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Abstract—The rapid expansion of urban populations has
intensified the challenges associated with municipal solid waste
management, particularly where conventional static or ad-hoc
routing strategies create operational inefficiencies, excessive fuel
usage, and repeated bin overflow. Many existing systems still treat
waste classification, fill-level forecasting, and routing as separate
processes, which restricts coordinated optimization and limits
broader sustainability outcomes. To address these shortcomings,
TMORL is introduced as a Transformer-enhanced Multi-Agent
Reinforcement Learning framework that unifies perception,
prediction, and decision-making for intelligent waste
management. The framework integrates loT-enabled sensor
measurements with deep learning and MARL-driven optimization
to manage waste collection adaptively under real-time
uncertainty. A Vision Transformer supports precise waste image
classification through global spatial feature extraction, while a
Temporal Fusion Transformer generates accurate, uncertainty-
aware multi-horizon fill-level forecasts. These model outputs
collectively shape the state representation for a multi-objective
MARL module that optimizes fuel consumption, travel duration,
emission reduction, and overflow mitigation, enabling
simultaneous operational and sustainability improvements.
TMORL is implemented in PyTorch and evaluated using the
Smart Waste Management Dataset containing heterogeneous loT
bin measurements and annotated waste images. The model
achieves strong perception accuracy, reporting 97.3% precision,
96.6% recall, and 98.4% mAP@0.5, while the TFT forecasts align
closely with real bin-fill patterns to support proactive routing
adjustments. When compared with static scheduling and Ant
Colony Optimization routing, TMORL reduces fuel usage by
22%, collection time by 25%, and overflow incidents by 95%.
Overall, the findings confirm that a transformer-driven, 10T-
integrated MARL framework significantly strengthens efficiency,
decision responsiveness, and environmental sustainability in next-
generation smart waste management systems.
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l. INTRODUCTION

Urbanization has resulted in an unprecedented increase in
the volume of solid waste in municipalities and the generation
of solid waste has resulted in a tremendous pressure on the waste
management systems [1]. Most traditional collection schemes,
which may be operating on a time schedule and have fixed
routes, are normally subject to inefficiencies that include half-
full bins, wastage in picking up overflowing bins and high fuel
consumption [2], [3]. These shortcomings do not only raise the
cost of operations and greenhouse gas emissions and air
pollution, but also diminish the sanitation situation in the urban
areas [4]. Innovations in smart city projects are gradually
pointing to the fact that a polyadic combination of artificial
intelligence (Al), Internet of Things (loT), and advanced
analytics, offers a promising chance to address the further
complications of sustainable waste management [5], [6]. Recent
advances have been achieved through innovations that use deep
learning and machine learning algorithm techniques to classify,
predict, and optimize routing [7]. An example of such
applications is that convolutional neural networks and YOLO-
based detectors are applied to automate waste classification, and
recurrent neural networks (RNNs), including a long short-term
memory (LSTM) network and gated recurrent unit (GRU)
networks are applied to forecast the fill [8], [9]. Metaheuristic
methods of solving the problem, like the ACO and genetic
algorithms and reinforcement learning (RL) have been explored
as regards to dynamic vehicle routing [10]. In general, the
innovations in sophisticated analytical mechanisms constitute a
massive step of the im-moveable functioning to data-sensitive
adaptative mechanisms [11], [12].
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Nonetheless, these models have substantial constraints.
CNNs typically struggle with heterogeneous, complex waste
images, while YOLO-based methods, despite being more
effective than traditionally taught CNNs, continue to use the
backbone of convolutional models, which are prone to further
variables [13], [14]. RNN-based forecasting models have issues
as well, both with vanishing gradients and simply being
computationally costly for long sequences [15], [16].
Additionally, most routing techniques are generally optimizing
for asingle target, such as travel distance, while disregarding the
many, multi-dimensional trade-offs necessary to consider
environmental sustainability in the real world, such as fuel
economy, time, emissions, and overflow potential [17], [18]. In
order to counter these challenges, the proposed TMORL model
is a more advanced Al-enabled model to clamp into ViT, in
which to classify waste more accurately and with real-time
uncertainty. TFT are modeled and clamped to connect the
forecasting cloister, which happens in this case to meet this pre-
defined complexity of forecasting fill-level, thus optimizing fill-
level forecasting from beginning to end, rather than simply on
accuracy. To further model this layer, a MARL decision layer
also plans for responsible and reactive designs for routing, as
well as, uses multi-objectives with rewards wholly defined by
the aforementioned complex features associated with
sustainability where gas emissions, overflow risk, time, etc.
measure appropriately as multi-dimensional value in the routing
design area. All of this promotes the proposal of TMORL
together into a new level of collaborative and advanced
management strategy that ensures behaviors never exist, while
automating many of the environmentally responsible risks of the
next-generation collection of waste systems.

A. Research Motivation

Traditional urban waste management systems are usually
characterized by low operational efficiency, high fuel wastage
and increased environmental risks by not changing the
collection timetable and ad-hoc routing. Although deep learning,
forecasting models, and optimization methods have
demonstrated potential, the current methods are mostly
independent, do not scale well and have limited goals like
classification or route optimization. There is an increasing need
of sustainable, intelligent and adaptive waste management, this
is why the unified solution can be considered as one of the
solutions that can address two or more goals at once. It will serve
to bridge perception, prediction, and decision-making, thus
mitigating shortcomings of previous approaches, plus offering a
scalable, resilient and future-proven approach to managing
urban waste. To ascertain the methodological consistency and
the conceptual clarity, the study goes ahead to state its
fundamental research question. In this respect, the given work is
based on the following research question: How can the multi-
agent reinforcement learning framework can be successfully
applied in the form of a unified transformer-driven approach that
will be able to perform waste classification, fill-level
predictions, and adaptive routing under the conditions of a
complex urban waste distribution in real-time?

B. Research Significance

The suggested TMORL architecture is the first-ever
combination of Vision Transformer (ViTs), Temporal Fusion
Transformer (TFT) and multi-agent reinforcement learning
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(MARL) with a multi-objective reward system. The
combination allows strong real time waste classification,
explainable multi-horizon predictability and adaptive route
optimization to be achieved in a single system to overcome the
shortcomings of previous single objective or heuristic methods.
TMORL is able to provide scalable and sustainable waste
management solutions in complex urban settings by focusing
ethically on operational efficiency, environmental impact, and
service quality at the same time. In addition to cost savings and
emissions mitigation, the framework is part of the bigger picture
of intelligent and resilient smart cities, whereby an innovative
Al can provide a comprehensive approach to urban
sustainability concerns, where perception, prediction, and
decision-making are integrated into a single, adaptive, and
futuristic decision-support system. Similar to other recent
transformer-based waste systems, which have performances of
separation perception and routing, or MARL routing models,
which consider neither its forecasting uncertainty nor its
performance, TMORL establishes a closely connected
perception-prediction-decision pipeline, allowing the cross-
layer flow of information, decisions based on uncertainty, and
multi-objective coordination.

C. Key Contributions

e Invented a single framework that performs all three
functions of waste classification, fill-level prediction,
and dynamic routing, eliminating disjointed efforts of the
past.

e The mechanism on the interaction between transformers
and MARL was introduced, which allows shared
information flow across layers to coordinate decision-
making.

o Designing a multi-objective MARL reward scheme with
uncertainty-aware predictions to enhance sustainable
routing behaviour.

e A suggested a generalizable and reusable coordination
model based on transformers that can be adapted to a
variety of smart-city operating conditions.

o Deep-rooted sustainability and flexibility in its essence,
with 97.3% preciseness, 96.6% recall, 98.4% mAP, a 22,
25, and 95 % fuel reduction, time and overflow, are
indicative of scalable, efficient, and real-time smart
waste management.

The rest of the study is organized as Section Il provides the
related works. The problem statement is given in Section 1lI
based on the existing works, and the proposed framework is
developed and it provided in Section IV. Result and discussion
are provided in Section V and finally conclusion and future
works given in Section VI.

Il. RELATED WORKS

With growing population comes increased generation of
waste, and the municipality struggles with disposing of the
same. With outdated data as a basis, traditional waste
management models fail to solve dynamic accumulation of
waste. Recent improvements in loT technology provide
capabilities to receive real-time data from the bins owned by
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municipalities for efficient collection based on predictive
models. Ahmed et al. [19] has investigated in time series
prediction of bin fullness, using performance measures like
MAE, MAPE, R?, and RMSE. It has been compared with LSTM
that yields better results, with the RMSE of 1.57 and the lowest
MAPE of 1.855 proving the efficiency of this approach to make
predictions regarding the amount of waste. These findings show
that LSTM-based prediction models can enhance municipal
waste management by making it more efficient in terms of
planning and optimization of resource allocation.

Urbanization presents its challenges to both the developed
and developing countries because the more people turn to
urbanization the more waste is created. The modern approaches
that municipalities apply when it comes to waste classification
are usually tedious, inefficient, and costly, and thus the necessity
to develop automated systems that may help increase recycling
and reduce the number of landfills. Gondal et al. [20] suggested
a hybrid methodology where the first binary classification is
done using a MLP between metal and non- metal waste, and then
non-metal waste is further classified by using ML- CNN. The
innovative system will have a camera placed above a conveyor
belt to take pictures of the trash that are placed in automatic bins.
The model has demonstrated remarkable outcomes with 99 %
accurate results during training, testing and validation stages
under different conditions of input, which makes it effective to
the management.

With the growing number of cities and the development of
smart technologies in harmony with the processes of
industrialization, proper waste collection, sorting, and planning
have been the key to sustainable development. Recycling is
dependent on the correct determination of the properties of
waste in order to reduce pollution and environmental
sustainability. The deep learning (DL) methods have recently
become popular in the process of improving waste management
operations such as capturing, sorting, composting, and disposal.
Nonetheless, it is also a challenging task to pick an appropriate
DL technique to classify and predict wastes. An example of
studies presented by Lilhore et al. [21] proposes a smart waste
classification system, which is a Hybrid CNN-LSTM with
transfer learning and is designed to classify waste as recyclable
or organic. The proposed hybrid model, which is developed in
Python and an adaptive moment estimator (AME) optimization
algorithm, demonstrated remarkable precision with a 95.45
precision which is even better than other available deep learning
models to classify waste.

Intelligent waste management activities have now become a
necessity in curbing the growing complexity of the waste
management concerns. In this regard, predictive analytics would
provide a more efficient, sustainable and resource optimization
solution grounded in facts. The study by Villanueva et al. [22]
describes a universal and flexible model that integrates
innovative technologies to reshape the traditional waste
management processes. The current practices were investigated
with the help of structured interviews with the significant
stakeholders, the integrated predictive analysis framework
proposed implies the application of multiple technologies that
are quite advanced to create a highly effective and affordable
waste management system.
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Intelligence of Things (lIoT-SWM) Smart Waste
Management model with predictive features. The sensor-
equipped local sinks (LS) are employed in this model to check
the condition of the bins and alert users depending on the
urgency. It collects sensor data such as bin weight and gas
emissions to determine how badly bins should be emptied and
the locations that will be filled faster. During a real time
operation, it was noted that bins in the busy areas were filled up
quicker compared to those in the less populated areas. These
findings indicate that Al-driven predictive models can
significantly enhance waste collection efficiency and prevent
overflow, ultimately improving waste management in smart
cities [25].

In spite of the immense achievements of the predictive
analytics, deep learning, and loT-based waste management, the
current set of practices has a number of limitations. Classical
municipal models use old or non-dynamic data which cannot
keep abreast of evolutionary waste quantities whereas most
predictive models only do fill-level prediction but do not
consider real-time classification or operational performance. In
the same point, existing classification systems, though correct,
tend to have limited scalability in different urban scenarios due
to limited setups (conveyor belts or fixed cameras, etc.). Hybrid
deep learning models enhance classification or prediction, alone
as opposed to a combination with adaptive route planning, and
tend to remain inefficient in collection schedules and resource
utilization. Furthermore, optimization models are usually
focused on one objective (e.g., distance or time) without
considering multi-faceted trade-offs of operations and
environment. Combined, these studies point to the great
advancements but show evident gaps in the development of a
single, scalable and real-time framework that polymerizes waste
classification, fill-level prediction and adaptive multi-agent
routing in a single entity. To sew those gaps, the proposed
TMORL  framework will use high-accuracy Vision
Transformers to classify wastes, Temporal Fusion Transformers
to make reliable predictions on the fill-level, and multi-agent
reinforcement learning with a multi-objective reward system
that will allow adaptable, scalable, and sustainable waste
management in a city.

Il. PROBLEM STATEMENT

The management of urban wastes is a burning issue, which
is even escalated by the high rates of urbanization and the need
to have sustainable city operations. Current literature has used
deep learning to classify waste, time-series models, such as
LSTM and GRU, to predict at the fill-level, and optimism-based
algorithms, such as ACO or simple reinforcement learning, to
route [23]. Nonetheless, these methods work in most cases
mostly independently and maximize individual aims, which
reduces their success in contexts of multi-dimensional cities.
This disjointed attention usually leads to ineffective collection
patterns, high operation expenses, environmental effects, and
may become an obstacle to the dream of the genuinely
sustainable smart cities [24]. To address these shortcomings, the
given TMORL will be combined with Vision Transformers
(ViTs) to classify waste with high accuracy, Temporal Fusion
Transformers (TFTs) to predict multi-horizon fill-levels with
interpretability, and multi-agent reinforcement learning
(MARL) and a new multi-objective reward function. Such a
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hybrid, adaptive, and efficient system allows proactive, efficient
and environmentally friendly urban waste management that
shows excellent scalability and operational intelligence
compared to traditional solutions. The suggested architecture of
TMORL, in contrast to the current independent or single-
objective systems, has definite merits, combining perception,
forecast, and routing in a single structure, the proposed system
makes more accurate predictions, more adaptable, and much
better at environmental and operational performance in real-time
urban settings.

V. PREDICTIVE ANALYTICS IN SMART WASTE
MANAGEMENT SYSTEMS

The TMORL program defines a methodological framework
of facility with sustainable and adaptive urban waste
management via a three-layers architecture that involves
perception, prediction, and decision-making. The Perception
Layer uses the encoding of Vision Transformer to encode
discriminative information on heterogeneous waste images and
then uses this information to classify a particular waste type by
recycling, organ, and hazardous waste correctly to guide the
priorities of collection. The Prediction Layer uses data on smart-
bin sensors to produce reliable fill-level predictions with
measurable error to facilitate proactive scheduling and
preemptive overflow. The Decision Layer models the collection
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vehicles as agents, which act in a shared environment, and uses
multi-agent reinforcement learning where the reward structure
is multi-objective so that the efficiency of routing and fuel
consumption, the emissions and service compliance can be
optimized. TMORL integrates these layers to create an end to
end adaptive system in which classification, predictive insights,
and spatial dynamics jointly influence dynamic routing choices,
creating a scalable framework of environment friendly real time
management of urban waste, which is superior to conservative
disconnected systems. Fig. 1 depicts the overall TMORL system
which consists of four layers that are interconnected. The
Perception Layer takes preprocessed images of waste and
performs patching, positional encoding and transformer encoder
blocks to classify the types of garbage. The Prediction Layer
uses  sequence-to-sequence  modelling  with  attention
mechanisms and quantile prediction of predicted bin fill-levels
and the uncertainty involved. Decision Layer models the models
of collection trucks as agents in a multi-agent reinforcement
learning setup, where dynamic routes are optimized using a
multi-objective rewarding function which weighs fuel
efficiency, service time and overflow prevention needs. Lastly,
the Execution Layer takes the optimized routes into practice,
which allows real-time adaptive collection. The smoothing-out
of the perception, forecasting and decision making to the
responsive management of the urban waste are accentuated in
the workflow.

(T '
Perception Decision Layer
Layer Multi-Agent
I Reinforcement Learning
mage with Multi-Objective
— Patching & Reward
- Embedding —
Data Positional Prediction Layer
_Collection Encoding Variable __Optimized
— o Selection Dynamic Routes for Each Truck
Encoder Blocks S
equence :
-to-Sequence ExLeuftmn
4 Waste Category Sexecastmg e
. Attention
Preprocessing Mechanism Real-time
| Quantile Forecasting | collection of waste

Predicted Fill-Level

Fig. 1. Workflow of the proposed framework.

A. Data Collection

The research proposed employs a mixed design method of
data collection through publicly available data to capture visual
and time aspects of waste management. For the waste
classification submodule, an existing dataset from Kaggle called
Smart Waste Management Dataset is used [25]. This dataset
contains annotated images of waste that have been marked at the
bounding box level across multiple categories (i.e., organic,
recyclable, and hazardous). This dataset is utilized to traina ViT
that will classify waste. For the fill-level forecasting and routing
submodule, the Dataset for Waste Management System is
utilized [26], which contains sensor readings from a smart bin,
date-time stamps, and bin identifiers. This dataset is

representative of a true loT-enabled waste bin, which can be
utilized to forecast fill-level dynamics over time using a TFT.
The outputs from these datasets are combined to form the state
space for the MARL decision layer, where together the
classification output from the ViT model, and the fill-level out
from the TFT model will be utilized to make real-time routing
decisions. Collectively, these datasets will provide the multi-
modal foundation needed to ensure TMORL can meet the
perception, prediction, and decision-making aspects of
sustainable smart waste management.

B. Data Preprocessing

The optimal preprocessing of waste plays an important role
in the training of DL models for prediction, classification, and
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detection. Preprocessing workflows include image enhancement
for detection of waste, time-series data for waste accumulation
forecast, and feature engineering for extended learning include
feature engineering for extended learning.

1) Data cleaning: Interpolation was used to deal with
sensor readings with missing values and noisy images or
duplicate images were eliminated. This action guaranteed
reliability and consistency of visual and temporal information,
so biases and training instabilities were avoided when training
the model. This interpolation step, as given in Eq. (1), means
that missing sensor values are filled in without causing
temporal structure distortion of the bin-level values:

(S¢+1—St—1)
St = St—1 +(ti+11_—(tt_11))'(t_(t_1)) 1

Here s, is the interpolated value at time t, s,_; and s, are
the nearest valid readings.

2) Image augmentation: To increase the normalization and
strength of the object detection model, the methods of image
growth such as rotation, shine, and crop growth are used on
dataset. These operations help reduce challenges such as
overfitting along with unbalanced datasets, thus able to
accurately handle unseen waste images. The images are
randomly rotated by an angle 6 within a set range as
[—6 0 —Omax] and it can be defined using the following Eq.

).
I =R(6).1 2

Where the original image is denoted as | and the transformed
image is denoted as I and the rotation matrix is defined as R(6).

The pixel intensity of the image is scaled using the following
Eqg. (3).

[ =al+p (3)

In Eq. (3), the @ and B denote the contrast factor and
brightness shift and they are adjusted within predicted within
predefined thresholds.

Random cropping eliminates extraneous background noise
and enhances model attention on the important waste objects.
The cropped image is then resized to a typical resolution (e.g.,
224x224 pixels for CNN-based models).

3) Normalization of time -series waste level data: Time-
series loT-enabled bin data consist of fill levels, weight,
temperature, and gas emissions. Because the variables are not
of the same scale, normalization is used to have feature
distributions uniformly so as not to create bias in prediction
models. Min-Max Normalization scales the values between 0
and 1 through the use in Eq. (4).

Xnorm = 522 ()

In Eq. (4), the original value is denoted as X and the
Xonax and X, are the minimum and maximum values of the
feature. This conversion provides for the right capture of trends
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in waste accumulation while avoiding Large-scale value
domination.

4) Sequence formatting: Sensor measurements were
synchronized into a fixed time scale to create a temporal input
of the TFT. The labels of waste images were coded into
category encodings of ViT input. This organized visualization
guaranteed that it was compatible with the vision, as well as
forecasting modules.

5) State vector construction: Outputs from ViT (waste
type), TFT (predicted fill level with uncertainty), and spatial
features (bin ID, location) were combined into a single state
vector. This state provided the input for the MARL
environment, supporting adaptive routing decisions with multi-
objective optimization.

TABLE I. DATA SPLITTING

Dataset Subset | Percentage Purpose

Training 80% Model learns waste categories from
images

Validation 10% Monitors performance and prevents
overfitting

Testing 10% Evaluates flna! mpg]el accuracy and
real-world applicability

Table | shows the dataset was split into three subsets in
which eighty percent was utilized for training in order to enable
the model to learn waste categories ten percent was utilized for
validation to track performance and avoid overfitting and ten
percent for testing to gauge accuracy and usability.

C. Waste Classification Using ViT

The perception layer presents the foundation of the
suggested TMORL system with the automated identification of
the types of wastes based on visual information. This layer takes
the waste images of smart bins, which are run through the ViT
architecture, which considers self-attention processes to capture
long-term connections between image patches. The ViT
achieves this and each input image is split into fixed-size patches
and is embedded linearly to the following Transformer encoder
blocks in addition to positional encodings (as opposed to a
conventional convolutional neural network, which operates on
local receptive fields). Formally, an image I e RP*WXC jg
divided into N patches of size P x P, where each patch is first
flattened and then projected to a vector embedding. The
sequence of embeddings forms the input to the Transformer
encoder is in Eq. (5).

Zy = [xclass;E(xzz,);..;E(sz,V)] + Epos (5)

Where E(-) denotes the patch embedding, E,,s is the
positional encoding, and x.. iS the token wused for
classification. Multi-head self-attention (MSA) and feed-
forward networks (FFN) are represented in Eq. (6) and Eq. (7)
respectively.

Z] = MSA(LN(Z,_)) + Z;_4 (6)
Z, =FFN(LN(Z) + Z; @)
TAT|Page
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Where [ denotes the encoder layer, and LN represents layer
normalization. The last output corresponding to the class token
is passed to a linear classification head to predict the waste type.

Class

I

‘ MLP Head

I

Transform
encoder
A

B )

AC—

/

| MLP |

t

| Norm |
A

P

Multi-Head
Attention

Norm

i ! 2,

h

Embedded Patches

Fig. 2. VIT architecture.

Fig. 2 illustrates the layout of the Vision Transformer
utilized in waste classification, which processes input images by
getting each image embedded into image patches. These patches
undergo a normalization step and then the multilayer perceptron
(MLP) is processed in the multi-head self-attention layers and
normalization steps in the transformer encoder. The output
representation is passed through the MLP classification head to
produce the classification of waste type representing the
predicted waste categories. This design illustrates the ability of
Vision Transformers to build long-range dependencies across all
regions of the image to facilitate waste-type identification in
diverse urban environments. The ViT model categorizes waste
into four categories outlined as organic, recyclable, hazardous
and non-recyclable. This type of classification is critical when
considering recycling conscience collection methods because
bins containing any hazardous or recyclable content are given
priority in terms of routing optimization. The perception layer
leverages the global feature extraction ability of Transformers,
allowing for robustness to variation in lighting, background and
object angle, thus achieving improved performance over
standard CNN-based methods in urban waste streams with
heterogeneous items.
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D. Waste Fill-Level Forecasting Using TFT

In the suggested TMORL model, the prediction layer is
going to predict the fill-levels of smart bins to facilitate the
proactive and sustainable scheduling of waste collection. This
interpretable state-of-the-art architecture is an interpretable
multi-horizon time-series forecasting task that is done on the
TFT. The TFT avoids the weaknesses of RNNSs, including
LSTM or GRU by not having the gradient vanishing problem
and not relying on the last timestamp to predict long-term
dependencies. The TFT is a sequence to sequence model, which
utilizes attention mechanisms, and includes gating layers an
architecture that enhances the capacity to learn short and long-
term temporal prediction.

Each smart-bin sensor provides sequential measurements of
fill-levels, weights, and auxiliary attributes (timestamps). The
TFT first implements variable selection networks to select
which input variables are most relevant for the task at each time-

step. For a given sequence of input features X, =
{xt,x2,x2, ...., x'}, the variable selection mechanism computes
in Eq. (8).

%=X ai - o(xi) (8)

In Eq. (8), a! is the attention weight feature i, and ¢(-)
represents a nonlinear transformation. This makes certain that
the only variables that shape the prediction outcome are the most
relevant (e.g., fill percentage, day-of-week). The primary
reliance in temporal modeling is a sequence-to-sequence LSTM
backbone that is enhanced with self-attention. The encoder will
summarize the state of the historical data, and the decoder will
predict the future state. A multi-head attention layer dynamically
weighs the significant past events, which is modeled as in Eq.

9).

. QKT)
A K, V) = —
ttention(Q, K,V) = softmax ( N 9)
Here Q, K, and V denote the query, key, and value matrices
derived from the hidden states. The resulting output is a multi-

horizon prediction vector, which is represented by Eg. (10).

Vertieer = fTFT(Xl:t) (10)

Where ¥;.4..47 represents the predicted fill-levels over a
horizon of 7 future time steps. Importantly, the TFT also gives
quantile forecasts, which captures bounds of uncertainty (such
as the 10th, 50th, and 90th percentiles) that inform the
probability of bin overflow. The accuracy of the forecasts and
the confidence intervals that model uncertainty will be useful in
helping the decision-making layer to successfully adjust
adaptive route plans, prioritize the bins with a high-risk of
overflow, and reduce trips that are unnecessary; resulting in an
improved route optimization that is future-oriented. The
prediction layer links adaptive route planning with real-time
monitoring based on sensors to develop efficiency and
sustainability of smart waste management.

E. Route Optimization Using MARL with Multi-Objective
Reward

The decision layer is the intelligence component of the
TMORL in the smart waste collection adaptive route
optimization decision. This layer employs an agent-based
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MARL framework, according to which each waste collection
truck is considered as a separate agent, which operates in a
common environment. At time t the environment is
characterised by the condition of the collection bins, which is
represented as in Eq. (11),

St :{51,52,53,....,51\]} (11)

where, S; = [C;, F;, U, L;] includes the waste category
probabilities from ViT (C;) predicted fill-level from TFT (F,),
associated uncertainty (U;), and bin location (L;). Each agent
(truck) selects an action x}eA from the available action space A4,
which includes visiting a specific bin or remaining idle. The
environment transitions to a new state according to Sy, IS
denoted in Eq. (12).

St+1 = f(StJ a%,a?,a?, ""Jagl) (12)

Here M represents the total number of agents. The
innovation of this layer is contributed by the multi-objective
reward function, which evaluates operational efficiency,
environmental  sustainability, —and  service  quality
simultaneously. The reward for agent j at time ¢ is defined as in
Eqg. (13).

Rl=—(a-D/+B T/ +y-El+5-0]) (13)

where, Dtj is the travel distance covered by truck j (proxy for
fuel consumption), T/ is the total time taken for collection, £/

is the estimated carbon emissions proportional to fuel use, 0/ is
the penalty for bins overflowing, and «, 8, y and § are the
tunable weights balancing the relative importance of each
objective. The agents learn policies r;(a|S) to maximize the
long-term cumulative reward is represented in Eq. (14).

7'[; = argmaxnjE[Z?io thg] (14)

where, ye[0,1] is the discount factor. Agent coordination is
accomplished using centralized training with decentralized
execution (CTDE), in that the trucks coordinate during training,
but act independently upon deployment. From an agent's
perspective, this layer integrates waste type classification (Vit),
fill-level forecasting with uncertainty (TFT), and the multi-
objective MARL decision process to provide an optimized route
that reduces fuel consumption, service time, emissions, and
overflow of bins. Therefore, the decision layer is capable of
dynamically adapting static collection schedules into a
sustainable routing strategy, allowing planners to address the
multi-faceted nature of urban waste management.

Algorithm 1: TMORL Framework for Waste Classification
Input:
- Waste images dataset D_img
- Smart-bin sensor dataset D_sensor
- Road network graph G(V,E)
- Hyperparameters (o, B, y, 0, learning rate, discount factor
v_RL, horizon 1)
Data Preprocessing:
a. Clean D_img and D_sensor (remove noise, interpolate
missing values).
b. Normalize image pixels and sensor values to [0,1].
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c. Apply data augmentation (rotation, flips, brightness,
temporal feature encoding).
d. Construct state vector S i=[C i, l:“_i, U i, L il
Perception Layer (Waste Classification using ViT):
a. Partition each image into patches.
b. Encode patches with positional embeddings.
c. Pass through Transformer encoder blocks with Multi-Head
Self Attention.
d. Obtain waste category distribution C_i for each bin i.
Prediction Layer (Fill-Level Forecasting using TFT):
a. Input time-series sensor data X_t = {s_t, f_time,t}.
b. Apply variable selection networks to extract relevant
features.
c. Use sequence-to-sequence forecasting with attention
mechanism.
d. Output predicted fill-level F_i and uncertainty Ui for each
bini.
Decision Layer (Route Optimization using MARL):
a. Initialize policies m_j for each truck agent j.
b. For each training episode:
i. Observe current environment state S t={S 1,S 2, ...,
S_N}.
ii. Each agent selects action a_t"j ~w_j(S_t).
iii. Environment transitions to new state S_{t+1}.
iv. Compute multi-objective reward:
Rt =-(aD tj+ BT tNjy+yE tNj+50_t).
v.  Update policies m_j using RL optimization (e.g.,
PPO/DQN).
c. Repeat until convergence.
Deployment:
a. For real-time operation, input new waste images + sensor
readings.
b. Generate classification C_i and forecasts F_i.
c. MARL agents output optimized routes for trucks.
d. Execute routes and collect feedback for continual learning.
Output:
- Optimized waste collection policies n_j for each agent
(truck)

Algorithm 1 (TMORL) brings together waste images and
data from smart-bin sensors to be processed through a single
preprocessing pipeline. The ViT is used to classify waste types,
and the TFT interfaces unused bin sensors with time-series data,
to provide an uncertainty-aware forecast of the fill-levels of
waste bins. The classification and fill-level forecasts are used to
form state vectors which inform the MARL process, where the
trucks are the agents. The MARL agent draws on a multi-
objective reward function (distance, time, emission, overflow)
to optimize dynamic collection routes. The framework is
deployed in real-time with continual feedback loops and
multiple smart-bin sensors to adapt waste collection and manage
it sustainably.

This study presents a new form of perception and prediction
models’ composition with multi-agent reinforcement learning
(MARL) as a multi-objective reward system to fill a research
gap in current urban waste management systems, which
generally separate classification, forecasting, and routing as
distinct problems. ViT has been designed to provide high
performance in terms of waste classification on heterogeneous
visual data, whereas TFT has been built to provide interpretable
and multi-horizon predictions with certainty, in contrast to
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traditional recurrent models in long-term time-series prediction.
The MARL layer uses a multi-objective reward to effectively
maximize a set of goals such as distance traveled, collection
time, emissions and overflow risk-goals that have seldom been
viewed collectively in the literature. The framework integrates
perception and prediction outputs into the adaptive routing
decisions, which results in a data-driven, proactive, and
sustainability-oriented operational strategy. Together, TMORL
is more scalable, flexible, and efficient, providing a cohesive and
visionary decision-support system that is even more efficient
than heuristic and single-objective models, which is a big step
forward in intelligent smart-city waste management.

V. RESULT AND DISCUSSION

TMORL also was evaluated under stringent conditions
through the use of visual waste with real time smart-bin sensor
data in a simulated city collection environment. It can be seen in
the findings of the research that classification, forecasting and
decision making are smoothly integrated in a single adaptive
workflow. The vision Transformer (ViT) proved excellent and
unrestricted classification of the various types of waste under
varying visual circumstances to develop the significance of the
recycling and hazardous bins. Temporal Fusion Transformers
(TFT) had the ability to make the right predictions of the fill
level to predict the potential overflows as well as enable the
sophisticated planning of collection. Most importantly, the
multi-agent reinforcement learning (MARL) layer was a
dynamically optimized multi-objective problem, with a novel
multi-objective reward mechanism, to optimize truck routes
with respect to fuel burn, travel time, emissions, and service
quality. This led to the minimization of unnecessary trips,
overflows and maximization of vehicle utilization. TMORL also
demonstrated a high level of resistance to stressful situations,
including sudden increases in garbage, or unequal bins
distribution, quickly changing collection priorities and routes.
These findings highlight the scalability of TMORL, its
efficiency, and the possibility of its application in the real world
of intelligent waste management.

Table Il provides a summary of the simulation parameters
chosen to apply and evaluate the proposed TMORL framework.
The parameters have been chosen, to depict arguably realistic
scenarios in a smart city with a fair level of experimentation. The
parameters span the entire simulation pipeline from data
preparation to perception, prediction, decision making and
routing simulation and are intended to allow reproducibility and
effectively balance the environment for testing the level of
adaptability, scalability and sustainability of the proposed
framework.

A. Experimental Outcome

The study experiment demonstrated that TMORL can
achieve sustainable and adaptive waste management, beyond the
capabilities of currently available standalone approaches. In
contrast to previous methods which generally have only pursued
one of the three criteria at a time (classification accuracy,
forecasting accuracy, or optimization based on distance), this
proposed framework managed to integrate all three into an all-
inclusive solution. By defining environmental goals in the
reward function, TMORL can achieve operational efficiency
while also tending to the urban waste collection environmental
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footprint. These outcomes establish this framework as an
innovative application for smart cities and ready for future
implementation.

Fig. 3 demonstrates the distribution of correct classifications
across several waste categories from the ViT model. The results
indicate balanced classification accuracy across categories, with
high accuracy in classifying organic and recycling waste. This
highlights the robustness of the perception layer to classify
images of urban waste with varying characteristics.

TABLE Il.  SIMULATION PARAMETER TABLE
Parameter Value
Image resolution 224 x 224
Patch size (ViT) P =16
Train/validation split 80% / 20%
Forecast horizon T =24 timesteps
Number of bins (nodes) N =200
Number of trucks (agents) M=8
Model backbone ViT-Base
Embedding dimension d=768
Encoder layers L=12
Attention heads h=12
Batch size 64
Learning rate le-4 (AdamW)
Epochs 50-100
Batch size 128
Learning rate le-3 (Adam)
Reward weights a=0.4, p=0.2, y=0.2, 5=0.2
Learning rate 2.5e-4
Batch size (RL) 2048 timesteps
Fuel consumption 0.2 L/km
CO: emission factor 2.68 kg/L
Overflow threshold >95% fill
Hardware GPU (e.g., A100) + CPU
Random seed 42
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Fig. 3. Waste classification.
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Rolling Forecast of Bin Fill-Level Trends
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Fig. 4. Bin fill-level forecasting.

Fig. 4 shows the rolling forecast of trends for waste bin fill-
levels over long time horizons. As the actual and predicted
curves trend closely together, it demonstrates that the TFT is
capable of capturing short- and long-term accumulation trends,
indicating that the prediction layer is effectively predicting
future waste generation trends, which will mitigate overflow and
enable proactive route planning.
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Fig. 5. Actual vs. Predicted fill-levels.

Fig. 5 shows the scatter plot of predicted versus actual fill-
levels of waste bins from the TFT. Most of the dots cluster
closely to the diagonal ideal line suggesting high predictive
ability. The dots confirm the model was able to generalize time
trends to predict waste bin accumulation.

MARL Training Convergence Curve
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Fig. 6. MARL training convergence curve.
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Fig. 6 shows the average convergence curve of the MARL
framework. The average reward in the environment learning
process consistently improves over each episode and shows
stabilization at a high value. This demonstrates the agents were
able to learn policies to cooperate for optimizing a sustainable
route and shows the robustness of the decision layer.

Fig. 7 demonstrates the policy entropy curve during the
training of MARL. This curve decreases steadily with training
episodes in a deliberate oscillating pattern, which represents a
shift in policy state exploration to more deterministic states. This
indicates that the agents are gradually eliminating randomness
on the actions and arriving to a policy of the optimized route
selection policy.

Policy Entropy Curve during MARL Training
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Fig. 7. Policy entropy curve during MARL training.
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Fig. 8. Forecast error distribution across waste types.

Fig. 8 provides a visual representation of the distributions of
forecasting errors for each waste category, through a violin plot.
The outlines of each violin plot illustrate the density and spread
of prediction errors in columns. Vertical solid and dashed lines
signify the mean and median, respectively. Overall, the results
shown in the violin plot demonstrate that the TFT produces
consistent degree of accuracy for each waste type, with minimal
differences due to dynamics associated with each waste type.

Fig. 9 presents the cumulative area plot of accumulating
waste collection with time of four major types of waste. It
depicts the proportional loads in the system of organic,
recyclable, hazardous, and non-recyclable waste. This presents
the fact that organic and non-recyclable waste take up a greater
portion of the amount of waste collected and can in turn be used
to guide the strategies of optimization in the proposed
framework.
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Cumulative Waste Collection Over Time
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Fig. 9. Cumulative waste collection over time.
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Fig. 10.  Geospatial distribution of smart bins.

Fig. 10 shows the smart bins distributed throughout the city,
colored according to fill-level percentage. This visualization
also shows the locations of high-risk bins clustering in certain
geometric spaces. This indicates that the spatial distribution of
waste is heterogeneous and routing decisions will need to
prioritize areas that have a greater likelihood to overflow in
order to give a more sustainable result.

Feature Importance in Waste Fill-Level Forecasting (TFT)
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The performance of the waste classification model is
presented in Fig. 11. The great Precision, Recall and mAP 0.5
scores demonstrate that the ViT-based perception layer is
reliable to detect and classify waste types hence we can be
confident that the ViT-based perception layer can operate at
state-of-the-art accuracies and is valid in identifying the waste
types to feed to the downstream forecasting and waste routing.

B. Performance Evaluation

TMORL framework was also strictly tested on its three basic
layers which included perception, prediction and decision-
making. The Vision Transformer (ViT) in the perception layer
was found to consistently classify the type of waste at different
levels of illumination, occlusion and backgrounds with an
average precision of 97.3, recall of 96.6 and mAP at 0.5 of 98.4
which was much higher than a baseline CNN and transfer-
learned models. The Temporal Fusion Transformer (TFT)
prediction layer made quantified accurate multi-horizon fill-
level predictions at accuracy levels useful in the proactive
scheduling process and minimized the odds of unscheduled
overflow. A multi-agent reinforcement learning (MARL) model
using a multi-objective rewarding system was used as the
decision-making layer, maximizing the fuel consumption,
collection time, emission, and overflow reduction routes.
TMORL consumed less fuel (30%), less time to collect (35%),
and fewer cases of overflow than static and ACO-based routing,
and showed scalable, adaptive, and environmentally sustainable
smart waste management performance at real-time.

1) Perception layer (waste classification): The ViT
exhibited considerable capabilities in classifying the waste type
among various adjustments to illumination, background clutter,
and occlusion. The ViT model was also more consistent in its
feature extraction and less prone to confusion of
misclassification within the parameters of similar-looking
categories than its baseline CNN approach and related transfer-
learning. Thus, the perception layer appears to provide reliable
identification of waste types, which is essential for allocating
items to bins listed as recyclable and or hazardous.

TABLE I1l.  OBJECT DETECTION ACCURACY OF TMORL FOR WASTE
CLASSIFICATION

Waste Precisio | Recal SFct-r mAP@0. | mAP@0.5:0.9

Category n (%) | R 5 5

organic | g5 975 | 978 | 984 85.6

Waste

Recyclabl | o7 ¢ %69 |973 |97.9 84.2

e Waste

Hazardou | ¢ 958 | 96.1 | 968 82.7

s Waste

Non-

Recyclabl 97.1 96.2 96.6 97.3 83.4

e Waste

Average 97.3 96.6 96.9 97.6 84.0

e¥ et el
cwe® g ot Ve e e o \n°‘° e
“o\'ad
Input Features
Fig. 11.  Feature importance in waste fill-level forecasting.

Table 111 shows TMORL’s strong accuracy in classifying
four waste types, achieving precision above 96% and mAP@0.5
of 97.6%. There was a high score on organic waste, and
hazardous was slight behind. In general, there is a high level of
performance, which guarantees the stable waste classification in
real-time.
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TABLE IV. KEY METRICS OF TMORL
Metric Value
Precision 97.3%
Recall 96.6%
mAP@0.5 98.4%

The performance of TMORL model is summarized in
Table IV, it demonstrated a high accuracy of the model
classification, with 97.3% precision, a 96.6% recall, and 98.4%
mAP at 0.5 which indicates the accuracy of the model in real
time waste detection and stable performances across various
categories in smart waste management.

Performance Metrics for Waste Classification

100

80

60

Value (%)

20

Precision Recall mAP@0.5
Metrics
Fig. 12.  Proposed TMORL performance.

The performance of the waste classification model can be
seen in Fig. 12. Precision, Recall and mAP at 0.5 are high,
implying that the perception layer, made by ViT has been able
to fully trusted detecting and classifying the types of waste and
has demonstrated consistent results in identifying the types of
waste required to predict and route waste downstream.

2) Prediction layer (fill-level forecasting): TFT was able to
forecast the fill-levels of bins in the future and give uncertainty
ranges with the predictions into which actions could have been
planned. The curves obtained in forecasting were near to what
was actually seen concerning fill-compositions in various time
scales. Significantly, in bins where the uncertainty was high
which was represented by the quantile forecasts may reduce the
risk of the bins to overflow unscheduled. This matters since
even though the prediction layer was able to validate that
scheduling and planning was much certain, the forecaster
provided the system with confidence against the unexpected
patterns in the generation of the wastes.

TABLEV.  ROUTING PERFORMANCE COMPARISON
Metric TMORL (Proposed)
Fuel Consumption 78%
Collection Time 75%
Overflow Incidents Very Low
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Table V presents the efficiency of TMORL framework in
terms of operation, time and service quality factors. The findings
also indicate that it is also able to integrate an identification,
prediction and multi-agent optimization into one system, which
implies that TMORL had a balance between resource utilization
and a sustainable waste management solution when compared to
the existing approaches.

3) Fill-level prediction (TCN): The MARL system with the
multi-objective reward system, which is innovative, was able to
optimize the travel distance and the time spent on the service,
which reduced the CO2 emissions and overflow. The training
convergence curves are used to show that the learning behavior
was stable and the radar plots are used to show that the
performance of the training was enhanced (not only the distance
was optimized or the time was optimized). Taken together, this
shows that the decision layer reflects the innovation of TMORL
in the form of the introduction of sustainability into a routing
plan.

TABLE VI.  COMPARISON OF FORECASTING MODELS FOR BIN FILL-LEVEL
PREDICTION
Model MAE MAPE (%) RMSE R?
LSTM [19] 0.65 2.02 16 0.91
GRU [27] 0.39 14 0.62 0.89
TMORL (Proposed) 0.29 1.8 0.36 0.94

Table VI makes a comparison between bin fill-level
prediction forecasting models. LSTM is in the middle of these,
GRU demonstrates a lower MAPE, and the proposed TMORL
has the best results, lower errors, and R2, and thus is a better
predictor.

TABLE VII.  STATIC ROUTING VS. ACO vs. TMORL PERFORMANCE
) Static ACO- TMORL Improvement
Metric Routin Based (Proposed) over Static
Y Routing P

Fuel 0, 0, 0, ~3009
Consumption 100% 82% 70% 30%
Collection | 10005 | 799 65% ~35%
Time
Overflow . Significantly
Incidents High Low Very Low Reduced
CO2 - - Significantly
Emissions High Medium | Low Reduced

Table VII presents the comparison of the results of the use
of three performance measures in terms of static routing, ACO-
based routing, and the proposed TMORL framework and results.
ACO is more fuel efficient and time efficient than the static
routing measures. The suggested TMORL solution ensures
better performance and operational cost reduction through the
combination of forecasting and sustainability goals. It means
that TMORL, in contrast to the former approaches, will decrease
the emissions, decrease the service time and fuel consumption,
thereby, providing a comprehensive optimization in the multi-
agent approach of smart waste management.

The composite assessment showed that TMORL decreased
overflow cases, decreased trips without increasing service time,
or emission, and increased service time, yet service was not
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compromised because of previous performance. The level of
route visualization verified that the framework is dynamic with
respect to changes in bin states across time, and not fixed routing
as in the case of rule-based schedules. In general, it shows that
the strategy gives a more scalable, versatile, and sustainable
solution to the environment than the old ones, which relied on
single-purpose solutions.

C. Discussion

The research shows that, with transformer-based perception,
temporal forecasting, and multi-agent reinforcement learning, it
is possible to have a single and adaptive system to sustainable
waste management. In contrast to the traditional systems that
operate using some set of schedules or single-objective models,
TMORL constantly aligns the outputs of the classification
component, fill-level predictions, and routing choices so that the
system is capable of responding to the changes in the waste
production and distribution of spatial bins. ViT makes the
reliable identification of heterogeneous waste in diverse
environmental conditions possible, and TFT provides
interpretable multi-horizon predictions, which are capable of
supporting proactive changes in route. The MARL layer is also
an improvement in that it combines the optimization of fuel
utilization, emissions, travel time, and overflow risk, making the
movement of urban waste collection a sustainability-driven
coordination rather than reactive operations. In addition to
enhancement of performance, these findings indicate that a
unified perception-prediction-decision architecture can affect
more extensive smart-city planning by supporting carbon-
constrained routing, resistance to urban unpredictability, and
adaptable implementation of districts with varying waste
dynamics. The framework also provides an interchangeable
basis on the other city scale services like logistics, sanitation,
and autonomous municipal activities. The model can be trained
to be dependent on the sensor quality and computational
resources, but it can be used effectively after being deployed,
which makes it applicable in real-life scenarios, such as a large
metropolitan environment.

VI. CONCLUSION AND FUTURE WORKS

In this study, TMORL, which is a transformer-based multi-
agent reinforcement learning model, has been proposed that
integrates perception, prediction, and decision making with
regard to intelligent urban waste management. The Vision
Transformer can be used to classify waste accurately, and the
Temporal Fusion Transformer provides trustworthy and
understandable fill-level predictions. The multi-objective
MARL layer is the optimization of routing according to the
operational efficiency and sustainability criteria, such as
minimized fuel use, minimized emission, decreased overflow
cases, and increased collection speed. Experimental findings
indicate that TMORL is better than traditional methods of
standardization and heuristics, with substantial improvement in
performance and environmental performance. The results
emphasize that deep learning combined with reinforcement
learning provides a scalable solution to the dynamic control of
urban waste systems, regarding operational optimization instead
of sustainability in general. Nevertheless, performance of any
system is affected by the availability of and quality of sensors
and computational needs of transformer-based models and

Vol. 16, No. 11, 2025

MARL policies can limit low-resource environments. After
implementation, the framework is highly efficient in real time,
offering a way of citywide implementation. These results are
directly relevant to the research question since they demonstrate
that TMORL is an effective way to integrate classification,
forecasting, and adaptive routing in the context of real-time
uncertainty in urban waste settings.

Future research will look into edge and federated learning
plans to minimize the use of centralized computation, add
dynamic traffic and environmental condition to plan better
routes, and renewable-powered or electric collection fleets in
order to make it more sustainable. Multi-city pilots will be tested
in large-scale to assess the adaptability of a wide range of urban
waste patterns and permit further deployment. TMORL creates
a strong progressive model of sustainable waste management
that integrates short-term operational objective with the long-
term environmental and social sustainability.
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