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Abstract—The successful teaching of pronunciation, as well as 

prosody, is the significant challenge that still remains to the 

English as Foreign Learning (EFL) students. Traditional 

pedagogical theories tend to focus on segmental phoneme accuracy 

but ignore suprasegmental components (stress or rhythm and 

intonation) which are natural and intelligible speech components. 

The currently available systems of computer-assisted 

pronunciation training (CAPT) are useful, but limited by the fact 

that they are based on limited acoustic models and incomplete 

coverage of prosodic characteristics, leading to less than optimal 

accuracy and limited pedagogical suitability. To overcome these 

shortcomings, the current paper proposes Attention-Guided 

Cross-Lingual Self-Supervised Learning (AG-CLSSL), a new 

model that is both able to combine phoneme-level representations 

of XLS-R (wav2vec2-large-xlsr-53) and prosodic representations 

of the pitch, energy, and duration through a Phoneme-Prosody 

Cross-Attention Fusion (PP-CAF) process. This conglomeration 

allows the joint and context specific representation of the speech 

that is further refined by the multi-task Transformer-based 

scoring model to jointly assess the accuracy of pronunciation, the 

consistency of the prosody and the general intelligibility. The 

framework is implemented in Python, with support of PyTorch 

and Hugging Face Transformers and is trained on an evaluated 

corpus of EFL learner speech (n=100) with a variety of L1 

backgrounds, including Mandarin, Hindi, and Spanish. 

Experimental assessments indicate significant performance 

improvement with 55.4% decrease in Phoneme Error rate, 52.0 

percent decrease in Word Error rate, 43.3 percent increase in 

Stress Placement Accuracy and 34.9 percent increase in Pitch 

Alignment Score. The total acoustic similarity to native speech 

went up by 36.1, which demonstrates the ability of AG-CLSSL to 

progress articulatory accuracy as well as the naturalness of 

prosody and provide interpretable and attention-directed 

information on scalable AI-based pronunciation and prosody 

training. 

Keywords—Automatic speech recognition; pronunciation and 

prosody; transformer-based phoneme identification; prosody 
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I. INTRODUCTION 

For EFL learners, achieving precise pronunciation and fluid 
prosody is an ongoing difficult task. Where explicit vocabulary 
and grammar instruction tends to dominate the language 
learning process, pronunciation misunderstandings--through 
mispronunciation or inappropriate stress or intonation patterns 
can drastically lower intelligibility and communicative 
competence [1]. While phonetic instruction can take place in the 
classroom context, feedback is limited by the instructor’s 
inability to provide feedback as quickly as their students will 
mispronounce or improperly produce sounds and 
suprasegmental features [2]. Furthermore, many of the class-
based phonetic instructional sounds, like feedback, is put on 
various types of manual corrections that depend on the 
instructor’s time, subjectivity, and in classroom situations, lack 
of time [3]. It is this gap in the acquisition and instruction of 
pronunciation and prosody that has inspired many language 
educators to consider technology-driven solutions for CAPT. 
Emerging technologies utilizing Automatic Speech Recognition 
(ASR) as the core functionality are now readily available to EFL 
learners and teachers to improve the assessment of learners’ 
pronunciation production [4]. Pre-trained self-supervised, deep 
learning models like Wav2Vec2.0 and HuBERT have 
demonstrated excellent performance in tasks that recognize and 
classify phonemes, and Whisper has also further improved 
recognition by gaining robustness to noisy and accented speech 
[5]. At the same time, systems with a prosody0driven focus have 
integrated methodological frameworks that evaluate features of 
pitch and rhythm to assess learners’ suprasegmental features of 
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speech. Even more recent iterations have specifically included 
gamification and reinforcement learning modalities that increase 
learner engagement and motivation [6], [7]. Nevertheless, there 
are limitations to these approaches. 

Most of all existing frameworks do not take into account the 
typical separation between pronunciation (segmental) and 
prosody (suprasegmental), opting for simple concatenation of 
acoustic and prosodic features without modeling their 
interrelation [8]. This approach further neglects a critical point 
about intelligibility: intelligibility is determined by how 
segmental and suprasegmental features co-occur, making their 
joint modeling necessary and the previous systems often rely on 
multiple pre-trained backbones (e.g., Whisper, Wav2Vec2.0, 
MFCC pipelines), which complicate design with marginal 
benefits to the efficiency and interpretability [9]. Thirdly, 
feedback is commonly based on rule-based or reinforcement 
based paradigms, which are less interpretable, and groups do not 
necessarily develop congruent progression as individuals. [10]. 
In order to eliminate the drawbacks of the current models, the 
paper presents Attention-Guided Cross-Lingual Self-Supervised 
Learning (AG-CLSSL), a new model based on the usage of 
XLS-R embeddings combined with the use of prosodic cues to 
form the Phoneme2Prosody Cross-Attention Fusion (PP-CAF) 
layer. The architecture is able to score pronunciation and 
prosody context-sensitively and in multi dimensions through 
synergistic alignment of the phonemic representations with the 
aspects of pitch, duration and energy by the guidance of 
attention-based fusion. Multi task Transformer is used to assess 
articulation, prosodic fidelity, and intelligibility and adaptive 
curriculum learning provides personalized feedback to EFL 
learners. This integrative design guarantees both technical 
strength and pedagogical faithfulness and provides a 
transformative avenue in the improvement of communicative 
competence and integrates the current CAPT approaches. The 
fundamental innovation is the collective phoneme-prosody 
interaction modeling, using the PP-CAF layer, a single and 
cross-lingual fusion mechanism that cannot be reached by 
previous CAPT systems using the mere concatenation of 
features. 

A. Problem Statement 

Conventional teaching to EFL learners often does not 
provide the individual and immediate feedback of the 
appropriate stress patterns and intimacy, which often results in 
not so natural and reasonable speech. [11]. In addition, the 
existing ASR devices are mainly concerned with phone-level 
accuracy and reject the super segmental properties that consider 
rhythm, stress, and procession, which are central to smooth 
communicative interaction. Most importantly, current systems 
inappropriately consider different learner profiles and do not 
consider the first language (L1) effects, resulting in limited 
utility in a multilingual context [12]. With the existing 
unsatisfactory performance in these areas it is urgent that an 
intelligent, adaptive system be developed with both full use of 
advanced ASR and NLP techniques and with rich and 
personalized practice of both pronunciation and prosody. To fill 
this gap, the current paper suggests a new framework Attention-
Guided Cross-Lingual Self-Supervised Learning (AG-CLSSL), 
a cross-lingual framework that combines attention components 
and cross-lingual self-supervised learning. The Phoneme-

Prosody Cross-Attention Fusion (PP-CAF) layer is the central 
part of this architecture, which simultaneously learns segmental 
and suprasegmental speech characteristics, allowing the context-
responsive, multi-dimensional evaluation and providing 
adaptive and learner-focused feedback that is essential to the 
improvement of EFL communicative competence. 

B. Research Motivation 

EFL learners often have a problem with a speech that is 
intonable because of incorrect articulation of the phonemes and 
loss of proper prosody. Conventional instruction and a large 
number of CAPT systems provide limited, delayed or non-
adaptive feedback, which limits development of the learner. 
Regardless of the fact that self-administered models like the 
XLS-R have developed the assessment of pronunciation, 
majority of models analyze phonemic and prosodic aspects 
independently without considering their interrelationship. Such 
restrictions highlight the importance of integrative framework 
that concurrently models phoneme and suprasegmental cues and 
provides adaptive and personalized feedback hence facilitating 
more efficient, context-sensitive and holistic spoken language 
acquisition. 

C. Research Significance 

The study involves an attention-directed cross-lingual self-
supervised model, which learns the embedding of the phoneme 
and the prosodic features using a novel attention cross-fusion 
(PP-CAF) layer. The model offered is more accurate in 
pronunciation and prosody evaluation besides increasing 
flexibility of the learner through the provision of real time 
feedback on the curriculum. It is important as it helps bridge the 
gap between technical innovation and pedagogical need as it 
provides a solid device in the further development of intelligent 
language learning. Allowing researchers and educators to 
promote the growth of EFL learners in the spoken language in a 
systematic manner, this framework facilitates more efficient and 
comprehensive advancement of such competence in them. 

D. Key Contribution  

• Introduces an integrated framework that jointly models 
phoneme accuracy and prosodic features, addressing a 
persistent gap where existing systems treat these 
dimensions in isolation. 

• Proposes the PP-CAF layer, enabling dynamic alignment 
between segmental and suprasegmental features for 
more natural speech representation. 

• Utilizes large-scale pre-trained speech embeddings to 
capture multilingual phonetic variations, ensuring 
robustness across diverse learner backgrounds. 

• Employs a multi-task scoring model that simultaneously 
assesses phoneme error reduction, prosodic alignment, 
rhythm consistency, stress accuracy, and speech 
naturalness. 

• Validated the system through Python-based 
implementation using Whisper and Wav2Vec 2.0, with 
expert evaluations confirming pedagogical reliability 
and real-world scalability for EFL learners. 
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• It offers a single CAPT system that has adaptive 
feedback and empirical validated gains on 
methodological, pedagogical, and empirical levels. 

The remaining sections are organized as follows, Section II 
presents the literature review, Section III outlines the problem 
statement, Section IV discusses the results and Section V 
provides the conclusion and future directions. 

II. LITERATURE REVIEW 

The field of language learning has been interested in ASR as 
it is able to provide real time feedback regarding pronunciation 
and fluency. Typically, early ASR applications were developed 
around the speech-to-text transcription, but the recent 
developments enable their integration into CALL systems [13]. 
It is well established through studies that with ASR based 
pronunciation training, the learner gets objective immediate 
feedback that doesn’t need constant human supervision; hence 
the learner gets to further exercise their autonomy. ASR can be 
applied for commercial applications such as Duolingo, Speech 
Ace, and Google’s ELSA Speak to assess phoneme production 
but their feedback mechanisms are typically simple and even 
binary. Previous research indicates that ASR-based training is 
superior when learners are taught of segmental and 
suprasegmentally analysis [14]. Yet error detection in non-
native speech remains a problem, and it requires sophisticated 
machine learning models that have been trained on a variety of 
accents and speech patterns. Phoneme recognition and error 
analysis have greatly been improved by incorporating NLP and 
deep learning. Transformer based models such as wav2vec 2.0 
and Whisper use self-supervised learning to detect deviation 
from pronunciation without using large labelled dataset [15]. 

Using NLP techniques such as phoneme embeddings and 
forced alignment have more granular and helpful automated 
feedback at a phoneme boundary level. The resulting 
encouraging accuracy is mainly due to the contrastive learning 
frameworks designed to distinguish between native and non-
native phoneme production. Nevertheless, one issue: Most of 
ASR systems have been optimized for the native speakers, 
which will not work very well for the L1 learners with their 
patterns of substituted or deleted phoneme. It is found that 
adaptive ASR models trained on various non-native speech 
corpora are needed to better phoneme-level analysis for EFL 
learners [16]. However, prosody learning and feedback 
mechanism are also important in acquiring second language. 
Speech naturalness and intelligibility are contributed to by 
stress, rhythm and intonation, and these are often overlooked 
when teaching pronunciation. The most common prosody errors 
affecting listener comprehension of a talking head or speaker 
confidence include incorrect stress placement and unnatural 
pitch contours. Segmental features serve as a focus of traditional 
phonetic training, with the aspects of suprasegmentals receiving 
less attention. It has also been shown in recent studies, that deep 
learning-based prosody analysis using LSTM networks is used 
to assess intonation patterns, speech duration and stress 
placement [17]. When learners receive visual and auditory cues, 
prosody feedback improves communicative effectiveness. Yet 
the work in the area of prosody evaluation based on ASR is still 
in low accuracy in terms of tone and stress detection, but deep 
learning architectures need to be stronger in comparing with 

native speech models [18]. The current speech learning 
technologies, such as rule based speech analyzers and statistical 
ASR models, have not been very effective as they depend on the 
predefined phonetic rules. HMMs and GMMs remain dominant 
for pronunciation scoring, while such errors cannot be captured 
with efficiency by these classical pattern formers [19]. When 
compared with deep learning-based ASR models especially, end 
to end neural networks, have shown to have higher accuracies 
for detecting phoneme level and prosodic deviation. However, 
in the existing ASR-driven learning tools, it offers only generic 
pronunciation score [20] and does not target at individualized 
learner challenges. 

Besides, current commercial ASR applications based on 
fixed threshold error classification, which are the prevailing 
methods in commercial applications, still rely on false positives 
and the absence of any correction strategies [21]. A major 
limitation of existing pronunciation training systems is the lack 
of context aware feedback mechanisms and adaptive learning 
pathways. L1 interference plays a rather crucial role in EFL 
pronunciation training due to its negative interference of the 
learner’s native language to English articulation. Using 
generalized pronunciation training is ineffective as the phoneme 
substitution, deletion and insertion patterns vary based on the 
learner’s linguistic background [22]. Let’s say, Mandarin 
speakers get stuck on English consonant clusters and Japanese 
speakers usually insert some vowel sounds in order to break 
them. Phoneme transfer errors in these cases are too difficult to 
learn with generic pronunciation models, which fail to account 
for L1 specific weaknesses. Furthermore, motivation is an 
important factor to take into consideration in order to pronounce, 
as most of the EFL learners are nervous and afraid when they 
are in a situation where they are supposed to speak. 
Reinforcement learning driven difficulty adjustments help 
sustaining motivation, and gamification enhances learner 
engagement through learning with ASR in studies [23]. 

While there has been longitudinal research examining the 
effect of ASR based pronunciation feedback on long term 
fluency development, there has been no longitudinal research 
looking at the long-term impact of ASR based pronunciation 
feedback on fluency development and retention. Due to these 
gaps in the current available pronunciation training 
methodologies, this study investigates NLP driven ASR 
frameworks allowing for fine-tuned speech models, phoneme 
error clustering and prosody feedback mechanisms to provide 
tailored pronunciation correction for EFL learners. By 
integrating transformer-based speech models, LSTM based 
prosody evaluation, and adaptive reinforcement learning, this 
research fills the gap between automated pronunciation training 
and human like corrective feedback. 

The critical points in sustaining interest amongst learners 
during the context of ASR-based training of pronunciation, 
dropout may be defined as the case where the learner will 
discontinue training before a training proficiency level will be 
attained, whilst fatigue detecting may be considered as the case 
whereby the learner will identify signs of cognitive overload, or, 
the event of lack of interest [24]. Such issues can significantly 
harm the learning outcomes in the scenario of practicing 
pronouncing lessons repetitively and over a long period of time. 
The reinforcement learning (RL) models monitor the number of 
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sessions one has attended, on average, the length of each session, 
the number of errors and the number of retries to detect the early 
signs of fatigue or the absence of interest. The learners who 
demonstrate brief sessions, high error rates, and fewer retries can 
be marked as fatigued, and adjustments would consider 
shortening exercises or some form of gamification or 
motivation. In the same way, the predictive analysis of dropout 
can trigger proactive actions, which may be push notifications, 
personalized feedback, or encouraging feedback, to maintain the 
learners prior to the disengagement. Using various methods to 
dynamically increase or decrease task difficulty and reward 
behavior, the system facilitates individual feedback depending 
on the amount of attention given in real-time. The AI-based 
technology facilitates motivation on a long-term level and 
encourages learners to maintain their progress until mastering 
the pronunciation process. 

Existing ASR-based CAPT systems are at the forefront of 
developing recognition of phonemes, analysis of prosody, and 
adaptive feedback, but they do not combine segmental and 
suprasegmental properties and use generic scoring and not 
focusing on errors peculiar to L1. This research proposes a 
unified framework that combines the relationships between 
phoneme and prosody, and it adapts itself based on the 
tendencies of multilingual learners and presents a completely 
different, context-driven method to assessing pronunciation and 
prosody. 

III. PROPOSED ATTENTION-GUIDED CROSS LINGUAL SELF 

SUPERVISED LEARNING FRAMEWORK FOR PRONUNCIATION 

AND PROSODY ENHANCEMENT 

The Attention-Guided Transformer Cross-Lingual Self-
Supervised Learning (AG-CLSSL) framework proposed in this 
study embodies a unified approach to the concurrent modeling 
of pronunciation and prosody within a single architecture. The 
methodology commences with rigorous data collection and 

preprocessing using the Speech Accent Archive (SAA), which 
provides a standardized corpus of audio recordings. All samples 
are meticulously resampled, normalized, and phoneme-aligned, 
ensuring homogeneity across speakers and establishing a 
consistent basis for downstream modeling. Feature extraction is 
performed via XLS-R, a self-supervised speech representation 
model that generates contextualized phoneme embeddings 
grounded in both acoustic and linguistic information. These 
embeddings are temporally synchronized at phoneme 
boundaries, producing highly representative phoneme-level 
vectors. Simultaneously, prosodic features—including pitch, 
energy, and duration—are extracted and projected into a shared 
latent space, enabling the capture of suprasegmental dynamics. 
Central to the framework is the novel Phoneme–Prosody Cross-
Attention Fusion (PP-CAF) layer, which facilitates bi-
directional interaction between segmental embeddings and 
prosodic cues, allowing the model to integrate suprasegmental 
information into phonemic representations and thereby generate 
a holistic speech representation. These fused features are 
subsequently processed by a multi-task Transformer scoring 
model, which concurrently evaluates pronunciation accuracy, 
prosodic quality, and overall intelligibility. However, AG-
CLSSL provides a different approach to combining segmental 
and prosodic features by explicitly learning the interaction 
between them in the PP-CAF layer, unlike current CAPT models 
where they are combined together. This is not possible with 
small modifications on the previous architectures since they are 
not aligned bi-directionally. The fact that cross-lingual self-
supervised embeddings are used also makes L1 deviations 
useful cues, which introduces a new paradigm of adaptive 
multilingual assessment. The system is trained with a weighted 
multi-task loss function, balancing regression and classification 
objectives, and produces adaptive, learner-specific feedback, 
enabling personalized, performance-driven guidance for EFL 
learners. The workflow of the proposed method is illustrated in 
Fig. 1. 

 
Fig. 1. Workflow of the proposed system.  

Fig. 1 shows the process of the Attention-Guided Cross-
Lingual Self-Supervised Learning (AG-CLSSL) model. The 
data in speech is collected and then preprocessed to give normal 
input. XLS-R is used to extract features, and results in contextual 
phoneme embeddings, which are combined with prosodic 

features with the Phoneme–Prosody Cross-Attention Fusion 
(PP-CAF) layer. The fused representations are then scored by a 
multi-task Transformer scoring model in order to determine the 
accuracy of pronunciation, quality of prosody, and 
intelligibility. Lastly, adaptive curriculum feedback is created on 
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learners and the output is brought together through the 
evaluation and reporting process, which allows personalized and 
interpretable results in performance. 

A. Data Collection 

The Speech Accent Archive dataset includes 2,140 speech 
samples from individuals representing 214 native languages in 
177 countries, each of whom reads the same standardized 
English passage. It contains demographic details, enabling 
analysis of various factors such as age, gender, original language 
and speakers. The core of the dataset contains authentic audio 
recordings (.MP3) of indigenous and non-indigenous English 
speakers, which support accent, phonetic variations and 
controlled comparison of processed patterns. This resource is 
invaluable for ASR training, phonetic research, and prosecution 
analysis; the convenience of development of pronunciation 
recognition models; accent assessment tools; and mitigation in 
speech AI systems [25]. It applies the Speech Accent Archive 
(SAA) as the main training and test data. Audio samples are all 
phoneme aligned, normalized and resampled. To test cross-
lingual robustness of PP-CAF and AG-CLSSL scoring system, 
additional samples of multilingual learner speech were also 
added. 

B. Data Pre-Processing 

The step of preprocessing guarantees the transformation of 
raw audio recordings into standardized and noise-free raw 
materials that can be utilized in the extraction of features and 
model training. Because the Speech Accent Archive dataset 
consists of recording of different speakers under variable 
recording conditions, preprocessing is essential to guarantee 
consistency across samples and to make sure that the resulting 
feature extraction captures pronunciation and prosody patterns 
instead of recording artifacts. 

1) Signal cleaning and normalization: All audio recordings 

are resampled to a uniform frequency of 16 kHz to standardize 

the temporal resolution. Background noise is reduced using 

spectral subtraction, while amplitude normalization ensures 

consistent loudness across samples. This procedure reduces the 

variability caused by different recording devices and 

environments, allowing the model to focus solely on learner-

specific speech characteristics. 

2) Aegmentation and alignment: The segmentation and 

alignment are applied to map learner speech at the phoneme and 

word levels. Forced alignment techniques are used to 

synchronize the learner’s utterance with a native benchmark 

transcription. This alignment enables the identification of 

phoneme-level insertions, deletions, and substitutions, which 

are crucial for detecting mispronunciations. The alignment 

process is represented in Eq. (1), 

𝐴(𝑡) = 𝐴𝑙𝑖𝑔𝑛(𝑆(𝑡), 𝑅(𝑡))                       () 

where, 𝐴(𝑡) denotes the alignment mapping at time 𝑡, 𝑆(𝑡) 
is the learner’s speech signal, and 𝑅(𝑡)  is the reference 
transcription. The output is a time-aligned phoneme sequence 
that highlights deviations between learner and native speech. 

3) Prosody feature preparation: In addition to segmental 

accuracy, suprasegmental features such as stress, rhythm, and 

intonation play an important role in overall fluency. Therefore, 

prosody feature preparation is performed by extracting pitch 

(fundamental frequency, 𝐹0), duration, and intensity measures. 

These parameters capture temporal and melodic variations in 

speech. The prosody vector for each utterance is defined in 

Eq. (2): 

𝑃(𝑢) = [F0(u), D(u), I(u)]                        () 

where, 𝑃(𝑢)  represents the prosody feature vector for 
utterance u, F0(u) is the pitch contour, D(u) is the duration of 
phonemes, and I(u) is the intensity or loudness profile. These 
features form the foundation for analyzing suprasegmental 
errors such as misplaced stress or unnatural intonation patterns. 

C. Feature Extraction 

The XLS-R (wav2vec2-large-xlsr-53) serves as the 
backbone feature extractor. XLS-R is a self-supervised, cross-
lingual model that was trained on millions of hours of 
multilingual speech. First, the resample raw learner audio to 16 
kHz mono and pass it through the XLS-R model to obtain high-
dimensional contextual embeddings that capture both fine-
grained acoustic–phonetic detail and longer-range linguistic 
context. Then, identify phoneme boundaries using the Montreal 
Forced Aligner and aggregate frame level embeddings from 
XLS-R within each phoneme boundary to form more robust 
phoneme-level vectors. To stabilize the representation, average 
the hidden states of the last four transformer layers of XLS-R to 
balance lower-level acoustic cues with higher-level contextual 
shifting information. The output of XLS-R is represented as 𝐻 
in Eq. (3). 

                    𝐻 = 𝑋𝐿𝑆𝑅(𝑥) = [ℎ1,ℎ2 ,… , ℎ 𝑇], ℎ𝑡𝜖ℝ𝑑       ()  

Where, 𝑥 is the input speech waveform resampled to 16kHz 

mono; ℎ𝑡𝜖ℝ𝑑 is the embedding vector at time frame 𝑡, where 
𝑑 = 1024  is the hidden dimension of XLS-R and 𝑇  is the 
number of time frames (sub word units) produced by XLS-R for 
the utterance.  The Phoneme-level pooling is denoted in (4). 

          ℎ𝑝 =
1

𝑡𝑒−𝑡𝑠+1
∑ ℎ𝑡

𝑡𝑒
𝑡=𝑡𝑠

                         () 

Here, ℎ𝑝  is Phoneme-level embedding for phoneme 𝑝 , 

computed by pooling frame embeddings within its boundaries; 
𝑡𝑠and 𝑡𝑒 are the start and end frame indices of a given phoneme, 
obtained from forced alignment. The Projected phoneme 

embedding in a lower-dimensional shared space denoted as ℎ̃𝑝 

in Eq. (5) and the Projected prosody embedding in the same 

shared space is represented as 𝑓𝑝 in Eq. (6): 

        ℎ̃𝑝 = 𝑊𝑝ℎ𝑝 + 𝑏𝑝 ,   ℎ̃𝑝  𝜖ℝ𝑑                    () 

        𝑓𝑝 = 𝑊𝑓ℎ𝑓 + 𝑏𝑓,   𝑓𝑝 𝜖ℝ𝑑                    () 

where, 𝑊𝑝  is the learnable projection parameters for 

transforming phoneme embeddings, and 𝑊𝑓  is the earnable 

projection parameters for prosody features. 

Fig. 2 illustrating the self-supervised pre-training stage and 
supervised fine-tuning stage. In the self-supervised stage, raw 
audio is processed by a convolutional feature encoder, masked 
prediction, and a Transformer network, which produces 
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contextualized speech embeddings, with quantization as a 
technique for improving stability of the representation learning 
process. The supervised fine-tuning stage adopts these pre-
trained embeddings with learner specific data, enabling the 
transfer of knowledge to distinguish pronunciation and prosody-
based features. The outputs are incorporated into a personalized 
feedback module, which supports adaptive and targeted 
feedback for learners to improve the segmental and 
suprasegmental components of speech. After obtain the 
phoneme embeddings, map the embeddings into 512-
dimensional space to reduce computational efficiency, then feed 
the representations into the intended PP-CAF Layer, where 
embeddings are dynamically aligned with prosodic features 
(pitch, energy, and duration). By grounding phoneme 
representations in acoustic detail and suprasegmental cues, 
XLS-R serves as powerful backbone that provides the proposed 
framework to evaluate pronunciation and prosody 
simultaneously with improved representation of the learner and 
hence improved performance over traditional concatenating 
features or one stream processing. 

 
Fig. 2. Architecture of the proposed framework. 

D. Phoneme–Prosody Cross-Attention Fusion 

The analysis presents the PP-CAF Layer that directly 
combines segmental and suprasegmental cues via cross-
attention as opposed to concatenation. Embeddings of 
phonemes, pooled at XLS-R outputs across the boundaries 
between phonemes, are attended to by projected prosodic 
features, and yield the resultant enriched vectors, which 
integrate the phonemic accurateness with the prosodic 
appropriateness. These combined representations are then 
processed through a multi-task Transformer scorer to perform 
consonant, vowel, and consonant together predicting 
pronunciation, prosody, and intelligibility. The, PP-CAF allows 
articulation and prosody to interact modelling only those cases 
where phonemes themselves are correct but are stressed or 
intonated in the wrong way, providing a more holistic and 
context-relevant view of the speech of a learner than has been 
previously possible. The PP-CAF layer implements scaled dot-
product cross-attention is expressed in Eq. (7). 

          𝐴𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
ℎ̃𝑝𝑊𝑞(𝑓̃𝑝𝑊𝑘 )

𝑇

√𝑑𝑘
)                     () 

where, 𝑊𝑞 , 𝑊𝑘  𝜖ℝ𝑑′×𝑑′
 are learnable projection matrices, 

and 𝑑𝑘  is the attention dimension. The enriched phoneme-
prosody vectors are passed into the multi-task Transformer 
scorer. 

E. Scoring Model with Multi-task Transformer 

The integrated representations emitted from the PP-CAF 
layer are funneled into a multi-task Transformer-based scoring 
model that evaluates pronunciation accuracy, prosody quality, 
and overall intelligibility concurrently. Each phoneme–prosody 
vector is first input into the positional encoding layer, then into 
a 6-layer Transformer encoder that captures dependencies across 
phonemes and syllables in an utterance. This architecture allows 
the model to consider local errors (e.g., phoneme substations) 
and global structures (e.g., stress and rhythm across a phrase) at 
the same time. Two multi-task output heads are then 
implemented on top of the common Transformer encoder. The 
first output head predicts whether each phoneme was 
pronounced correctly, and this classification is compiled as the 
score for pronunciation accuracy. The second output head scores 
prosody regression, predicting the stress and rhythm alignments 
with reference scores to compute a prosody quality score. The 
third output head use regression to obtain an intelligibility 
assignable with the 1-5 scales of human experts. To train / tune 
the model, collect and apply a weighted multi-task loss function 
to the three tasks. It is represented in Eq. (8): 

          𝐿 = 𝛼𝐿𝑝𝑟𝑜𝑛 + 𝛽𝐿𝑝𝑟𝑜𝑠𝑜𝑑𝑦 + 𝛾𝐿𝑖𝑛𝑡𝑒𝑙𝑙                     () 

where, 𝐿𝑝𝑟𝑜𝑛  is a cross-entropy loss for phoneme 

correctness classification, 𝐿𝑝𝑟𝑜𝑠𝑜𝑑𝑦 is a mean squared error loss 
for prosody scoring, and 𝐿𝑖𝑛𝑡𝑒𝑙𝑙  is an L1 regression loss for 
intelligibility. The weights  𝛼, 𝛽 and 𝛾 are tuned empirically on 
the validation set to ensure balanced learning across tasks. 

Algorithm 1: Attention-guided Cross-Lingual Self-
Supervised Learning 

Input:  

    Speech utterance x (16 kHz mono) 

    Reference transcript T 

    Forced alignment boundaries B = {b1, b2, …, bn} 

Preprocess input audio (resample, trim silence, normalize).  

Extract contextual embeddings H = XLS-R(x). 

For each phoneme boundary (ts, te) in B: 

           Pool XLS-R embeddings → phoneme vector hp 

Extract prosody features for each phoneme: 

           Pitch (YAAPT), Energy (RMS), Duration (MFA) 

           Project features into embedding space fp 

Apply PP-CAF: 

           Fused representation up = Attention (hp, fp) 

Feed fused representations U = {u1, u2, …, un} into 

Transformer encoder. 

Apply task-specific output heads: 

           Pronunciation head → accuracy score 

           Prosody head → stress/rhythm score 
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           Intelligibility head → 1–5 rating 

Compute total loss: 

           L = α Lpron + β Lprosody + γ Lintell 

Output: 

    Pronunciation accuracy score 

    Prosody quality score 

    Intelligibility score 

    Adaptive feedback for learner 

Algorithm 1 outlines the Attention-guided Cross Lingual 
Self Supervised Learning framework presented in this study, 
which combines pronunciation and prosody assessment in a 
single learning pipeline. The system initially preprocesses the 
audio of the learner and derives phonemically embedded XLS-
R as well as prosodic (pitch, energy, duration, etc.) features. The 
PP-CAF layer combines these two streams into a single stream 
generating better representations that are more segmental and 
suprasegmental. Fused vectors are then fed into a multi-purpose 
Transformer in order to concurrently predict pronunciation 
accuracy, prosody quality, and intelligibility. The weighted loss 
function leads to model training and in the course of the study, 
adaptive curriculum scheduler offered customized multimodal 
feedback as a support to robust assessment as well as to learner 
advancement. The sensitivity analysis involved a parameter 
sensitivity analysis in the learning rate, weights of the PP-CAF 
fusion, and multi-task loss coefficients. Findings depict that the 
fusion weight ( 𝛼 ) is a powerful predictor of prosody accuracy 
and loss weight ( 𝜆 ) is a powerful predictor of stability in 
scoring pronunciation. Any slight differences in learning rate 
caused very little performance variation. 

The suggested procedure combines both segmental and 
suprasegmental speech analysis in one learning path, which is a 
novel concept in the pronunciation evaluation. The homophonic 
characteristics of the traditional tools pay attention to phoneme-
level accuracy most, with prosody being a secondary 
characteristic, in some cases limited to length. The interaction of 
phoneme embeddings with prosodic cues, such as pitch, energy 
and duration, is possible with the PP-CAF layer allowing a more 
thorough framework to be presented to cover the instances of 
phonemes being pronounced correctly but the prosody being 
unnatural. The method will make use of XLS-R self-supervised 
embeddings, which offer multilingual capabilities, encode finer-
grained phonemic and contextual features and are resistant to 
learners with varying language backgrounds. A multi-task 
Transformer scoring model is used to process these enriched 
representations and makes joint predictions of the accuracy of 
the pronunciation, the quality of the prosody and the 
intelligibility. The methodology, which simulates the interaction 
between articulation and suprasegmental features, provides a 
holistic and context-sensitive measurement of the spoken 
language which is superior to other conventional assessment 
which considers segmental and prosodic information 
independently. 

IV. RESULTS AND DISCUSSION 

The suggested Attention-guided Cross-Lingual Self-
Supervised Learning model significantly increased a 
performance of learners in spoken English at all levels of 
proficiency. The framework generated more detailed speech 

representations, with the addition of phoneme embeddings and 
prosodic cues via the PP-CAF layer, which allowed learners to 
perform phonemic articulation more accurately and had a 
manufacturing speech that was more understandable and fluent 
and easier to comprehend. Prosodic aspects were strengthened, 
and there was the increased natural stress placement, less 
stumbling rhythm, and regular intonation patterns of the entire 
speech. Adaptive feedback of the framework offered a real time, 
customized feedback and gave learners the opportunity to rectify 
articulation and prosodic mistakes in real time when conversing. 
The feedback was provided in a multimodal way- visual pitch 
contours, auditory examples, and textual hints, which enhanced 
the activity of learners and the intensity of their practice. The 
participants expressed increased confidence, less anxiety, and 
increased motivation to engage in future verbal communication 
activities. Altogether, the framework promoted a comprehensive 
enhancement in the areas of pronunciation, fluency and prosody, 
as well as the establishment of a conducive, interactive and 
encouraging learning atmosphere. 

Table I shows the Simulation parameters used in the 
application of the proposed framework. The table presents a 
summary of the experimental design applied to guarantee 
similar preprocessing, feature extraction, model setup, and 
training procedures. These parameters were set to guarantee 
good reproducibility and computational stability and reliable 
results for assessing performance of the proposed framework for 
all case studies. 

TABLE I.  SIMULATION PARAMETER TABLE 

Parameter Value 

Sampling rate 16 kHz 

Frame length (for prosody / F0) 25 ms 

Frame hop 10 ms 

Alignment granularity phoneme-level 

Pitch frame step 10 ms 

XLS-R checkpoint wav2vec2-large-xlsr-53 

Projected phoneme dim (d′) 512 

Prosody embedding dim 512 

Encoder layers 6 

Model dim 512 

Feed-forward dim 2048 

Attention heads 8 

Positional encoding sinusoidal or learned 

Pronunciation head phoneme-level classification 

Batch size 16 (adjust to GPU mem) 

Epochs (head training) 20–30 

Warmup steps 2,000 

Weight decay 0.01 

Gradient clipping max-norm = 1.0 

Dropout 0.1 

Random seeds {42, 123, 2024} 

GPU NVIDIA V100 / A100 recommended 

Validation split speaker-independent val set (10–15%) 
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A. Experimental Outcome 

The Experimental outcome of the proposed framework 
yielded significant improvement in learner speech production, 
including more precise phoneme production, more fluid rhythm, 
and more natural intonation. Learners were able to adapt quickly 
to the new system, participated actively with the multimodal 
feedback, and increased their self-awareness of errors as they 
corrected them during practice. The adaptive curriculum models 
provided a personalized practice journey for each participant 
that allowed for more balanced training progress. Participants 
also expressed increases in confidence, motivation, and 
willingness to communicate in spoken English. 

 
Fig. 3. Learning progress across training sessions. 

Fig. 3 shows continuous and marked improvements in 
pronunciation accuracy, prosody quality and overall 
intelligibility across the ten sessions. Each of the three 
dimensions showed a consistent and positive growth trajectory, 
indicating that the system supported improved performance on 
multiple aspects of spoken English for individual learners 
simultaneously. 

 
Fig. 4. Pre vs. Post training outcomes. 

Fig. 4 depicts clear differences across three dimensions – 
pronunciation, prosody, and intelligibility – after training, with 
the differences persisting and consistent following the training 

period. The increased performance across the three dimensions 
indicates that the framework is effective in developing and 
enhancing both segmental and suprasegmental features of 
speech. 

 
Fig. 5. Individual learner outcome. 

Fig. 5 illustrates the individual learner outcomes before and 
after training with the proposed framework. Each point 
represents a learner's original and final score for performance. 
Most points are above the diagonal reference line indicating that 
the vast majority of learners improved their pronunciation, 
prosody and overall intelligibility, while using the proposed 
framework. 

 
Fig. 6. Error reduction by type. 

Fig. 6 demonstrating reduction of errors by type after 
training with the Attention-guided Cross Lingual Self 
Supervised Learning framework. The number of errors 
demonstrated a decrease in the following categories: 
substitution, omission, stress, and intonation, illustrating an 
overall improved balance of precision in articulation and 
prosody. 

Fig. 7 depicting learner development at levels of proficiency 
over time in training using the proposed framework. Each group, 
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beginner, intermediate, and advanced, consistently showcased 
growth; beginners experienced the most acceleration in 
productivity, the intermediate learners displayed steady growth, 
and the advanced group's development changed in smaller 
increments. This growth trajectory reinforces the proposed 
framework's effectiveness in meeting learners' needs at different 
levels of language proficiency. 

 
Fig. 7. Improvement by proficiency level. 

 
Fig. 8. Learner engagement with feedback types. 

Fig. 8 shows learner engagement with each type of feedback 
in the Attention-guided Cross Lingual Self Supervised Learning 
framework. Visual cues were the most utilized resources, 
followed by audio playback and textual hints. This demonstrates 
the benefits associated with multimodal feedback, as learners 
clearly favored visual and auditory assistance in learning about 
pronunciation and prosody. 

Fig. 9 shows a two-dimensional cluster plot of learner 
outcomes at the end of the training period with the Attention-
guided Cross Lingual Self Supervised Learning framework. 
Each point represents a learner and their location within the plot 
is based on their articulation and prosody scores. The color-
coded clusters illustrate naturally occurring groupings in 

performance and provide an understanding of how the proposed 
framework enabled unique paths toward improvement in speech 
proficiency. 

 
Fig. 9. Learner cluster after training. 

 
Fig. 10. Acoustic similarity distribution: Control vs. Experimental. 

Fig. 10. compares the acoustic similarity scores of controls 
and experimental groups post-training. The experimental group 
achieved significantly higher median and tighter distribution 
around 83.6%, while the control group centered near 70.4% with 
broader variability. This shows that the Attention-guided Cross 
Lingual Self Supervised Learning training provides more stable 
and natural pronunciation patterns than traditional training. 

B. Performance Evaluation 

Attentionguided Crosslingual Selfsupervised Learning 
(ACLSL) model was also tested both by the system generated 
outputs and the judgment of the expert, it was shown that the 
model can integrate both the phoneme level articulation with the 
suprasegmental prosody to generate the complete representation 
of the speech. The analyses of learners recorded also showed 
significant growth in the accuracy of phonemes, rhythmic 
fluency, and stress realization as well as the intonation patterns 
before and after training. Objective system improvements were 
supported by expert rater reports that the post-training speech 
was always more natural, intelligible, and fluent. Students found 
out that the adaptive feedback system helped them to practice 
more effectively as they could self-correct articulation and 
prosodic mistakes in real-time. The visual contours of pitch, the 
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auditory examples and the textual cues were all combined as the 
multimodal feedback and this strengthened pattern recognition 
and encouraged correct production. Computational analyses 
showed that the framework was stable in terms of performance 
regardless of the level of learner proficiency and language 
backgrounds and ensured the reliability and robustness of the 
system when used alone. The multi-task Transformer scoring 
model has been able to learn both segmental and suprasegmental 
of some speech at once, and hence no individual dimension was 
improved while other dimensions were neglected. Therefore, the 
ACLS model facilitated holistic improvement of pronunciation, 
prosody, intelligibility and general production of the spoken 
language offering learners, who had varying learning needs, a 
scaled, context sensitive and adaptive learning platform. 

1) Phoneme error rate: Another significant measure to be 

used to assess the pronunciation accuracy at phoneme level is 

PER. It measures the proportion of phoneme errors, i.e. 

substitutions, additions, and deletions, relative to a native 

pronunciation point of reference, which is provided in Eq. (9). 

PER =
S+D+I

N
× 100                      () 

Where 𝑆 denotes the substitutions, 𝐷 denotes the deletions, 
𝐼 denotes the insertions, and 𝐴 denotes the total phonemes. A 
decrease in PER implies a reduction in the number of mistakes 
in articulation, and accuracy in phonemes. 

2) Word error rate: WER is concerned with the entire-

word pronunciation accuracy and phoneme sequence errors 

make up words, whereas PER is concerned with phoneme-level 

accuracy. In this manner, it will be able to determine the extent 

to which mistakes in phonemes are affecting word intelligibility 

assembled in a conversational context, that is provided in 

Eq. (10): 

WER =
S+D+I

W
× 100                     () 

where, 𝑊 is the number of words. Moreover, a decrease in 
the values of WER signifies some positive changes in the 
intelligibility of the overall spoken utterance. 

3) Acoustic similarity score: The Acoustic Similarity Score 

is a rule of how intake pronunciation produced by a learner is 

similar to that of native pronunciation patterns using 

embeddings produced through deep learning. It is expressed in 

Eq. (11): 

ASS =
AL.AN

‖AL‖‖AN‖
× 100                     () 

where, AL and AN represent learner and native embeddings 
respectively. Moreover, higher scores demonstrate that there is 
a propensity to more naturalistic production. 

4) Pitch alignment: One is a parameter Pitch Alignment. 

The larger the difference between the reference pitch, the more 

one can notice the occurrence of intonation errors: 

monotonicity of the delivery or inappropriate placement of the 

rising and falling intonation marks that may very well disrupt 

the clarity and expressiveness of the speech severely in 

Eq. (12). 

PAS = 1 −
‖PL−PN‖

‖PN‖
× 100                   () 

where, PL  and PN  represent earner and native pitch 
trajectories. There are more accurate patterns of intonation as 
well as higher scores. 

5) Duration consistency index: Duration Consistency 

Index determines timing and rhythm of syllables and words in 

the speech of learners in comparison with native 

speakers.Natural speech rhymes in its rhythmic patterns and 

observes variations in relative syllable length, word duration, 

and pause. EFL learners often encounter pacing problems and 

speak too fast or insert pauses where inappropriate within 

words or phrases. The metric analyzes the speech waveform-

performed segmentation by temporal alignment models and 

assesses how much the native timing patterns are deviated from. 

A very high consistency score indicates smooth and rhythmic 

speech, and a very low score indicates problems in fluency and 

speech timing, that is represented in Eq. (13). 

DCI = 1 −
∑|TL−TN|

∑ TN
× 100                     () 

Here TL  and TN  are the learner and native durations. 
Increased scores reflect that timing smoother and improved flow 
of speech. 

6) Stress placement accuracy: In the case of English, Stress 

Placement Accuracy is significant to the intelligibility as 

unlikely stress may cause misunderstanding. The score of high 

accuracy is decipherable as a natural sound; a failure in the 

correct execution of stress might cause prospective 

miscommunication, otherwise, not a very robot-like speech is 

delivered in Eq. (14): 

SPA =
CS

TS
× 100                       () 

where, CS is the properly stressed syllabus andTS is the total 
syllabus. Increased scores are more indicative of natural and 
intelligible stress patterns. 

7) Intensity deviation: Variation in intensity is one of the 

effective prosodic features which practically means 

expressiveness and articulateness of speech. The above 

described measurements have the benefit that they allow 

identifying where stress is misplaced and the irregularities of 

the speech volume are in the effort of the learner towards more 

natural and expressive speech patterns are depicted in Eq. (15). 

ID =
|IL−IN|

IN
× 100                  () 

Here, IL and IN are the learner and native intensity values 
respectively. Lower scores likely indicate better similarity to 
natural expressiveness. 

C.  Session Frequency and Duration 

The intensity and duration of learners are important 
behavioral measures of the involvement of learners in the 
Attention-guided Cross Lingual Self Supervised Learning based 
pronunciation training. With the help of such a correlation, it is 
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possible to inform systems about the most effective patterns of 
the engagement and individualize the training strategies, 
optimizing the fluency and pronunciation improvements after 
training in EFL learners. 

D. Retry and Correction Behavior 

The Attention-guided Cross Lingual Self Supervised 
Learning based pronunciation training is significantly dependent 
on repetition and correction as measures of self-regulated 
learning. The effort of every learner is recorded; the difference 
being recognized between the willingness to complete the task 
and sincere efforts to become better with pronunciation. The 
retry-correction tracking assists in customizing procedures of 
learning, ensuring interest, and preserving durability of fluency 
and accuracy skills. 

E. Dropout Rate and Fatigue Detection 

The vital elements covered in the maintenance of Attention-
guided Cross Lingual Self Supervised Learning stimulated 
pronunciation instruction were dropout and fatigue. The 
introduced AI-based technological solution stimulates long-
term motivation and, thus, allows the learners to continue 
moving in the right direction and ultimately master 
pronunciation. 

F. Self-Assessment Surveys 

Although self-assessment surveys are subjective in nature, 
they provide useful information as to the confidence of the 
learners, their perceived progress and their satisfaction with 
Attention-guided Transformer Cross Lingual Self Supervised 
Learning based pronunciation training. The system is able to 
personalize effective pronunciation instruction that provides a 
comprehensive learner profile by combining insights of self-
assessment with the AI-driven analytics, which ensures that the 
cognitive and emotional learning needs of the learner are met. 

G. Expert Evaluations 

There are two ideas that are conveyed with this text. One of 
them is that expert judgments can have two functions other than 
being validation on AI-based pronunciation assessment. The 
interaction between human expert judges and AI assessment 
surrogates breeds a balanced scoring system whereby the system 
promotes performance of objective judgment on the quality of 
pronunciation besides integrating the qualitative to the human 
input.  

H. Error Clustering Insights 

The clustering of phoneme errors that are NLP-based can 
offer a deeper understanding of the pronunciation challenge 
peculiar to the language as a whole as a cluster of similar errors 
shared between learners in regard to their influence of the first 
language, phoneme substitutions, and articulation patterns. Task 
specific feedback would be provided to the learners, covering 
corrections regarding the most common pronunciation glitches 
of the learners also being linguistically relevant, thus making 
Attention-guided Transformer Cross Lingual Self Supervised 
Learning training even more fine-tuning. 

I. Comparative Analysis 

The study assessed the effectiveness of Attention-guided 
Transformer Cross Lingual Self Supervised Learning based 

pronunciation training in comparison to traditional methods, 
such as teacher-led phonetics, textbook drills, and classroom 
repetition exercises. Additionally, learner self-assessments and 
engagement surveys were analysed to capture the motivational 
and confidence-boosting effects of Attention-guided Cross 
Lingual Self Supervised Learning based training. 

TABLE II.  COMPARATIVE ANALYSIS  

Metric 
Pre-Training 

(%) 

Post-Training 

(%) 

Improvement 

(%) 

PER 28.4% 22.7% 55.9% 

WER 21.5% 18.2% 51.1% 

Pitch Alignment 

Score 
61.4% 68.7% 35.2% 

Duration 

Consistency Index 
59.3% 65.1% 35.3% 

Stress Placement 

Accuracy 
57.1% 63.4% 43.7% 

Table II shows the pre-and post-training evaluation of 
learners using the Attention-guided Transformer Cross Lingual 
Self Supervised Learning framework. The results indicate 
consistent improvement across phoneme-level, word-level, and 
prosody-related measures, including reduced phoneme and 
word errors, stronger prosodic alignment, and improved 
expressiveness. Intensity deviation improved significantly, 
more natural delivery. 

 
Fig. 11. Comparative analysis. 

Fig. 11 shows the comparison of pre-training and post-
training performance across five evaluation metrics. The 
Attention-guided Transformer Cross Lingual Self Supervised 
Learning framework resulted in consistent improvements by 
decreasing error rates for the PER and WER measures, and 
increasing score values for prosodic measures of Pitch 
Alignment, Duration Consistency, and Stress Placement 
Accuracy. These results underscore the ability of the proposed 
model to improve pronunciation accuracy and prosodic quality. 

J. Discussions 

The Attention-Guided Cross-Lingual Self-Supervised 
Learning (AG-CLSSL) system can be seen as a valuable step 
forward toward making EFL learners speak better in terms of 
pronunciation and prosody. AG-CLSSL achieves accuracy in 
both segmental and suprasegmental dynamics by incorporating 
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the XLS-R phoneme-level embeddings using new 
suprasegmental cues, pitch, duration, and energy, which 
combine into single, context-sensitive speech representations, 
the Phoneme-Prosody Cross-Attention Fusion (PP-CAF) layer. 
The experimental outcomes show a significant decrease in 
Phoneme Error rate (PER) and Word Error rate (WER), 
significant changes in stress placement and prosody alignment, 
which need to be considered as the problem that is critical to 
address the issue of articulation and suprasegmental aspects, 
which were traditionally considered separately. Pedagogically, 
the framework allows flexible, learner-based training through a 
multi-task Transformer, and provides tailored feedback, which 
is aligned to the level of proficiency without causing cognitive 
overload among learners. The integrative method increases 
objective acoustic accuracy and increases the perceived 
naturalness, intelligibility and confidence of the learners. What 
is more, the attention guided architecture can enable 
interpretability whereby educators and learners can identify 
areas to improve. AG-CLSSL though mainly tested in controlled 
contexts has potential in real-time classroom applications and 
incorporation of more speech parameters and the development 
of CAPT is through scalable, pedagogically robust and 
interpretable cross-linguistic self-supervised modeling. 

V. CONCLUSION AND FUTURE WORKS 

The research presented a complex and attention-based model 
AG-CLSSL, which aimed at improving pronunciation and 
prosody in EFL learners simultaneously. Through XLS-R 
embeddings in combination with prosodic cues, which are 
provided with the use of the proposed PP-CAF layer, the system 
generates a single, context-sensitive speech representation, 
allowing to score phoneme quality, prosodic alignment, and 
general intelligibility with accuracy when using multi-task 
scoring. As a result of the experiment, significant improvements 
in the articulations, stress placement, rhythm, pitch contour, and 
naturalness are proven, which validates the effectiveness of the 
framework. The patterns of visualizable attention also lend 
credence to transparent center learner feedback, making the 
model very beneficial in the application of CAPT. In general, 
AG-CLSSL offers a scaffoldable, pedagogically significant 
strategy that results in the development of technical performance 
and practical learning outcomes. 

Future studies will center their attention on measuring the 
scalability and the generalizability of AG-CLSSL in large 
groups of learners and in various learning contexts. The addition 
of the prosodic feature set which covers pause patterns, speech 
rate, and discourse-level rhythm can also contribute to the 
improvement of fluency and expressiveness assessment. The 
inclusion of real-time, interactive learning resources, including 
adaptive or even gamified interfaces, might reinforce the 
motivation and the engagement of the learners. Also, cross-
linguistic research will be done to determine the applicability of 
the framework in other language and dialects. In general, these 
directions will bring AG-CLSSL into a more flexible, robust and 
pedagogically effective system to next-generation intelligent 
language learning systems. 
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