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Abstract—Flight delays can cause serious problems for 

airlines, passengers, and the economy in general. Current 

prediction methods that use Random Forests, deep neural 

networks, and recurrent architectures such as GRU can address 

either time or quantity, pero not both when applied to causal 

reasoning and assess uncertainty therein, which negatively affects 

each model's ability to interpret, generalize for unknown 

conditions, and ultimately assess reliability of the predicted delay 

in an operational setting. Causal-Aware Spatio-Temporal 

Attention Network (CASTAN) is designed as a combined 

approach to address these challenges of spatio-temporal and 

causal modeling all in one. Analysts use GraphSAGE-based 

spatial encoding to encode and capture inter-airport 

dependencies, with a self-attention temporal encoder to learn long-

range sequential patterns of historical delays in addition to traffic 

and weather factors. A cross-attention fusion mechanism accounts 

for the dynamic and spatio-temporal contributions to delay. A 

final causal counterfactual module adds interpretable 

independence results—helping analysts to assess the contributing 

factors to delay. Finally, the incorporation of dropout is done in a 

Bayesian approach to assess uncertainty for each prediction made 

and generate uncertainty-aware predictions so analysts may assess 

reliability through levels of confidence or any other metric 

decided. Results from evaluation of a large-scale U.S. flight dataset 

compared to traditional baselines demonstrate the predictive 

power of the model, achieving 96.4% accuracy, RMSE of 4.2, and 

MAE of 2.9. The CASTAN process has positioned its place as an 

interpretable, reliable, and operationally informative modeling 

approach to proactive management of airline delay. 

Keywords—Flight delay prediction; spatio-temporal modeling; 

causal reasoning; attention network; uncertainty estimation 

I. INTRODUCTION 

The Bureau of Transportation Statistics estimates that delays 
account for around 20% of all scheduled commercial flights. 
Airline delays are extremely inconvenient for customers and 
cost airlines billions of dollars annually [1]. Flight delays are one 
of the most occurrent issues in the contemporary aviation and 
have far-reaching implications on the passengers, airlines, and 

the economy at large [2]. Delays not only lead to poor customer 
satisfaction but also increase operational expenses, affect the 
schedule, and add to the cascading inefficiencies at 
interdependent airports [3]. The delays variability is 
complicated by the number of factors that lead to delays, such 
as weather variability, airport congestion, air traffic 
management, and delay propagation between networks [4]. 
Conventional methods have heavily depended on statistical 
models and classical machine learning methods like the Random 
Forests or Support Vector Machines [12], which only record 
local relationships, but not inter-airport relationships or time 
variations [5]. Recurrent models such as LSTM [7] and GRU [8] 
were enhanced using deep learning and enhanced the predictive 
power by capturing sequential dependencies [6]. Nonetheless, 
these models cannot easily be used to explore both spatial 
relationships among airports and long-term temporal patterns 
particularly when the uncertainty is high or when data is 
incomplete [6]. 

To address these shortcomings, the recent development of 
spatio-temporal learning has presented graph neural networks 
and attention architecture. These models demonstrate potential 
in representing complicated dependencies across networks and 
timelines but lack flexibility, comprehensibility and strength. 
Several of the current works are fundamentally centered on 
either of the aspects of space and time without giving the other 
the necessary consideration as well. Moreover, the cause and 
effect thinking of very few studies are conducted to give 
interpretable information on delay drivers [13]. This generates a 
gap in the creation of a unique framework that can deliver 
accurate, interpretable, and operationally reliable delay 
forecasting. 

Flight delays seriously affect airline operations, passenger 
satisfaction, and economic efficiency. Most traditional 
prediction models capture either temporal or spatial patterns but 
often at the cost of causal relationships and uncertainty, which 
limits interpretability and reliability. This study addresses the 
key research question: How can a unified spatio-temporal and 
causal framework, incorporating attention mechanisms and 
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uncertainty estimation, accurately predict flight delays while 
providing interpretable and actionable insights for airline 
operations? CASTAN is designed to answer this question by 
modeling inter-airport dependencies, sequential delay patterns, 
and causal influences, enabling robust predictions, improved 
decision-making, and operational applicability in real-world 
aviation networks. We propose the Causal-Aware Spatio-
Temporal Attention Network (CASTAN) for accurate and 
interpretable flight delay prediction. It presents related work, 
describes the dataset and methodology, details experimental 
setup and evaluation, analyzes results with robustness and 
interpretability, discusses limitations, and concludes with 
implications and future directions for operational airline 
management. 

A. Research Motivation 

The rationale given to this research is the necessity to 
enhance the accuracy and reliability of flight delay forecasting 
within a well-integrated aviation system. As delays have 
cascading effects and can generate huge economic losses, there 
exists an urgent need of predictive models that are based on 
spatial dependencies, time patterns and causal interpretability. 
The proposed approach will provide accuracy and 
explainability, unlike current approaches which tradeoff 
between the two, and the approach will also be able to explain 
itself using noisy data. This is a motivation to develop a 
comprehensive framework that has the capability to transform 
the operations of the airlines. 

B. Research Significance 

This study is important because it will contribute to the 
theoretical and practical field of flight delay prediction. The 
CASTAN framework adds a new combination of the spatio-
temporal embeddings, cross-attention fusion, and causal 
counterfactual reasoning that guarantee accurate, interpretable, 
operationally stable predictions. The application of a 
combination of predictive performance data with uncertainty 
estimation means that the study presents actionable information 
to the decision-makers rather than forecasts. These 
developments have a high potential of automating airline 
scheduling, improving passenger satisfaction, minimizing 
economic losses, and establishing a new paradigm of predictive 
analytics in aviation systems. 

C. Key Contribution 

 Developed an integrated framework, which can 
effectively represent spatial inter-airport 
interdependencies and long-term changes in the flight 
schedules. 

 Designed spatio-temporal learning architecture consists 
of a GraphSAGE-style spatial encoder, temporal 
modelling using self-attention, and a flexibly-attentive 
cross-attention fusion layer - all of which generate 
powerful, explainable predictions of delay. 

 Used a large dataset available on Kaggle of 539,383 
records of the various airlines and airports in the U.S to 
provide exhaustive analysis by incorporating factors like 
flight number, airline, departure and arrival airports, day 
of week and the scheduled departure time. 

  The predictive accuracy was high, reaching 96.4 percent 
with the following results RMSE 4.2 and MAE 2.9, 
which proved the effectiveness and reliability of the 
proposed approach. 

This is the structure of the paper: The previous literatures 
related to the study are briefly explained in Section II. The 
Problem Statement is given in Section III. The Proposed Method 
is given in Section IV. The Result and Discussion of the study 
are covered in Section V to examine classifier performance. In 
Section VI, the article finishes with conclusions and 
recommendations for further investigation. 

II. RELATED WORKS 

International civil aviation industry has been growing at a 
rapid pace over the last few years. The increasing number of air 
travel has led to saturation of airports. At take-off and landing, 
there should be a lot of traffic and long lines. Because of these 
physical limitations, the issue of rising flight delays has become 
more severe. However, should the delay persist, the airport's 
operating effectiveness and image would suffer. There will also 
likely be additional costs. Yu et al. [14] used different ML 
techniques, including Artificial Neural Network (ANN), k-
nearest neighbors, random forests, decision trees, and Naïve 
Bayes, to estimate flight delays. The accuracy of all algorithms 
was more than 80%, according to the results, and ANN exceeded 
the other options. The lowest accuracy algorithm is Naïve Bayes 
but the lowest F1 score is achieved by the k-nearest neighbor. 
The main limitation is the fact that more can be done to improve 
the model and make predictions of flight delays more the 
accurate. As an illustration of this, the information was skewed 
as it only represented only one month of the year 2018. Large 
data sets possibly can promote even more improvements. 
Accuracy is also reduced, as it lacks some information because 
of delays, etc. 

By using DL algorithms for trajectory prediction, Zhang et 
al. [15] aimed to improve flight safety while in route. This 
allows for the efficient extraction of trajectory information. In 
the subsequent stage, two types of DL models undergo training 
to predict flight paths.  Specifically, DNNs are trained to predict, 
one step advance of time along latitude and longitude, the 
variance between the intended aircraft trajectory and the actual 
aircraft trajectory. Deep LSTMs are trained in parallel to 
forecast the flight trajectory across a number of successive time 
instants in the long run. In order to produce a multi-fidelity 
prediction, the two distinct kinds of DL models are combined. 
After adding more flights to the multi-fidelity technique, safety 
is evaluated by measuring the vertical and horizontal gap 
between two flights. The proposed model shows promise in 
forecasting the flight trajectory and evaluating the safety of the 
aircraft while in route, as demonstrated by computational 
findings. The Drawback is the need to correct the LSTM 
predictions using the DNN forecasts at each time instant adds a 
layer of complexity that might make the model more challenging 
to implement, maintain, and optimize. 

In the Jiang et al. [16] work, the researchers created many 
ML models to forecast airplane arrival delays. Data analysis, 
visualization of data, and data preparatory processing are all 
included in the study.  AOTP and QCLCD datasets were used.  
Properly estimating airplane delays and spotting intriguing 
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patterns in flight data are the goals of this study. Using ML, the 
maximum result for delay in flight prediction is 89.07% 
(Multilayer Perceptron).  A CNN model was also developed, and 
with an accuracy rate of 89.32% in predictions, it shows a little 
better result. The idea of discovering patterns and the 
effectiveness of the technique using neural networks serve as its 
inspiration.  Enhancing the feature parameters to take the benefit 
of CNNs' superiority on features with high dimensions presents 
the primary disadvantages. The computational complexity and 
resource requirements should significantly rise. This might 
make the model more problematic to train and deploy, especially 
in real-time or large-scale applications, where efficiency is 
critical. 

Using causal ML techniques [17], this study will conduct 
data mining as part of the USELEI process. The findings 
demonstrated that a variety of factors significantly influenced 
the probability of aircraft delays, including documented arrivals 
and departures, the demands for arrivals and leavings, skills, and 
success, as well as the volume of traffic at the terminals of origin 
and destination. Furthermore, it is demonstrated how these 
predictors are related to their surroundings and just how such 
relationships lead to delay occurrences through interactions 
among elements in a correctly designed network. Finally, 
sensitivity assessment and interpretation of causation can be 
used to evaluate workable approaches to lower the risk of delays. 
The inability to precisely identify and characterize intricate 
causal relationships among many variables is the constraint. 

The aircraft delay prediction problem is examined in the Cai 
et al. [18] network-based study. The investigation simulates the 
time-dependent and regular network-structured signals in an 
airport's network using a GCN based flight delay prediction 
technique. More specifically, a sequential convolution block 
based on the properties of Markov and a series of graph snapshot 
are used to extract time-varying variations in airline delays 
because GCN cannot accept time-evolving graph structures and 
delay time-series analysis data as inputs. Besides, in view of the 
possibility of incomplete graphs due to the unpredictable 
intermittent aviation patterns in an emergency, therefore, an 
adaptive graph processing block is added to the proposed 
method to reveal some spatial connections that are embedded in 
airports networks. Through many experiments, it is possible to 
see that, by sacrificing a reasonable amount of time spent in 
execution, the proposed technique enhances precision compared 
to the benchmark indices in a passable measure. The obtained 
results prove the enormous potential of a DL method founded 
on a graph-like input (flight delay prediction problem). Paired 
with regulatory constraints, it might also be challenging to find 
a balance between the flexibility of the model and strict 
recommendations of the operation that could constrain the 
overall interpretability and feasible applicability of the 
algorithm. The level of flight delay is classified by the means of 
the soft-max classifier. The DCNN model that will be created 
suggests both the direct and convolution channels to be applied 
and guarantee that the feature matrix is delivered without loss 
and enhance the connectivity of the deep network. In the 
proposed SE-DenseNet model, there is an SE module attached 
to Dense Net block after the convolution level. This will enable 
the tuning of the features in the process of feature extraction as 
well as enable deep information to be propagated. The results of 

the research indicate that the consideration of meteorological 
conditions on the model in the place of the mere flying data can 
enhance the model by 1%. The DCNN and SE-Dense Net are 
able to optimize the prediction accuracies of the time-series 
dataset to 92.1% and 93.19% respectively. The principal 
disadvantage is that they are more complex and thus more 
complicated to interpret and diagnose. Yazdi et al. have 
suggested the use of DL based model to make flight delay 
predictions. 

Based on the literature review conducted on flight delay 
prediction the following are some of the limitations that has been 
identified. Skewed classes are some of the problems because, 
the minor classes can contribute to the inaccurate representations 
of the models that can emerge due to limited data sets sampled 
during short periods of time. Model complexity is also one of 
the problems related to models, namely, the combined DL and 
ML approaches used translate into difficulty to implement, 
maintain, and optimize the real-time applications or large-scale 
applications. Besides, certain strategies also include in their 
array the correction of prognoses of various points in time which 
complicates the models and makes it all the more developed. 
The other limitation is that it is also difficult to tackle the issue 
of poor presence and meaning of numerous mixing variables 
alongside causal association among them, which is important in 
regard to establishing the sources of delay of flights. Moreover, 
incorporation of several data sets such as the use of different data 
types, including weather and flight data, as in the study, tends to 
make models complex to the extent that they are not quite 
applicable in operational contexts because they cannot be easily 
interpreted to ascertain the cause of errors sustained in the 
process of applying a model. 

III. PROBLEM STATEMENT 

Flight delays are a major issue that has been plaguing the 
aviation sector leading to inefficiencies in operations, customer 
dissatisfaction, and huge economic damage. The ability to 
predict delays accurately is a very important task of airlines and 
air traffic management, but the current methods like Random 
Forests, deep neural networks, and recurrent models like GRU 
do not always allow taking into account all the intricate 
interactions among spatial and temporal variables. [9]. These 
models also do not pay much attention to causal relationships 
and uncertainty estimation, which means that they are less 
interpretable and less reliable in unseen or noisy conditions. [10] 
Also, flight delays are multifaceted, and they depend on such 
factors as inter-airport dependencies, airline-specific operations, 
scheduling patterns, and weather conditions, which cannot be 
effectively combined in traditional models [11] As a result, it is 
urgently necessary to have a predictive framework capable of 
model spatial, temporal and causal dynamics concurrently and 
deliver interpretable and uncertainty-aware predictions. 
Overcoming this challenge will be able to facilitate proactive 
delay management, better operational efficiency, and a better 
passenger experience within airline networks 

IV. PROPOSED CAUSAL-AWARE SPATIO-TEMPORAL 

ATTENTION NETWORK FRAMEWORK FOR PREDICTING AIRLINE 

DELAYS 

The proposed methodology introduces an integrated flight 
delay prediction framework incorporating the spatial, temporal, 
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and causal learning and the model. Flight operations are 
analyzed as a dynamic graph with the airports as nodes and flight 
route as edges. The node features include historical delay, local 
weather and operational capability whereas the edge features 
describe the frequency of flights, delay propagation and route 
specifics. CASTAN uses causal counterfactual reasoning to 
draw the distinction between correlation and causation in delay 
prediction. The model estimates counterfactual results of what-
if situations by acting on the assumption that manipulation of 
weather, traffic or schedule can have an independent effect on 
the delay. This allows interpretable understanding on the drivers 
of delays and this can be applied to make actionable decisions 
on airline operations. 

 
Fig. 1. Block diagram of  proposed framework. 

Fig. 1 shows the general pipeline of the suggested approach. 
To make spatial and temporal embeddings more robust and 
interpretable, a cross-attention fusion layer dynamically 
combines both dimensions, focusing on either of them according 

to the much more influential source of delay. Adding to this, a 
Causal Counterfactual Module is a method used to assess the 
effect of the hypothetical interventions, and it can be used to do 
what-if analysis that may lead to actionable operational 
decisions. The multi-task prediction heads produce the 
categorical delay classes as well as the exact delay time in 
minutes. Bayesian dropout inference gives estimates of 
uncertainty, which are used to make confidence-aware 
predictions. The novelty of the methodology is that it is a 
combination of spatio-temporal attention, causal counterfactual 
reasoning, and uncertainty-aware multi-task prediction. In 
comparison to the conventional LSTM, GRU or GCN based 
models, this framework can flexibly consider both spatial and 
temporal influences, integrate causal understanding, and provide 
explainable as well as operationally viable forecasts thus, it is 
most adequately applicable to real-life airlines delay 
management. 

A. Data Collection 

Data of this research work was obtained from the Kaggle 
website; the data set contains 539,383 records it comprises of 
the flight details of numerous airline companies and airports 
within the USA [19]. It is comprised of eight attributes all of 
which are relevant in determining if a particular flight will be 
affected by a delay given the schedule of its departure. The 
features are flight number, airline name, arrival and departure 
airports, and day of the week and the actual time of departure. 
Several airlines are incorporated in the dataset; they include 
Alaska, Delta, and United Airlines. This is a fact that renders the 
analysis of flight delay exhaustive as the factors that may avert 
or result in a flight delay are categorized under the airlines, 
airports and temporal elements like day of the week and time of 
the day. 

TABLE I.  SAMPLE DATA FROM THE AIRLINE DELAY PREDICTION DATASET 

Airline Flight Airport From Airport To Day Of Week Time 
Weather (Temp, Wind, 

Visibility) 
Delayed 

Delta Airlines 

(DL) 
1234 ATL LAX 3 14:30 70°F, 5 mph, 10 mi No 

American Airlines 5678 JFK ORD 5 09:15 55°F, 10 mph, 8 mi Yes 

Southwest 

Airlines 
9101 DFW DEN 7 18:45 82°F, 3 mph, 12 mi No 

United Airlines 1121 BOS MIA 2 11:00 77°F, 8 mph, 9 mi Yes 

Alaska Airlines 3344 SEA SFO 4 16:00 60°F, 15 mph, 7 mi No 
 

Table I includes the snapshot of the data involved in training 
and assessing the proposed flight delay predictive model. 
Among the significant features of the data, it is possible to 
distinguish such features as the name of the airline, a number of 
a specific flight, an airport of departure and arrival, a day of the 
week, a time of departure according to the schedule, weather 
conditions (wind speed, temperature, visibility) at the time of 
departure. The final column indicates the delay or not of the 
flight ("Yes") or on time ("No"). Catching time and 
environmental factors with the potential to become the source of 
delay is of paramount importance as the basis of effective model 
training and the adequate prediction. 

B. Data Pre-processing  

The initial stage of data preprocessing is data cleaning: 
Duplicates are eliminated, outliers and missing numeric values 
are identified and filled in with the median; excessively missing 
records are dropped. Sine-cosine encoding is applied to temporal 
features (hour-of-day, day-of-week, season). Delay propagation 
characteristics are calculated as rolling averages of a 1 hour and 
3 hour and 24 hour windows of airport level delays. Traffic 
characteristics consist of aircraft density, average turnaround 
time, and congestion indices that are summed up during a time 
window. Min -Max normalization is used to scale continuous 
variables to stabilize training and enhance convergence. 

Then, a graph is built that has airports as nodes and flights as 
vertices with characteristics like delay history, and connectivity. 
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Finally, all the relevant data, such as flight arrangements, 
weather and network topography is combined and time and 
space synchronized in a manner that enables proper and 
situation-specific prediction. 

1) Normalization: To control for all the features to 

contribute to the model in a balanced manner, the continuous 

inputs like the scheduled departure time of a flight, the weather 

information are rescaled. In this study, normalization is done 

through Min–Max scaling to pull all the features into a same 

range as proposed are sensitive to feature scales. The formula 

for Min-Max Scaling is given in Eq. (1), 

𝑍𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑧−𝑍𝑚𝑖𝑛

𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛
                          (1) 

Here 𝑍 representing the original value of the feature, 𝑍𝑚𝑖𝑛 
being the minimum value of the feature and 𝑍𝑚𝑎𝑥  being the 
maximum value. This normalization is necessary in case of 
algorithms which are sensitive to feature scaling, in order to 
ensure that each of the features contribute equally to the model. 

2) Feature engineering: The feature engineering is 

important in increasing the predictive ability of the suggested 

C-STGAF framework. The time features like hour-of-day, day-

of-week, and season are coded with cyclical transformations 

(sine and cosine mappings) to maintain periodicity whereby a 

time such as 23:00 and 00:00 would be closer in feature space. 

This enables the model to include recurring time trends such as 

heavy traffic in the morning or rush hour on the weekend. Delay 

propagation characteristics are obtained by calculating the 

rolling averages of previous delays of individual airports across 

various windows (1h, 3h and 24h). The short-term (e.g. runway 

congestion) and long-term (e.g. severe weather systems) 

network-wide ripple effects are quantified at these multi-scale 

temporal aggregates. Lastly, the traffic characteristics like 

aircraft density, average turnaround time and congestion 

indices are designed to reflect operational stress in every 

airport. All these qualities collectively allow the model to 

possess the fine-grained temporal dependencies, spatial delay 

diffusion, and operational complexity, which creates a strong 

basis of spatio-temporal learning. 

C. Graph Construction 

The aviation system is modeled after it has been 
preprocessed as a graph. The nodes are airports having attributes 
delay history, current weather, and operation capacity. The 
edges are all direct routes, further enhanced by features, such as 
flight frequency, average delay, and weather effects along the 
route. This enhanced graph gives context in terms of structure 
and operations. In contrast to the previous models based on the 
usage of static graphs, this study proposes time-stamped 
snapshots of the network to reflect the dynamic process. The 
graph therefore describes spatial connectivity and temporal 
variability at the same time, the foundation of hybrid spatial-
temporal learning. It is defined as a dynamic graph in Eq. (2): 

𝐺𝑡 =  (𝐴, 𝑅, 𝑋𝑡)                                  (2) 

where, 𝑋𝑡 is the node or edge features at time 𝑡 that changes 
over time as weather and schedules change, 𝐸 is the set of flight 

routes which carries flight frequency, distance, and historical 
delay spread and 𝐴 is the set of airports which has features like 
average delay, airport capacity, and local weather. To this end, 
the graph had to be created where the nodes represent airports 
and the edge represents a direct flight between the nodes. 
Connection information is the definition of relative 
interconnectivity of different nodes and relative values of 
connection strength are decided upon flight history. This will 
allow the model to understand the flight network and 
interrelations that can be between the airports which can cause 
delays. 

D. Spatial Encoder with GraphSAGE 

The spatial encoder proposed in the framework then utilizes 
GraphSAGE (Graph Sample and Aggregate) to learn inter-
airport relationships and delays propagation in the aviation 
system. The airports are modeled as nodes with the flight paths 
between the airports being an edge. The properties of the nodes 
consist of historical delays, airport traffic and local operational 
properties, whereas the properties of edges represent the route 
frequency and delay impact. In contrast to classical GCNs or 
GATs, GraphSAGE uses inductive learning, which means that 
it is possible to calculate embeddings of previously unknown 
nodes or routes. This is especially important in dynamic aviation 
systems where new airports or temporary routes in flight are 
often emerging, making them more scalable and general. 

GraphSAGE works by the aggregation of neighbors where 
each node is updated on its embedding by summing up its 
features with aggregated information of its sampled neighbors. 
Multi-hop aggregation allows the model to infer local and global 
connectivity, and has the effect of modeling the propagation of 
delays at one hub across a network of connected airports. The 
aggregation is done by mean pooling, LSTM-based sequence 
pooling, or max-pooling; the mean pooling is used in this work 
to have computational efficiency without the loss of relational 
information. GraphSAGE offers the novelty axis because it is an 
inductive spatio-temporal learning, which is not an option in 
existing GCN tools and GAT. Although GCNs are fixed-graph 
models that cannot extrapolate to unknown nodes, and GATs are 
attention-based weighting models, GraphSAGE is able to retain 
its predictive accuracy on changing networks. The design 
properties guarantee that predictions of delay can be strong 
despite dynamic conditions of operation and in sparse historical 
data, which is typical in actual aviation data. The core 
GraphSAGE update is expressed as in Eq. (3): 

ℎ𝑣
(𝑘)

=

𝜎(𝑊(𝑘). 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑣
𝑘−1, 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸({ℎ𝑣

𝑘−1|𝑢𝜖𝑁(𝑣)})))(3) 

where, ℎ𝑣
(𝑘)

 represents the embedding of node 𝑣 at layer 𝑘, 

ℎ𝑣
𝑘−1   is the previous-layer embedding, 𝑁(𝑣)  is the set of 

neighbors, 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 denotes mean pooling of neighbor 

embeddings, 𝑊(𝑘) is the learnable weight matrix, and 𝜎 is a non-
linear activation function such as ReLU or ELU. For neighbor 
aggregation formula is denoted in Eq. (4). 

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸({ℎ𝑢}) =
1

|𝑁(𝑣)|
∑ ℎ𝑢𝑢𝜖𝑁(𝑣)           (4) 

In this case, the aggregation is done to compute the average 
feature representation of all the neighbors and that allows the 
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node to encode relational influence efficiently. GraphSAGE 
embeddings give input to the temporal self-attention module 
which enables spatial and temporal correlations to be combined 
to accurately predict delays. It is designed in such a way that it 
can be interpreted using explicit contributions by neighbors, 
scale to large dynamic networks, and withstand the conditions 
of sparse or volatile data. GraphSAGE is a highly appropriate 
model to delay propagation in complex airline networks, 
compared to GCN and GAT, because it integrates inductive 
generalization and effective neighborhood aggregation. 

E. Temporal Encoder Using Self-Attention Mechanism 

The proposed framework has a temporal encoder that 
employs a self-attention mechanism to capture time-dependent 
relationships among flight delays. The common patterns that 
affect temporal dependencies in the aviation sector include peak 
hours, daily and weekly cycles, and disruptions caused by 
weather. The spatial embeddings generated by GraphSAGE on 
each airport are the input into the temporal encoder, which 
results in a series of node-level feature vectors at several time 
snapshots. Conventional recurrent models (e.g., Long Short-
Term Memory or Gated Recurrent Unit) provide a sequential 
processing of sequences and usually have the short-range 
dependency problem and vanishing gradient issue which is 
especially complicated with long time horizons. Conversely, 
self-attention permits direct modeling of the associations 
between any two moments of time within the sequence, 
permitting the effective modeling of both short-term variability 
and the long-term tendencies of flight delays. 

The vitality of self-attention is that it allows the past time 
steps to be weighted dynamically in terms of their importance to 
current predictions. Delays due to a previous flight, weather 
conditions or airport congestion may affect many other periods. 
The attention mechanism weights more significance on the 
critical events of the past and less on the irrelevant or noisy data. 
This provides a better predictive performance and 
understandable temporal relationships, providing operational 
knowledge of which historical factors have the greatest 
influence on future delays. Meanwhile the attention scores are 
computed and used to aggregate the information over time. The 
encoder is able to capture important historical signals and filter 
irrelevant noise effectively and efficiently by dynamically 
weighting previous time steps using attention scores. It is 
expressed as 𝑧𝑡 in Eq. (5) – Eq. (6): 

𝑧𝑡 = ∑ 𝛽𝜏𝐹𝑡−𝜏
𝑇
𝜏=1                                (5) 

where, 𝐹𝑡−𝜏  represents the feature 𝜏 steps in the past, 𝛽𝜏  is 
the attention weight for the past step and 𝑇  is the temporal 
window size. The weight is computed in Eq. (6). 

𝛽𝜏 =
𝑒𝑥𝑝(𝑞𝑡

𝑇𝑘𝑡−𝜏/√𝑑)

∑ 𝑒𝑥𝑝(𝑞𝑡
𝑇𝑘𝑡−𝜏′/√𝑑)𝜏′

                            (6) 

Here 𝑞𝑡 and 𝑘𝑡−𝜏 are the query and key vectors at time 𝑡 and 
𝑡 − 𝜏, and 𝑑 is embedding dimension. 

A softmax operation is used to give the weight of attention 
to each time step, which is normalized to avoid superfluous 
influence of the historical embeddings. The advantage of this 
mechanism is that all previous embeddings can be considered 
without sequential bottlenecks which is more efficient in terms 

of computation. Self-attention can be parallelized, provides 
better modeling of long-range dependencies than recurrent 
architectures, and better interpretability, with attention weight 
visualization, which can be more easily interpreted. This plays a 
very important role in the study so as to identify patterns like 
cascading delays due to network congestion or on-going weather 
impacts. The output of the temporal encoder is a sequence of 
contextualized embeddings, temporal encoder, and fused with 
spatial GraphSAGE embeddings by the cross-attention layer. 
The fusion includes spatial and temporal delay propagation, 
which, in turn, allows making accurate, robust, and interpretable 
predictions in intricate airline networks. 

F. Cross-Attention Fusion Layer 

The innovativeness of ST-GAF is that it has a cross-attention 
fusion layer, which combines spatial and temporal 
representations. Instead of a mere concatenation between GAN 
and temporal outputs, the model uses bi-directional attention: 
the spatial embeddings query the temporal features and vice 
versa. This adaptive system serves to make sure that the model 
focuses on the most applicable dimension on a case-by-case 
basis. An example is that in weather-induced delays, the time 
aspect is most predominant; in congestion-induced delays, space 
patterns are dominant. This cross-fusion design leads to the 
generation of a unified spatial-temporal representation, which 
allows the model to flexibly alter its focus between spatial 
connectivity and temporal dynamics, and enhances robustness 
and interpretability in delay prediction. It is denoted in Eq. (7). 

𝐹 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑠𝐾𝑡

𝑇

√𝑑
) 𝑉𝑡 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝑡𝐾𝑠
𝑇

√𝑑
) 𝑉𝑠         (7) 

Here 𝑄𝑠, 𝐾𝑠, 𝑉𝑠 are the queries, keys, values from the spatial 
encoder (GAT), and 𝑄𝑡, 𝐾𝑡, 𝑉𝑡 are the queries, keys, values from 
the temporal encoder. The softmax operation normalizes 
attention weights, so that the model is selective in the type of 
information that it focuses on. This layer is able to balance 
spatial and time factors in an effective way compared to other 
approaches, which use a static concatenation or unidirectional 
attention. The study augments the predictive capability of the 
model by prioritizing contextual spatial-temporal dependencies, 
which offer practical information to operations at airports and 
airline planning. The fusion mechanism is directly related to the 
enhanced accuracy, interpretability and operational reliability in 
comparison to the previous spatial-temporal fusion methods. 

G. Causal Counterfactual Module 

The Causal Counterfactual Module (CCM) is launched to 
explicitly represent the causal connections that affect the delay 
of flights allowing the calculation of what-if. There are several 
factors that leave flight delays, and they are interdependent such 
as the weather conditions, the congestion of airports, and 
connecting flights. Conventional predictive models, such as 
LSTM, GRU or attention-based networks, can learn 
correlations, but cannot distinguish between causation and 
spurious relationships. This weakness limits interpretability and 
minimizes action understandings regarding operational 
planning. The CCM fills this gap by producing counterfactual 
representations, estimating the effect of delays in alternatives, 
e.g. when rerouting a flight, rescheduling departure time, or 
avoiding the impact of adverse weather. 
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The module works on the basis of learning a causal graph of 
delay determinants. The nodes signify a variable (e.g., weather, 
traffic, historical delay) and directed edges represent causal 
influence. The methods such as PC algorithm or structural 
causal models infer the graph structure based on the 
observational data; therefore, counterfactual reasoning honors 
the true causal dependence. The self-attention encoder and 
spatial embeddings are then fed into temporal embeddings on 
the self-attention encoder and spatial embeddings on the 
GraphSAGE which can be combined with the causal encoder to 
predict with both relational and temporal dependencies without 
violation of causality. The core operation of the CCM relies on 
generating counterfactual embeddings 𝑋𝑐𝑓 by intervening on a 

target variable 𝑋𝑖  while keeping other causal parents fixed 
expressed in Eq. (8). 

𝑋𝑐𝑓 = 𝑑𝑜(𝑋𝑖 = 𝑥𝑖
′)    𝑊ℎ𝑒𝑟𝑒 𝑋𝑖 ∈ cause set of delay  (8) 

Here 𝑑𝑜(. )  denotes Pearl’s intervention operator, 
𝑥𝑖

′ represents the hypothetical value of the intervention. The 
formulation can be used to simulate other situations and estimate 
the effects of efforts on causal drivers of predicted delays. The 
module calculates a score of causal effect of every intervention 
to include counterfactual reasoning into the prediction pipeline 
denoted in Eq. (9). 

∆𝑌 = 𝑓𝜃(𝑋𝑐𝑓) − 𝑓𝜃(𝑋)        (9) 

Where, 𝑓𝜃 is the trained predictive model, 𝑋 is the original 
observation, and 𝛥𝑌  quantifies the expected change in delay 
under the counterfactual scenario. Positive or negative 𝛥𝑌 

values indicate potential mitigation or worsening of delays, 
respectively. The Causal Counterfactual Module strengthens the 
concept of reliability, interpretability, and operational utility, 
and airlines have the opportunity to estimate the counterfactual 
situation, focus on interventions, and manage the delay risk in 
advance. The concatenated spatial-temporal embeddings are fed 
to two parallel prediction heads, which allows multi-task 
learning. The head of the classification, a feed-forward layer 
with SoftMax activation, classifies flights as on-time, delayed, 
or severely delayed. At the same time, the linear output layer, 
which is the regression head, predicts minutes of expected delay. 
Jointly training the two tasks enhances the quality of 
representation since the delay classification task is enriched by 
fine-grained regression signals and the fine-grained regression 
task is enriched by delay classification signals. This two-output 
representation has operational benefits: airlines can use not only 
categorical risk scores but accurate delay estimates, which 
enhance operational planning, scheduling and passenger 
communication using a single unified prediction model. The 
classification and regression are represented as in Eq. (10) and 
Eq. (11), respectively. 

𝑌𝑐𝑙𝑎𝑠𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑡𝐹 + 𝑏𝑐)                     (10) 

𝑌𝑟𝑒𝑔 = 𝑤𝑟𝐹 + 𝑏𝑟                              (11) 

Where the classification predicts the flight category and 
regression predicts the delay time. Fig. 2 shows CASTAN 
workflow architecture. 

 
Fig. 2. Causal-aware spatio-temporal attention network. 

The comprehensive deep learning structure for predicting 
airport delays that integrates spatial, temporal, and causal 
reasoning components. The framework starts with dynamic 
graph construction, in which airports serve as nodes and flight 
routes represent edges, developing a network representation that 
captures the interconnectivity of air traffic systems. Subsequent 
to the dynamic graph representation, the architecture employs 
two concurrent encoding pathways to extract complementary 

information regarding the airport network. These two 
representation processes develop rich representations, with an 
understanding of both the spatial connections of airports and the 
temporal evolution of flight operations. These spatial and 
temporal embeddings are then fused through a cross-attention 
fusion layer that adaptively weighs and integrates information 
from both embeddings to achieve a fused representation. The 
fused representation is fed into a causal counterfactual module 
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which can estimate real-world causal effects (rather than 
correlation), creating counterfactual situations to help grasp 
what would happen if a scenario was slightly different. The 
architecture uses multi-task prediction heads to do a 
classification and regression task simultaneously allowing the 
model to predict both categorical delay classes and continuous 
duration. 

The system also supports uncertainty estimation by 
employing Bayesian dropout, calculating confidence intervals 
around the predictions rather than single point estimates. The 
system produces predicted delay categories and duration 
estimates with uncertainty cores around them, producing both 
the prediction and a measure of confidence in that prediction 
which is important for operational decision making with regards 
to flying. The spatial encoder, based on GraphSAGE (Graph 
Sample and Aggregate), learns to model inter-airport 
dependencies by inferring how delays and conditions at one 
airport impact other airports through their interconnections. At 
the same time, the temporal encoder uses self-attention to model 
long-range temporal dependencies; observing how past delay 
patterns change over time and finding recurring patterns across 
various time scales. 

H. Training and Optimization 

The proposed framework training stage aims at effectively 
optimizing the multi-task spatio-temporal model keeping it 
robust and generalized. The model is trained on the spatial 
embeddings produced by GraphSAGE, the temporal 
embeddings produced by the self-attention encoder and the 
combined spatio-temporal embeddings produced by the cross 
attentional layer. It uses a multi-task loss, which is a 
combination of classification loss and delay category and 
regression loss is used. The individual contribution is balanced 
in terms of weights to avoid domination of one task in the 
learning process. The total loss is calculated in Eq. (12). 

ℒ = 𝜆1ℒ𝑐𝑙𝑎𝑠𝑠 + 𝜆2ℒ𝑟𝑒𝑔                          (12) 

Here ℒ𝑐𝑙𝑎𝑠𝑠 is the cross-entropy for classification and 𝐿𝑟𝑒𝑔 is 

the mean squared error for regression,  𝜆1 and 𝜆2 denotes the 
predicting delay. The AdamW optimizer is used to achieve 
optimization and it offers consistent convergence and overfitting 
is reduced by decoupled weight decay. The further mechanisms 
of regularization include dropout and L2 weight decay to 
enhance generalization. Early stopping checks performance in 
order to avoid overtraining. Hyperparameters such as the 
learning rate, attention head count, dropout rate and the 
dimensions of the hidden layers are optimized through Bayesian 
optimization to get the best predictive results. This training 
approach will optimally learn the correct representation of both 
classification and regression tasks, be stable in response to noisy 
or incomplete data as well as having a robust, interpretable and 
operationally sound final model. This multi-task optimization is 
better in terms of convergence, in feature learning, and pre-
occupancy error in their complex networks of space-time 
airlines compared to the uni-task models. 

I. Prediction and Uncertainty Estimation 

The proposed framework prediction module will create 
categorical and continuous forecasts of flight delays. 
GraphSAGE spatial embedding, the self-attention encoder 

temporal embedding and the cross-attention layer fused spatio-
temporal representations are all inputs. It uses a multi-task 
learning architecture; two parallel heads are used, with one 
classification head, which predicts category of delay (on-time, 
delayed, severely delayed) with the use of a softmax activation 
and a regression head, which predicts the actual delay time, in 
minutes. Multi-task optimization is a representation learning 
method that enables the classification task and regression task to 
inform each other, which is more accurate in predicting. 
Bayesian dropout is used to measure predictive confidence by 
including it in the inference stage. The model produces a 
distribution of predictions on a case dropout by running several 
stochastic forward passes through the network on each instance 
of the flight. The average of such predictions gives the final 
estimate, and the variance of uncertainty is measured by the 
variance. Such a strategy enables the calculation of confidence 
ranges, which can provide practical information about the 
accuracy of every forecast. 

This is novel in that it incorporates both high accuracy multi-
task prediction and uncertainty-aware estimation in a spatio-
temporal setting. Conventional methods tend to give point 
estimates but do not give confidence measures, which restrains 
operational confidence and decision-making. This approach, 
compared to traditional deep learning approaches, learns to 
reflect natural stochasticity in the business of flight, such as 
weather, traffic, and network congestion and delivers sound and 
interpretable predictions. The average predicted delay is 

represented as 𝑌̂ in Eq. (13) and the uncertainty in the prediction 
is represented as 𝜎2 in Eq. (14). 

𝑌̂ =
1

𝑀
∑ 𝑓𝜃𝑚(𝑥)𝑀

𝑚=1                           (13) 

𝜎2 =
1

𝑀
∑ (𝑓𝜃𝑚(𝑥) − 𝑌̂)

2𝑀
𝑚=1                   (14) 

Where 𝑀 is the number of stochastic passes, 𝑓𝜃𝑚 denote the 
prediction of the flight during the 𝑚𝑡ℎ stochastic forward pass 
and 𝑥 is the input feature for a specific flight. The flight delay 
prediction framework in the proposed study is to be developed 
as a multi-task system, where the classification or regression is 
to be performed. The classification head anticipates delay types, 
On-time, Delayed or Severely Delayed, and gives rapid 
operational information to the airlines and passengers. At the 
same time, the regression head will determine the exact delay in 
minutes and allow scheduling, assigning resources, and 
controlling connecting flights. A combination of the two tasks 
improves the feature representation and predictive accuracy 
since the two tasks inform one another during the training. The 
dual-output strategy guarantees the practical applicability, 
interpretability, and operational strength, so this model is very 
effective in real-life situations of airline delay forecasting. 

Algorithm 1 shows the pseudocode for CASTAN algorithm 
is intended to make predictions based on causes, time, and 
location of flight delays. Input includes flight schedules, 
weather, traffic data, airport connectivity, and in form of 
dynamic graph snapshot. First, the algorithm preprocesses the 
data by processing missing values, normalising features, and 
creating graph representations, where airports are the nodes, and 
flights are the edges. In training, spatial embeddings 
(constructed by GraphSAGE) are computed at each epoch and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 11, 2025 

785 | P a g e  

www.ijacsa.thesai.org 

each graph snapshot, representing inter-airport dependencies, 
and temporal embeddings (generated through self-attention) are 
computed to represent sequential delay patterns. These 
embeddings are merged using cross-attention mechanism and 
causal counterfactual embeddings are calculated to offer 
interpretability. Both category and duration delay predictions 
are received and multi-task loss updates are guided by 
parameters. Inference can be done using stochastic forward 
passes with dropout, which can be repeated to estimate 
uncertainty, to make predictions with confidence. CASTAN 
proves to be very strong in terms of its ability to model complex 
spatio-temporal interactions of a flight data. 

Algorithm 1: Causal-Aware Spatio-Temporal Attention 
Network for Flight Delay Prediction 

Input: 

    Flight dataset D with features: schedules, weather, traffic, 

airport connectivity 

    Dynamic graph snapshots G_t for t = 1 to T 

    Hyperparameters: learning rate, epochs, fusion weights, dropout 

probability 

 

Output: 

    Delay category 

    Delay duration 

    Prediction uncertainty 

 

Initialize model parameters for GraphSAGE, temporal attention, 

fusion, causal module, and prediction heads 

Set optimizer (e.g., AdamW) 

 

Preprocessing: 

    Clean missing values 

    Normalize continuous features 

    Compute temporal and traffic features 

    Construct dynamic graphs with airports as nodes and flights as 

edges 

 

Training Phase: 

    For each epoch: 

        For each graph snapshot: 

            Compute spatial embeddings via GraphSAGE 

            Compute temporal embeddings via self-attention 

            Fuse spatial and temporal embeddings 

            Generate causal counterfactual embeddings 

            Predict delay category and duration 

            Compute combined loss for classification and regression 

            Update model parameters 

 

Inference Phase: 

    For each test sample: 

        Perform multiple forward passes with dropout 

        Compute average prediction 

        Compute uncertainty 

 

Return predicted delay category, duration, and uncertainty 

V. RESULTS AND DISCUSSION 

In the Results section, an in-depth assessment of the 
suggested CASTAN framework to predict flight delays is 
provided, including the comparison of its work in terms of 
classification and regression tasks. The analysis starts with the 
analysis of the dataset characteristics and feature correlation, 
then the model performance is compared to the known baselines 
using the Random Forest, DNN, GRU, and GraphSAGE. 
Following sections discuss the work done by individual model 
components with ablation experiments and evaluate the 
predictive reliability with uncertainty analysis. It is highlighted 
that the suitability of spatio-temporal embeddings, cross-
attention fusion, and causal counterfactual reasoning can 
enhance the predictive accuracy, decrease the number of 
mistakes, and offer operationally actionable information. Table 
II lists the important implementation settings that were adopted 
during the development of the model and training. 

TABLE II.  SIMULATION PARAMETER TABLE 

Parameter Value 

Software Python 3.10, TensorFlow 2.12 

Hardware 
Intel Core i9-13900K, 32GB RAM, 

NVIDIA RTX 4090 

Operating System Windows 11 

Training Epochs 100 

Batch Size 128 

Learning Rate 0.001 (AdamW optimizer) 

Dropout Rate 0.3 

Number of Attention Heads 8 

GraphSAGE Neighbor Sampling 10 neighbors per node 

Temporal Window Size 24 (past 24 hours) 

Multi-task Loss Weights (λ1, λ2) 0.6, 0.4 

Early Stopping Patience 10 epochs 

Bayesian Dropout Passes (M) 50 

Table II lists the important implementation settings that were 
adopted during the development of the model and training. 

A. Experimental Outcome 

The experimental analysis proves that the CASTAN 
framework can achieve considerable higher performance in 
comparison to traditional machine learning and deep learning 
baselines, such as Random Forest, DNN, GRU, and 
GraphSAGE. CASTAN has a better predictive accuracy and 
lower error rates than these models, which confirms the 
suitability of the idea of the spatio-temporal attention design. 
The spatial encoder guarantees proper modeling of inter-airport 
delay propagation whereas the temporal self-attention takes into 
consideration long-term scheduling and weather-related 
dependencies. The cross-attention fusion combines these two 
viewpoints in an adaptive manner, and thus, can perform well in 
diverse working conditions. Besides, the causal counterfactual 
module can further increase the interpretability, as it provides 
important delay drivers, and Bayesian dropout can enable 
effective uncertainty estimation. All these findings show 
CASTAN as a strong, interpretive and operationally feasible 
tool in flight delay prediction. 
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Fig. 3. Correlation heatmap. 

The Fig. 3 displays a heatmap of the correlation between 
various variables that are related to flights. Correlation 
coefficient values of each cell lie between -1 and +1 in numbers 
and also in color intensity. The darker the red color the stronger 
the positive relationship is, the lighter or pale the color the 
weaker or the correlation. The negative correlation is shown in 
lighter colors towards white. All the diagonal values are 1.00, 
with every variable having a perfect correlation with itself. 
Interestingly, two variables, Flight and Lengthbyterm, have a 
moderate negative relationship (-0.34). The heatmap graphically 
reflects the dependencies, redundancy, and the possible patterns 
to be exploited in the further data analysis. 

 
Fig. 4. Histogram of flight delays by airline. 

As Fig. 4 shows, the distribution of the flight delays between 
the various airlines in the dataset is illustrated. The histogram 
indicates clear distributions of operations as some airlines 
appear to be highly concentrated in the low delay values whereas 
others have a wide distribution and longer tails, which denote 
high variability. Indicatively, carriers that are highly 

operationally efficient have their peaks in the range of 2030 
minutes and those that have repetitive congestions or time 
schedule inefficiencies have their delays at ranges of longer than 
45 minutes. The figure reminds us of the heterogeneity of airline 
performance which is a key input to the CASTAN framework. 
The study involves airline-specific delay properties to the spatio-
temporal model, which provides realistic operational variations, 
which facilitates the use of a causal-conscious delay propagation 
and resilience forecasts in large-scale air traffic systems. 

 
Fig. 5. Average delay duration over hours of the day. 

In Fig. 5, the change in the average delay time of flights at 
various times of day is shown. These findings show obvious 
temporal variations in delay, and the smallest delay time occurs 
at early morning (06 hours) and late-night operations (2224 
hours), when the air traffic density is the lowest. On the other 
hand, the largest delay peaks are found between 911 a.m.-59 
p.m. and this is during the time of air traffic demand, congestion 
occurring in the airports, and the disruption of weather. The 
afternoon hours are also characterized by the moderate 
variations, which also feature a scheduling overlap and 
turnaround bottlenecks. This time of day effect highlights the 
significance of temporal encoding as part of the CASTAN 
model because repetitive time-of-day effects have a significant 
impact on predictive accuracy. The proposed model successfully 
incorporates such long-range dependency in the daily delay 
behavior by incorporating self-attention mechanisms. 

Fig. 6 shows delay propagation as a time-series pattern, 
whereby disruption on one hub results in subsequent disruption 
in other downstream airports. The increase in average delays at 
ATL is highest in the morning peak times and follow up by ORD 
which has high connectivity with ATL. Later in the day, JFK 
demonstrates a delayed reaction, which is an indication of 
secondary propagation effects. This time-lagged effect 
represents the time delay of network-wide congestion, which 
agrees with the self-attention temporal encoder in the CASTAN 
framework. This time-series perspective, as opposed to the static 
averages, shows dynamic delay dynamics, which proves the 
importance of the spatio-temporal modeling of the airline 
network to result in immediate and downstream effects. 
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Fig. 6. Delay propagation trends across major airports. 

 
Fig. 7. Actual vs. Predicted flight delay. 

Fig. 7 shows the comparison of the actual and the predicted 
flight delays on the proposed model. Where each point is a single 
flight, the x axis is the actual delay, and the y axis is the predicted 
delay. The red dashed diagonal line refers to the best case 
scenario when predictions are exactly equal to the actual results. 
The points were mostly distributed close to this reference line 
which implies that the model performs well in terms of 
predictive accuracy. Small departures of the line are the results 
of residual errors, nevertheless, the overall clustering proves that 
the predictions are made according to the actual delay patterns 
successfully, which proves the correctness of the model. 

B. Comparison with Other State-of-the-Art Methods 

Accuracy measures how well the entire model is correct, this 
is achieved by dividing the correct positive and negative cases 
(RN + RP) by the total number of predictions. It provides a 
general gauge of performance but in case of imbalance in classes 
it could be less precise and it is measured as in Eq. (13), 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑅𝑁+𝑅𝑃

𝑅𝑃+𝐴𝑃+𝑅𝑁+𝐴𝑁
                       (13) 

RMSE is a popular statistic that determines the performance 
of regression models. The mean difference between the 
forecasted and actual outcome is calculated taking into 
consideration the squared deviations. As indicated below in Eq. 
(14), 

𝑅𝑀𝑆𝐸 = √∑
‖𝑥(𝑗)−𝑥̂(𝑗)‖

𝑁
𝑀
𝑗=1                      (14) 

TABLE III.  COMPARISON OF EXISTING METHODS WITH PROPOSED 

METHOD 

Model Accuracy RMSE MAE 

Random Forest (RF) [20] 85.3 8.5 6.2 

DNN [21] 87.1 7.9 5.8 

GRU [22] 89.4 6.8 4.9 

GraphSAGE [23] 91.2 6.1 4.3 

Proposed CASTAN 96.4 4.2 2.9 

Table III indicates that the proposed ST-GAF framework has 
a significant decrease of RMSE and MAE as compared to the 
conventional machine learning models and previous DL 
architectures. Although the current models like the Random 
Forest, DNN, and GRU exhibit difference in their performance, 
the proposed model is superior as it reduces the prediction errors 
to their minimum compared to all other models. This result 
implies that CASTAN is better at modeling the complex spatio-
temporal dependencies of flights delays, which results in more 
accurate and trustworthy predictions. The results confirm the 
reliability of the hybrid design and demonstrate its applicability 
to be used in operational environments in actual airline systems. 

C. Error Analysis Results 

The proposed model is also good at forecasting the delays of 
flights when it has high correlation between weather and 
historical delays hence high accuracy. However, it performs 
poorly in application on more complex instances, secondary to 
inherent delay types arising from unpredictable circumstances 
such as mechanical failures or unpredictable air traffic control 
delay. The model is proven to have precise predictive efficiency 
when it comes to situations which are more related to the 
weather conditions through which its efficiency in using 
meteorological information is very conspicuous. On the other 
hand, the use of the model is less accurate when it comes to 
delays occasioned by mechanical factors and any unexpected 
alteration of air traffic control schedules. The kind of disruptions 
that are most difficult to predict and that disquietingly have the 
greatest maximum disparity are disruptions that occur without 
warning and disrupt an ongoing activity, and this is the area in 
which the present model has the weakest prediction accuracy 
and further refinement may increase the accuracy of the model 
for the existence of new kinds of disruptions that occur with low 
likelihood and disrupt an ongoing activity. Table IV shows the 
result of error analysis is given below. 
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TABLE IV.  ERROR ANALYSIS RESULTS 

Scenario No. of Instances 

Correct 

Predictions 

(%) 

Incorrect 

Predictions 

(%) 

Well-

Performed 

Cases 

10,000 98.5 1.5 

Challenging 

Cases 
2,000 60.0 40.0 

Weather-

Related Delays 
3,500 96.8 3.2 

Mechanical 

Issues 
1,000 50.0 50.0 

Air Traffic 

Control Delays 
1,500 55.0 45.0 

Unexpected 

Event Delays 
500 40.0 60.0 

 
Fig. 8. Number of instances. 

Fig. 8 shows the distribution of instances where a special 
emphasis can be laid on the most abundant and the least ones. 
This is because the data is skewed to some specific categories 
making the dataset possibly imbalanced between the classes. It 
may require the use of methods to prevent the training process 
from including bias. 

D. Discussion 

CASTAN combines GraphSAGE-based spatial encoding, 
attention-based temporal modeling, causal counterfactual 
reasoning, and Bayesian uncertainty estimation in order to 
accurately predict flight delays. CASTAN has a higher 
performance than the standard machine learning and deep 
learning baselines because it can capture inter-airport 
dependencies and sequential delay dynamics. The causal 
module gives more meaning, whereas the uncertainty-aware 
predictions will be more reliable in the face of noisy or 
incomplete data. The framework however relies on high quality 
spatio-temporal data and also calculations can be 
computationally expensive when it comes to real time execution 
in resource limited environments. Additional improvements in 
the future may include real-time weather services, multimodal 
transit information, and lean architectures to increase scope and 
limits on scale. 

VI. CONCLUSION AND FUTURE WORKS 

The CASTAN, which is a Causal-Aware Spatio-Temporal 
Attention Network, will be introduced to solve the problems of 
flight delay prediction. CASTAN provides accurate, 

interpretable, and reliable predictions, by leveraging 
GraphSAGE based spatial features learning, attention based 
temporal modeling, causal counterfactual reasoning, and 
uncertainty estimation with probabilities. A large-scale 
experimental testing of U.S. flight data shows that CASTAN is 
more successful in classification and regression in both large-
scale and challenging non-linear interactions among airports and 
across time doesn’t need conventional machine learning and 
deep learning algorithms. The causal-awareness part also 
enables the stakeholders to comprehend the delay propagation 
dynamics, as opposed to depending on the numbers alone. In 
spite of these innovations, there are drawbacks: the performance 
of the model will be affected by the quality of the available 
datasets, and the deployment in real-time can be problematic in 
resource-constrained settings. The future research will be based 
on incorporation of real time weather feed, air traffic congestion 
information and operational constraints so that the prediction 
reliability is increased under dynamic conditions. The 
integration of CASTAN to multimodal transportation will allow 
integrated mobility. Moreover, lightweight architectures and 
privacy preserving federated learning will support scalable, 
secure and real time deployment. The goals of these 
developments are to make CASTAN a predictive system that 
can be deployed to any part of the world, facilitating sustainable 
CASTAN-based aviation operations and informed strategic 
decisions by air airlines and air traffic management. 
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