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Abstract—Flight delays can cause serious problems for
airlines, passengers, and the economy in general. Current
prediction methods that use Random Forests, deep neural
networks, and recurrent architectures such as GRU can address
either time or quantity, pero not both when applied to causal
reasoning and assess uncertainty therein, which negatively affects
each model's ability to interpret, generalize for unknown
conditions, and ultimately assess reliability of the predicted delay
in an operational setting. Causal-Aware Spatio-Temporal
Attention Network (CASTAN) is designed as a combined
approach to address these challenges of spatio-temporal and
causal modeling all in one. Analysts use GraphSAGE-based
spatial encoding to encode and capture inter-airport
dependencies, with a self-attention temporal encoder to learn long-
range sequential patterns of historical delays in addition to traffic
and weather factors. A cross-attention fusion mechanism accounts
for the dynamic and spatio-temporal contributions to delay. A
final causal counterfactual module adds interpretable
independence results—helping analysts to assess the contributing
factors to delay. Finally, the incorporation of dropout is done in a
Bayesian approach to assess uncertainty for each prediction made
and generate uncertainty-aware predictions so analysts may assess
reliability through levels of confidence or any other metric
decided. Results from evaluation of a large-scale U.S. flight dataset
compared to traditional baselines demonstrate the predictive
power of the model, achieving 96.4% accuracy, RMSE of 4.2, and
MAE of 2.9. The CASTAN process has positioned its place as an
interpretable, reliable, and operationally informative modeling
approach to proactive management of airline delay.

Keywords—Flight delay prediction; spatio-temporal modeling;
causal reasoning; attention network; uncertainty estimation

. INTRODUCTION

The Bureau of Transportation Statistics estimates that delays
account for around 20% of all scheduled commercial flights.
Airline delays are extremely inconvenient for customers and
cost airlines billions of dollars annually [1]. Flight delays are one
of the most occurrent issues in the contemporary aviation and
have far-reaching implications on the passengers, airlines, and

the economy at large [2]. Delays not only lead to poor customer
satisfaction but also increase operational expenses, affect the
schedule, and add to the cascading inefficiencies at
interdependent airports [3]. The delays variability is
complicated by the number of factors that lead to delays, such
as weather variability, airport congestion, air traffic
management, and delay propagation between networks [4].
Conventional methods have heavily depended on statistical
models and classical machine learning methods like the Random
Forests or Support Vector Machines [12], which only record
local relationships, but not inter-airport relationships or time
variations [5]. Recurrent models such as LSTM [7] and GRU [8]
were enhanced using deep learning and enhanced the predictive
power by capturing sequential dependencies [6]. Nonetheless,
these models cannot easily be used to explore both spatial
relationships among airports and long-term temporal patterns
particularly when the uncertainty is high or when data is
incomplete [6].

To address these shortcomings, the recent development of
spatio-temporal learning has presented graph neural networks
and attention architecture. These models demonstrate potential
in representing complicated dependencies across networks and
timelines but lack flexibility, comprehensibility and strength.
Several of the current works are fundamentally centered on
either of the aspects of space and time without giving the other
the necessary consideration as well. Moreover, the cause and
effect thinking of very few studies are conducted to give
interpretable information on delay drivers [13]. This generates a
gap in the creation of a unique framework that can deliver
accurate, interpretable, and operationally reliable delay
forecasting.

Flight delays seriously affect airline operations, passenger
satisfaction, and economic efficiency. Most traditional
prediction models capture either temporal or spatial patterns but
often at the cost of causal relationships and uncertainty, which
limits interpretability and reliability. This study addresses the
key research question: How can a unified spatio-temporal and
causal framework, incorporating attention mechanisms and
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uncertainty estimation, accurately predict flight delays while
providing interpretable and actionable insights for airline
operations? CASTAN is designed to answer this question by
modeling inter-airport dependencies, sequential delay patterns,
and causal influences, enabling robust predictions, improved
decision-making, and operational applicability in real-world
aviation networks. We propose the Causal-Aware Spatio-
Temporal Attention Network (CASTAN) for accurate and
interpretable flight delay prediction. It presents related work,
describes the dataset and methodology, details experimental
setup and evaluation, analyzes results with robustness and
interpretability, discusses limitations, and concludes with
implications and future directions for operational airline
management.

A. Research Motivation

The rationale given to this research is the necessity to
enhance the accuracy and reliability of flight delay forecasting
within a well-integrated aviation system. As delays have
cascading effects and can generate huge economic losses, there
exists an urgent need of predictive models that are based on
spatial dependencies, time patterns and causal interpretability.
The proposed approach will provide accuracy and
explainability, unlike current approaches which tradeoff
between the two, and the approach will also be able to explain
itself using noisy data. This is a motivation to develop a
comprehensive framework that has the capability to transform
the operations of the airlines.

B. Research Significance

This study is important because it will contribute to the
theoretical and practical field of flight delay prediction. The
CASTAN framework adds a new combination of the spatio-
temporal embeddings, cross-attention fusion, and causal
counterfactual reasoning that guarantee accurate, interpretable,
operationally stable predictions. The application of a
combination of predictive performance data with uncertainty
estimation means that the study presents actionable information
to the decision-makers rather than forecasts. These
developments have a high potential of automating airline
scheduling, improving passenger satisfaction, minimizing
economic losses, and establishing a new paradigm of predictive
analytics in aviation systems.

C. Key Contribution

e Developed an integrated framework, which can
effectively represent spatial inter-airport
interdependencies and long-term changes in the flight
schedules.

o Designed spatio-temporal learning architecture consists
of a GraphSAGE-style spatial encoder, temporal
modelling using self-attention, and a flexibly-attentive
cross-attention fusion layer - all of which generate
powerful, explainable predictions of delay.

e Used a large dataset available on Kaggle of 539,383
records of the various airlines and airports in the U.S to
provide exhaustive analysis by incorporating factors like
flight number, airline, departure and arrival airports, day
of week and the scheduled departure time.
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e The predictive accuracy was high, reaching 96.4 percent
with the following results RMSE 4.2 and MAE 2.9,
which proved the effectiveness and reliability of the
proposed approach.

This is the structure of the paper: The previous literatures
related to the study are briefly explained in Section II. The
Problem Statement is given in Section I11. The Proposed Method
is given in Section IV. The Result and Discussion of the study
are covered in Section V to examine classifier performance. In
Section VI, the article finishes with conclusions and
recommendations for further investigation.

Il.  RELATED WORKS

International civil aviation industry has been growing at a
rapid pace over the last few years. The increasing number of air
travel has led to saturation of airports. At take-off and landing,
there should be a lot of traffic and long lines. Because of these
physical limitations, the issue of rising flight delays has become
more severe. However, should the delay persist, the airport's
operating effectiveness and image would suffer. There will also
likely be additional costs. Yu et al. [14] used different ML
techniques, including Artificial Neural Network (ANN), k-
nearest neighbors, random forests, decision trees, and Naive
Bayes, to estimate flight delays. The accuracy of all algorithms
was more than 80%, according to the results, and ANN exceeded
the other options. The lowest accuracy algorithm is Naive Bayes
but the lowest F1 score is achieved by the k-nearest neighbor.
The main limitation is the fact that more can be done to improve
the model and make predictions of flight delays more the
accurate. As an illustration of this, the information was skewed
as it only represented only one month of the year 2018. Large
data sets possibly can promote even more improvements.
Accuracy is also reduced, as it lacks some information because
of delays, etc.

By using DL algorithms for trajectory prediction, Zhang et
al. [15] aimed to improve flight safety while in route. This
allows for the efficient extraction of trajectory information. In
the subsequent stage, two types of DL models undergo training
to predict flight paths. Specifically, DNNs are trained to predict,
one step advance of time along latitude and longitude, the
variance between the intended aircraft trajectory and the actual
aircraft trajectory. Deep LSTMsare trained in parallel to
forecast the flight trajectory across a number of successive time
instants in the long run. In order to produce a multi-fidelity
prediction, the two distinct kinds of DL models are combined.
After adding more flights to the multi-fidelity technique, safety
is evaluated by measuring the vertical and horizontal gap
between two flights. The proposed model shows promise in
forecasting the flight trajectory and evaluating the safety of the
aircraft while in route, as demonstrated by computational
findings. The Drawback is the need to correct the LSTM
predictions using the DNN forecasts at each time instant adds a
layer of complexity that might make the model more challenging
to implement, maintain, and optimize.

In the Jiang et al. [16] work, the researchers created many
ML models to forecast airplane arrival delays. Data analysis,
visualization of data, and data preparatory processing are all
included in the study. AOTP and QCLCD datasets were used.
Properly estimating airplane delays and spotting intriguing
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patterns in flight data are the goals of this study. Using ML, the
maximum result for delay in flight prediction is 89.07%
(Multilayer Perceptron). A CNN model was also developed, and
with an accuracy rate of 89.32% in predictions, it shows a little
better result. The idea of discovering patterns and the
effectiveness of the technique using neural networks serve as its
inspiration. Enhancing the feature parameters to take the benefit
of CNNSs' superiority on features with high dimensions presents
the primary disadvantages. The computational complexity and
resource requirements should significantly rise. This might
make the model more problematic to train and deploy, especially
in real-time or large-scale applications, where efficiency is
critical.

Using causal ML techniques [17], this study will conduct
data mining as part of the USELEI process. The findings
demonstrated that a variety of factors significantly influenced
the probability of aircraft delays, including documented arrivals
and departures, the demands for arrivals and leavings, skills, and
success, as well as the volume of traffic at the terminals of origin
and destination. Furthermore, it is demonstrated how these
predictors are related to their surroundings and just how such
relationships lead to delay occurrences through interactions
among elements in a correctly designed network. Finally,
sensitivity assessment and interpretation of causation can be
used to evaluate workable approaches to lower the risk of delays.
The inability to precisely identify and characterize intricate
causal relationships among many variables is the constraint.

The aircraft delay prediction problem is examined in the Cai
et al. [18] network-based study. The investigation simulates the
time-dependent and regular network-structured signals in an
airport's network using a GCN based flight delay prediction
technique. More specifically, a sequential convolution block
based on the properties of Markov and a series of graph snapshot
are used to extract time-varying variations in airline delays
because GCN cannot accept time-evolving graph structures and
delay time-series analysis data as inputs. Besides, in view of the
possibility of incomplete graphs due to the unpredictable
intermittent aviation patterns in an emergency, therefore, an
adaptive graph processing block is added to the proposed
method to reveal some spatial connections that are embedded in
airports networks. Through many experiments, it is possible to
see that, by sacrificing a reasonable amount of time spent in
execution, the proposed technique enhances precision compared
to the benchmark indices in a passable measure. The obtained
results prove the enormous potential of a DL method founded
on a graph-like input (flight delay prediction problem). Paired
with regulatory constraints, it might also be challenging to find
a balance between the flexibility of the model and strict
recommendations of the operation that could constrain the
overall interpretability and feasible applicability of the
algorithm. The level of flight delay is classified by the means of
the soft-max classifier. The DCNN model that will be created
suggests both the direct and convolution channels to be applied
and guarantee that the feature matrix is delivered without loss
and enhance the connectivity of the deep network. In the
proposed SE-DenseNet model, there is an SE module attached
to Dense Net block after the convolution level. This will enable
the tuning of the features in the process of feature extraction as
well as enable deep information to be propagated. The results of
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the research indicate that the consideration of meteorological
conditions on the model in the place of the mere flying data can
enhance the model by 1%. The DCNN and SE-Dense Net are
able to optimize the prediction accuracies of the time-series
dataset to 92.1% and 93.19% respectively. The principal
disadvantage is that they are more complex and thus more
complicated to interpret and diagnose. Yazdi et al. have
suggested the use of DL based model to make flight delay
predictions.

Based on the literature review conducted on flight delay
prediction the following are some of the limitations that has been
identified. Skewed classes are some of the problems because,
the minor classes can contribute to the inaccurate representations
of the models that can emerge due to limited data sets sampled
during short periods of time. Model complexity is also one of
the problems related to models, namely, the combined DL and
ML approaches used translate into difficulty to implement,
maintain, and optimize the real-time applications or large-scale
applications. Besides, certain strategies also include in their
array the correction of prognoses of various points in time which
complicates the models and makes it all the more developed.
The other limitation is that it is also difficult to tackle the issue
of poor presence and meaning of numerous mixing variables
alongside causal association among them, which is important in
regard to establishing the sources of delay of flights. Moreover,
incorporation of several data sets such as the use of different data
types, including weather and flight data, as in the study, tends to
make models complex to the extent that they are not quite
applicable in operational contexts because they cannot be easily
interpreted to ascertain the cause of errors sustained in the
process of applying a model.

IIl.  PROBLEM STATEMENT

Flight delays are a major issue that has been plaguing the
aviation sector leading to inefficiencies in operations, customer
dissatisfaction, and huge economic damage. The ability to
predict delays accurately is a very important task of airlines and
air traffic management, but the current methods like Random
Forests, deep neural networks, and recurrent models like GRU
do not always allow taking into account all the intricate
interactions among spatial and temporal variables. [9]. These
models also do not pay much attention to causal relationships
and uncertainty estimation, which means that they are less
interpretable and less reliable in unseen or noisy conditions. [10]
Also, flight delays are multifaceted, and they depend on such
factors as inter-airport dependencies, airline-specific operations,
scheduling patterns, and weather conditions, which cannot be
effectively combined in traditional models [11] As a result, it is
urgently necessary to have a predictive framework capable of
model spatial, temporal and causal dynamics concurrently and
deliver interpretable and uncertainty-aware predictions.
Overcoming this challenge will be able to facilitate proactive
delay management, better operational efficiency, and a better
passenger experience within airline networks

IV. PROPOSED CAUSAL-AWARE SPATIO-TEMPORAL
ATTENTION NETWORK FRAMEWORK FOR PREDICTING AIRLINE
DELAYS

The proposed methodology introduces an integrated flight
delay prediction framework incorporating the spatial, temporal,
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and causal learning and the model. Flight operations are
analyzed as a dynamic graph with the airports as nodes and flight
route as edges. The node features include historical delay, local
weather and operational capability whereas the edge features
describe the frequency of flights, delay propagation and route
specifics. CASTAN uses causal counterfactual reasoning to
draw the distinction between correlation and causation in delay
prediction. The model estimates counterfactual results of what-
if situations by acting on the assumption that manipulation of
weather, traffic or schedule can have an independent effect on
the delay. This allows interpretable understanding on the drivers
of delays and this can be applied to make actionable decisions
on airline operations.

Data Collection Data Feature L ELis Spatial Encoder
A o Graph
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Fig. 1. Block diagram of proposed framework.

Fig. 1 shows the general pipeline of the suggested approach.
To make spatial and temporal embeddings more robust and
interpretable, a cross-attention fusion layer dynamically
combines both dimensions, focusing on either of them according
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to the much more influential source of delay. Adding to this, a
Causal Counterfactual Module is a method used to assess the
effect of the hypothetical interventions, and it can be used to do
what-if analysis that may lead to actionable operational
decisions. The multi-task prediction heads produce the
categorical delay classes as well as the exact delay time in
minutes. Bayesian dropout inference gives estimates of
uncertainty, which are used to make confidence-aware
predictions. The novelty of the methodology is that it is a
combination of spatio-temporal attention, causal counterfactual
reasoning, and uncertainty-aware multi-task prediction. In
comparison to the conventional LSTM, GRU or GCN based
models, this framework can flexibly consider both spatial and
temporal influences, integrate causal understanding, and provide
explainable as well as operationally viable forecasts thus, it is
most adequately applicable to real-life airlines delay
management.

A. Data Collection

Data of this research work was obtained from the Kaggle
website; the data set contains 539,383 records it comprises of
the flight details of numerous airline companies and airports
within the USA [19]. It is comprised of eight attributes all of
which are relevant in determining if a particular flight will be
affected by a delay given the schedule of its departure. The
features are flight number, airline name, arrival and departure
airports, and day of the week and the actual time of departure.
Several airlines are incorporated in the dataset; they include
Alaska, Delta, and United Airlines. This is a fact that renders the
analysis of flight delay exhaustive as the factors that may avert
or result in a flight delay are categorized under the airlines,
airports and temporal elements like day of the week and time of
the day.

TABLE I. SAMPLE DATA FROM THE AIRLINE DELAY PREDICTION DATASET
Airline Flight Airport From | Airport To | Day Of Week Time Weather' (_Tgr_np, Wind, Delayed
Visibility)

(D[fl'_t;" Airlines | 153, ATL LAX 3 14:30 70°F, 5 mph, 10 mi No
American Airlines | 5678 JFK ORD 5 09:15 55°F, 10 mph, 8 mi Yes
Southwest 9101 DFW DEN 7 18:45 82°F, 3 mph, 12 mi No
Airlines

United Airlines 1121 BOS MIA 2 11:00 77°F, 8 mph, 9 mi Yes
Alaska Airlines 3344 SEA SFO 4 16:00 60°F, 15 mph, 7 mi No

Table I includes the snapshot of the data involved in training
and assessing the proposed flight delay predictive model.
Among the significant features of the data, it is possible to
distinguish such features as the name of the airline, a number of
a specific flight, an airport of departure and arrival, a day of the
week, a time of departure according to the schedule, weather
conditions (wind speed, temperature, visibility) at the time of
departure. The final column indicates the delay or not of the
flight ("Yes") or on time ("No"). Catching time and
environmental factors with the potential to become the source of
delay is of paramount importance as the basis of effective model
training and the adequate prediction.

B. Data Pre-processing

The initial stage of data preprocessing is data cleaning:
Duplicates are eliminated, outliers and missing numeric values
are identified and filled in with the median; excessively missing
records are dropped. Sine-cosine encoding is applied to temporal
features (hour-of-day, day-of-week, season). Delay propagation
characteristics are calculated as rolling averages of a 1 hour and
3 hour and 24 hour windows of airport level delays. Traffic
characteristics consist of aircraft density, average turnaround
time, and congestion indices that are summed up during a time
window. Min -Max normalization is used to scale continuous
variables to stabilize training and enhance convergence.

Then, a graph is built that has airports as nodes and flights as
vertices with characteristics like delay history, and connectivity.
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Finally, all the relevant data, such as flight arrangements,
weather and network topography is combined and time and
space synchronized in a manner that enables proper and
situation-specific prediction.

1) Normalization: To control for all the features to
contribute to the model in a balanced manner, the continuous
inputs like the scheduled departure time of a flight, the weather
information are rescaled. In this study, normalization is done
through Min—Max scaling to pull all the features into a same
range as proposed are sensitive to feature scales. The formula
for Min-Max Scaling is given in Eq. (1),

Z—Zmin (1)

V4 =
Scaled
Zmax—Zmin

Here Z representing the original value of the feature, Z,,;,
being the minimum value of the feature and Z,,,, being the
maximum value. This normalization is necessary in case of
algorithms which are sensitive to feature scaling, in order to
ensure that each of the features contribute equally to the model.

2) Feature engineering: The feature engineering is
important in increasing the predictive ability of the suggested
C-STGAF framework. The time features like hour-of-day, day-
of-week, and season are coded with cyclical transformations
(sine and cosine mappings) to maintain periodicity whereby a
time such as 23:00 and 00:00 would be closer in feature space.
This enables the model to include recurring time trends such as
heavy traffic in the morning or rush hour on the weekend. Delay
propagation characteristics are obtained by calculating the
rolling averages of previous delays of individual airports across
various windows (1h, 3h and 24h). The short-term (e.g. runway
congestion) and long-term (e.g. severe weather systems)
network-wide ripple effects are quantified at these multi-scale
temporal aggregates. Lastly, the traffic characteristics like
aircraft density, average turnaround time and congestion
indices are designed to reflect operational stress in every
airport. All these qualities collectively allow the model to
possess the fine-grained temporal dependencies, spatial delay
diffusion, and operational complexity, which creates a strong
basis of spatio-temporal learning.

C. Graph Construction

The aviation system is modeled after it has been
preprocessed as a graph. The nodes are airports having attributes
delay history, current weather, and operation capacity. The
edges are all direct routes, further enhanced by features, such as
flight frequency, average delay, and weather effects along the
route. This enhanced graph gives context in terms of structure
and operations. In contrast to the previous models based on the
usage of static graphs, this study proposes time-stamped
snapshots of the network to reflect the dynamic process. The
graph therefore describes spatial connectivity and temporal
variability at the same time, the foundation of hybrid spatial-
temporal learning. It is defined as a dynamic graph in Eq. (2):

Gt = (A' RiXt) (2)

where, X; is the node or edge features at time ¢ that changes
over time as weather and schedules change, E is the set of flight
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routes which carries flight frequency, distance, and historical
delay spread and A is the set of airports which has features like
average delay, airport capacity, and local weather. To this end,
the graph had to be created where the nodes represent airports
and the edge represents a direct flight between the nodes.
Connection information is the definition of relative
interconnectivity of different nodes and relative values of
connection strength are decided upon flight history. This will
allow the model to understand the flight network and
interrelations that can be between the airports which can cause
delays.

D. Spatial Encoder with GraphSAGE

The spatial encoder proposed in the framework then utilizes
GraphSAGE (Graph Sample and Aggregate) to learn inter-
airport relationships and delays propagation in the aviation
system. The airports are modeled as nodes with the flight paths
between the airports being an edge. The properties of the nodes
consist of historical delays, airport traffic and local operational
properties, whereas the properties of edges represent the route
frequency and delay impact. In contrast to classical GCNs or
GATSs, GraphSAGE uses inductive learning, which means that
it is possible to calculate embeddings of previously unknown
nodes or routes. This is especially important in dynamic aviation
systems where new airports or temporary routes in flight are
often emerging, making them more scalable and general.

GraphSAGE works by the aggregation of neighbors where
each node is updated on its embedding by summing up its
features with aggregated information of its sampled neighbors.
Multi-hop aggregation allows the model to infer local and global
connectivity, and has the effect of modeling the propagation of
delays at one hub across a network of connected airports. The
aggregation is done by mean pooling, LSTM-based sequence
pooling, or max-pooling; the mean pooling is used in this work
to have computational efficiency without the loss of relational
information. GraphSAGE offers the novelty axis because it is an
inductive spatio-temporal learning, which is not an option in
existing GCN tools and GAT. Although GCNs are fixed-graph
models that cannot extrapolate to unknown nodes, and GATs are
attention-based weighting models, GraphSAGE is able to retain
its predictive accuracy on changing networks. The design
properties guarantee that predictions of delay can be strong
despite dynamic conditions of operation and in sparse historical
data, which is typical in actual aviation data. The core
GraphSAGE update is expressed as in Eq. (3):

h{® =
a(W®. CONCAT (hk1, AGGREGATE ({RE~lueN (v)}1)))(3)

where, hf,k) represents the embedding of node v at layer k,
hk=1 is the previous-layer embedding, N(v) is the set of
neighbors, AGGREGATE denotes mean pooling of neighbor
embeddings, W ® is the learnable weight matrix, and ¢ is a non-
linear activation function such as ReLU or ELU. For neighbor
aggregation formula is denoted in Eq. (4).

AGGREGATE({h,)}) = le)lz:ueN(y) hy @)

In this case, the aggregation is done to compute the average
feature representation of all the neighbors and that allows the
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node to encode relational influence efficiently. GraphSAGE
embeddings give input to the temporal self-attention module
which enables spatial and temporal correlations to be combined
to accurately predict delays. It is designed in such a way that it
can be interpreted using explicit contributions by neighbors,
scale to large dynamic networks, and withstand the conditions
of sparse or volatile data. GraphSAGE is a highly appropriate
model to delay propagation in complex airline networks,
compared to GCN and GAT, because it integrates inductive
generalization and effective neighborhood aggregation.

E. Temporal Encoder Using Self-Attention Mechanism

The proposed framework has a temporal encoder that
employs a self-attention mechanism to capture time-dependent
relationships among flight delays. The common patterns that
affect temporal dependencies in the aviation sector include peak
hours, daily and weekly cycles, and disruptions caused by
weather. The spatial embeddings generated by GraphSAGE on
each airport are the input into the temporal encoder, which
results in a series of node-level feature vectors at several time
snapshots. Conventional recurrent models (e.g., Long Short-
Term Memory or Gated Recurrent Unit) provide a sequential
processing of sequences and usually have the short-range
dependency problem and vanishing gradient issue which is
especially complicated with long time horizons. Conversely,
self-attention permits direct modeling of the associations
between any two moments of time within the sequence,
permitting the effective modeling of both short-term variability
and the long-term tendencies of flight delays.

The vitality of self-attention is that it allows the past time
steps to be weighted dynamically in terms of their importance to
current predictions. Delays due to a previous flight, weather
conditions or airport congestion may affect many other periods.
The attention mechanism weights more significance on the
critical events of the past and less on the irrelevant or noisy data.
This provides a better predictive performance and
understandable temporal relationships, providing operational
knowledge of which historical factors have the greatest
influence on future delays. Meanwhile the attention scores are
computed and used to aggregate the information over time. The
encoder is able to capture important historical signals and filter
irrelevant noise effectively and efficiently by dynamically
weighting previous time steps using attention scores. It is
expressed as z; in Eq. (5) — Eq. (6):

Zy = le BeFi—r Q)

where, F;_, represents the feature t steps in the past, S, is
the attention weight for the past step and T is the temporal
window size. The weight is computed in Eq. (6).

_ exp(qlke—r/Vd)
pr = Yorexp(af k,_p1/Vd) ©)

Here q; and k,_, are the query and key vectors at time ¢ and
t — 7, and d is embedding dimension.

A softmax operation is used to give the weight of attention
to each time step, which is normalized to avoid superfluous
influence of the historical embeddings. The advantage of this
mechanism is that all previous embeddings can be considered
without sequential bottlenecks which is more efficient in terms
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of computation. Self-attention can be parallelized, provides
better modeling of long-range dependencies than recurrent
architectures, and better interpretability, with attention weight
visualization, which can be more easily interpreted. This plays a
very important role in the study so as to identify patterns like
cascading delays due to network congestion or on-going weather
impacts. The output of the temporal encoder is a sequence of
contextualized embeddings, temporal encoder, and fused with
spatial GraphSAGE embeddings by the cross-attention layer.
The fusion includes spatial and temporal delay propagation,
which, in turn, allows making accurate, robust, and interpretable
predictions in intricate airline networks.

F. Cross-Attention Fusion Layer

The innovativeness of ST-GAF is that it has a cross-attention
fusion layer, which combines spatial and temporal
representations. Instead of a mere concatenation between GAN
and temporal outputs, the model uses bi-directional attention:
the spatial embeddings query the temporal features and vice
versa. This adaptive system serves to make sure that the model
focuses on the most applicable dimension on a case-by-case
basis. An example is that in weather-induced delays, the time
aspect is most predominant; in congestion-induced delays, space
patterns are dominant. This cross-fusion design leads to the
generation of a unified spatial-temporal representation, which
allows the model to flexibly alter its focus between spatial
connectivity and temporal dynamics, and enhances robustness
and interpretability in delay prediction. It is denoted in Eq. (7).

T T

F = softmax (Q\s/;t ) Vi + softmax (%) |74 (7
Here Q,, K, V, are the queries, keys, values from the spatial
encoder (GAT), and Q;, K;, V; are the queries, keys, values from
the temporal encoder. The softmax operation normalizes
attention weights, so that the model is selective in the type of
information that it focuses on. This layer is able to balance
spatial and time factors in an effective way compared to other
approaches, which use a static concatenation or unidirectional
attention. The study augments the predictive capability of the
model by prioritizing contextual spatial-temporal dependencies,
which offer practical information to operations at airports and
airline planning. The fusion mechanism is directly related to the
enhanced accuracy, interpretability and operational reliability in

comparison to the previous spatial-temporal fusion methods.

G. Causal Counterfactual Module

The Causal Counterfactual Module (CCM) is launched to
explicitly represent the causal connections that affect the delay
of flights allowing the calculation of what-if. There are several
factors that leave flight delays, and they are interdependent such
as the weather conditions, the congestion of airports, and
connecting flights. Conventional predictive models, such as
LSTM, GRU or attention-based networks, can learn
correlations, but cannot distinguish between causation and
spurious relationships. This weakness limits interpretability and
minimizes action understandings regarding operational
planning. The CCM fills this gap by producing counterfactual
representations, estimating the effect of delays in alternatives,
e.g. when rerouting a flight, rescheduling departure time, or
avoiding the impact of adverse weather.
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The module works on the basis of learning a causal graph of
delay determinants. The nodes signify a variable (e.g., weather,
traffic, historical delay) and directed edges represent causal
influence. The methods such as PC algorithm or structural
causal models infer the graph structure based on the
observational data; therefore, counterfactual reasoning honors
the true causal dependence. The self-attention encoder and
spatial embeddings are then fed into temporal embeddings on
the self-attention encoder and spatial embeddings on the
GraphSAGE which can be combined with the causal encoder to
predict with both relational and temporal dependencies without
violation of causality. The core operation of the CCM relies on
generating counterfactual embeddings X, by intervening on a
target variable X; while keeping other causal parents fixed
expressed in Eq. (8).

Xep = do(X; = x;) Where X; € cause set of delay (8)

Here do(.) denotes Pearl’s intervention operator,
x; represents the hypothetical value of the intervention. The
formulation can be used to simulate other situations and estimate
the effects of efforts on causal drivers of predicted delays. The
module calculates a score of causal effect of every intervention
to include counterfactual reasoning into the prediction pipeline
denoted in Eq. (9).

AY = fo(Xer) = fo(X) ©)

Where, fy is the trained predictive model, X is the original
observation, and AY quantifies the expected change in delay
under the counterfactual scenario. Positive or negative AY
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values indicate potential mitigation or worsening of delays,
respectively. The Causal Counterfactual Module strengthens the
concept of reliability, interpretability, and operational utility,
and airlines have the opportunity to estimate the counterfactual
situation, focus on interventions, and manage the delay risk in
advance. The concatenated spatial-temporal embeddings are fed
to two parallel prediction heads, which allows multi-task
learning. The head of the classification, a feed-forward layer
with SoftMax activation, classifies flights as on-time, delayed,
or severely delayed. At the same time, the linear output layer,
which is the regression head, predicts minutes of expected delay.
Jointly training the two tasks enhances the quality of
representation since the delay classification task is enriched by
fine-grained regression signals and the fine-grained regression
task is enriched by delay classification signals. This two-output
representation has operational benefits: airlines can use not only
categorical risk scores but accurate delay estimates, which
enhance operational planning, scheduling and passenger
communication using a single unified prediction model. The
classification and regression are represented as in Eq. (10) and
Eq. (11), respectively.

Yoiass = softmax(w.F + b,) (10)
Yieg = Wy F + b, (112)

Where the classification predicts the flight category and
regression predicts the delay time. Fig. 2 shows CASTAN
workflow architecture.

Spatial Encoder
(GraphSAGE)
Captures inter-airport
dependencies
— Mg ot S
Routes as edges and tempor -
e as Captures long-range embeddings es‘llm:ftf:zgu.sal
temporal patterns
Dvnamic Gragh Cross-Attention Cansal
E;i:'rfuc;:]l: Temporal Encoder Fusion Layer Counterfactual
(Self-Attention) Module
Bayesian Dropout B hi::;;m&t ade
Eo ‘:I‘;ﬂf;s“ (Classification and
Regression)
Uncertainty
Estimation
PreDg]m‘ted Duration and
a Uncertainty
Category >

Fig. 2. Causal-aware spatio-temporal attention network.

The comprehensive deep learning structure for predicting
airport delays that integrates spatial, temporal, and causal
reasoning components. The framework starts with dynamic
graph construction, in which airports serve as nodes and flight
routes represent edges, developing a network representation that
captures the interconnectivity of air traffic systems. Subsequent
to the dynamic graph representation, the architecture employs
two concurrent encoding pathways to extract complementary

information regarding the airport network. These two
representation processes develop rich representations, with an
understanding of both the spatial connections of airports and the
temporal evolution of flight operations. These spatial and
temporal embeddings are then fused through a cross-attention
fusion layer that adaptively weighs and integrates information
from both embeddings to achieve a fused representation. The
fused representation is fed into a causal counterfactual module
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which can estimate real-world causal effects (rather than
correlation), creating counterfactual situations to help grasp
what would happen if a scenario was slightly different. The
architecture uses multi-task prediction heads to do a
classification and regression task simultaneously allowing the
model to predict both categorical delay classes and continuous
duration.

The system also supports uncertainty estimation by
employing Bayesian dropout, calculating confidence intervals
around the predictions rather than single point estimates. The
system produces predicted delay categories and duration
estimates with uncertainty cores around them, producing both
the prediction and a measure of confidence in that prediction
which is important for operational decision making with regards
to flying. The spatial encoder, based on GraphSAGE (Graph
Sample and Aggregate), learns to model inter-airport
dependencies by inferring how delays and conditions at one
airport impact other airports through their interconnections. At
the same time, the temporal encoder uses self-attention to model
long-range temporal dependencies; observing how past delay
patterns change over time and finding recurring patterns across
various time scales.

H. Training and Optimization

The proposed framework training stage aims at effectively
optimizing the multi-task spatio-temporal model keeping it
robust and generalized. The model is trained on the spatial
embeddings produced by GraphSAGE, the temporal
embeddings produced by the self-attention encoder and the
combined spatio-temporal embeddings produced by the cross
attentional layer. It uses a multi-task loss, which is a
combination of classification loss and delay category and
regression loss is used. The individual contribution is balanced
in terms of weights to avoid domination of one task in the
learning process. The total loss is calculated in Eq. (12).

L =2Leass + AZLreg (12)

Here L, is the cross-entropy for classification and L. is
the mean squared error for regression, A; and A, denotes the
predicting delay. The AdamW optimizer is used to achieve
optimization and it offers consistent convergence and overfitting
is reduced by decoupled weight decay. The further mechanisms
of regularization include dropout and L2 weight decay to
enhance generalization. Early stopping checks performance in
order to avoid overtraining. Hyperparameters such as the
learning rate, attention head count, dropout rate and the
dimensions of the hidden layers are optimized through Bayesian
optimization to get the best predictive results. This training
approach will optimally learn the correct representation of both
classification and regression tasks, be stable in response to noisy
or incomplete data as well as having a robust, interpretable and
operationally sound final model. This multi-task optimization is
better in terms of convergence, in feature learning, and pre-
occupancy error in their complex networks of space-time
airlines compared to the uni-task models.

I. Prediction and Uncertainty Estimation

The proposed framework prediction module will create
categorical and continuous forecasts of flight delays.
GraphSAGE spatial embedding, the self-attention encoder

Vol. 16, No. 11, 2025

temporal embedding and the cross-attention layer fused spatio-
temporal representations are all inputs. It uses a multi-task
learning architecture; two parallel heads are used, with one
classification head, which predicts category of delay (on-time,
delayed, severely delayed) with the use of a softmax activation
and a regression head, which predicts the actual delay time, in
minutes. Multi-task optimization is a representation learning
method that enables the classification task and regression task to
inform each other, which is more accurate in predicting.
Bayesian dropout is used to measure predictive confidence by
including it in the inference stage. The model produces a
distribution of predictions on a case dropout by running several
stochastic forward passes through the network on each instance
of the flight. The average of such predictions gives the final
estimate, and the variance of uncertainty is measured by the
variance. Such a strategy enables the calculation of confidence
ranges, which can provide practical information about the
accuracy of every forecast.

This is novel in that it incorporates both high accuracy multi-
task prediction and uncertainty-aware estimation in a spatio-
temporal setting. Conventional methods tend to give point
estimates but do not give confidence measures, which restrains
operational confidence and decision-making. This approach,
compared to traditional deep learning approaches, learns to
reflect natural stochasticity in the business of flight, such as
weather, traffic, and network congestion and delivers sound and
interpretable predictions. The average predicted delay is
represented as ¥ in Eq. (13) and the uncertainty in the prediction
is represented as a2 in Eq. (14).

7 = e fOm () (13)

02 =258 (FOn(x) = 7)° (14)

Where M is the number of stochastic passes, f6,, denote the
prediction of the flight during the m,, stochastic forward pass
and x is the input feature for a specific flight. The flight delay
prediction framework in the proposed study is to be developed
as a multi-task system, where the classification or regression is
to be performed. The classification head anticipates delay types,
On-time, Delayed or Severely Delayed, and gives rapid
operational information to the airlines and passengers. At the
same time, the regression head will determine the exact delay in
minutes and allow scheduling, assigning resources, and
controlling connecting flights. A combination of the two tasks
improves the feature representation and predictive accuracy
since the two tasks inform one another during the training. The
dual-output strategy guarantees the practical applicability,
interpretability, and operational strength, so this model is very
effective in real-life situations of airline delay forecasting.

Algorithm 1 shows the pseudocode for CASTAN algorithm
is intended to make predictions based on causes, time, and
location of flight delays. Input includes flight schedules,
weather, traffic data, airport connectivity, and in form of
dynamic graph snapshot. First, the algorithm preprocesses the
data by processing missing values, normalising features, and
creating graph representations, where airports are the nodes, and
flights are the edges. In training, spatial embeddings
(constructed by GraphSAGE) are computed at each epoch and
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each graph snapshot, representing inter-airport dependencies,
and temporal embeddings (generated through self-attention) are
computed to represent sequential delay patterns. These
embeddings are merged using cross-attention mechanism and
causal counterfactual embeddings are calculated to offer
interpretability. Both category and duration delay predictions
are received and multi-task loss updates are guided by
parameters. Inference can be done using stochastic forward
passes with dropout, which can be repeated to estimate
uncertainty, to make predictions with confidence. CASTAN
proves to be very strong in terms of its ability to model complex
spatio-temporal interactions of a flight data.

Algorithm 1: Causal-Aware Spatio-Temporal Attention
Network for Flight Delay Prediction
Input:

Flight dataset D with features: schedules, weather, traffic,
airport connectivity

Dynamic graph snapshots G_tfort=1to T

Hyperparameters: learning rate, epochs, fusion weights, dropout
probability

Output:
Delay category
Delay duration
Prediction uncertainty

Initialize model parameters for GraphSAGE, temporal attention,
fusion, causal module, and prediction heads

Set optimizer (e.g., AdamW)

Preprocessing:
Clean missing values
Normalize continuous features
Compute temporal and traffic features

Construct dynamic graphs with airports as nodes and flights as
edges

Training Phase:
For each epoch:
For each graph snapshot:
Compute spatial embeddings via GraphSAGE
Compute temporal embeddings via self-attention
Fuse spatial and temporal embeddings
Generate causal counterfactual embeddings
Predict delay category and duration
Compute combined loss for classification and regression
Update model parameters

Inference Phase:
For each test sample:
Perform multiple forward passes with dropout
Compute average prediction
Compute uncertainty

Return predicted delay category, duration, and uncertainty
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V. RESULTS AND DISCUSSION

In the Results section, an in-depth assessment of the
suggested CASTAN framework to predict flight delays is
provided, including the comparison of its work in terms of
classification and regression tasks. The analysis starts with the
analysis of the dataset characteristics and feature correlation,
then the model performance is compared to the known baselines
using the Random Forest;, DNN, GRU, and GraphSAGE.
Following sections discuss the work done by individual model
components with ablation experiments and evaluate the
predictive reliability with uncertainty analysis. It is highlighted
that the suitability of spatio-temporal embeddings, cross-
attention fusion, and causal counterfactual reasoning can
enhance the predictive accuracy, decrease the number of
mistakes, and offer operationally actionable information. Table
11 lists the important implementation settings that were adopted
during the development of the model and training.

TABLE II. SIMULATION PARAMETER TABLE
Parameter Value
Software Python 3.10, TensorFlow 2.12
Hardware Intel Core i9-13900K, 32GB RAM,
NVIDIA RTX 4090
Operating System Windows 11
Training Epochs 100
Batch Size 128
Learning Rate 0.001 (AdamW optimizer)
Dropout Rate 0.3
Number of Attention Heads 8

GraphSAGE Neighbor Sampling
Temporal Window Size

10 neighbors per node
24 (past 24 hours)

Multi-task Loss Weights (A1, A2) 0.6,0.4
Early Stopping Patience 10 epochs
Bayesian Dropout Passes (M) 50

Table Il lists the important implementation settings that were
adopted during the development of the model and training.

A. Experimental Outcome

The experimental analysis proves that the CASTAN
framework can achieve considerable higher performance in
comparison to traditional machine learning and deep learning
baselines, such as Random Forest, DNN, GRU, and
GraphSAGE. CASTAN has a better predictive accuracy and
lower error rates than these models, which confirms the
suitability of the idea of the spatio-temporal attention design.
The spatial encoder guarantees proper modeling of inter-airport
delay propagation whereas the temporal self-attention takes into
consideration long-term scheduling and weather-related
dependencies. The cross-attention fusion combines these two
viewpoints in an adaptive manner, and thus, can perform well in
diverse working conditions. Besides, the causal counterfactual
module can further increase the interpretability, as it provides
important delay drivers, and Bayesian dropout can enable
effective uncertainty estimation. All these findings show
CASTAN as a strong, interpretive and operationally feasible
tool in flight delay prediction.
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Fig. 3. Correlation heatmap.

The Fig. 3 displays a heatmap of the correlation between
various variables that are related to flights. Correlation
coefficient values of each cell lie between -1 and +1 in numbers
and also in color intensity. The darker the red color the stronger
the positive relationship is, the lighter or pale the color the
weaker or the correlation. The negative correlation is shown in
lighter colors towards white. All the diagonal values are 1.00,
with every variable having a perfect correlation with itself.
Interestingly, two variables, Flight and Lengthbyterm, have a
moderate negative relationship (-0.34). The heatmap graphically
reflects the dependencies, redundancy, and the possible patterns
to be exploited in the further data analysis.
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Fig. 4. Histogram of flight delays by airline.

As Fig. 4 shows, the distribution of the flight delays between
the various airlines in the dataset is illustrated. The histogram
indicates clear distributions of operations as some airlines
appear to be highly concentrated in the low delay values whereas
others have a wide distribution and longer tails, which denote
high variability. Indicatively, carriers that are highly
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operationally efficient have their peaks in the range of 2030
minutes and those that have repetitive congestions or time
schedule inefficiencies have their delays at ranges of longer than
45 minutes. The figure reminds us of the heterogeneity of airline
performance which is a key input to the CASTAN framework.
The study involves airline-specific delay properties to the spatio-
temporal model, which provides realistic operational variations,
which facilitates the use of a causal-conscious delay propagation
and resilience forecasts in large-scale air traffic systems.

Average Delay Duration Over Hours of the Day
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Fig. 5. Average delay duration over hours of the day.

In Fig. 5, the change in the average delay time of flights at
various times of day is shown. These findings show obvious
temporal variations in delay, and the smallest delay time occurs
at early morning (06 hours) and late-night operations (2224
hours), when the air traffic density is the lowest. On the other
hand, the largest delay peaks are found between 911 a.m.-59
p.m. and this is during the time of air traffic demand, congestion
occurring in the airports, and the disruption of weather. The
afternoon hours are also characterized by the moderate
variations, which also feature a scheduling overlap and
turnaround bottlenecks. This time of day effect highlights the
significance of temporal encoding as part of the CASTAN
model because repetitive time-of-day effects have a significant
impact on predictive accuracy. The proposed model successfully
incorporates such long-range dependency in the daily delay
behavior by incorporating self-attention mechanisms.

Fig. 6 shows delay propagation as a time-series pattern,
whereby disruption on one hub results in subsequent disruption
in other downstream airports. The increase in average delays at
ATL is highest in the morning peak times and follow up by ORD
which has high connectivity with ATL. Later in the day, JFK
demonstrates a delayed reaction, which is an indication of
secondary propagation effects. This time-lagged effect
represents the time delay of network-wide congestion, which
agrees with the self-attention temporal encoder in the CASTAN
framework. This time-series perspective, as opposed to the static
averages, shows dynamic delay dynamics, which proves the
importance of the spatio-temporal modeling of the airline
network to result in immediate and downstream effects.
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Fig. 7. Actual vs. Predicted flight delay.

Fig. 7 shows the comparison of the actual and the predicted
flight delays on the proposed model. Where each point is a single
flight, the x axis is the actual delay, and the y axis is the predicted
delay. The red dashed diagonal line refers to the best case
scenario when predictions are exactly equal to the actual results.
The points were mostly distributed close to this reference line
which implies that the model performs well in terms of
predictive accuracy. Small departures of the line are the results
of residual errors, nevertheless, the overall clustering proves that
the predictions are made according to the actual delay patterns
successfully, which proves the correctness of the model.

B. Comparison with Other State-of-the-Art Methods

Accuracy measures how well the entire model is correct, this
is achieved by dividing the correct positive and negative cases
(RN + RP) by the total number of predictions. It provides a
general gauge of performance but in case of imbalance in classes
it could be less precise and it is measured as in Eq. (13),
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RN+RP
RP+AP+RN+AN

Accuracy = (13)

RMSE is a popular statistic that determines the performance
of regression models. The mean difference between the
forecasted and actual outcome is calculated taking into
consideration the squared deviations. As indicated below in Eq.
(14),

— M IxG)-2MDI
RMSE = [T, === (14)
TABLE IIl.  COMPARISON OF EXISTING METHODS WITH PROPOSED
METHOD
Model Accuracy RMSE MAE
Random Forest (RF) [20] 85.3 8.5 6.2
DNN [21] 87.1 7.9 5.8
GRU [22] 89.4 6.8 4.9
GraphSAGE [23] 91.2 6.1 43
Proposed CASTAN 96.4 4.2 29

Table I11 indicates that the proposed ST-GAF framework has
a significant decrease of RMSE and MAE as compared to the
conventional machine learning models and previous DL
architectures. Although the current models like the Random
Forest, DNN, and GRU exhibit difference in their performance,
the proposed model is superior as it reduces the prediction errors
to their minimum compared to all other models. This result
implies that CASTAN is better at modeling the complex spatio-
temporal dependencies of flights delays, which results in more
accurate and trustworthy predictions. The results confirm the
reliability of the hybrid design and demonstrate its applicability
to be used in operational environments in actual airline systems.

C. Error Analysis Results

The proposed model is also good at forecasting the delays of
flights when it has high correlation between weather and
historical delays hence high accuracy. However, it performs
poorly in application on more complex instances, secondary to
inherent delay types arising from unpredictable circumstances
such as mechanical failures or unpredictable air traffic control
delay. The model is proven to have precise predictive efficiency
when it comes to situations which are more related to the
weather conditions through which its efficiency in using
meteorological information is very conspicuous. On the other
hand, the use of the model is less accurate when it comes to
delays occasioned by mechanical factors and any unexpected
alteration of air traffic control schedules. The kind of disruptions
that are most difficult to predict and that disquietingly have the
greatest maximum disparity are disruptions that occur without
warning and disrupt an ongoing activity, and this is the area in
which the present model has the weakest prediction accuracy
and further refinement may increase the accuracy of the model
for the existence of new kinds of disruptions that occur with low
likelihood and disrupt an ongoing activity. Table IV shows the
result of error analysis is given below.
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TABLE IV. ERROR ANALYSIS RESULTS
Correct Incorrect
Scenario No. of Instances Predictions Predictions
(%) (%)

Well-
Performed 10,000 98.5 15
Cases
Challenging 2,000 60.0 400
Cases
Weather-
Related Delays 3,500 %8 3.2
Mechanical 1,000 50.0 50.0
Issues
Air Traffic
Control Delays 1,500 550 450
Unexpected
Event Delays 500 400 60.0

Mechanical Issues
Air Traffic Control Delays

Unexpected Event Delays Weather-Related Delays

Challenging Cases

Well-Performed Cases

Fig. 8. Number of instances.

Fig. 8 shows the distribution of instances where a special
emphasis can be laid on the most abundant and the least ones.
This is because the data is skewed to some specific categories
making the dataset possibly imbalanced between the classes. It
may require the use of methods to prevent the training process
from including bias.

D. Discussion

CASTAN combines GraphSAGE-based spatial encoding,
attention-based temporal modeling, causal counterfactual
reasoning, and Bayesian uncertainty estimation in order to
accurately predict flight delays. CASTAN has a higher
performance than the standard machine learning and deep
learning baselines because it can capture inter-airport
dependencies and sequential delay dynamics. The causal
module gives more meaning, whereas the uncertainty-aware
predictions will be more reliable in the face of noisy or
incomplete data. The framework however relies on high quality
spatio-temporal data and also calculations can be
computationally expensive when it comes to real time execution
in resource limited environments. Additional improvements in
the future may include real-time weather services, multimodal
transit information, and lean architectures to increase scope and
limits on scale.

V1. CONCLUSION AND FUTURE WORKS

The CASTAN, which is a Causal-Aware Spatio-Temporal
Attention Network, will be introduced to solve the problems of
flight delay prediction. CASTAN provides accurate,
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interpretable, and reliable predictions, by leveraging
GraphSAGE based spatial features learning, attention based
temporal modeling, causal counterfactual reasoning, and
uncertainty estimation with probabilities. A large-scale
experimental testing of U.S. flight data shows that CASTAN is
more successful in classification and regression in both large-
scale and challenging non-linear interactions among airports and
across time doesn’t need conventional machine learning and
deep learning algorithms. The causal-awareness part also
enables the stakeholders to comprehend the delay propagation
dynamics, as opposed to depending on the numbers alone. In
spite of these innovations, there are drawbacks: the performance
of the model will be affected by the quality of the available
datasets, and the deployment in real-time can be problematic in
resource-constrained settings. The future research will be based
on incorporation of real time weather feed, air traffic congestion
information and operational constraints so that the prediction
reliability is increased under dynamic conditions. The
integration of CASTAN to multimodal transportation will allow
integrated mobility. Moreover, lightweight architectures and
privacy preserving federated learning will support scalable,
secure and real time deployment. The goals of these
developments are to make CASTAN a predictive system that
can be deployed to any part of the world, facilitating sustainable
CASTAN-based aviation operations and informed strategic
decisions by air airlines and air traffic management.

REFERENCES

[1] Yangetal., “A Novel Integration Platform to Reduce Flight Delays in the
National Airspace System.” Accessed: Aug. 14, 2024. [Online].
Auvailable: https://ieeexplore.ieee.org/abstract/document/9106657/

[2] Bisandu et al., “Prediction of flight delay using deep operator network
with gradient-mayfly optimisation algorithm,” Expert Syst. Appl., vol.
247, p. 123306, Aug. 2024, doi: 10.1016/j.eswa.2024.123306.

[31 G. Liu, L. Wang, J. K. Liu, Y. Chen, and Z. R. Lu, “Parameter
Identification of Nonlinear Aeroelastic System with Time-Delayed
Feedback Control,” AIAA J., Aug. 2019, doi: 10.2514/1.J058645.

[4] M. Schultz, S. Reitmann, and S. Alam, “Predictive classification and
understanding of weather impact on airport performance through machine
learning,” Transp. Res. Part C Emerg. Technol., vol. 131, p. 103119, Oct.
2021, doi: 10.1016/j.trc.2021.103119.

[5] E.C.Pinto Neto, D. M. Baum, J. R. D. Almeida, J. B. Camargo, and P. S.
Cugnasca, “Deep Learning in Air Traffic Management (ATM): A Survey
on Applications, Opportunities, and Open Challenges,” Aerospace, vol.
10, no. 4, p. 358, Apr. 2023, doi: 10.3390/aerospace10040358.

[6] L. Siozos-Rousoulis, D. Robert, and W. Verbeke, “A study of the U.S.
domestic air transportation network: temporal evolution of network
topology and robustness from 2001 to 2016,” J. Transp. Secur., vol. 14,
no. 1-2, pp. 55-78, Jun. 2021, doi: 10.1007/s12198-020-00227-x.

[7] Zeng et al., “Threat impact analysis to air traffic control systems through
flight delay modeling,” Comput. Ind. Eng., vol. 162, p. 107731, Dec.
2021, doi: 10.1016/j.cie.2021.107731.

[8] Z. Yang, Y. Chen, J. Hu, Y. Song, and Y. Mao, “Departure delay
prediction and analysis based on node sequence data of ground support
services for transit flights,” Transp. Res. Part C Emerg. Technol., vol. 153,
p. 104217, 2023.

[91 M. Schultz et al., “Implementation of a Long-Range Air Traffic Flow
Management for the Asia-Pacific Region,” IEEE Access, vol. 9, pp.
124640-124659, 2021, doi: 10.1109/ACCESS.2021.3110371.

[10] Evler et al., “Airline ground operations: Schedule recovery optimization
approach with constrained resources,” Transp. Res. Part C Emerg.
Technol., vol. 128, p. 103129, Jul. 2021, doi: 10.1016/j.trc.2021.103129.

[11] Eufrasio etal., “Integration of turnaround and aircraft recovery to mitigate

delay propagation in airline networks,” Comput. Oper. Res., vol. 138, p.
105602, Feb. 2022, doi: 10.1016/j.cor.2021.105602.

788|Page

www.ijacsa.thesai.org



[12]

[13]

[14]

[15]

[16]

[17]

[18]

(IJACSA) International Journal of Advanced Computer Science and Applications,

T. Chen, X. Zhang, M. You, G. Zheng, and S. Lambotharan, “A GNN-
Based Supervised Learning Framework for Resource Allocation in
Wireless IoT Networks,” IEEE Internet Things J., vol. 9, no. 3, pp. 1712—
1724, Feb. 2022, doi: 10.1109/J10T.2021.3091551.

S. Forster, M. Schultz, and H. Fricke, “Probabilistic Prediction of
Separation Buffer to Compensate for the Closing Effect on Final
Approach,”  Aerospace, vol. 8, p. 29, Jan. 2021, doi:
10.3390/aerospace8020029.

C. Y. Yiu, K. K. H. Ng, K. Kwok, W. Lee, and H. Mo, Flight delay
predictions and the study of its causal factors using machine learning
algorithms. 2021. doi: 10.1109/ICCASIT53235.2021.9633571.

Zhang et al., “Bayesian neural networks for flight trajectory prediction
and safety assessment,” Decis. Support Syst., vol. 131, p. 113246, Apr.
2020, doi: 10.1016/j.dss.2020.113246.

Jiang et al., “Applying Machine Learning to Aviation Big Data for Flight
Delay Prediction.” Accessed: Aug. 13, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9251206/

Dothang Truong, “Using causal machine learning for predicting the risk
of flight delays in air transportation,” J. Air Transp. Manag., vol. 91, p.
101993, Mar. 2021, doi: 10.1016/j.jairtraman.2020.101993.

K. Cai, Y. Li, Y.-P. Fang, and Y. Zhu, “A Deep Learning Approach for
Flight Delay Prediction Through Time-Evolving Graphs,” IEEE Trans.

[19]

[20]

[21]

[22]

(23]

Vol. 16, No. 11, 2025

Intell. Transp. Syst., vol. 23, no. 8, pp. 11397-11407, Aug. 2022, doi:
10.1109/TITS.2021.3103502.

“Airlines Dataset to predict a delay.” Accessed: Aug. 13, 2024. [Online].
Auvailable: https://www.kaggle.com/datasets/jimschacko/airlines-dataset-
to-predict-a-delay

H. Zhou, W. Li, Z. Jiang, F. Cai, and Y. Xue, “Flight Departure Time
Prediction Based on Deep Learning,” Aerospace, vol. 9, no. 7, p. 394, Jul.
2022, doi: 10.3390/aerospace9070394.

M. F. Yazdi, S. R. Kamel, S. J. M. Chabok, and M. Kheirabadi, “Flight
delay prediction based on deep learning and Levenberg-Marquart
algorithm,” J. Big Data, vol. 7, no. 1, p. 106, Dec. 2020, doi:
10.1186/s40537-020-00380-z.

E. Esmaceilzadeh and S. Mokhtarimousavi, “Machine Learning Approach
for Flight Departure Delay Prediction and Analysis,” Transp. Res. Rec. J.
Transp. Res. Board, vol. 2674, no. 8, pp. 145-159, Aug. 2020, doi:
10.1177/0361198120930014.

Song et al., “The adverse impact of flight delays on passenger satisfaction:
An innovative prediction model utilizing wide & deep learning,” J. Air
Transp. Manag.,, vol. 114, p. 102511, Jan. 2024, doi:
10.1016/j.jairtraman.2023.102511.

789|Page

www.ijacsa.thesai.org



