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Abstract—The rapid expansion of urban populations has 

intensified the challenges associated with municipal solid waste 

management, particularly where conventional static or ad-hoc 

routing strategies create operational inefficiencies, excessive fuel 

usage, and repeated bin overflow. Many existing systems still treat 

waste classification, fill-level forecasting, and routing as separate 

processes, which restricts coordinated optimization and limits 

broader sustainability outcomes. To address these shortcomings, 

TMORL is introduced as a Transformer-enhanced Multi-Agent 

Reinforcement Learning framework that unifies perception, 

prediction, and decision-making for intelligent waste 

management. The framework integrates IoT-enabled sensor 

measurements with deep learning and MARL-driven optimization 

to manage waste collection adaptively under real-time 

uncertainty. A Vision Transformer supports precise waste image 

classification through global spatial feature extraction, while a 

Temporal Fusion Transformer generates accurate, uncertainty-

aware multi-horizon fill-level forecasts. These model outputs 

collectively shape the state representation for a multi-objective 

MARL module that optimizes fuel consumption, travel duration, 

emission reduction, and overflow mitigation, enabling 

simultaneous operational and sustainability improvements. 

TMORL is implemented in PyTorch and evaluated using the 

Smart Waste Management Dataset containing heterogeneous IoT 

bin measurements and annotated waste images. The model 

achieves strong perception accuracy, reporting 97.3% precision, 

96.6% recall, and 98.4% mAP@0.5, while the TFT forecasts align 

closely with real bin-fill patterns to support proactive routing 

adjustments. When compared with static scheduling and Ant 

Colony Optimization routing, TMORL reduces fuel usage by 

22%, collection time by 25%, and overflow incidents by 95%. 

Overall, the findings confirm that a transformer-driven, IoT-

integrated MARL framework significantly strengthens efficiency, 

decision responsiveness, and environmental sustainability in next-

generation smart waste management systems. 

Keywords—Smart waste management; temporal fusion 

transformer; vision transformer; predictive analytics; route 

optimization; deep learning 

I. INTRODUCTION 

Urbanization has resulted in an unprecedented increase in 
the volume of solid waste in municipalities and the generation 
of solid waste has resulted in a tremendous pressure on the waste 
management systems [1]. Most traditional collection schemes, 
which may be operating on a time schedule and have fixed 
routes, are normally subject to inefficiencies that include half-
full bins, wastage in picking up overflowing bins and high fuel 
consumption [2], [3]. These shortcomings do not only raise the 
cost of operations and greenhouse gas emissions and air 
pollution, but also diminish the sanitation situation in the urban 
areas [4]. Innovations in smart city projects are gradually 
pointing to the fact that a polyadic combination of artificial 
intelligence (AI), Internet of Things (IoT), and advanced 
analytics, offers a promising chance to address the further 
complications of sustainable waste management [5], [6]. Recent 
advances have been achieved through innovations that use deep 
learning and machine learning algorithm techniques to classify, 
predict, and optimize routing [7]. An example of such 
applications is that convolutional neural networks and YOLO-
based detectors are applied to automate waste classification, and 
recurrent neural networks (RNNs), including a long short-term 
memory (LSTM) network and gated recurrent unit (GRU) 
networks are applied to forecast the fill [8], [9]. Metaheuristic 
methods of solving the problem, like the ACO and genetic 
algorithms and reinforcement learning (RL) have been explored 
as regards to dynamic vehicle routing [10]. In general, the 
innovations in sophisticated analytical mechanisms constitute a 
massive step of the im-moveable functioning to data-sensitive 
adaptative mechanisms [11], [12]. 
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Nonetheless, these models have substantial constraints. 
CNNs typically struggle with heterogeneous, complex waste 
images, while YOLO-based methods, despite being more 
effective than traditionally taught CNNs, continue to use the 
backbone of convolutional models, which are prone to further 
variables [13], [14]. RNN-based forecasting models have issues 
as well, both with vanishing gradients and simply being 
computationally costly for long sequences [15], [16]. 
Additionally, most routing techniques are generally optimizing 
for a single target, such as travel distance, while disregarding the 
many, multi-dimensional trade-offs necessary to consider 
environmental sustainability in the real world, such as fuel 
economy, time, emissions, and overflow potential [17], [18]. In 
order to counter these challenges, the proposed TMORL model 
is a more advanced AI-enabled model to clamp into ViT, in 
which to classify waste more accurately and with real-time 
uncertainty. TFT are modeled and clamped to connect the 
forecasting cloister, which happens in this case to meet this pre-
defined complexity of forecasting fill-level, thus optimizing fill-
level forecasting from beginning to end, rather than simply on 
accuracy. To further model this layer, a MARL decision layer 
also plans for responsible and reactive designs for routing, as 
well as, uses multi-objectives with rewards wholly defined by 
the aforementioned complex features associated with 
sustainability where gas emissions, overflow risk, time, etc. 
measure appropriately as multi-dimensional value in the routing 
design area. All of this promotes the proposal of TMORL 
together into a new level of collaborative and advanced 
management strategy that ensures behaviors never exist, while 
automating many of the environmentally responsible risks of the 
next-generation collection of waste systems. 

A. Research Motivation 

Traditional urban waste management systems are usually 
characterized by low operational efficiency, high fuel wastage 
and increased environmental risks by not changing the 
collection timetable and ad-hoc routing. Although deep learning, 
forecasting models, and optimization methods have 
demonstrated potential, the current methods are mostly 
independent, do not scale well and have limited goals like 
classification or route optimization. There is an increasing need 
of sustainable, intelligent and adaptive waste management, this 
is why the unified solution can be considered as one of the 
solutions that can address two or more goals at once. It will serve 
to bridge perception, prediction, and decision-making, thus 
mitigating shortcomings of previous approaches, plus offering a 
scalable, resilient and future-proven approach to managing 
urban waste. To ascertain the methodological consistency and 
the conceptual clarity, the study goes ahead to state its 
fundamental research question. In this respect, the given work is 
based on the following research question: How can the multi-
agent reinforcement learning framework can be successfully 
applied in the form of a unified transformer-driven approach that 
will be able to perform waste classification, fill-level 
predictions, and adaptive routing under the conditions of a 
complex urban waste distribution in real-time? 

B. Research Significance 

The suggested TMORL architecture is the first-ever 
combination of Vision Transformer (ViTs), Temporal Fusion 
Transformer (TFT) and multi-agent reinforcement learning 

(MARL) with a multi-objective reward system. The 
combination allows strong real time waste classification, 
explainable multi-horizon predictability and adaptive route 
optimization to be achieved in a single system to overcome the 
shortcomings of previous single objective or heuristic methods. 
TMORL is able to provide scalable and sustainable waste 
management solutions in complex urban settings by focusing 
ethically on operational efficiency, environmental impact, and 
service quality at the same time. In addition to cost savings and 
emissions mitigation, the framework is part of the bigger picture 
of intelligent and resilient smart cities, whereby an innovative 
AI can provide a comprehensive approach to urban 
sustainability concerns, where perception, prediction, and 
decision-making are integrated into a single, adaptive, and 
futuristic decision-support system. Similar to other recent 
transformer-based waste systems, which have performances of 
separation perception and routing, or MARL routing models, 
which consider neither its forecasting uncertainty nor its 
performance, TMORL establishes a closely connected 
perception-prediction-decision pipeline, allowing the cross-
layer flow of information, decisions based on uncertainty, and 
multi-objective coordination. 

C. Key Contributions 

 Invented a single framework that performs all three 
functions of waste classification, fill-level prediction, 
and dynamic routing, eliminating disjointed efforts of the 
past. 

 The mechanism on the interaction between transformers 
and MARL was introduced, which allows shared 
information flow across layers to coordinate decision-
making. 

 Designing a multi-objective MARL reward scheme with 
uncertainty-aware predictions to enhance sustainable 
routing behaviour. 

 A suggested a generalizable and reusable coordination 
model based on transformers that can be adapted to a 
variety of smart-city operating conditions. 

 Deep-rooted sustainability and flexibility in its essence, 
with 97.3% preciseness, 96.6% recall, 98.4% mAP, a 22, 
25, and 95 % fuel reduction, time and overflow, are 
indicative of scalable, efficient, and real-time smart 
waste management. 

The rest of the study is organized as Section II provides the 
related works. The problem statement is given in Section III 
based on the existing works, and the proposed framework is 
developed and it provided in Section IV. Result and discussion 
are provided in Section V and finally conclusion and future 
works given in Section VI. 

II. RELATED WORKS 

With growing population comes increased generation of 
waste, and the municipality struggles with disposing of the 
same. With outdated data as a basis, traditional waste 
management models fail to solve dynamic accumulation of 
waste. Recent improvements in IoT technology provide 
capabilities to receive real-time data from the bins owned by 
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municipalities for efficient collection based on predictive 

models. Ahmed et al. [19] has investigated in time series 
prediction of bin fullness, using performance measures like 
MAE, MAPE, R², and RMSE. It has been compared with LSTM 
that yields better results, with the RMSE of 1.57 and the lowest 
MAPE of 1.855 proving the efficiency of this approach to make 
predictions regarding the amount of waste. These findings show 
that LSTM-based prediction models can enhance municipal 
waste management by making it more efficient in terms of 
planning and optimization of resource allocation. 

Urbanization presents its challenges to both the developed 
and developing countries because the more people turn to 
urbanization the more waste is created. The modern approaches 
that municipalities apply when it comes to waste classification 
are usually tedious, inefficient, and costly, and thus the necessity 
to develop automated systems that may help increase recycling 
and reduce the number of landfills. Gondal et al. [20] suggested 
a hybrid methodology where the first binary classification is 
done using a MLP between metal and non- metal waste, and then 
non-metal waste is further classified by using ML- CNN. The 
innovative system will have a camera placed above a conveyor 
belt to take pictures of the trash that are placed in automatic bins. 
The model has demonstrated remarkable outcomes with 99 % 
accurate results during training, testing and validation stages 
under different conditions of input, which makes it effective to 
the management. 

With the growing number of cities and the development of 
smart technologies in harmony with the processes of 
industrialization, proper waste collection, sorting, and planning 
have been the key to sustainable development. Recycling is 
dependent on the correct determination of the properties of 
waste in order to reduce pollution and environmental 
sustainability. The deep learning (DL) methods have recently 
become popular in the process of improving waste management 
operations such as capturing, sorting, composting, and disposal. 
Nonetheless, it is also a challenging task to pick an appropriate 
DL technique to classify and predict wastes. An example of 
studies presented by Lilhore et al. [21] proposes a smart waste 
classification system, which is a Hybrid CNN-LSTM with 
transfer learning and is designed to classify waste as recyclable 
or organic. The proposed hybrid model, which is developed in 
Python and an adaptive moment estimator (AME) optimization 
algorithm, demonstrated remarkable precision with a 95.45 
precision which is even better than other available deep learning 
models to classify waste. 

Intelligent waste management activities have now become a 
necessity in curbing the growing complexity of the waste 
management concerns. In this regard, predictive analytics would 
provide a more efficient, sustainable and resource optimization 
solution grounded in facts. The study by Villanueva et al. [22] 
describes a universal and flexible model that integrates 
innovative technologies to reshape the traditional waste 
management processes. The current practices were investigated 
with the help of structured interviews with the significant 
stakeholders, the integrated predictive analysis framework 
proposed implies the application of multiple technologies that 
are quite advanced to create a highly effective and affordable 
waste management system. 

Intelligence of Things (IoT-SWM) Smart Waste 
Management model with predictive features. The sensor-
equipped local sinks (LS) are employed in this model to check 
the condition of the bins and alert users depending on the 
urgency. It collects sensor data such as bin weight and gas 
emissions to determine how badly bins should be emptied and 
the locations that will be filled faster. During a real time 
operation, it was noted that bins in the busy areas were filled up 
quicker compared to those in the less populated areas. These 
findings indicate that AI-driven predictive models can 
significantly enhance waste collection efficiency and prevent 
overflow, ultimately improving waste management in smart 
cities [25]. 

In spite of the immense achievements of the predictive 
analytics, deep learning, and IoT-based waste management, the 
current set of practices has a number of limitations. Classical 
municipal models use old or non-dynamic data which cannot 
keep abreast of evolutionary waste quantities whereas most 
predictive models only do fill-level prediction but do not 
consider real-time classification or operational performance. In 
the same point, existing classification systems, though correct, 
tend to have limited scalability in different urban scenarios due 
to limited setups (conveyor belts or fixed cameras, etc.). Hybrid 
deep learning models enhance classification or prediction, alone 
as opposed to a combination with adaptive route planning, and 
tend to remain inefficient in collection schedules and resource 
utilization. Furthermore, optimization models are usually 
focused on one objective (e.g., distance or time) without 
considering multi-faceted trade-offs of operations and 
environment. Combined, these studies point to the great 
advancements but show evident gaps in the development of a 
single, scalable and real-time framework that polymerizes waste 
classification, fill-level prediction and adaptive multi-agent 
routing in a single entity. To sew those gaps, the proposed 
TMORL framework will use high-accuracy Vision 
Transformers to classify wastes, Temporal Fusion Transformers 
to make reliable predictions on the fill-level, and multi-agent 
reinforcement learning with a multi-objective reward system 
that will allow adaptable, scalable, and sustainable waste 
management in a city. 

III. PROBLEM STATEMENT 

The management of urban wastes is a burning issue, which 
is even escalated by the high rates of urbanization and the need 
to have sustainable city operations. Current literature has used 
deep learning to classify waste, time-series models, such as 
LSTM and GRU, to predict at the fill-level, and optimism-based 
algorithms, such as ACO or simple reinforcement learning, to 
route [23]. Nonetheless, these methods work in most cases 
mostly independently and maximize individual aims, which 
reduces their success in contexts of multi-dimensional cities. 
This disjointed attention usually leads to ineffective collection 
patterns, high operation expenses, environmental effects, and 
may become an obstacle to the dream of the genuinely 
sustainable smart cities [24]. To address these shortcomings, the 
given TMORL will be combined with Vision Transformers 
(ViTs) to classify waste with high accuracy, Temporal Fusion 
Transformers (TFTs) to predict multi-horizon fill-levels with 
interpretability, and multi-agent reinforcement learning 
(MARL) and a new multi-objective reward function. Such a 
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hybrid, adaptive, and efficient system allows proactive, efficient 
and environmentally friendly urban waste management that 
shows excellent scalability and operational intelligence 
compared to traditional solutions. The suggested architecture of 
TMORL, in contrast to the current independent or single-
objective systems, has definite merits, combining perception, 
forecast, and routing in a single structure, the proposed system 
makes more accurate predictions, more adaptable, and much 
better at environmental and operational performance in real-time 
urban settings. 

IV. PREDICTIVE ANALYTICS IN SMART WASTE 

MANAGEMENT SYSTEMS 

The TMORL program defines a methodological framework 
of facility with sustainable and adaptive urban waste 
management via a three-layers architecture that involves 
perception, prediction, and decision-making. The Perception 
Layer uses the encoding of Vision Transformer to encode 
discriminative information on heterogeneous waste images and 
then uses this information to classify a particular waste type by 
recycling, organ, and hazardous waste correctly to guide the 
priorities of collection. The Prediction Layer uses data on smart-
bin sensors to produce reliable fill-level predictions with 
measurable error to facilitate proactive scheduling and 
preemptive overflow. The Decision Layer models the collection 

vehicles as agents, which act in a shared environment, and uses 
multi-agent reinforcement learning where the reward structure 
is multi-objective so that the efficiency of routing and fuel 
consumption, the emissions and service compliance can be 
optimized. TMORL integrates these layers to create an end to 
end adaptive system in which classification, predictive insights, 
and spatial dynamics jointly influence dynamic routing choices, 
creating a scalable framework of environment friendly real time 
management of urban waste, which is superior to conservative 
disconnected systems. Fig. 1 depicts the overall TMORL system 
which consists of four layers that are interconnected. The 
Perception Layer takes preprocessed images of waste and 
performs patching, positional encoding and transformer encoder 
blocks to classify the types of garbage. The Prediction Layer 
uses sequence-to-sequence modelling with attention 
mechanisms and quantile prediction of predicted bin fill-levels 
and the uncertainty involved. Decision Layer models the models 
of collection trucks as agents in a multi-agent reinforcement 
learning setup, where dynamic routes are optimized using a 
multi-objective rewarding function which weighs fuel 
efficiency, service time and overflow prevention needs. Lastly, 
the Execution Layer takes the optimized routes into practice, 
which allows real-time adaptive collection. The smoothing-out 
of the perception, forecasting and decision making to the 
responsive management of the urban waste are accentuated in 
the workflow.

 
Fig. 1.  Workflow of the proposed framework. 

A. Data Collection 

The research proposed employs a mixed design method of 
data collection through publicly available data to capture visual 
and time aspects of waste management. For the waste 
classification submodule, an existing dataset from Kaggle called 
Smart Waste Management Dataset is used [25]. This dataset 
contains annotated images of waste that have been marked at the 
bounding box level across multiple categories (i.e., organic, 
recyclable, and hazardous). This dataset is utilized to train a ViT 
that will classify waste. For the fill-level forecasting and routing 
submodule, the Dataset for Waste Management System is 
utilized [26], which contains sensor readings from a smart bin, 
date-time stamps, and bin identifiers. This dataset is 

representative of a true IoT-enabled waste bin, which can be 
utilized to forecast fill-level dynamics over time using a TFT. 
The outputs from these datasets are combined to form the state 
space for the MARL decision layer, where together the 
classification output from the ViT model, and the fill-level out 
from the TFT model will be utilized to make real-time routing 
decisions. Collectively, these datasets will provide the multi-
modal foundation needed to ensure TMORL can meet the 
perception, prediction, and decision-making aspects of 
sustainable smart waste management. 

B. Data Preprocessing 

The optimal preprocessing of waste plays an important role 
in the training of DL models for prediction, classification, and 
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detection. Preprocessing workflows include image enhancement 
for detection of waste, time-series data for waste accumulation 
forecast, and feature engineering for extended learning include 
feature engineering for extended learning. 

1) Data cleaning: Interpolation was used to deal with 

sensor readings with missing values and noisy images or 

duplicate images were eliminated. This action guaranteed 

reliability and consistency of visual and temporal information, 

so biases and training instabilities were avoided when training 

the model. This interpolation step, as given in Eq. (1), means 

that missing sensor values are filled in without causing 

temporal structure distortion of the bin-level values: 

𝑠𝑡 = 𝑠𝑡−1 +
(𝑠𝑡+1−𝑠𝑡−1)

(𝑡+1−(𝑡−1))
∙ (𝑡 − (𝑡 − 1)) (1) 

Here 𝑠𝑡 is the interpolated value at time 𝑡, 𝑠𝑡−1 and 𝑠𝑡+1 are 
the nearest valid readings. 

2) Image augmentation: To increase the normalization and 

strength of the object detection model, the methods of image 

growth such as rotation, shine, and crop growth are used on 

dataset. These operations help reduce challenges such as 

overfitting along with unbalanced datasets, thus able to 

accurately handle unseen waste images. The images are 

randomly rotated by an angle 𝜃  within a set range as 

[−𝜃𝑚𝑎𝑥, −𝜃𝑚𝑎𝑥] and it can be defined using the following Eq. 

(2).  

𝐼′ = 𝑅(𝜃). 𝐼   (2) 

Where the original image is denoted as I and the transformed 

image is denoted as 𝐼′ and the rotation matrix is defined as 𝑅(𝜃). 

The pixel intensity of the image is scaled using the following 
Eq. (3). 

𝐼′ = 𝛼𝐼 + 𝛽   (3) 

In Eq. (3), the 𝛼  and 𝛽  denote the contrast factor and 
brightness shift and they are adjusted within predicted within 
predefined thresholds. 

Random cropping eliminates extraneous background noise 
and enhances model attention on the important waste objects. 
The cropped image is then resized to a typical resolution (e.g., 
224×224 pixels for CNN-based models). 

3) Normalization of time -series waste level data: Time-

series IoT-enabled bin data consist of fill levels, weight, 

temperature, and gas emissions. Because the variables are not 

of the same scale, normalization is used to have feature 

distributions uniformly so as not to create bias in prediction 

models. Min-Max Normalization scales the values between 0 

and 1 through the use in Eq. (4). 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (4) 

In Eq. (4), the original value is denoted as X and the 

𝑋𝑚𝑎𝑥 𝑎𝑛𝑑 𝑋𝑚𝑖𝑛 are the minimum and maximum values of the 
feature. This conversion provides for the right capture of trends 

in waste accumulation while avoiding Large-scale value 
domination. 

4) Sequence formatting: Sensor measurements were 

synchronized into a fixed time scale to create a temporal input 

of the TFT. The labels of waste images were coded into 

category encodings of ViT input. This organized visualization 

guaranteed that it was compatible with the vision, as well as 

forecasting modules. 

5) State vector construction: Outputs from ViT (waste 

type), TFT (predicted fill level with uncertainty), and spatial 

features (bin ID, location) were combined into a single state 

vector. This state provided the input for the MARL 

environment, supporting adaptive routing decisions with multi-

objective optimization. 

TABLE I.  DATA SPLITTING 

Dataset Subset Percentage Purpose 

Training 80% 
Model learns waste categories from 

images 

Validation 10% 
Monitors performance and prevents 

overfitting 

Testing 10% 
Evaluates final model accuracy and 

real-world applicability 

Table I shows the dataset was split into three subsets in 
which eighty percent was utilized for training in order to enable 
the model to learn waste categories ten percent was utilized for 
validation to track performance and avoid overfitting and ten 
percent for testing to gauge accuracy and usability. 

C. Waste Classification Using ViT 

The perception layer presents the foundation of the 
suggested TMORL system with the automated identification of 
the types of wastes based on visual information. This layer takes 
the waste images of smart bins, which are run through the ViT 
architecture, which considers self-attention processes to capture 
long-term connections between image patches. The ViT 
achieves this and each input image is split into fixed-size patches 
and is embedded linearly to the following Transformer encoder 
blocks in addition to positional encodings (as opposed to a 
conventional convolutional neural network, which operates on 
local receptive fields). Formally, an image 𝐼 𝜖 ℝ𝐻×𝑊×𝐶  is 
divided into 𝑁 patches of size 𝑃 × 𝑃, where each patch is first 
flattened and then projected to a vector embedding. The 
sequence of embeddings forms the input to the Transformer 
encoder is in Eq. (5). 

𝑍0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝐸(𝑥𝑝
2); . . ; 𝐸(𝑥𝑝

𝑁)] + 𝐸𝑝𝑜𝑠 (5) 

Where 𝐸(∙)  denotes the patch embedding, 𝐸𝑝𝑜𝑠  is the 

positional encoding, and 𝑥𝑐𝑙𝑎𝑠𝑠  is the token used for 
classification. Multi-head self-attention (MSA) and feed-
forward networks (FFN) are represented in Eq. (6) and Eq. (7) 
respectively. 

𝑍𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1           (6) 

𝑍𝑙 = 𝐹𝐹𝑁(𝐿𝑁(𝑍𝑙
′)) + 𝑍𝑙

′                     (7) 
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Where 𝑙 denotes the encoder layer, and 𝐿𝑁 represents layer 
normalization. The last output corresponding to the class token 
is passed to a linear classification head to predict the waste type. 

 
Fig. 2.  ViT architecture. 

Fig. 2 illustrates the layout of the Vision Transformer 
utilized in waste classification, which processes input images by 
getting each image embedded into image patches. These patches 
undergo a normalization step and then the multilayer perceptron 
(MLP) is processed in the multi-head self-attention layers and 
normalization steps in the transformer encoder. The output 
representation is passed through the MLP classification head to 
produce the classification of waste type representing the 
predicted waste categories. This design illustrates the ability of 
Vision Transformers to build long-range dependencies across all 
regions of the image to facilitate waste-type identification in 
diverse urban environments. The ViT model categorizes waste 
into four categories outlined as organic, recyclable, hazardous 
and non-recyclable. This type of classification is critical when 
considering recycling conscience collection methods because 
bins containing any hazardous or recyclable content are given 
priority in terms of routing optimization. The perception layer 
leverages the global feature extraction ability of Transformers, 
allowing for robustness to variation in lighting, background and 
object angle, thus achieving improved performance over 
standard CNN-based methods in urban waste streams with 
heterogeneous items. 

D. Waste Fill-Level Forecasting Using TFT 

In the suggested TMORL model, the prediction layer is 
going to predict the fill-levels of smart bins to facilitate the 
proactive and sustainable scheduling of waste collection. This 
interpretable state-of-the-art architecture is an interpretable 
multi-horizon time-series forecasting task that is done on the 
TFT. The TFT avoids the weaknesses of RNNs, including 
LSTM or GRU by not having the gradient vanishing problem 
and not relying on the last timestamp to predict long-term 
dependencies. The TFT is a sequence to sequence model, which 
utilizes attention mechanisms, and includes gating layers an 
architecture that enhances the capacity to learn short and long-
term temporal prediction. 

Each smart-bin sensor provides sequential measurements of 
fill-levels, weights, and auxiliary attributes (timestamps). The 
TFT first implements variable selection networks to select 
which input variables are most relevant for the task at each time-
step. For a given sequence of input features 𝑋𝑡 =
{𝑥𝑡

1, 𝑥𝑡
2, 𝑥𝑡

3, … . , 𝑥𝑡
𝑛}, the variable selection mechanism computes 

in Eq. (8). 

𝑥̃𝑡 = ∑ 𝛼𝑡
𝑖 ∙ 𝜑(𝑥𝑡

𝑖)𝑛
𝑖=1   (8) 

 In Eq. (8), 𝛼𝑡
𝑖  is the attention weight feature 𝑖 , and 𝜑(∙) 

represents a nonlinear transformation. This makes certain that 
the only variables that shape the prediction outcome are the most 
relevant (e.g., fill percentage, day-of-week). The primary 
reliance in temporal modeling is a sequence-to-sequence LSTM 
backbone that is enhanced with self-attention. The encoder will 
summarize the state of the historical data, and the decoder will 
predict the future state. A multi-head attention layer dynamically 
weighs the significant past events, which is modeled as in Eq. 
(9). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  (9) 

Here 𝑄, 𝐾, and 𝑉 denote the query, key, and value matrices 
derived from the hidden states. The resulting output is a multi-
horizon prediction vector, which is represented by Eq. (10). 

𝑦̂𝑡+1:𝑡+ℸ = 𝑓𝑇𝐹𝑇(𝑋1:𝑡)  (10) 

Where 𝑦̂𝑡+1:𝑡+ℸ  represents the predicted fill-levels over a 
horizon of ℸ future time steps. Importantly, the TFT also gives 
quantile forecasts, which captures bounds of uncertainty (such 
as the 10th, 50th, and 90th percentiles) that inform the 
probability of bin overflow. The accuracy of the forecasts and 
the confidence intervals that model uncertainty will be useful in 
helping the decision-making layer to successfully adjust 
adaptive route plans, prioritize the bins with a high-risk of 
overflow, and reduce trips that are unnecessary; resulting in an 
improved route optimization that is future-oriented. The 
prediction layer links adaptive route planning with real-time 
monitoring based on sensors to develop efficiency and 
sustainability of smart waste management. 

E. Route Optimization Using MARL with Multi-Objective 

Reward 

The decision layer is the intelligence component of the 
TMORL in the smart waste collection adaptive route 
optimization decision. This layer employs an agent-based 
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MARL framework, according to which each waste collection 
truck is considered as a separate agent, which operates in a 
common environment. At time t the environment is 
characterised by the condition of the collection bins, which is 
represented as in Eq. (11), 

𝑆𝑡 = {𝑆1, 𝑆2, 𝑆3, … . , 𝑆𝑁}

where, 𝑆𝑖 = [𝐶𝑖 , 𝐹̂𝑖 , 𝑈𝑖 , 𝐿𝑖]  includes the waste category 

probabilities from ViT (𝐶𝑖) predicted fill-level from TFT (𝐹̂𝑖), 

associated uncertainty (𝑈𝑖), and bin location (𝐿𝑖). Each agent 
(truck) selects an action 𝑥𝑡

1𝜖𝐴 from the available action space 𝐴, 
which includes visiting a specific bin or remaining idle. The 
environment transitions to a new state according to 𝑆𝑡+1  is 
denoted in Eq. (12). 

𝑆𝑡+1 = 𝑓(𝑆𝑡 , 𝑎𝑡
1, 𝑎𝑡

2, 𝑎𝑡
3, … . , 𝑎𝑡

𝑀)

Here 𝑀  represents the total number of agents. The 
innovation of this layer is contributed by the multi-objective 
reward function, which evaluates operational efficiency, 
environmental sustainability, and service quality 
simultaneously. The reward for agent 𝑗 at time 𝑡 is defined as in 
Eq. (13). 

𝑅𝑡
𝑗

= −(𝛼 ∙ 𝐷𝑡
𝑗

+ 𝛽 ∙ 𝑇𝑡
𝑗

+ 𝛾 ∙ 𝐸𝑡
𝑗

+ 𝛿 ∙ 𝑂𝑡
𝑗
)

where, 𝐷𝑡
𝑗
 is the travel distance covered by truck 𝑗 (proxy for 

fuel consumption), 𝑇𝑡
𝑗
 is the total time taken for collection, 𝐸𝑡

𝑗
 

is the estimated carbon emissions proportional to fuel use, 𝑂𝑡
𝑗
 is 

the penalty for bins overflowing, and 𝛼 , 𝛽 , 𝛾  and 𝛿  are the 
tunable weights balancing the relative importance of each 
objective. The agents learn policies 𝜋𝑗(𝑎|𝑆) to maximize the 

long-term cumulative reward is represented in Eq. (14). 

𝜋𝑗
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑗Ε[∑ 𝛾𝑡𝑅𝑡

𝑗∞
𝑡=0 ] 

where, 𝛾𝜖[0,1] is the discount factor. Agent coordination is 
accomplished using centralized training with decentralized 
execution (CTDE), in that the trucks coordinate during training, 
but act independently upon deployment. From an agent's 
perspective, this layer integrates waste type classification (Vit), 
fill-level forecasting with uncertainty (TFT), and the multi-
objective MARL decision process to provide an optimized route 
that reduces fuel consumption, service time, emissions, and 
overflow of bins. Therefore, the decision layer is capable of 
dynamically adapting static collection schedules into a 
sustainable routing strategy, allowing planners to address the 
multi-faceted nature of urban waste management. 

Algorithm 1: TMORL Framework for Waste Classification 

Input:  

    - Waste images dataset D_img 

    - Smart-bin sensor dataset D_sensor 

    - Road network graph G(V,E) 

    - Hyperparameters (α, β, γ, δ, learning rate, discount factor 
γ_RL, horizon τ) 

Data Preprocessing: 

    a. Clean D_img and D_sensor (remove noise, interpolate 
missing values). 

    b. Normalize image pixels and sensor values to [0,1]. 

    c. Apply data augmentation (rotation, flips, brightness, 
temporal feature encoding). 

    d. Construct state vector S_i = [C_i, F̂_i, U_i, L_i]. 

Perception Layer (Waste Classification using ViT): 

    a. Partition each image into patches. 

    b. Encode patches with positional embeddings. 

    c. Pass through Transformer encoder blocks with Multi-Head 
Self Attention. 

    d. Obtain waste category distribution C_i for each bin i. 

Prediction Layer (Fill-Level Forecasting using TFT): 

    a. Input time-series sensor data X_t = {s_t, f_time,t}. 

    b. Apply variable selection networks to extract relevant 
features. 

    c. Use sequence-to-sequence forecasting with attention 
mechanism. 

    d. Output predicted fill-level F̂_i and uncertainty U_i for each 
bin i. 

Decision Layer (Route Optimization using MARL): 

    a. Initialize policies π_j for each truck agent j. 

    b. For each training episode: 

        i.   Observe current environment state S_t = {S_1, S_2, …, 
S_N}. 

        ii.  Each agent selects action a_t^j ~ π_j(S_t). 

        iii. Environment transitions to new state S_{t+1}. 

        iv.  Compute multi-objective reward: 

             R_t^j = - (α·D_t^j + β·T_t^j + γ·E_t^j + δ·O_t^j). 

        v.   Update policies π_j using RL optimization (e.g., 
PPO/DQN). 

    c. Repeat until convergence. 

Deployment: 

    a. For real-time operation, input new waste images + sensor 
readings. 

    b. Generate classification C_i and forecasts F̂_i. 

    c. MARL agents output optimized routes for trucks. 

    d. Execute routes and collect feedback for continual learning. 

Output: 

    - Optimized waste collection policies π_j for each agent 
(truck) 

Algorithm 1 (TMORL) brings together waste images and 
data from smart-bin sensors to be processed through a single 
preprocessing pipeline. The ViT is used to classify waste types, 
and the TFT interfaces unused bin sensors with time-series data, 
to provide an uncertainty-aware forecast of the fill-levels of 
waste bins. The classification and fill-level forecasts are used to 
form state vectors which inform the MARL process, where the 
trucks are the agents. The MARL agent draws on a multi-
objective reward function (distance, time, emission, overflow) 
to optimize dynamic collection routes. The framework is 
deployed in real-time with continual feedback loops and 
multiple smart-bin sensors to adapt waste collection and manage 
it sustainably. 

This study presents a new form of perception and prediction 
models’ composition with multi-agent reinforcement learning 
(MARL) as a multi-objective reward system to fill a research 
gap in current urban waste management systems, which 
generally separate classification, forecasting, and routing as 
distinct problems. ViT has been designed to provide high 
performance in terms of waste classification on heterogeneous 
visual data, whereas TFT has been built to provide interpretable 
and multi-horizon predictions with certainty, in contrast to 
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traditional recurrent models in long-term time-series prediction. 
The MARL layer uses a multi-objective reward to effectively 
maximize a set of goals such as distance traveled, collection 
time, emissions and overflow risk-goals that have seldom been 
viewed collectively in the literature. The framework integrates 
perception and prediction outputs into the adaptive routing 
decisions, which results in a data-driven, proactive, and 
sustainability-oriented operational strategy. Together, TMORL 
is more scalable, flexible, and efficient, providing a cohesive and 
visionary decision-support system that is even more efficient 
than heuristic and single-objective models, which is a big step 
forward in intelligent smart-city waste management. 

V. RESULT AND DISCUSSION 

TMORL also was evaluated under stringent conditions 
through the use of visual waste with real time smart-bin sensor 
data in a simulated city collection environment. It can be seen in 
the findings of the research that classification, forecasting and 
decision making are smoothly integrated in a single adaptive 
workflow. The vision Transformer (ViT) proved excellent and 
unrestricted classification of the various types of waste under 
varying visual circumstances to develop the significance of the 
recycling and hazardous bins. Temporal Fusion Transformers 
(TFT) had the ability to make the right predictions of the fill 
level to predict the potential overflows as well as enable the 
sophisticated planning of collection. Most importantly, the 
multi-agent reinforcement learning (MARL) layer was a 
dynamically optimized multi-objective problem, with a novel 
multi-objective reward mechanism, to optimize truck routes 
with respect to fuel burn, travel time, emissions, and service 
quality. This led to the minimization of unnecessary trips, 
overflows and maximization of vehicle utilization. TMORL also 
demonstrated a high level of resistance to stressful situations, 
including sudden increases in garbage, or unequal bins 
distribution, quickly changing collection priorities and routes. 
These findings highlight the scalability of TMORL, its 
efficiency, and the possibility of its application in the real world 
of intelligent waste management. 

Table II provides a summary of the simulation parameters 
chosen to apply and evaluate the proposed TMORL framework. 
The parameters have been chosen, to depict arguably realistic 
scenarios in a smart city with a fair level of experimentation. The 
parameters span the entire simulation pipeline from data 
preparation to perception, prediction, decision making and 
routing simulation and are intended to allow reproducibility and 
effectively balance the environment for testing the level of 
adaptability, scalability and sustainability of the proposed 
framework. 

A. Experimental Outcome 

The study experiment demonstrated that TMORL can 
achieve sustainable and adaptive waste management, beyond the 
capabilities of currently available standalone approaches. In 
contrast to previous methods which generally have only pursued 
one of the three criteria at a time (classification accuracy, 
forecasting accuracy, or optimization based on distance), this 
proposed framework managed to integrate all three into an all-
inclusive solution. By defining environmental goals in the 
reward function, TMORL can achieve operational efficiency 
while also tending to the urban waste collection environmental 

footprint. These outcomes establish this framework as an 
innovative application for smart cities and ready for future 
implementation. 

Fig. 3 demonstrates the distribution of correct classifications 
across several waste categories from the ViT model. The results 
indicate balanced classification accuracy across categories, with 
high accuracy in classifying organic and recycling waste. This 
highlights the robustness of the perception layer to classify 
images of urban waste with varying characteristics. 

TABLE II.  SIMULATION PARAMETER TABLE 

Parameter Value 

Image resolution 224 × 224 

Patch size (ViT) P = 16 

Train/validation split 80% / 20% 

Forecast horizon τ = 24 timesteps 

Number of bins (nodes) N = 200 

Number of trucks (agents) M = 8 

Model backbone ViT-Base 

Embedding dimension d = 768 

Encoder layers L = 12 

Attention heads h = 12 

Batch size 64 

Learning rate 1e-4 (AdamW) 

Epochs 50–100 

Batch size 128 

Learning rate 1e-3 (Adam) 

Reward weights α=0.4, β=0.2, γ=0.2, δ=0.2 

Learning rate 2.5e-4 

Batch size (RL) 2048 timesteps 

Fuel consumption 0.2 L/km 

CO₂ emission factor 2.68 kg/L 

Overflow threshold ≥95% fill 

Hardware GPU (e.g., A100) + CPU 

Random seed 42 

 
Fig. 3.  Waste classification. 
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Fig. 4.  Bin fill-level forecasting. 

Fig. 4 shows the rolling forecast of trends for waste bin fill-
levels over long time horizons. As the actual and predicted 
curves trend closely together, it demonstrates that the TFT is 
capable of capturing short- and long-term accumulation trends, 
indicating that the prediction layer is effectively predicting 
future waste generation trends, which will mitigate overflow and 
enable proactive route planning. 

 
Fig. 5.  Actual vs. Predicted fill-levels. 

Fig. 5 shows the scatter plot of predicted versus actual fill-
levels of waste bins from the TFT. Most of the dots cluster 
closely to the diagonal ideal line suggesting high predictive 
ability. The dots confirm the model was able to generalize time 
trends to predict waste bin accumulation. 

 
Fig. 6.  MARL training convergence curve. 

Fig. 6 shows the average convergence curve of the MARL 
framework. The average reward in the environment learning 
process consistently improves over each episode and shows 
stabilization at a high value. This demonstrates the agents were 
able to learn policies to cooperate for optimizing a sustainable 
route and shows the robustness of the decision layer. 

Fig. 7 demonstrates the policy entropy curve during the 
training of MARL. This curve decreases steadily with training 
episodes in a deliberate oscillating pattern, which represents a 
shift in policy state exploration to more deterministic states. This 
indicates that the agents are gradually eliminating randomness 
on the actions and arriving to a policy of the optimized route 
selection policy. 

 
Fig. 7.  Policy entropy curve during MARL training. 

 
Fig. 8.  Forecast error distribution across waste types. 

Fig. 8 provides a visual representation of the distributions of 
forecasting errors for each waste category, through a violin plot. 
The outlines of each violin plot illustrate the density and spread 
of prediction errors in columns. Vertical solid and dashed lines 
signify the mean and median, respectively. Overall, the results 
shown in the violin plot demonstrate that the TFT produces 
consistent degree of accuracy for each waste type, with minimal 
differences due to dynamics associated with each waste type. 

Fig. 9 presents the cumulative area plot of accumulating 
waste collection with time of four major types of waste. It 
depicts the proportional loads in the system of organic, 
recyclable, hazardous, and non-recyclable waste. This presents 
the fact that organic and non-recyclable waste take up a greater 
portion of the amount of waste collected and can in turn be used 
to guide the strategies of optimization in the proposed 
framework. 
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Fig. 9.  Cumulative waste collection over time. 

 
Fig. 10.  Geospatial distribution of smart bins. 

Fig. 10 shows the smart bins distributed throughout the city, 
colored according to fill-level percentage. This visualization 
also shows the locations of high-risk bins clustering in certain 
geometric spaces. This indicates that the spatial distribution of 
waste is heterogeneous and routing decisions will need to 
prioritize areas that have a greater likelihood to overflow in 
order to give a more sustainable result. 

 
Fig. 11.  Feature importance in waste fill-level forecasting. 

The performance of the waste classification model is 
presented in Fig. 11. The great Precision, Recall and mAP 0.5 
scores demonstrate that the ViT-based perception layer is 
reliable to detect and classify waste types hence we can be 
confident that the ViT-based perception layer can operate at 
state-of-the-art accuracies and is valid in identifying the waste 
types to feed to the downstream forecasting and waste routing. 

B. Performance Evaluation 

TMORL framework was also strictly tested on its three basic 
layers which included perception, prediction and decision-
making. The Vision Transformer (ViT) in the perception layer 
was found to consistently classify the type of waste at different 
levels of illumination, occlusion and backgrounds with an 
average precision of 97.3, recall of 96.6 and mAP at 0.5 of 98.4 
which was much higher than a baseline CNN and transfer-
learned models. The Temporal Fusion Transformer (TFT) 
prediction layer made quantified accurate multi-horizon fill-
level predictions at accuracy levels useful in the proactive 
scheduling process and minimized the odds of unscheduled 
overflow. A multi-agent reinforcement learning (MARL) model 
using a multi-objective rewarding system was used as the 
decision-making layer, maximizing the fuel consumption, 
collection time, emission, and overflow reduction routes. 
TMORL consumed less fuel (30%), less time to collect (35%), 
and fewer cases of overflow than static and ACO-based routing, 
and showed scalable, adaptive, and environmentally sustainable 
smart waste management performance at real-time. 

1) Perception layer (waste classification): The ViT 

exhibited considerable capabilities in classifying the waste type 

among various adjustments to illumination, background clutter, 

and occlusion. The ViT model was also more consistent in its 

feature extraction and less prone to confusion of 

misclassification within the parameters of similar-looking 

categories than its baseline CNN approach and related transfer-

learning. Thus, the perception layer appears to provide reliable 

identification of waste types, which is essential for allocating 

items to bins listed as recyclable and or hazardous. 

TABLE III.  OBJECT DETECTION ACCURACY OF TMORL FOR WASTE 

CLASSIFICATION 

Waste 

Category 

Precisio

n (%) 

Recal

l 

F1-

Scor

e 

mAP@0.

5 

mAP@0.5:0.9

5 

Organic 

Waste 
98.2 97.5 97.8 98.4 85.6 

Recyclabl

e Waste 
97.8 96.9 97.3 97.9 84.2 

Hazardou

s Waste 
96.4 95.8 96.1 96.8 82.7 

Non-

Recyclabl

e Waste 

97.1 96.2 96.6 97.3 83.4 

Average 97.3 96.6 96.9 97.6 84.0 

Table III shows TMORL’s strong accuracy in classifying 
four waste types, achieving precision above 96% and mAP@0.5 
of 97.6%. There was a high score on organic waste, and 
hazardous was slight behind. In general, there is a high level of 
performance, which guarantees the stable waste classification in 
real-time. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

753 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  KEY METRICS OF TMORL 

Metric Value 

Precision 97.3% 

Recall 96.6% 

mAP@0.5 98.4% 

The performance of TMORL model is summarized in 
Table IV, it demonstrated a high accuracy of the model 
classification, with 97.3% precision, a 96.6% recall, and 98.4% 
mAP at 0.5 which indicates the accuracy of the model in real 
time waste detection and stable performances across various 
categories in smart waste management. 

 
Fig. 12.  Proposed TMORL performance. 

The performance of the waste classification model can be 
seen in Fig. 12. Precision, Recall and mAP at 0.5 are high, 
implying that the perception layer, made by ViT has been able 
to fully trusted detecting and classifying the types of waste and 
has demonstrated consistent results in identifying the types of 
waste required to predict and route waste downstream. 

2) Prediction layer (fill-level forecasting): TFT was able to 

forecast the fill-levels of bins in the future and give uncertainty 

ranges with the predictions into which actions could have been 

planned. The curves obtained in forecasting were near to what 

was actually seen concerning fill-compositions in various time 

scales. Significantly, in bins where the uncertainty was high 

which was represented by the quantile forecasts may reduce the 

risk of the bins to overflow unscheduled. This matters since 

even though the prediction layer was able to validate that 

scheduling and planning was much certain, the forecaster 

provided the system with confidence against the unexpected 

patterns in the generation of the wastes. 

TABLE V.  ROUTING PERFORMANCE COMPARISON 

Metric TMORL (Proposed) 

Fuel Consumption 78% 

Collection Time 75% 

Overflow Incidents Very Low 

Table V presents the efficiency of TMORL framework in 
terms of operation, time and service quality factors. The findings 
also indicate that it is also able to integrate an identification, 
prediction and multi-agent optimization into one system, which 
implies that TMORL had a balance between resource utilization 
and a sustainable waste management solution when compared to 
the existing approaches. 

3) Fill-level prediction (TCN): The MARL system with the 

multi-objective reward system, which is innovative, was able to 

optimize the travel distance and the time spent on the service, 

which reduced the CO2 emissions and overflow. The training 

convergence curves are used to show that the learning behavior 

was stable and the radar plots are used to show that the 

performance of the training was enhanced (not only the distance 

was optimized or the time was optimized). Taken together, this 

shows that the decision layer reflects the innovation of TMORL 

in the form of the introduction of sustainability into a routing 

plan. 

TABLE VI.  COMPARISON OF FORECASTING MODELS FOR BIN FILL-LEVEL 

PREDICTION 

Model MAE MAPE (%) RMSE R² 

LSTM [19] 0.65 2.02 1.6 0.91 

GRU [27] 0.39 1.4 0.62 0.89 

TMORL (Proposed) 0.29 1.8 0.36 0.94 

Table VI makes a comparison between bin fill-level 
prediction forecasting models. LSTM is in the middle of these, 
GRU demonstrates a lower MAPE, and the proposed TMORL 
has the best results, lower errors, and R2, and thus is a better 
predictor. 

TABLE VII.  STATIC ROUTING VS. ACO VS. TMORL PERFORMANCE 

Metric 
Static 

Routing 

ACO-

Based 

Routing 

TMORL 

(Proposed) 

Improvement 

over Static 

Fuel 

Consumption 
100% 82% 70% ~30% 

Collection 

Time 
100% 79% 65% ~35% 

Overflow 

Incidents 
High Low Very Low 

Significantly 

Reduced 

CO₂ 

Emissions 
High Medium Low 

Significantly 

Reduced 

Table VII presents the comparison of the results of the use 
of three performance measures in terms of static routing, ACO-
based routing, and the proposed TMORL framework and results. 
ACO is more fuel efficient and time efficient than the static 
routing measures. The suggested TMORL solution ensures 
better performance and operational cost reduction through the 
combination of forecasting and sustainability goals. It means 
that TMORL, in contrast to the former approaches, will decrease 
the emissions, decrease the service time and fuel consumption, 
thereby, providing a comprehensive optimization in the multi-
agent approach of smart waste management. 

The composite assessment showed that TMORL decreased 
overflow cases, decreased trips without increasing service time, 
or emission, and increased service time, yet service was not 
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compromised because of previous performance. The level of 
route visualization verified that the framework is dynamic with 
respect to changes in bin states across time, and not fixed routing 
as in the case of rule-based schedules. In general, it shows that 
the strategy gives a more scalable, versatile, and sustainable 
solution to the environment than the old ones, which relied on 
single-purpose solutions. 

C. Discussion 

The research shows that, with transformer-based perception, 
temporal forecasting, and multi-agent reinforcement learning, it 
is possible to have a single and adaptive system to sustainable 
waste management. In contrast to the traditional systems that 
operate using some set of schedules or single-objective models, 
TMORL constantly aligns the outputs of the classification 
component, fill-level predictions, and routing choices so that the 
system is capable of responding to the changes in the waste 
production and distribution of spatial bins. ViT makes the 
reliable identification of heterogeneous waste in diverse 
environmental conditions possible, and TFT provides 
interpretable multi-horizon predictions, which are capable of 
supporting proactive changes in route. The MARL layer is also 
an improvement in that it combines the optimization of fuel 
utilization, emissions, travel time, and overflow risk, making the 
movement of urban waste collection a sustainability-driven 
coordination rather than reactive operations. In addition to 
enhancement of performance, these findings indicate that a 
unified perception-prediction-decision architecture can affect 
more extensive smart-city planning by supporting carbon-
constrained routing, resistance to urban unpredictability, and 
adaptable implementation of districts with varying waste 
dynamics. The framework also provides an interchangeable 
basis on the other city scale services like logistics, sanitation, 
and autonomous municipal activities. The model can be trained 
to be dependent on the sensor quality and computational 
resources, but it can be used effectively after being deployed, 
which makes it applicable in real-life scenarios, such as a large 
metropolitan environment. 

VI. CONCLUSION AND FUTURE WORKS 

In this study, TMORL, which is a transformer-based multi-
agent reinforcement learning model, has been proposed that 
integrates perception, prediction, and decision making with 
regard to intelligent urban waste management. The Vision 
Transformer can be used to classify waste accurately, and the 
Temporal Fusion Transformer provides trustworthy and 
understandable fill-level predictions. The multi-objective 
MARL layer is the optimization of routing according to the 
operational efficiency and sustainability criteria, such as 
minimized fuel use, minimized emission, decreased overflow 
cases, and increased collection speed. Experimental findings 
indicate that TMORL is better than traditional methods of 
standardization and heuristics, with substantial improvement in 
performance and environmental performance. The results 
emphasize that deep learning combined with reinforcement 
learning provides a scalable solution to the dynamic control of 
urban waste systems, regarding operational optimization instead 
of sustainability in general. Nevertheless, performance of any 
system is affected by the availability of and quality of sensors 
and computational needs of transformer-based models and 

MARL policies can limit low-resource environments. After 
implementation, the framework is highly efficient in real time, 
offering a way of citywide implementation. These results are 
directly relevant to the research question since they demonstrate 
that TMORL is an effective way to integrate classification, 
forecasting, and adaptive routing in the context of real-time 
uncertainty in urban waste settings. 

Future research will look into edge and federated learning 
plans to minimize the use of centralized computation, add 
dynamic traffic and environmental condition to plan better 
routes, and renewable-powered or electric collection fleets in 
order to make it more sustainable. Multi-city pilots will be tested 
in large-scale to assess the adaptability of a wide range of urban 
waste patterns and permit further deployment. TMORL creates 
a strong progressive model of sustainable waste management 
that integrates short-term operational objective with the long-
term environmental and social sustainability. 
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