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Abstract—Diabetic retinopathy (DR) is a leading cause of
blindness, requiring early and accurate diagnosis. Although deep
learning, particularly Convolutional Neural Networks (CNNs),
has shown promising results in automating DR classification,
selecting the optimal architecture and extracting effective
features for specific clinical datasets remains a challenge. This
study aims to conduct a comprehensive performance evaluation
of  six CNN architectures—DenseNet121, MobileNet,
NasNet_Mobile, ResNet50, VGG16, and VGG19—for DR
classification on a dataset from the Community Eye Hospital of
South Sumatra Province. The main novelty of our approach lies
in a specific preprocessing workflow that integrates grayscale
conversion and Canny edge detection to enhance the visibility of
critical retinal features, such as blood vessels and lesions, before
classification. Using a dataset of 3000 fundus images across five
classes (No_DR, Mild, Moderate, Severe, and Proliferative DR),
the model was trained with data augmentation and the Adam
optimizer. Experimental results indicate that the VGGI16
architecture achieves a peak accuracy of 73%, outperforming
baseline implementations from previous studies. This study
highlights the potential of combining classical CNN models with
tailored preprocessing for improved DR detection, thus
providing a benchmark for model selection on similar clinical
datasets. These findings highlight the robustness and stability of
VGG16, demonstrating its suitability as an early DR screening
tool.
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I.  INTRODUCTION

According to the International Diabetes Federation (IDF),
over 537 million adults are currently living with diabetes
worldwide [1], and this number is projected to reach 700
million by 2045 [2]. Diabetic retinopathy can be a serious
problem, potentially leading to permanent blindness if not
identified or treated [3]. Because DR is often asymptomatic in
its early stages, patients may not be aware of retinal
degeneration until severe visual impairment develops [4].
PDR and NPDR are the two main categories recognized
within the disease [5]. NPDR is characterized by
microaneurysms, vascular leakage, and macular edema, while
PDR involves the growth of abnormal blood vessels that may
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rupture and cause vitreous hemorrhage, potentially leading to
total blindness.

Currently, ophthalmologists detect DR manually through
fundus image examination. This process is time-consuming
and prone to subjective errors, especially in early-stage DR
detection [6]. Furthermore, due to the complex nature of
retinal lesions and differences in image quality, existing
automated systems still face challenges in achieving consistent
accuracy [7].Since nearly all long-term diabetes patients are at
risk of developing retinal microvascular complications [8],
early screening and blood glucose control are essential
preventive measures.

Convolutional neural networks (CNNs) have demonstrated
significant effectiveness in identifying various medical
conditions from images [10][11][12]. Deep leaming (DL)-
based diagnostic techniques have received considerable
attention due to their ability to improve the accuracy and
efficiency of medical image analysis by automatically
extracting distinguishing features from retinal images [9].
Numerous studies have explored various CNN architectures
for DR detection, as summarized in the analysis in Table L
However, none of these analyses is without major challenges.
Many studies report high accuracy on large, generic datasets
but often lack focus on specific, localized clinical populations.
Furthermore, while advanced architectures and hybrid models
are frequently proposed, there is a relative lack of
investigation into the impact of custom, manually crafted
preprocessing techniques, such as enhancement of blood
vessels and lesions through edge detection, on the
performance of standard CNN models when applied to these
specific datasets. This often leads to a research-practice gap,
where models may not be optimized for the specific image
characteristics found in a particular hospital's data. The main
research question addressed in this study is, “Which among
several standard CNN architectures provides the most
effective and reliable performance for classifying the severity
of DR from a given clinical fundus image dataset, and how
can a customized preprocessing pipeline improve this
performance?”

To address this, our study explicitly identifies and aims to
fill two key research gaps. First, we provide a direct and
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comprehensive comparative analysis of six well-known CNN
architectures on a specific dataset from the South Sumatra
Provincial Community Eye Hospital, offering insights into
model selection for similar clinical settings. Second, and more
importantly, the key novelty of our framework lies in the
integration of a specific preprocessing sequence combining
grayscale conversion and Canny edge detection before model
training. This step is designed to explicitly enhance
discriminatory features such as microaneurysms and blood
vessels, which are crucial for DR staging. Unlike many studies
that rely solely on raw image augmentation or complex hybrid
models, we investigate the synergy between these explicit
feature enhancement techniques and the learning capabilities
of standard CNNs. This approach offers a clear and
reproducible workflow that can enhance model performance
without necessitating increased architectural complexity.

To achieve our goal, we have set specific objectives. First,
we developed an image processing component capable of
extracting enhanced features from fundus images using
grayscale and edge detection. Second, we built and compared
reliable diagnostic models using six CNN architectures—
VGG16, VGG19, ResNet50, DenseNetl21, MobileNet, and
NASNetMobile for the early detection of DR. By evaluating
their performance using accuracy, precision, recall, and F1
score, we determined the most suitable model for our clinical
dataset. The results of this study are expected to make a
significant contribution to the development of efficient,
accurate, and practically implementable deep learning-based
early detection systems for DR.

II.  RELATED WORK

CNN-based approaches have proven effective in
recognizing visual patterns in medical images and are widely
used in various clinical applications, including classification
and detection of retinal diseases [13][16]. CNNs have the
advantage of being able to automatically and accurately
extract key features from complex visual data, making them a
popular choice in the field of medical image processing. The
study in uses a traditional machine learning approach for
diabetic retinopathy detection uses a combination of Local
Binary Pattern and wavelet transform for feature extraction,
and a Support Vector Machine for classification. The
researchers first pre processed the retinal images, then
extracted features using both LBP and wavelet transform.
These extracted features were then used to train an SVM
model to classify the images and detect DR. While effective,
this method differs from deep learning approaches[17].

Deep leaming utilizes artificial neural networks, with
multiple layers to automatically leam complex patterns and
features directly from raw image data. Explore deep learning
for DR detection, often employing CNN. The key difference
lies in feature extraction: traditional methods require manual
feature engineering (like LBP), while deep learning
automatically learns relevant features. Both approaches aim
for accurate DR detection, but deep learning methods often
boast higher accuracy and can handle larger datasets with less
manual intervention [2][18].

Presents a software-based system for diagnosing and
staging DR from fundus images. Using advanced
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preprocessing, lesion detection, and a ResNet5S0V2 CNN, the
study achieved a 93.45% classification accuracy. The system,
called Seer, integrates lesion localization (optic disk, blood
vessels, exudates, and hemorrhages) and generates detailed
diagnostic reports to assist clinicians. Overall, the research
demonstrates that deep leamning and image processing can
provide cost-effective, accurate, and accessible tools for early
DR detection and management [19][20]. The research
employed a dataset of 11,734 UWF fundus images from DR
patients and healthy subjects, utilizing a residual network
architecture (ResNet-34) for image classification. The study
focused on segmenting the Early Treatment Diabetic
Retinopathy Study (ETDRS) 7- standard fields from UWF
images to enhance diagnostic accuracy. The segmentation
process aimed to exclude artifacts such as eyelashes and skin.
The findings revealed that the proposed deep learning system
significantly outperformed traditional methods in detecting
DR, particularly when using segmented ETDRS fields.
Successful segmentation was achieved for 7,282 images from
DR patients and 1,101 from normal subjects [2]. The method
involves are Automatic Segmentation; Optic Disc and Macula
Detection; and Model Training. The study achieves impressive
results by extracting ETDRS 7SF from UWF images, showing
superior performance compared to conventional optic disc and
macula-cantered images [18].

Successful segmentation and detection were achieved for
7,282 images from DR patients and 1,101 images from normal
subjects among an in-house dataset of 11,734 UWF fundus
photographs [21]. The integration of ultra-wide-field imaging
with deep leaming algorithms significantly enhances DR
detection accuracy and efficiency. Demonstrates that
combining deep feature extraction with classical algorithms
provides high accuracy and robustness for automated DR
diagnosis, a CNN to extract deep features from retinal fundus
images and then apply classical classifiers [22].

Utilized the EyePACS dataset, consisting of 5,220 images,
for training and testing the proposed model. The Wide-Net-X
architecture is based on the Inception model and incorporates
multiple filter sizes to capture diverse features from fundus
images. Preprocessing techniques such as image resizing,
augmentation, and gamma correction were employed to
enhance image quality and model performance. The
performance of the Wide-Net- X model was evaluated using
metrics including accuracy, precision, recall, and F1-score
[15].

Overall, previous studies support the use of various CNN
architectures for detecting DR from retinal fundus images
[13][14][15] However, key challenges remain in terms of the
need for sufficient training data, computational efficiency, and
balancing accuracy with speed. Through the selection of
appropriate CNN architectures [16][23] and the application of
augmentation and optimization techniques, such as ensemble
learning, it is expected that DR detection models can become
more reliable and ready for application in clinical settings.
This literature review highlights the critical role that
innovative technologies play in enhancing early detection
capabilities for diabetic retinopathy.
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TABLEI. RESEARCH GAP ANALYSIS DR DETECTION DEEP LEARNING
MODELS
Method / - Identified
Paper (Year) Architecture Key Findings Research Gap
Dataset
o .
arXiv. (2019) | Multi-stage 92.5% accuracy | imbaknce  and
14 VGG16 using multilevel | lack of
[14] CNN. explainable
results.
DR  Detection | VGG16 Poor
from Fundus | (transfer 88.9% accuracy. | generalization
(2020) [13] learning) across datasets.
s Focuses on early-
Scientific VGG-based AUC 0‘.9 7 0.'99 stage  detection,
Reports  (2021) for  wide-field .
CNN . no multiclass
[18] fundus images. grading
Hybrid CNN No lesion-level
Features [16] VGGI6  + 1 g4 10, feature
Random Forest . s
visualization.
DR  Detection Struggles with
from Fundus | VGG16 + | Accuracy small lesion
Images (2022) [ ResNetl8 89.29%. . e
identification.
[16]
Hybrid Ensemble Computationally
. . Ensemble . .
Frontiers in improved expensive and
. (VGG16 + .
Endocrinology performance to | lacks  real-time
2023) [4 AlexNet | g0, lidati
( ) [4] ResNet) o. validation.
0,
Hybrid CNN + gz;l‘:f _
Texture . v Low accuracy;
. . improved .
Diagnostics Features int tabilit limited
(2023) [4] (VGG16  + ﬁ‘sifgre a t‘e‘X{ure augmentation.
GLCM) fusion.
Scientific Hybrid CNN | 92.66% .
Reports (2023) | (VGG16  + | accuracy; Oevr:irsft‘?‘“%ue ©
[5] ResNet50  + | effective feature | ©
. - small dataset.
InceptionV3) fusion.
Hybrid CNN for | InceptionV3 + 92.6% accuracy Model not tested
Automated DR | ResNet50  + ’ on multiple
Detection (2023) | VGG16 for5-class DR. datasets.
(5] Model not
Hybrid CNN VGG1.6 * Accuracy 92.6%. explainable; lacks
InceptionV3 cross-dataset
Model  (2023) o
5] validation.
Wide-Net-X Wide-Net-X VGG16 baseline VGdG16rf .
(2(1)2"3‘) [j 5‘] (CNN inspired | 88.42%; Wide- ‘likzrpe OHESS}OH
by Inception) Net-X 95.2%. L
visualization.

. Needs larger
?echniqufyb?jr VGGI6  + | 69.14% dataset and
DR (2023) GLCM accuracy. adv.an.ced

optimizer.
BMC Medical VGG16 . Dogs not analyze
Informatics Attention CNN Accuracy 94.4%. | lesion-level
(2024 [7] ention explainability.
Towards .
Accurate ResNet50V2, | VGG16 ~ 90%; Igwmgrt;f V‘g‘g
Detection of DR | VGG16 ResNet50V2 = ¥ ¢
(IJACSA, 2024) | bascline 93.45%. prone 0
overfitting.
[20]

Peer] Computer VGGl6 * 96.7% accuracy | High complexity,
. Ensemble . . .
Science (2024) Transfer with  ensemble | no lightweight

[21] Learming fine-tuning. deployment.
_ 010,
Paper_86 — | VGGI6 ?\eGgC;l/g) hl\ilt(::deietable' et
IJACSA (2024) | baselne  + g atetp ;
[20] ResNet50V2 93.45% limited
(ResNet50V2). augmentation.
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III. METHODOLOGY

This study aims to develop a DL model using six different
CNN architectures to automatically detect DR from retinal
fundus images [16]. The methodology is divided into several
stages, including data preparation, modelling, architecture
selection, optimization implementation, and result evaluation.
A block diagram outlining the research stages is shown in
Fig. 1, which illustrates the overall process flow [24].
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Fig. 1. General process stages of the research.

A. Preparation and Modeling

This stage begins with the collection of retinal fundus
image datasets obtained from the Special Community Eye
Hospital of South Sumatra Province. FEach image data is
standardized with a size and resolution of 224x224 pixels in
JPEG format. Data were captured using a fundus camera, with
the aim of ensuring consistency during the training process.
This dataset consists of 600 images for each category of DR:
No_DR (without DR), Mild, Moderate, Proliferative DR, and
Severe, for a total of 3000 images. The image data was then
divided into two parts, namely 80% for training and 20% for
validation to ensure optimal model generalization.

Next, the dataset is converted to grayscale to enhance the
contrast of relevant visual features. The Canny edge detection
method is chosen and applied to identify important edges in
the images, such as blood vessels and DR-associated lesions.
The Canny edge detection process includes several steps:
preprocessing to reduce noise, applying the Canny kernel to
compute gradients, increase accuracy, and thresholding to
extract significant edges. The results of edge identification
using the Canny method are shown in Fig. 2, illustrating the
key features, such as blood vessels and lesions, related to DR
before the model training.
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Fig.2. Canny edge detection results highlighting key features related to DR.
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B. Model Architecture Selection

In this stage compares six different CNN architectures
with the aim of assessing their performance in detecting DR.
The six architectures are VGG16, VGG19, ResNet50,
DenseNetl121, MobileNet, and NASNetMobile. Each model is
implemented using the keras library with TensorFlow as the
backend. These models were selected based on their strengths
in visual pattern recognition, computational efficiency, and
ability to effectively classify retinal images. Fig. 3 shows
comparison of six different CNN architectures.

VGG16 and VGG19

i

DenseNet121

—
(N

[ 224x224 J—o —{OPTIMIZERH PREDICT }—{ OUTPUT]

NasNetMobile

Il

Fig. 3. Comparison of six different CNN architectures.

C. Optimizer Implementation and Training Process

Data augmentation techniques, such as image rotation
range 40°, horizontal and vertical translation, and contrast and
color adjustments, were used to improve the dataset quality.
Augmentation is performed on each batch when
flow from directory() is called, meaning 100% of the images
in the batch undergo random augmentation every epoch
(dynamic, not fixed, augmentation). By incorporating a variety
of images and simulating different lighting conditions and
camera positions, these augmentations aimed to improve the
training dataset and enhance the model's generalization ability.
Transfer learning and augmentation were performed in the
Google Collab environment, which connected to Google Drive
to access the necessary datasets and directories. To ensure that
all input images were the same size, the images were set to
224 x 224 pixels. The training process ran for 25 epochs for
each model. The following are the values of each epoch in
each model, VGG 16 27.08%, VGG 19 25%, DenseNet121
17.71%, MobileNet 27.60%, and NASNetMobile 20%. The
model experiences underfitting, characterized by equally low
training and validation accuracy (around 20-35%). Training,
TensorFlow/Keras was used for image processing, while
additional libraries, such as scikit-learn, Seaborn, and
Matplotlib, were employed for evaluation and visualization.

Once the model training was completed, evaluation was
performed using the validation data to assess its performance.
This evaluation included measurements of accuracy,
precision, recall, and F1-score, which were used to assess the
model’s ability to classify images accurately. A confusion
matrix was also utilized to analyse classification errors and
gain insights into how the model handles each class of diabetic
retinopathy.

D. Model Evaluation and Result Analysis

Validation data is used to evaluate model performance. At
this stage, the confusion matrix is used to identify
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misclassifications in each class. The confusion matrix consists
of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN), to facilitate misclassification
analysis. Evaluation metrics include accuracy, precision,
recall, and F1 score.

IV. RESULTS

The experimental results demonstrate that the VGGI16
architecture achieved a classification accuracy of 73% in
detecting diabetic retinopathy (DR) across four severity levels
(No DR, Mild, Moderate, and Severe/Proliferative DR).
However, the low recall and precision values are caused by a
combination of several main factors, namely: the use of an
inappropriate loss function (binary_crossentropy of 5 classes),
too many frozen model layers so that learning is minimal,
augmentation that is too strong so that it changes important
image pattemns, and steps_per_epoch that is too small so that
the model does not see all the data. This performance indicates
a relatively balanced trade-off between model complexity and
generalization capability when trained on the fundus dataset
after preprocessing and augmentation.

V. DISCUSSION

Compared with previous studies, the proposed model
shows a notable improvement over baseline VGGl6
implementations reported in [6], [9], [12], which achieved
accuracies below 70%. In [6] Small dataset; limited training
prevented deep feature learning 50.03, while in Imaduddin et
al. [9], figure/table comparison baseline VGG16 = 68%.
Similarly, in [12] limited training prevented deep feature
learning 50.03, as shown in Table IV.

TABLE II. COMPARISON WITH OTHER STUDIES
. . Main Problem Reported
Title/Year Architecture Addressed Accuracy (%)
A Deep Leaming VGG16
Ensemble Approach Imbalanced
VGG16 + . ensemble
for dataset leading
. . . ResNet50 + model
Diabetic Retinopathy I . to _
. nceptionV3 . e accuracy =
Detection (Qummar misclassification 68.7%
etal, 2019)[12] e
Diabetic retinopathy | Pretrained Small dataset;
detection through | VGGI6, limited
deep learning | compared Detect 5 stages | training

techniques: A review
(Alyoubi et al, 2020)

with AlexNet
&

of DR

prevented deep
feature

[6] InceptionV3 learning 50.03
Enhancing Diabetic

Retinopathy Figure/table
Classification Using Evaluate comparison
Geometric VGG16 lightweight baseline
Augmentation and | (Baseline) vs | CNNs and | VGGI16 =
MobileNetV2 on MobileNetV2. | geometric 68%,

Retinal Fundus augmentation MobileNetV2
Images (Imaduddin =97%

etal, 2024) [9]

The higher accuracy of 73% in this study can be attributed
to several enhancements in preprocessing and training
strategy. The use of grayscale conversion and image
normalization improved lesion visibility, while data
augmentation (rotation, flipping, and zooming) helped reduce
overfitting. Furthermore, the Adam optimizer with fine-tuned
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learning rates contributed to faster convergence and more
stable validation accuracy across epochs.

To provide a clearer overview of the performance of the
six architectures. Fig. 4 presents the percentages of accuracy,
precision, recall, and F1 score for each model. This graph
effectively illustrates the strengths and weaknesses of each
architecture in detecting various categories.

Category and Metrics Architecture

160%
140%
120% 79%
100%
80%
[
40 gox 1 61% 1
2 34% 29%

%
%
0%
0%
= = 2 = z = =
] ]
2 o] o o = o o
S B z z z
2 b=
o
Accuracy Precision Recall F1 Score
HResNet30 mVGG16 VGG19 MobileNet

Fig. 4. Performance results by category.

A. Comparison of Results
Once the model evaluation was completed, the

classification results of each model were compared in a
classification report. This stage presents a comparison of
accuracy and performance among the tested models, aiming to
determine the most optimal CNN architecture for detecting
diabetic retinopathy in retinal fundus images. The comparison
is expected to provide deeper insights into the strengths and
weaknesses of each model when applied to the given dataset,
reflecting their respective abilities to detect various disease
categories. The findings of the prediction of the accuracy level
of the six architectures employed are shown in the Table III

and graph Fig. 5.
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Fig. 5. Result of accurate prediction.
Overall, VGG-16 demonstrated relatively strong

performance, achieving an accuracy of 73% with stable results
across most classes. In the mild and moderate categories,
VGG-16 achieved relatively high accuracy.

Although its precision and recall were somewhat lower in
certain classes, particularly in the no DR and proliferative
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categories. This is reflected in the detailed results presented in
Table II, which show that while the model can effectively
recognize most images, VGG-16 still struggles to deliver
highly accurate detections for some specific classes.

TABLE III. CONFUSION MATRIX
Architecture . .
No Confusion Matrix
Name

Confusion Matrix =
mal 2 s " " »
‘moderate 5 5 23 n “
5 MobileNet H ©

proliferative

8

Predicted Label

Confusion Matrix

mild 12 21 7 23

moderate 18 1 2 2

no_DR 2 18 16 22

True Label

6 NASNetMobile

proliterative 2 13 16 29 ]

severe 16 1 19 21

& & &
é@f ® &
S
predicted Label
Confusion Matrix
5
mid 2 s 1
0
moderate [ n 2
2 30
3 n0_DR 3 bt} 1
1 VGG 16 é
H
proliferative 2 = 3 20
severe "
Predicted Label
Confusion Matrix
mild a0
moderate
0
3 o DR
3
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T 0 ResNet50, meanwhile, demonstrated overall accuracy
B comparable to VGG-16 and VGG-19, but with more varied
I ' E performance across categories. Accuracy in the mild and
" severe categories was relatively high, reaching 79%, but
. ’ precision and recall in categories such as no DR and
ResNet w proliferative were very low, suggesting difficulty in detecting
3 (Residual F R : these classes effectively. Detailed results for ResNet50 are
Network) = provided in Table VI, showing that while the model excels in
B ' L} stability across certain categories, it is less effective in
providing detailed detections.
TABLE VI.  RESNET50
Dot v — Class Accuracy Precision Recall F1_score
Mild 79% 18% 0% 0%
i . " Moderate 63% 18% 47% 27%
s S L . No_DR 67% 15% 20% 17%
DenseNet ; : Proliverative | 72% 21% 22% 22%
4 (Dense 53 oor| w » 2 2
Convolutional F 2 Severe 79% 33% 0% 0%
Network) roneron S - " Overall 72% 18% 18% 18%
e - DenseNetl121 achieved slightly better results than VGG-
IR PR & 19, with an overall accuracy of 72%. This model performed
T i € better in detecting mild and moderate categories but still
exhibited weaknesses in precision and recall for several
TABLEIV. VGG-16 classes. These findings are further elaborated in Table VII,
— which shows that DenseNetl21 offers stable results, despite
Accurac Precisio Recal F1_scor . . ..
Class v N \ o its overall accuracy being similar to other models.
Mild 79% 21% 3% 28% Neve.rtheless, its d@eper connectivity ar}d additional layers
- - - - contributed to relatively good classification performance for
Moderate 68% 31% 0% 0% certain classes.
No_DR 74% 16% 1% 13%
}e)rollveratlv 67% 16% 34% 920 TABLE VII. DENSENETI121
Severe 79% 12% 0% 0% Class Accuracy Precision Recall F1_score
Overall 73% 19% 19% 19% Mild 74% 19% 12% 15%
. . 0 0 0 0
In contrast, VGG-19 (Table V) yielded slightly lower Moderate 67% 20% 39% 27%
results than VGG-16, with an overall accuracy of around 72%. No_DR 1% 20% 23% 22%
Precision and recall for the mild and moderate categories were Proliferative | 72% 17% 15% 16%
also lower compared to VGG-16 (Table 1V), although - - - -
accuracy in categories such as proliferative and severe Severe 76% 26% 13% 17%
remained relatively strong. These results are further detailed in Overall 72% 20% 20% 20%

below table which highlights the model's weaknesses in recall
for certain classes, indicating challenges in detecting rarer or
harder-to-recognize cases.

TABLE V. VGG-19
a Accurac Precisio Recal F1_scor

ass y n 1 e
Mild 66% 18% 34% 24%
Moderate 71% 22% 28% 25%
No DR 79% 2% 0% 0%
5 roliverativ | 740, 22% 18% 2%
Severe 72% 19% 2% 19%
Overall 72% 20% 20% 20%

MobileNet and NASNet-Mobile, both with similar overall
accuracy of around 72%, exhibited highly variable
performance across different classes. MobileNet performed
best in the moderate category, with an accuracy of 79%, but
its precision and recall were very low for several other classes.
Detailed results for MobileNet, shown in Table VIII, suggest
that while MobileNet can effectively recognize certain classes,
it tends to produce many inaccurate predictions in others,
such as no_DR and proliferative.

NASNet-Mobile, which also showed unsatisfactory results
with very low precision (around 2%), despite having similar
accuracy to other models, struggled significantly in detecting
nearly all categories accurately. Further details for NASNet-
Mobile are provided in Table IX, which illustrates how its
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precision and recall were much lower compared to other
models.

TABLE VIII. MOBILENET

Class Accuracy Precision Recall F1_score
Mild 78% 34% 1% 15%
Moderate 79% 33% 41% 0%
No_DR 60% 19% 61% 29%
Proliferative 72% 17% 15% 16%
Severe 75% 13% 0% 0%
Overall 72% 19% 19% 19%

TABLEIX. NASNET MOBILE

Class Accuracy Precision Recall F1_score
Mild 67% 20% 39% 26%
Moderate 75% 21% 15% 17%
No_DR 75% 22% 15% 18%
Proliferative 73% 17% 13% 15%
Severe 72% 18% 17% 17%
Overall 72% 2% 2% 20%

In summary, although there are performance differences
among the models, VGG-16 and ResNet50 demonstrated more
stable and favourable results in several categories compared to
VGG-19, DenseNetl21, MobileNet, and NASNet-Mobile,
which exhibited weaknesses in precision and recall for
specific categories. The selection of the appropriate model
depends on the class to be detected accurately and the balance
between accuracy and the model's ability to identify each
class effectively. The model will improve significantly if:
Change the loss to categorical crossentropy, Unfreeze some
final layers, Reduce extreme augmentation, Correctly compute
multi-class metrics.

VI. CONCLUSION AND FUTURE WORK

This study presents a comprehensive evaluation of six
CNN architectures for diabetic retinopathy classification using
a clinical dataset from South Sumatra. The study has two main
scientific contributions: first, it provides a direct empirical
comparison of several CNN architectures on a localized
clinical dataset, addressing the gap between research and
practice where models are typically only validated on large
public datasets. Second, it introduces a novel preprocessing
pipeline that combines grayscale conversion and Canny edge
detection, effectively enhancing critical retinal features
without increasing model complexity. Building on these
contributions, VGG16 demonstrates that classic CNN models
still offer robust and interpretable results for DR detection,
especially when combined with effective preprocessing and a
balanced dataset. However, the dataset size of 3,000 images
likely contributed to model underfitting and suboptimal
performance on certain classes, particularly "Moderate" and
"Proliferative” DR. While grayscale conversion is beneficial
for edge enhancement, it may also discard color information
that could help distinguish specific lesions such as
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hemorrhages or exudates. Additionally, technical constraints
in the training process, such as the use of binary cross-entropy
for multiclass classification and excessive layer freezing
during transfer leaming, further limit the model's ability to
effectively learn dataset-specific features.

Future research will address these limitations through key
strategies. To improve performance and interpretability, we
will explore hybrid models that integrate CNN features. We
will also incorporate attention mechanisms to enhance lesion
localization. Additionally, we will investigate ensemble
methods that leverage the strengths of different architectures.
These approaches aim for a more robust, accurate, and
clinically applicable automated DR screening system to
support ophthalmologists in early diagnosis.
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