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Abstract—Diabetic retinopathy (DR) is a leading cause of 

blindness, requiring early and accurate diagnosis. Although deep 

learning, particularly Convolutional Neural Networks (CNNs), 

has shown promising results in automating DR classification, 

selecting the optimal architecture and extracting effective 

features for specific clinical datasets remains a challenge. This 

study aims to conduct a comprehensive performance evaluation 

of six CNN architectures—DenseNet121, MobileNet, 

NasNet_Mobile, ResNet50, VGG16, and VGG19—for DR 

classification on a dataset from the Community Eye Hospital of 

South Sumatra Province. The main novelty of our approach lies 

in a specific preprocessing workflow that integrates grayscale 

conversion and Canny edge detection to enhance the visibility of 

critical retinal features, such as blood vessels and lesions, before 

classification. Using a dataset of 3000 fundus images across five 

classes (No_DR, Mild, Moderate, Severe, and Proliferative DR), 

the model was trained with data augmentation and the Adam 

optimizer. Experimental results indicate that the VGG16 

architecture achieves a peak accuracy of 73%, outperforming 

baseline implementations from previous studies. This study 

highlights the potential of combining classical CNN models with 

tailored preprocessing for improved DR detection, thus 

providing a benchmark for model selection on similar clinical 

datasets. These findings highlight the robustness and stability of 

VGG16, demonstrating its suitability as an early DR screening 

tool. 
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I. INTRODUCTION 

According to the International Diabetes Federation (IDF), 
over 537 million adults are currently living with diabetes 
worldwide [1], and this number is projected to reach 700 
million by 2045 [2]. Diabetic retinopathy can be a serious 
problem, potentially leading to permanent blindness if not 
identified or treated [3]. Because DR is often asymptomatic in 
its early stages, patients may not be aware of retinal 
degeneration until severe visual impairment develops [4]. 
PDR and NPDR are the two main categories recognized 
within the disease [5]. NPDR is characterized by 
microaneurysms, vascular leakage, and macular edema, while 
PDR involves the growth of abnormal blood vessels that may 

rupture and cause vitreous hemorrhage, potentially leading to 
total blindness. 

Currently, ophthalmologists detect DR manually through 
fundus image examination. This process is time-consuming 
and prone to subjective errors, especially in early-stage DR 
detection [6]. Furthermore, due to the complex nature of 
retinal lesions and differences in image quality, existing 
automated systems still face challenges in achieving consistent 
accuracy [7].Since nearly all long-term diabetes patients are at 
risk of developing retinal microvascular complications [8], 
early screening and blood glucose control are essential 
preventive measures. 

Convolutional neural networks (CNNs) have demonstrated 
significant effectiveness in identifying various medical 
conditions from images [10][11][12]. Deep learning (DL)-
based diagnostic techniques have received considerable 
attention due to their ability to improve the accuracy and 
efficiency of medical image analysis by automatically 
extracting distinguishing features from retinal images [9]. 
Numerous studies have explored various CNN architectures 
for DR detection, as summarized in the analysis in Table I. 
However, none of these analyses is without major challenges. 
Many studies report high accuracy on large, generic datasets 
but often lack focus on specific, localized clinical populations. 
Furthermore, while advanced architectures and hybrid models 
are frequently proposed, there is a relative lack of 
investigation into the impact of custom, manually crafted 
preprocessing techniques, such as enhancement of blood 
vessels and lesions through edge detection, on the 
performance of standard CNN models when applied to these 
specific datasets. This often leads to a research-practice gap, 
where models may not be optimized for the specific image 
characteristics found in a particular hospital's data. The main 
research question addressed in this study is, “Which among 
several standard CNN architectures provides the most 
effective and reliable performance for classifying the severity 
of DR from a given clinical fundus image dataset, and how 
can a customized preprocessing pipeline improve this 
performance?” 

To address this, our study explicitly identifies and aims to 
fill two key research gaps. First, we provide a direct and 
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comprehensive comparative analysis of six well-known CNN 
architectures on a specific dataset from the South Sumatra 
Provincial Community Eye Hospital, offering insights into 
model selection for similar clinical settings. Second, and more 
importantly, the key novelty of our framework lies in the 
integration of a specific preprocessing sequence combining 
grayscale conversion and Canny edge detection before model 
training. This step is designed to explicitly enhance 
discriminatory features such as microaneurysms and blood 
vessels, which are crucial for DR staging. Unlike many studies 
that rely solely on raw image augmentation or complex hybrid 
models, we investigate the synergy between these explicit 
feature enhancement techniques and the learning capabilities 
of standard CNNs. This approach offers a clear and 
reproducible workflow that can enhance model performance 
without necessitating increased architectural complexity. 

To achieve our goal, we have set specific objectives. First, 
we developed an image processing component capable of 
extracting enhanced features from fundus images using 
grayscale and edge detection. Second, we built and compared 
reliable diagnostic models using six CNN architectures—
VGG16, VGG19, ResNet50, DenseNet121, MobileNet, and 
NASNetMobile for the early detection of DR. By evaluating 
their performance using accuracy, precision, recall, and F1 
score, we determined the most suitable model for our clinical 
dataset. The results of this study are expected to make a 
significant contribution to the development of efficient, 
accurate, and practically implementable deep learning-based 
early detection systems for DR. 

II. RELATED WORK 

CNN-based approaches have proven effective in 
recognizing visual patterns in medical images and are widely 
used in various clinical applications, including classification 
and detection of retinal diseases [13][16]. CNNs have the 
advantage of being able to automatically and accurately 
extract key features from complex visual data, making them a 
popular choice in the field of medical image processing. The 
study in uses a traditional machine learning approach for 
diabetic retinopathy detection uses a combination of Local 
Binary Pattern and wavelet transform for feature extraction, 
and a Support Vector Machine for classification. The 
researchers first pre processed the retinal images, then 
extracted features using both LBP and wavelet transform. 
These extracted features were then used to train an SVM 
model to classify the images and detect DR. While effective, 
this method differs from deep learning approaches[17]. 

Deep learning utilizes artificial neural networks, with 
multiple layers to automatically learn complex patterns and 
features directly from raw image data. Explore deep learning 
for DR detection, often employing CNN. The key difference 
lies in feature extraction: traditional methods require manual 
feature engineering (like LBP), while deep learning 
automatically learns relevant features. Both approaches aim 
for accurate DR detection, but deep learning methods often 
boast higher accuracy and can handle larger datasets with less 
manual intervention [2][18]. 

Presents a software-based system for diagnosing and 
staging DR from fundus images. Using advanced 

preprocessing, lesion detection, and a ResNet50V2 CNN, the 
study achieved a 93.45% classification accuracy. The system, 
called Seer, integrates lesion localization (optic disk, blood 
vessels, exudates, and hemorrhages) and generates detailed 
diagnostic reports to assist clinicians. Overall, the research 
demonstrates that deep learning and image processing can 
provide cost-effective, accurate, and accessible tools for early 
DR detection and management [19][20]. The research 
employed a dataset of 11,734 UWF fundus images from DR 
patients and healthy subjects, utilizing a residual network 
architecture (ResNet-34) for image classification. The study 
focused on segmenting the Early Treatment Diabetic 
Retinopathy Study (ETDRS) 7- standard fields from UWF 
images to enhance diagnostic accuracy. The segmentation 
process aimed to exclude artifacts such as eyelashes and skin. 
The findings revealed that the proposed deep learning system 
significantly outperformed traditional methods in detecting 
DR, particularly when using segmented ETDRS fields. 
Successful segmentation was achieved for 7,282 images from 
DR patients and 1,101 from normal subjects [2]. The method 
involves are Automatic Segmentation; Optic Disc and Macula 
Detection; and Model Training. The study achieves impressive 
results by extracting ETDRS 7SF from UWF images, showing 
superior performance compared to conventional optic disc and 
macula-cantered images [18]. 

Successful segmentation and detection were achieved for 
7,282 images from DR patients and 1,101 images from normal 
subjects among an in-house dataset of 11,734 UWF fundus 
photographs [21]. The integration of ultra-wide-field imaging 
with deep learning algorithms significantly enhances DR 
detection accuracy and efficiency. Demonstrates that 
combining deep feature extraction with classical algorithms 
provides high accuracy and robustness for automated DR 
diagnosis, a CNN to extract deep features from retinal fundus 
images and then apply classical classifiers [22]. 

Utilized the EyePACS dataset, consisting of 5,220 images, 
for training and testing the proposed model. The Wide-Net-X 
architecture is based on the Inception model and incorporates 
multiple filter sizes to capture diverse features from fundus 
images. Preprocessing techniques such as image resizing, 
augmentation, and gamma correction were employed to 
enhance image quality and model performance. The 
performance of the Wide-Net- X model was evaluated using 
metrics including accuracy, precision, recall, and F1-score 
[15]. 

Overall, previous studies support the use of various CNN 
architectures for detecting DR from retinal fundus images 
[13][14][15] However, key challenges remain in terms of the 
need for sufficient training data, computational efficiency, and 
balancing accuracy with speed. Through the selection of 
appropriate CNN architectures [16][23] and the application of 
augmentation and optimization techniques, such as ensemble 
learning, it is expected that DR detection models can become 
more reliable and ready for application in clinical settings. 
This literature review highlights the critical role that 
innovative technologies play in enhancing early detection 
capabilities for diabetic retinopathy. 
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TABLE I.  RESEARCH GAP ANALYSIS DR DETECTION DEEP LEARNING 

MODELS 

Paper (Year) 
Method / 

Architecture 
Key Findings 

Identified 

Research Gap 

arXiv (2019) 

[14] 

Multi-stage 

VGG16 

92.5% accuracy 

using multilevel 

CNN. 

Dataset 

imbalance and 

lack of 

explainable 

results. 

DR Detection 

from Fundus 

(2020) [13] 

VGG16 

(transfer 

learning) 

88.9% accuracy. 

Poor 

generalization 

across datasets. 

Scientific 

Reports (2021) 

[18] 

VGG-based 

CNN 

AUC 0.97–0.99 

for wide-field  

fundus images. 

Focuses on early-

stage detection, 

no multiclass 

grading. 

Hybrid CNN 

Features [16] 

 

DR Detection 

from Fundus 

Images (2022) 

[16] 

VGG16 + 

Random Forest 
94.11%. 

No lesion-level 

feature 

visualization. 

VGG16 + 

ResNet18 

Accuracy 

89.29%. 

Struggles with 

small lesion 

identification. 

Frontiers in  

Endocrinology 

(2023) [4] 

 

 

 

Diagnostics 

(2023) [4] 

Hybrid 

Ensemble 

(VGG16 + 

AlexNet + 

ResNet) 

Ensemble 

improved 

performance to 

98%. 

Computationally 

expensive and 

lacks real-time 

validation. 

Hybrid CNN + 

Texture 

Features 

(VGG16 + 

GLCM) 

69.14% 

accuracy; 

improved 

interpretability 

using texture 

fusion. 

Low accuracy; 

limited 

augmentation. 

Scientific 

Reports (2023) 

[5] 

 

Hybrid CNN for 

Automated DR 

Detection (2023) 

[5] 

 

Hybrid CNN 

Model (2023) 

[5] 

Hybrid CNN 

(VGG16 + 

ResNet50 + 

InceptionV3) 

92.66% 

accuracy; 

effective feature 

fusion. 

Overfitting 

persists due to 

small dataset. 

InceptionV3 + 

ResNet50 + 

VGG16 

92.6% accuracy 

for 5-class DR. 

Model not tested 

on multiple 

datasets. 

VGG16 + 

InceptionV3 
Accuracy 92.6%. 

Model not 

explainable; lacks 

cross-dataset 

validation. 

Wide-Net-X 

(2023) [15] 

Wide-Net-X 

(CNN inspired  

by Inception) 

VGG16 baseline 

88.42%; Wide-

Net-X 95.2%. 

VGG16 

underperforms; 

lacks lesion 

visualization. 

A Hybrid  

Technique for 

DR (2023) 

VGG16 + 

GLCM 

69.14% 

accuracy. 

Needs larger 

dataset and 

advanced 

optimizer. 

BMC Medical 

Informatics 

(2024) [7] 

VGG16 + 

Attention CNN 
Accuracy 94.4%. 

Does not analyze 

lesion-level 

explainability. 

Towards 

Accurate 

Detection of DR 

(IJACSA, 2024) 

[20] 

ResNet50V2, 

VGG16 

baseline 

VGG16 ≈ 90%; 

ResNet50V2 = 

93.45%. 

Limited data 

diversity; VGG 

prone to 

overfitting. 

PeerJ Computer 

Science (2024) 

[21] 

VGG16 + 

Ensemble 

Transfer 

Learning 

96.7% accuracy 

with ensemble 

fine-tuning. 

High complexity, 

no lightweight 

deployment. 

Paper_86 – 

IJACSA (2024) 

[20] 

VGG16 

baseline + 

ResNet50V2 

90–91% 

(VGG16), 

93.45% 

(ResNet50V2). 

Model not 

interpretable; 

limited 

augmentation. 

III. METHODOLOGY  

This study aims to develop a DL model using six different 
CNN architectures to automatically detect DR from retinal 
fundus images [16]. The methodology is divided into several 
stages, including data preparation, modelling, architecture 
selection, optimization implementation, and result evaluation. 
A block diagram outlining the research stages is shown in 
Fig. 1, which illustrates the overall process flow [24]. 

 
Fig. 1. General process stages of the research. 

A. Preparation and Modeling 

This stage begins with the collection of retinal fundus 
image datasets obtained from the Special Community Eye 
Hospital of South Sumatra Province.  Each image data is 
standardized with a size and resolution of 224x224 pixels in 
JPEG format. Data were captured using a fundus camera, with 
the aim of ensuring consistency during the training process. 
This dataset consists of 600 images for each category of DR: 
No_DR (without DR), Mild, Moderate, Proliferative DR, and 
Severe, for a total of 3000 images. The image data was then 
divided into two parts, namely 80% for training and 20% for 
validation to ensure optimal model generalization. 

Next, the dataset is converted to grayscale to enhance the 
contrast of relevant visual features. The Canny edge detection 
method is chosen and applied to identify important edges in 
the images, such as blood vessels and DR-associated lesions. 
The Canny edge detection process includes several steps: 
preprocessing to reduce noise, applying the Canny kernel to 
compute gradients, increase accuracy, and thresholding to 
extract significant edges. The results of edge identification 
using the Canny method are shown in Fig. 2, illustrating the 
key features, such as blood vessels and lesions, related to DR 
before the model training. 

 
Fig. 2. Canny edge detection results highlighting key features related to DR. 
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B. Model Architecture Selection 

In this stage compares six different CNN architectures 
with the aim of assessing their performance in detecting DR. 
The six architectures are VGG16, VGG19, ResNet50, 
DenseNet121, MobileNet, and NASNetMobile. Each model is 
implemented using the keras library with TensorFlow as the 
backend. These models were selected based on their strengths 
in visual pattern recognition, computational efficiency, and 
ability to effectively classify retinal images. Fig. 3 shows 
comparison of six different CNN architectures. 

 
Fig. 3. Comparison of six different CNN architectures. 

C. Optimizer Implementation and Training Process 

Data augmentation techniques, such as image rotation 
range 400, horizontal and vertical translation, and contrast and 
color adjustments, were used to improve the dataset quality. 
Augmentation is performed on each batch when 
flow_from_directory() is called, meaning 100% of the images 
in the batch undergo random augmentation every epoch 
(dynamic, not fixed, augmentation). By incorporating a variety 
of images and simulating different lighting conditions and 
camera positions, these augmentations aimed to improve the 
training dataset and enhance the model's generalization ability. 
Transfer learning and augmentation were performed in the 
Google Collab environment, which connected to Google Drive 
to access the necessary datasets and directories. To ensure that 
all input images were the same size, the images were set to 
224 x 224 pixels. The training process ran for 25 epochs  for 
each model. The following are the values of each epoch in 
each model, VGG 16 27.08%, VGG 19 25%, DenseNet121 
17.71%, MobileNet 27.60%, and NASNetMobile 20%. The 
model experiences underfitting, characterized by equally low 
training and validation accuracy (around 20–35%). Training,  
TensorFlow/Keras was used for image processing, while 
additional libraries, such as scikit-learn, Seaborn, and 
Matplotlib, were employed for evaluation and visualization. 

Once the model training was completed, evaluation was 
performed using the validation data to assess its performance. 
This evaluation included measurements of accuracy, 
precision, recall, and F1-score, which were used to assess the 
model’s ability to classify images accurately. A confusion 
matrix was also utilized to analyse classification errors and 
gain insights into how the model handles each class of diabetic 
retinopathy. 

D. Model Evaluation and Result Analysis 

Validation data is used to evaluate model performance. At 
this stage, the confusion matrix is used to identify 

misclassifications in each class. The confusion matrix consists 
of True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN), to facilitate misclassification 
analysis. Evaluation metrics include accuracy, precision, 
recall, and F1 score. 

IV. RESULTS 

The experimental results demonstrate that the VGG16 
architecture achieved a classification accuracy of 73% in 
detecting diabetic retinopathy (DR) across four severity levels 
(No DR, Mild, Moderate, and Severe/Proliferative DR). 
However, the low recall and precision values are caused by a 
combination of several main factors, namely: the use of an 
inappropriate loss function (binary_crossentropy of 5 classes), 
too many frozen model layers so that learning is minimal, 
augmentation that is too strong so that it changes important 
image patterns, and steps_per_epoch that is too small so that 
the model does not see all the data. This performance indicates 
a relatively balanced trade-off between model complexity and 
generalization capability when trained on the fundus dataset 
after preprocessing and augmentation. 

V. DISCUSSION 

Compared with previous studies, the proposed model 
shows a notable improvement over baseline VGG16 
implementations reported in [6], [9], [12], which achieved 
accuracies below 70%. In [6] Small dataset; limited training 
prevented deep feature learning 50.03, while in Imaduddin et 
al. [9], figure/table comparison baseline VGG16 = 68%. 
Similarly, in [12] limited training prevented deep feature 
learning 50.03, as shown in Table IV. 

TABLE II.  COMPARISON WITH OTHER STUDIES 

Title/Year Architecture 
Main Problem 

Addressed 

Reported 

Accuracy (%) 

A Deep Learning 

Ensemble Approach 

for 

Diabetic Retinopathy 

Detection (Qummar 

et al , 2019) [12] 

VGG16 + 

ResNet50 + 

InceptionV3 

Imbalanced 

dataset leading 

to 

misclassification 

VGG16 

ensemble 

model 

accuracy = 

68.7% 

Diabetic retinopathy 

detection through 

deep learning 

techniques: A review 

(Alyoubi et al, 2020) 

[6] 

Pretrained 

VGG16, 

compared 

with AlexNet 

& 

InceptionV3 

Detect 5 stages 

of DR 

Small dataset; 

limited 

training 

prevented deep 

feature 

learning 50.03 

Enhancing Diabetic 

Retinopathy 

Classification Using 

Geometric 

Augmentation and 

MobileNetV2 on 

Retinal Fundus 

Images (Imaduddin 

et al, 2024) [9] 

VGG16 

(Baseline) vs 

MobileNetV2. 

Evaluate 

lightweight 

CNNs and 

geometric 

augmentation 

Figure/table 

comparison  

baseline 

VGG16 = 

68%, 

MobileNetV2 

= 97% 

The higher accuracy of 73% in this study can be attributed 
to several enhancements in preprocessing and training 
strategy. The use of grayscale conversion and image 
normalization improved lesion visibility, while data 
augmentation (rotation, flipping, and zooming) helped reduce 
overfitting. Furthermore, the Adam optimizer with fine-tuned 
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learning rates contributed to faster convergence and more 
stable validation accuracy across epochs. 

To provide a clearer overview of the performance of the 
six architectures. Fig. 4 presents the percentages of accuracy, 
precision, recall, and F1 score for each model. This graph 
effectively illustrates the strengths and weaknesses of each 
architecture in detecting various categories. 

 
Fig. 4. Performance results by category. 

A. Comparison of Results 

Once the model evaluation was completed, the 
classification results of each model were compared in a 
classification report. This stage presents a comparison of 
accuracy and performance among the tested models, aiming to 
determine the most optimal CNN architecture for detecting 
diabetic retinopathy in retinal fundus images. The comparison 
is expected to provide deeper insights into the strengths and 
weaknesses of each model when applied to the given dataset, 
reflecting their respective abilities to detect various disease 
categories. The findings of the prediction of the accuracy level 
of the six architectures employed are shown in the Table III 
and graph Fig. 5. 

 
Fig. 5. Result of accurate prediction. 

Overall, VGG-16 demonstrated relatively strong 
performance, achieving an accuracy of 73% with stable results 
across most classes. In the mild and moderate categories, 
VGG-16 achieved relatively high accuracy. 

Although its precision and recall were somewhat lower in 
certain classes, particularly in the no_DR and proliferative 

categories. This is reflected in the detailed results presented in 
Table II, which show that while the model can effectively 
recognize most images, VGG-16 still struggles to deliver 
highly accurate detections for some specific classes. 

TABLE III.  CONFUSION MATRIX 

No 
Architecture 

Name 
Confusion Matrix 

5 MobileNet 

 

6 NASNetMobil e 

 

1 VGG 16 

 

2 VGG 19 
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3 

ResNet 

(Residual 

Network) 

 

4 

DenseNet 

(Dense 

Convolutional 

Network) 

 

TABLE IV.  VGG-16 

Class 
Accurac

y 

Precisio

n 

Recal

l 

F1_scor

e 

Mild 79% 21% 43% 28% 

Moderate 68% 31% 0% 0% 

No_DR 74% 16% 11% 13% 

Proliverativ

e 
67% 16% 34% 22% 

Severe 79% 12% 0% 0% 

Overall 73% 19% 19% 19% 

In contrast, VGG-19 (Table V) yielded slightly lower 
results than VGG-16, with an overall accuracy of around 72%. 
Precision and recall for the mild and moderate categories were 
also lower compared to VGG-16 (Table IV), although 
accuracy in categories such as proliferative and severe 
remained relatively strong. These results are further detailed in 
below table which highlights the model's weaknesses in recall 
for certain classes, indicating challenges in detecting rarer or 
harder-to-recognize cases. 

TABLE V.  VGG-19 

Class 
Accurac

y 

Precisio

n 

Recal

l 

F1_scor

e 

Mild 66% 18% 34% 24% 

Moderate 71% 22% 28% 25% 

No_DR 79% 2% 0% 0% 

Proliverativ

e 
74% 22% 18% 2% 

Severe 72% 19% 2% 19% 

Overall 72% 20% 20% 20% 

ResNet50, meanwhile, demonstrated overall accuracy 
comparable to VGG-16 and VGG-19, but with more varied 
performance across categories. Accuracy in the mild and 
severe categories was relatively high, reaching 79%, but 
precision and recall in categories such as no_DR and 
proliferative were very low, suggesting difficulty in detecting 
these classes effectively. Detailed results for ResNet50 are 
provided in Table VI, showing that while the model excels in 
stability across certain categories, it is less effective in 
providing detailed detections. 

TABLE VI.  RESNET50 

Class Accuracy Precision Recall F1_score 

Mild 79% 18% 0% 0% 

Moderate 63% 18% 47% 27% 

No_DR 67% 15% 20% 17% 

Proliverative 72% 21% 22% 22% 

Severe 79% 33% 0% 0% 

Overall 72% 18% 18% 18% 

DenseNet121 achieved slightly better results than VGG- 
19, with an overall accuracy of 72%. This model performed 
better in detecting mild and moderate categories but still 
exhibited weaknesses in precision and recall for several 
classes. These findings are further elaborated in Table VII, 
which shows that DenseNet121 offers stable results, despite 
its overall accuracy being similar to other models. 
Nevertheless, its deeper connectivity and additional layers 
contributed to relatively good classification performance for 
certain classes. 

TABLE VII.  DENSENET121 

Class Accuracy Precision Recall F1_score 

Mild 74% 19% 12% 15% 

Moderate 67% 20% 39% 27% 

No_DR 71% 20% 23% 22% 

Proliferative 72% 17% 15% 16% 

Severe 76% 26% 13% 17% 

Overall 72% 20% 20% 20% 

MobileNet and NASNet-Mobile, both with similar overall 
accuracy of around 72%, exhibited highly variable 
performance across different classes. MobileNet performed 
best in the moderate category, with an accuracy of 79%, but 
its precision and recall were very low for several other classes. 
Detailed results for MobileNet, shown in Table VIII, suggest 
that while MobileNet can effectively recognize certain classes, 
it tends to produce many inaccurate predictions in others, 
such as no_DR and proliferative. 

NASNet-Mobile, which also showed unsatisfactory results 
with very low precision (around 2%), despite having similar 
accuracy to other models, struggled significantly in detecting 
nearly all categories accurately. Further details for NASNet-
Mobile are provided in Table IX, which illustrates how its 
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precision and recall were much lower compared to other 
models. 

TABLE VIII.  MOBILENET 

Class Accuracy Precision Recall F1_score 

Mild 78% 34% 1% 15% 

Moderate 79% 33% 41% 0% 

No_DR 60% 19% 61% 29% 

Proliferative 72% 17% 15% 16% 

Severe 75% 13% 0% 0% 

Overall 72% 19% 19% 19% 

TABLE IX.  NASNET_MOBILE 

Class Accuracy Precision Recall F1_score 

Mild 67% 20% 39% 26% 

Moderate 75% 21% 15% 17% 

No_DR 75% 22% 15% 18% 

Proliferative 73% 17% 13% 15% 

Severe 72% 18% 17% 17% 

Overall 72% 2% 2% 20% 

In summary, although there are performance differences 
among the models, VGG-16 and ResNet50 demonstrated more 
stable and favourable results in several categories compared to 
VGG-19, DenseNet121, MobileNet, and NASNet-Mobile, 
which exhibited weaknesses in precision and recall for 
specific categories. The selection of the appropriate model 
depends on the class to be detected accurately and the balance 
between accuracy and the model's ability to identify each 
class effectively. The model will improve significantly if: 
Change the loss to categorical_crossentropy, Unfreeze some 
final layers, Reduce extreme augmentation, Correctly compute 
multi-class metrics. 

VI. CONCLUSION AND FUTURE WORK 

This study presents a comprehensive evaluation of six 
CNN architectures for diabetic retinopathy classification using 
a clinical dataset from South Sumatra. The study has two main 
scientific contributions: first, it provides a direct empirical 
comparison of several CNN architectures on a localized 
clinical dataset, addressing the gap between research and 
practice where models are typically only validated on large 
public datasets. Second, it introduces a novel preprocessing 
pipeline that combines grayscale conversion and Canny edge 
detection, effectively enhancing critical retinal features 
without increasing model complexity. Building on these 
contributions, VGG16 demonstrates that classic CNN models 
still offer robust and interpretable results for DR detection, 
especially when combined with effective preprocessing and a 
balanced dataset. However, the dataset size of 3,000 images 
likely contributed to model underfitting and suboptimal 
performance on certain classes, particularly "Moderate" and 
"Proliferative" DR. While grayscale conversion is beneficial 
for edge enhancement, it may also discard color information 
that could help distinguish specific lesions such as 

hemorrhages or exudates. Additionally, technical constraints 
in the training process, such as the use of binary cross-entropy 
for multiclass classification and excessive layer freezing 
during transfer learning, further limit the model's ability to 
effectively learn dataset-specific features. 

Future research will address these limitations through key 
strategies. To improve performance and interpretability, we 
will explore hybrid models that integrate CNN features. We 
will also incorporate attention mechanisms to enhance lesion 
localization. Additionally, we will investigate ensemble 
methods that leverage the strengths of different architectures. 
These approaches aim for a more robust, accurate, and 
clinically applicable automated DR screening system to 
support ophthalmologists in early diagnosis. 
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