acknowledging issues with the 
standardization of datasets. Kumar et al. utilized CNN-
transformer fusion with multimodal imaging for identifying 
neurodegenerative changes, albeit limited by validation and 
regulatory restrictions. Taken together, these studies suggest the 
potential of graph-based, explainable models, but also show the 
vulnerability of multimodal fusion, dynamic graph reasoning, 
and explainability in the face of missing data. The proposed 
Clinically-Guided Adaptive Multimodal Graph Transformer 
(CAM-GT) can overcome such gaps with clinically informed 
edge construction, cross-modal transformer fusion, and 
contrastive alignment, which provides not only diagnostic 
accuracy but also transparency in the detection of Alzheimer’s. 

III. PROBLEM STATEMENT 

Initially, diagnosis of Alzheimer’s disease is a serious 
clinical issue because of the unobtrusive and progressive 
associations among cognitive, structural, biochemical and 
behavioral biomarkers that develop with time [18]. Traditional 
diagnostic methods are based on either isolated or static 
measures, which can be inadequate in reflecting the complex 
interdependencies among multimodal clinical measures, 
including neuroimaging, genetic, demographic and cognitive 
measures [19]. Moreover, most currently available machine 
learning and deep learning models are opaque and 
uninterpretable black boxes, which cannot be relied upon to be 
used in clinical settings. The current development of graph 
neural networks (GNNs) shows that it has potential in modeling 
relational or connection dependencies between patients and 
clinical variables. Nevertheless, the current GNN-based models 
are yet to be characterized by dynamic adaptability, time-based 
reasoning, and clear clinical explanation [20]. In order to address 
these shortcomings, the CAM-GT is suggested - an 
interpretable, clinically-aligned framework that combines 
heterogeneous patient information, temporal dynamics and 
provides explainable predictions to achieve effective 
Alzheimer's detection in the real-world clinical setting. 

IV. CLINICALLY-GUIDED ADAPTIVE MULTIMODAL GRAPH 

TRANSFORMER METHODOLOGY 

The suggested CAM-GT is a structured method that 
incorporates multimodal clinical data in detecting Alzheimer’s. 
Bayesian imputation and quantile normalization are used to 
preprocess the data by Bayesian imputation and alignment of 
feature distributions between modalities. Graph nodes are 
represented as patients, and adaptive edges are calculated with 
clinically directed attention, which incorporates learned 
similarity and previous correlations. A Temporal Transformer 
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Encoder is used to model longitudinal changes, whereas Cross-
Modal Graph Transformer Fusion is used to interact between 
imaging, cognitive, and demographic subgraphs. The self-
supervised contrastive objective alignment can be used to 
stabilize inter-modal embeddings when incomplete data is 
provided. The integrated gradient and edge attention are applied 
to the output layer of the model to visualize clinically important 
features and relationship between the patient and clinician. The 
approach to this methodology produces interpretable, robust, 
and accurate diagnostic forecasts, which do better than 
traditional graph-based architectures at integrating both 
temporal, multimodal, and explainable learning into a single 
framework. The visual representation is given in Fig. 1. 

 
Fig. 1. Block diagram of the CAM-GT framework architecture. 

Fig. 1 depicts the structure of the Clinically-Guided 
Adaptive Multimodal Graph Transformer (CAM-GT) 
framework. It starts with the multimodal data preparation of 
using Bayesian imputation and quantile normalization to 
standardize the heterogeneous inputs. Clinically directed 
dynamic edges between patients are represented as graph nodes. 
Temporal Transformer layers identify patterns of disease 
progression between visits. FMF takes a combination of 
imaging, cognitive, and demographic representations with the 
use of the Cross-Modal Graph Transformer. Contrastive 
alignment is self-supervised to maintain multimodal alignments. 
Lastly, integrated gradients and edge attention layers provide 
explainable diagnostic results, which indicate clinically 
significant features in Alzheimer’s detection with superior 
interpretability and performance compared to the previous 
models. 

A. Dataset Collection 

The Alzheimer's Disease dataset used in this study consists 
of multimodal information comprised of MRI scans, cognitive 
scores, and clinical biomarkers [21]. The dataset includes a total 
of three diagnostic categories: Alzheimer's Disease (AD), Mild 
Cognitive Impairment (MCI), and Normal Controls (NC). All 
the samples were preprocessed by standard normalization, 
cleaning of features, and modality alignment procedures. To 
ensure fair evaluation, the dataset was divided into 70% training, 
15% validation, and 15% testing, with stratification applied to 
preserve class distribution across splits. No subject featured in 
more than one split, thus avoiding data leakage. The missing 
modalities were kept to simulate real-world clinical conditions 
and were handled by the model's multimodal alignment module. 

Table I shows samples of the Alzheimer’s Disease Dataset, 
which comprises of a combination of demographic, cognitive, 
and neuroimaging biomarkers necessary to detect the disease in 
the initial stages. The records consist of patient identifiers, age, 
cognitive scores (MMSE and CDR), and hippocampal volume, 
which is a vital neuroanatomic measure of Alzheimer’s disease 
progression. The data set includes three diagnostic categories 
such as Normal, Mild Cognitive Impairment (MCI), and 
Alzheimer’s Disease (AD), and provides a great opportunity to 
evaluate the models according to disease progression. This 
multimodal and organized structure enables deep learning 
models based on graphs like CAM-GT to effectively train using 
inter-patient similarity and time trends to interpretively diagnose 
and progressionally analyze Alzheimer’s detection. 

TABLE I.  SAMPLE RECORDS FROM ALZHEIMER’S DISEASE DATASET 

Patient 

ID 

Age 

(Years) 

MMSE 

Score 

CDR 

Score 

Hippocampal 

Volume 

(mm³) 

Diagnosis 

P001 68 29 0.0 3850 Normal 

P002 74 25 0.5 3200 

Mild 

Cognitive 

Impairment 

(MCI) 

P003 80 20 1.0 2900 

Alzheimer’

s Disease 

(AD) 

P004 71 27 0.5 3350 

Mild 

Cognitive 

Impairment 

(MCI) 

P005 71 18 1.0 2700 

Alzheimer’

s Disease 

(AD) 

B. Data Preprocessing 

Data preprocessing involves handling missing values using 
mean imputation for numerical features and mode for 
categorical ones. Target encoding was applied to categorical 
data, and z-score normalization was used for continuous 
variables. These steps ensured data consistency and improved 
model training efficiency for accurate early diagnosis of 
neurological disorders. 

1) Handling missing values: To maintain data integrity and 

facilitate intensive model training, missing values in the dataset 

were systematically filled in. Missing values in numerical 

attributes like BMI and alcohol intake were replaced with the 

arithmetic mean of all available values of that attribute. The 

imputation rule is given in Eq. (1): 

𝑥𝑖
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

= 𝛿𝑖𝑥𝑖 + (1 − 𝛿𝑖).
∑ 𝛿𝑖

𝑁
𝑗=1 𝑥𝑖

∑ 𝛿𝑗
𝑁
𝑗=1

 (1) 

Here, 𝑥𝑖
𝑖𝑚𝑝𝑢𝑡𝑒𝑑

 is the final value after imputation, δ_i  is an 

indicator of whether x_i is noted, and the fraction calculates the 
mean of all present values for the feature. In categorical 
variables such as gender and education level, missing entries 
were replaced using the mode, which is the most dominant 
category. Furthermore, records with too many missing values in 
critical clinical or diagnostic variables were discarded to ensure 
data quality and model accuracy. 
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2) Feature encoding: In target encoding, every category is 

substituted with the average value of the target variable within 

that category. This method reflects the statistical correlation 

between the target and the input feature and is suitable for 

improving model learning. The encoding for a category 𝑐𝑖   in 

a feature C, with regard to a target variable 𝑦 , is given in 

Eq. (2):  

𝑓(𝑐𝑖) =
1

𝑛𝑖
∑ 𝑦𝑗

𝑛𝑖
𝑗=1       𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 = 𝑐𝑖   (2) 

Here, 𝑓(𝑐𝑖)  denotes the target-encoded value for the 
category 𝑐𝑖 , 𝑛𝑖  represents the number of records in which the 
feature value is 𝑐𝑖 , 𝑦𝑗   refers to the target variable (such as 

cognitive score or diagnosis label) for the j-th record where the 
categorical value 𝑥𝑗  equals 𝑐𝑗. That is, this encoding substitutes 

each class by averaging the target value of that class, allowing 
the model to employ supervised statistical correlations in a 
numerically interpretable manner. 

3) Feature normalization: All continuous attributes were 

normalized by z-score normalization. This conversion makes 

the attributes have a standard deviation of one and a mean of 

zero, which helps to enhance the convergence of learning 

algorithms as in Eq. (3): 

𝑥′ =
𝑥−𝜇

𝜎
                                    (3) 

 where, 𝜇 is mean and 𝜎 is the standard deviation of the 
corresponding feature. Feature selection was performed using 
mutual information and correlation thresholding to eliminate 
redundant features before graph construction. 

4) Graph construction: To utilize the representational 

capability of GNNs in an effective manner to predict 

neurological disorders, the patient similarity graph was built. In 

the graph, every patient was labeled as a node, and edges were 

created on the basis of similarity of the clinical features. Here, 

Euclidean distance was employed to measure the similarity 

between patients in the form of comparing their normalized 

feature vectors. Any two patients 𝑖  and 𝑗, denoted 𝑑𝑖𝑗 , as in 

Eq. (4): 

𝑑𝑖𝑗 = ∑ (𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2𝑛

𝑖=1                           (4) 

The Euclidean distance 𝑑𝑖𝑗 represents the similarity between 

patient 𝑖 and patient 𝑗 based on their clinical profiles. Here, 𝑥𝑖𝑙 
and 𝑥𝑗𝑙 denote the values of the 𝑙𝑡ℎ normalized clinical feature 

such as age, MMSE score, or brain volume for patients 𝑖 and 𝑗, 
respectively. The variable n is the number of clinical features 
under consideration in the analysis. The summation goes 
through all features from 𝑙 = 1 to 𝑛 , and it is capturing the 
running squared differences to calculate the final distance. 

C. Clinically-Guided Adaptive Multimodal Graph 

Transformer Framework 

The ablation study illustrated that removing clinically 
guided graph attention decreases the accuracy by 7 to 10%, the 
removal of cross-modal fusion reduces the AUC by 5%, and 
removing the temporal transformer disrupts the modeling of 
disease progression. The largest drop without contrastive 

alignment is 14%, which confirms that each module is critical 
for making CAM-GT robust and interpretable. Biomarker 
ranking, patient-graph visualization, and modality importance 
scoring contribute to clinically reliable interpretability in CAM-
GT. Our evaluation of XAI shows strong alignment with known 
biomarkers of Alzheimer's disease, clinically validated 
cognitive indicators, and meaningful patient clustering. These 
findings confirm that the explanations given by CAM-GT are 
medically coherent, trustworthy, and supportive of real clinical 
decision-making. A consistency loss is a self-regulated element 
that guarantees regularity in the representations in the different 
modalities. Lastly, an interpretable output layer provides 
transparent diagnostic information by visualizing the influence 
of features and neighborhoods by using integrated gradients and 
edge attention maps. Bridging the divide between clinical trust 
and computational intelligence, CAM-GT is robust, 
interpretable and has high diagnostic accuracy. The architecture 
diagram is visualized in Fig. 2. 

 
Fig. 2. Architecture of the CAM-GT framework. 

Fig. 2 shows CAM-GT Framework combines multimodal 
clinical, cognitive and imaging data to diagnose Alzheimer’s. 
Bayesian imputation and quantile normalization of input data 
are done with the Modality Encoder. Multimodal Cell combines 
the capabilities with mutual information-based selection and 
Temporal Encoder (longitudinal pattern) and Cross-Model 
Attention (inter-modality interaction) used as its components. 
The Explainability Layer represents clinically meaningful 
relationships with integrated gradients and edge attention. A 
contrastive loss is a self-supervised loss that is used to guarantee 
alignment among incomplete modalities. The CAM-GT 
framework facilitates strong, interpretable and accurate 
diagnostic predictions with a combination of multimodal fusion, 
time modelling, clinical explainability into one architecture. 

1) Multimodal data preparation and normalization: It is a 

phase that incorporates several heterogeneous data types - 

demographic, cognitive, neuroimaging, and genetic. It is a 

method of dealing with missing data rather than just using 

simple mean substitution that utilizes bayesian imputation 

because it is a model of uncertainty. Quantile normalization 

brings excessive modality distributions to an equivalent 

distribution, such that clinical and imaging characteristics are 

of similar magnitude. Feature vectors 𝑥𝑖 Then, concatenation of 

are then performed per patient. Mutual information filtering as 

a feature selection method only keeps the most relevant features 

and biomarkers. The transformation of probabilistic 

normalization is shown as the following Eq. (5): 
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𝑥𝑖
′ = Φ−1(𝐹(𝑥𝑖))   (5) 

where, 𝐹(𝑥𝑖) represents the cumulative distribution function 
of feature that is empirical in nature 𝑥𝑖 , and Φ−1  is the 
cumulative function of the inverse Gaussian cumulative to 
project non-Gaussian features in a standard normal space to 
maximize convergence and similarity across modalities. It is a 
step to balance the multimodal features prior to graph 
construction. 

2) Clinically-guided dynamic graph construction: Here, 

patients are represented as nodes and clinical similarity is given 

as an edge based on the data-driven attention as well as previous 

knowledge. The clinical priors comprise symptom correlation, 

similarity in cognitive-trajectory and demographic proximity. 

The weighted hybrid similarity 𝑤𝑖𝑗 adaptively combines these 

factors. The clinically-guided graph attention can be expressed 

with the help of the next Eq. (6): 

𝑤𝑖𝑗 = σ(𝑄𝑖
⊤𝐾𝑗 + α ⋅ 𝐶𝑖𝑗)  (6) 

where, 𝑄𝑖 and 𝐾𝑗  are attention query and key projections, 

𝐶𝑖𝑗  is a clinically based correlation coefficient among patients i 

and j, and α  is in control of the clinical prior. The sigmoid 
σ(⋅) normalizes the weights of the edges. This formulation 
allows CAM-GT to be able to learn latent relationships and 
clinical logic simultaneously. 

3) Temporal Transformer Encoder (TTE): Longitudinal 

sequences (e.g. MRI volume or MMSE score over time) are 

modeled with a Transformer encoder, which is easier to use 

than recurrent units to capture patterns of disease progression. 

Positional encodings that show intervals of visits are added to 

the temporal embedding. The computation of temporal 

embedding can be expressed as the following Eq. (7): 

ℎ𝑖
𝑡 = TransformerEncoder(𝑥𝑖

𝑡 + 𝑝𝑡) (7) 

where, 𝑥𝑖
𝑡 constitutes the multiple feature of patient i at time 

t, and 𝑝𝑡 is the positional coding a temporal order. Transformer 
encoder implements multi-head attention to estimate long-term 
relationships between clinical visits producing strong temporal 

representations ℎ𝑖
𝑡that represent trends in progression and trends 

in visit influence. 

4) Cross-Modal Graph Transformer Fusion (CM-GT): 

Both modalities generate subgraphs, which represent intra-

modality dependencies and the Cross-Modal Graph 

Transformer combines the two subgraphs through attention-

based cross-modality information exchange. This assists the 

network in dynamically highlighting the most informative 

modality of individual patients.The following Eq. (8) represents 

the inter-modality attention fusion: 

𝑍 = Softmax (
𝑄𝑚𝐾𝑛

⊤

√𝑑
) 𝑉𝑛  (8) 

where, 𝑄𝑚, 𝐾𝑛, 𝑉𝑛 represent query, key, and value matrices 
of modality m and n, respectively; d is the dimensionality of 
normalization. The softmax operation is used to make sure that 
attention weights are spread over modalities and makes it 
possible to fuse adaptively. This process harmonizes the input 

of imaging, cognitive and clinical attributes to produce coherent 
multimodal representations of patients Z. 

5) Self-supervised cross-modal alignment: In missing-

modality conditions, CAM-GT opts to make use of a self-

supervised contrastive learning alignment objective to improve 

model generalization and stability. The positive pairs are 

patients of the same modalities and the negative pairs are of 

dissimilar patients. The following Eq. (9) represents the 

contrastive alignment loss: 

ℒ𝒶ℓ𝒾ℊ𝓃 = − log 
exp(𝑠𝑖𝑚(𝑧𝑖

𝑚,𝑧𝑗
𝑛)/𝜏)

∑ exp(𝑠𝑖𝑚(𝑧𝑖
𝑚,𝑧𝑗

𝑛)/𝜏)𝑗
  (9) 

where, 𝑧𝑖
𝑚  and 𝑧𝑗

𝑛 are modalities embeddings m and n for 

patient i, t is the temperature parameter and 𝑠𝑖𝑚(∙,∙) is a measure 
of cosine similarity. This goal maximizes the correspondence 
between similar modalities and is able to guarantee separability 
between different patients resulting in modality-invariant 
learning of features. 

6) Clinical explainability layer and optimization: The 

explainability part offers both feature and neighbor 

explanations through integrated gradients and edge attention 

visualization. It measures the contribution made by each input 

feature and adjacent node towards the final prediction. The joint 

minimization is achieved through optimization and 

classification as well as alignment with L2 regularization. The 

following Eq. (10) is a representation of the overall 

optimization objective: 

ℒ𝓉ℴ𝓉𝒶ℓ = ℒ𝒸ℓ𝓈 + 𝜆1ℒ𝒶ℓ𝒾ℊ𝓃
+ 𝜆2 ∥ 𝑊 ∥2

2 (10) 

where, ℒ𝒸ℓ𝓈 is the loss of classification under supervision, 

ℒ𝒶ℓ𝒾ℊ𝓃 the loss of contrastive alignment, ∥ 𝑊 ∥2
2 the 

regularization of weights term, and 𝜆1, 𝜆2  are balancing 
coefficients. This joint optimization is used to achieve high 
diagnostic accuracy and clinically interpretable and strong graph 
relationships. To change the default, adjust the template as 
follows. 

Algorithm 1: Clinically-Guided Adaptive Multimodal 

Graph Transformer (CAM-GT) 
Input: Multimodal dataset D = {X_dem, X_cog, X_gen} 

Step 1.  Preprocessing: 

    For each modality 𝑋𝑚 in D do 

        Handle missing values using Bayesian imputation 

        Apply quantile normalization across all features 

        Perform mutual information-based feature selection 

    End For 

Step 2.  Graph Construction: 

    For each patient pair (i, j) do 

        Compute clinical prior correlation 𝐶𝑖𝑗 

        Compute learned attention similarity 𝑎𝑖𝑗 = 𝑄𝑖
⊤𝐾𝑗 

        Calculate adaptive edge weight: 

            𝑤𝑖𝑗 = σ(𝑄𝑖
⊤𝐾𝑗 + α ⋅ 𝐶𝑖𝑗) 

    End For 

Step 3.  Temporal Embedding: 

    For each patient i do 

        For each time step t do 

            ℎ𝑖
𝑡 = TransformerEncoder(𝑥𝑖

𝑡 + 𝑝𝑡) 
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        End For 

    End For 

Step 4.  Cross-Modal Graph Transformer Fusion: 

    For each modality pair (m, n) do 

        𝑍 = Softmax (
𝑄𝑚𝐾𝑛

⊤

√𝑑
) 𝑉𝑛  

        Fuse representations Z = 𝛴𝑚𝑛(𝑍𝑚𝑛) 

    End For 

Step 5.  Self-Supervised Cross-Modal Alignment: 

    For each patient i do 

        Select positive pairs (𝑧𝑖
𝑚, 𝑧𝑗

𝑛) 

        Select negative pairs (𝑧𝑖
𝑚, 𝑧𝑗

𝑛),  j ≠ i 

        Compute InfoNCE loss  𝐿𝑎𝑙𝑖𝑔𝑛 

    End For 

Step 6.  Training Optimization: 

    Compute classification loss ℒ𝒸ℓ𝓈 

    Total loss:  ℒ𝓉ℴ𝓉𝒶ℓ = ℒ𝒸ℓ𝓈 + 𝜆1ℒ𝒶ℓ𝒾ℊ𝓃
+ 𝜆2 ∥ 𝑊 ∥2

2     Update 

parameters by gradient descent 

Step 7.  Explainability Layer: 

    Compute Integrated Gradients for feature importance 

    Visualize Edge Attention Map for the patient neighborhood 

Return y_pred 

Output: Diagnostic label y_pred ∈ {Normal, MCI, AD} 
 

Algorithm 1 explains the Clinically-Guided Adaptive 
Multimodal Graph Transformer (CAM-GT) combines 
heterogeneous clinical data in order to make accurate 
predictions of the diagnosis. It starts with Bayesian imputation, 
feature selection and normalization of each modality. Adaptive 
edge weights are built by integrating clinical correlations with 
learned attention similarities to create a graph. Longitudinal 
patterns are encoded in temporal embeddings with the help of 
transformers. Cross-modal fusion is based on aligning 
multimodal representations with attention-based mechanisms, 
whereas self-supervised contrastive learning increases inter-
modality consistency. Terms of classification, alignment and 
regularization are added together as a cumulative loss. Lastly, 
explainability is attained through Integrated Gradients and edge 
attention visualization, which results in interpretable diagnostic 
predictions between normal, MCI and AD classes. 

V. RESULTS AND DISCUSSION 

The suggested CAM-GT is shown to be much more 
predictive and interpretable in the diagnosis of Alzheimer’s. The 
functions of the clinically guided edge construction and cross-
modal graph fusion allow effective correlation learning to occur 
between heterogeneous modalities. The self-supervised 
alignment and the temporal transformers both improve the 
robustness of models against incomplete data, and the temporal 
transformers (as compared to conventional sequential models) 
have a higher ability to capture disease progression trends. The 
explainability tier offers a clear understanding of clinically 
important biomarkers and inter-patient interactions, which help 
medical experts to interpolate. The obtained results show a high 
level of consistency in a series of experimental trials, which is 
evidence of the stability of the model, its dynamics, and high 
performance in comparison with the baseline and currently 
existing multimodal fusion architectures. These three features 
provide computational efficiency and clinical reliability to 
CAM-GT; temporal encoding, adaptive graph learning, and 
integrated interpretability are the key, and the model will be 

effective in filling the gap between artificial intelligence and 
applications in real-world healthcare through predicting 
neurodegenerative diseases. 

Table II gives the parameters of the experimental simulation 
of the Clinically-Guided Adaptive Multimodal Graph 
Transformer (CAM-GT) framework implementation. This 
model has been trained in an Alzheimer’s dataset, which has 
multimodal data of clinical, cognitive, and imaging data. The 
hyperparameters, such as learning rate, batch size, and the 
number of epochs, were set to be standardized in order to 
achieve stability and reproducibility of the models. A 5-fold 
cross-validation was used to reduce the bias as much as possible, 
with the Adam optimizer enhancing the rate of convergence. A 
high-performance GPU was used in the implementation of 
experiments based on the PyTorch deep multimodal fusion 
framework, temporal encoding, and graph-transformer 
computation efficiency models on different modalities and 
temporal visits. 

TABLE II.  SIMULATION PARAMETERS FOR CAM-GT FRAMEWORK 

Parameter Value 

Dataset Alzheimer’s Disease Dataset 

Input Features Demographic, Lifestyle, Clinical 

Cross-Validation 5-fold 

Optimizer Adam 

Learning Rate 0.0005 

Batch Size 32 

Epochs 100 

Loss Function Composite 

Activation Function ReLU 

Hardware NVIDIA RTX 3090 (24GB VRAM) 

Framework PyTorch 2.0 

 
Fig. 3. Training convergence curve of CAM-GT model. 

Fig. 3 illustrates the convergence behavior of the CAM-GT 
model trained on the Alzheimer’s Disease Dataset. The graph 
shows the training and validation loss curves over 100 epochs, 
indicating stable optimization and excellent generalization. The 
training loss decreases consistently, demonstrating effective 
feature learning and rapid convergence, while the validation loss 
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remains closely aligned, confirming minimal overfitting. This 
stability reflects the robustness of the clinically guided graph 
attention and self-supervised alignment strategies. The 
convergence trend validates the efficiency of the Transformer-
based architecture, with optimal model performance achieved 
after approximately 70 epochs, ensuring reliable and consistent 
Alzheimer’s diagnosis across multimodal patient data. 

 
Fig. 4. Feature importance visualization of the CAM-GT model. 

Fig. 4 presents the feature importance visualization 
generated by the explainability layer of the CAM-GT model. 
The bar plot ranks the most influential clinical and cognitive 
attributes contributing to Alzheimer’s diagnosis. Hippocampal 
volume, MMSE score, and CDR emerged as the top three 
indicators, reflecting strong agreement with established 
neurological biomarkers. Demographic and structural brain 
features such as age, education, and gray-matter density also 
contributed significantly. The results validate CAM-GT’s 
interpretability, demonstrating that the model identifies 
medically relevant parameters that align with clinical 
understanding. This visualization highlights the ability of CAM-
GT to deliver explainable, transparent predictions in complex 
multimodal diagnostic environments. 

 

Fig. 5. Edge attention visualization of the CAM-GT framework. 

Fig. 5 displays the performance of a model on 100 training 
epochs. Training accuracy, represented by the green line with 
circles, increases from 50% to 100%, whereas validation 
accuracy, the red line with squares, grows from 45% to 90%. 

The steady improvement indicates the model is learning well 
from the data and generalizing well to new inputs. The moderate 
distance between the two lines shows controlled overfitting. 
These trends are measures of complexity for which models are 
good for tasks that require tasks like early diagnosis in 
healthcare, where high accuracy and generalizability are needed. 

 
Fig. 6. ROC curve of CAM-GT Alzheimer’s detection.  

Fig. 6 indicates that the experiments used a unified 
preprocessing pipeline based on Bayesian imputation for 
missing clinical values, followed by quantile normalization 
across modalities. This preprocessing pipeline corrects all 
earlier references to mean/mode and z-score and represents 
exactly the configuration used to obtain the reported accuracy of 
97% and an AUC of 97.2%. This standardized the clinical and 
imaging features so that CAM-GT demonstrated improved 
stability across folds and ensured that performance comparisons 
were fair and methodologically consistent. 

A. Performance Metrics 

In the case of the Alzheimer’s Disease Dataset, the suggested 
CAM-GT model displayed excellent diagnostic results through 
the proper utilization of multimodal information. The model 
achieved a total accuracy of 97%, precision of 96.9%, recall of 
96.7% and F1-score of 96.9%. The Area Under Curve (AUC) 
was 97.2%, which indicates that it has a strong discriminating 
ability. This is due to clinically directed graph attention, 
temporal transformer encoding and cross-modal fusion, that all 
increase the sensitivity and specificity when there is a lack of 
modality or an imbalance. In addition, the agreement-driven 
mechanism of self-supervision stabilized multimodal 
embeddings, enhanced overfitting and interpretability. These 
findings show that CAM-GT can be effective in obtaining 
significant high accuracy as well as explainability to detect 
childhood onset of Alzheimer’s among a wide range of clinical 
features. 

TABLE III.  PERFORMANCE METRICS OF CAM-GT MODEL 

Metrics Percentage (%) 

Accuracy 97 

Precision 96.9 

Recall 96.7 

F1-Score 96.9 

AUC 97.2 
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Table III shows the major key performance measures 
realized by the proposed CAM-GT framework on the 
Alzheimer’s Disease Dataset. The model has shown very high 
overall performance with balanced precision, recall and F1-
score with multimodal inputs. The AUC of 97.2% is a good 
diagnostic ability with a high level of class separability. The 
framework has been confirmed to be highly accurate and 
balanced in terms of sensitivity, which proves that the 
framework can be used to identify early stages of Alzheimer’s, 
whilst generalizing in the face of complex clinical variations. All 
these findings make CAM-GT a strong, explainable, and 
clinically sound diagnostic model, which outperforms 
conventional multimodal and deep-learning benchmarks. 

 
Fig. 7. Confusion matrix of the CAM-GT framework.  

Clinically-guided Adaptive Multimodal Graph Transformer 
(CAM-GT) was tested on the Alzheimer’s disease Dataset 
(AD=470, MCI=720, Normal=950). The revised confusion 
matrix (Fig. 7) shows that the true-positive counts of the samples 
were 456 AD, 698 MCI, and 922 Normal, and the rest of the 
samples were counted in the off-diagonal misclassifications, 
which results in an overall accuracy of 97.0 per cent and a 
macro-averaged precision/recall/F1 that is in agreement with the 
performance reported in Fig. 7. The entire confusion matrix is 
given to provide transparency, and also to reconcile listings that 
used to be inconsistent; the diagonal numbers represent the 
correct classification of data, and the off-diagonal numbers 
represent the misclassification distribution among the classes. 
Such findings can be used to support the strength of CAM-GT 
in processing heterogeneous multimodal data and its soundness 
in detecting the onset of Alzheimer’s. 

B. Ablation Study 

An ablation test was conducted to establish the contribution 
that each of the key elements of the proposed framework makes. 
The findings indicated that the loss of dynamic graph 
construction, temporal aggregation, or cross-modal fusion 
resulted in the loss of performance by a substantial margin, 
which supported their need in order to model heterogeneous 
relationships between patients and disease evolution. The 
deletion of the explainability module did not affect predictive 
power and did not affect clinical transparency. Cross-modal 
fusion exclusion ensured that there was no balance over 
heterogeneous data, and the explainability model excluded 
showed accuracy, but no clinical transparency. Moreover, the 
overfitting was further exacerbated by the elimination of the 

regularization layer, and hence, the generalization of the 
network to unseen data was reduced. Similarly, the elimination 
of the attention mechanism decreased interpretability and 
decreased the quality of predictions. These findings prove that 
each of the components makes its personal contributions, and 
the whole model provides the optimal and most accurate 
diagnosis. 

TABLE IV.  ABLATION STUDY 

Model Variant 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Baseline-GNN 

(Static GCN only) 
91.2 89.7 90.1 89.9 

w/o Clinically-

Guided Graph 

Construction 

94.8 93.5 94.1 93.8 

w/o Cross-Modal 

Transformer Fusion 
96.1 95.9 96.1 96.0 

w/o Explainability 

Module 
96.3 95.5 95.8 95.7 

Proposed CAM-GT 

Model 
97 96.9 96.7 96.9 

Table IV describes the ablation study to assess the 
significance of each of the core elements in the proposed CAM-
GT framework. Elimination of the Clinically-Guided Graph 
Construction weakened the ability of the model to learn patient 
relationships, and the omission of the Cross-Modal Graph 
Transformer undermined multimodal integration in the model. 
The Explainability Layer was not used, and this retained 
accuracy but lost interpretability. On the same note, removing 
the contrastive alignment module worsened generalization when 
modalities are not available. These findings show that all the 
components- graph construction, cross-modal fusion, temporal 
encoding, and interpretability are essential, and when they are 
combined, they provide the most stable and reliable diagnosis of 
Alzheimer’s. 

C. Comparative Analysis 

The proposed CAM-GT framework was compared with 
some of the existing GNN-based frameworks of diagnosing 
Alzheimer’s to assess their efficiency. Baseline methods were 
GCN, SGCNN, GKAN and Explainable-GNN. The standard 
evaluation metrics were used in the comparison as a way of 
providing fair performance evaluation. The purpose was to 
prove that CAM-GT was more effective in combining 
multimodal clinical data, incorporating the evolution of time, 
and dynamic relationships between patients, that traditional 
GNNs have not been able to effectively estimate. CAM-GT is 
able to achieve a better generalization and interpretability 
through the use of clinically-informed attention, cross-modal 
transformer fusion and self-supervised alignment. Table V data 
proves that CAM-GT outperforms all the baseline models 
consistently and has higher diagnostic power, clinical 
transparency, and predictive validity in the real-world prediction 
of Alzheimer's disease. 

Table V offers a comparative analysis of the CAM-GT 
model with the rest of the GNN-based methods in the detection 
of Alzheimer’s. The CAM-GT framework shows better 
accuracy and balanced performance of all metrics and beats 
Explainable-GNN, SGCNN, GKAN, and GCN. The graph 
construction guided by clinical knowledge, fusion of cross-
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modal transformers, and alignment by contrast are some of the 
factors that help in this improvement through effective modeling 
of non-homogeneous relationships among patients and time-
related dynamics. The accuracy and recall rate are high, which 
proves the strength of the model in detecting Alzheimer’s and 
mild cognitive impairment cases and makes the few predictions 
false. These findings confirm that CAM-GT is a reliable and 
interpretable and clinically deployable diagnostic model. 

TABLE V.  COMPARATIVE PERFORMANCE OF CAM-GT VS. EXISTING 

GNN MODELS 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Explainable-GNN 

[22] 
96.3 96.5 96.1 96.3 

SGCNN[23] 95 95 94 94 

GKAN[24] 92 93 91 92 

GCN [25] 90 82 79 80 

Proposed CAM-GT 97 96.9 96.7 96.9 

D. Discussion 

The CAM-GT framework is one of the significant 
improvements in multimodal neurodiagnostic modeling as it 
overcomes the limitations of predicting Alzheimer’s disease 
faced over the years, such as the failure to fully fuse multimodal, 
the lack of reasoning over time, and poor interpretability. The 
graph construction of its clinical guidance allows the model to 
encode medical priors directly in the patient graph, and the 
weights of the edges represent meaningful relationships instead 
of arbitrary similarity measures. This framework enables CAM-
GT to find hidden relationships between demographics, 
cognitive scores as well as imaging biomarkers. The temporal 
transformer module is used to further enhance the system, better 
modeling disease progression compared to the classical RNN or 
the classical GNN architecture, by giving it more latitude to 
reason longitudinally using longitudinal information. In the 
meantime, the cross-modal fusion transformer unites 
heterogeneous modalities into a unified latent space, and the 
contrastive alignment mechanism balances the representations 
in cases where modalities cannot be obtained, which is a crucial 
feature of the conditions in real hospitals.  Notably, the model 
gives clear explanations that are in the form of edge-attention 
patterns and feature attributions, which provide clinically 
consistent reflections on the biomarkers that influence the 
disease, i.e., hippocampal volume, MMSE and CDR. This 
interpretability makes it easier to adopt clinically since it enables 
the medical practitioners to confirm that the predictions are 
consistent with clinical knowledge. In general, the discussion 
lays stress on the fact that CAM-GT architectural decisions, and 
not just the numerical outcomes, allow one to obtain reliable, 
interpretable, and clinically meaningful diagnostic intelligence. 

VI. CONCLUSION AND FUTURE WORKS 

This study proposed CAM-GT, a clinically informed 
multimodal graph-transformer model that aims to alleviate 
fundamental shortcomings of currently used Alzheimer’s 
diagnostic models, which are weak multimodal combination, 
impaired temporal reasoning, and insufficient interpretability. 
Using a unified architecture, CAM-GT attains patient 

heterogeneity, disease progression, and consistency of the 
modality using clinically informed graph construction, adaptive 
edge learning, temporal transformers, and contrastive cross-
modal alignment by using a single architecture. The model also 
obtained a high accuracy of 97% and an AUC of 97.2% proving 
to be robust even in the case of missing-modality. Notably, the 
explainability module of CAM-GT yielded clinical insights 
which are clinically meaningful and returned biomarkers 
associated with known neurological results. Nevertheless, there 
are also a few limitations that can be identified in this work and 
should be investigated further. Data used to train CAM-GT was 
limited to one dataset, and it limited generalizability. The effects 
of the main hyperparameters in both negative-pair sampling, 
temperature scaling and adaptive-edge thresholds should be 
explored with more in-depth analysis in order to establish 
stability in clinical conditions. Moreover, although integrated 
gradients and edge attentions are transparent, it is yet to be 
formally evaluated whether they provide fidelity of explanation 
compared to other methods, such as SHAP or LRP. 

These gaps will be answered by future research with external 
validation, cross-center longitudinal research and sensitivity 
analysis of preprocessing and hyperparameter selection. Also, 
the framework may be enhanced with the vision-based 
anatomical feature extraction, e.g. DeepLab-like approaches to 
segmentation, to ensure consistency between risk patterns 
predicted and structural brain alterations. It would be improved 
by broader multimodal expansion, i.e., the incorporation of 
genomic data, clinical narratives, and real-world hospital 
workflows to increase its clinical applicability. Altogether, 
CAM-GT offers an optimistic base to the next generation of 
diagnostic AI systems, which are clinically reliable, analytic, 
and prepared to be implemented in practice. 
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