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Abstract—This paper proposes a privacy protection method
for IoT data integrating edge computing and federated learning.
To address challenges including edge node heterogeneity, central
server bottlenecks in traditional federated learning, and high
overhead of homomorphic encryption, we design a hierarchical
architecture comprising requesters, participants, edge nodes, a
sensing platform, and a key generation center. Participants train
models locally using SGD, encrypt parameters with an optimized
verifiable dual-key ElGamal homomorphic encryption scheme,
and transmit them to edge nodes. Edge nodes employ the
MPSDGS algorithm for participant similarity discovery and
dropout supplementation, and the MP-Update method for
dynamic weighted averaging to ensure continuity and accuracy.
Edge-side ciphertext aggregation reduces data volume to the
platform. The sensing platform performs global secure
aggregation in ciphertext. Experiments demonstrate that the
method maintains data privacy above 0.8, with training and
aggregation delays within acceptable ranges for typical IoT
scales, balancing privacy and efficiency.
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I.  INTRODUCTION

The massive devices in the Intermet of Things (IoT)
generate and transmit sensitive data continuously, providing a
rich information foundation for intelligent services [1].
However, the explosive growth of data from these devices
includes not only basic data such as device operating status and
environmental information but also sensitive information like
users' personal privacy and enterprises' commercial secrets. In
traditional cloud computing models, data must be centrally
uploaded to the cloud for processing and analysis, which not
only faces issues such as high latency and bandwidth
congestion but also poses significant risks of data privacy
leakage [2-3]. Especially in sensitive fields such as healthcare
and finance, leaks or misuse of such data could bring severe
security risks and economic losses to users [4], and may even
trigger social trust crises, hindering the healthy development of
the IoT industry [5]. Balancing data utility, service quality,
privacy security, and computational efficiency has become a
critical challenge in the current IoT field.

To tackle IoT data privacy concerns, scholarly research has
introduced diverse conventional approaches. Bezanjani et al.
[6] leveraged blockchain-based encryption techniques to secure
data transaction workflows while implementing request pattern
analysis mechanisms. By integrating multi-source data

validation, they identified unauthorized access patterns to
proactively mitigate leakage risks. Furthermore, feature
optimization combined with Bidirectional LSTM networks
enhanced intrusion detection precision against privacy threats.
Nevertheless, this approach's excessive dependence on
blockchain consensus protocols results in prohibitive
computation overhead when handling large-scale IoT data
streams, compromising real-time performance requirements.
Additionally, deploying sophisticated machine learning models
on constrained IoT endpoints creates operational burdens that
impede normal device functions and timely data processing.
Samriya et al. [7] established multi-layered IoT privacy
protection through cloud-level security enhancements using
trusted cryptographic analysis approaches. For device-level
data processing, they employed structured Markov sparse
Bayesian neural networks to extract actionable insights while
preserving confidentiality, supplemented by adversarial
machine learmning for real-time anomaly detection against
network intrusions. However, the computational intensity of
cryptographic analysis and neural computations creates
processing bottlenecks on resource-limited edge devices,
necessitating cloud dependency and thereby increasing
transmission-related privacy exposure risks. Prakash et al. [8]
secured IoT communications through elliptic curve
cryptography (ECC) for confidentiality preservation coupled
with zero-knowledge proofs (ZKP) for authentication
validation. This dual-mechanism approach ensures end-to-end
data security by enabling identity verification without content
exposure. However, the combined computational complexity
of ECC operations and ZKP protocols imposes significant
energy consumption and latency penalties on constrained
devices, reducing battery efficiency and responsiveness while
requiring  specialized  cryptographic  expertise for
implementation. Shree et al. [9] integrated blockchain with
Inter Planetary File System (IPFS) decentralized storage,
employing secret sharing algorithms (SSA) to fragment
sensitive data across distributed IPFS nodes. This configuration
leverages SSA's information-theoretic security properties to
maintain confidentiality even when access keys are
compromised, with blockchain integration ensuring transparent
data provenance tracking. However, the dynamic accessibility
patterns of IoT devices complicate threshold management for
data reconstruction from fragmented storage, while the
framework provides inadequate protection for edge-side data
processing activities.

Edge computing, an emerging paradigm, migrates
computing tasks from the cloud to network edge devices,
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enabling data processing near data sources [10]. In IoT
scenarios, edge computing can preliminarily process and filter
locally generated data, uploading only necessary information to
the cloud—reducing data transmission and leakage risks [11].
Edge devices with moderate computing power can execute
simple encryption and privacy protection algorithms locally,
enhancing data security. They also enable local data storage
and management, reducing cloud dependency and improving
data controllability and privacy. Federated learning, a
distributed machine leaming framework, allows multiple
parties to collaboratively train a global model without sharing
raw data. In IoT, devices or edge nodes can act as participants,
training models with local data and uploading parameters to a
central server for aggregation and global model updates [12].
This avoids centralized storage and transmission of raw data,
protecting privacy at the source. Combined with differential
privacy and homomorphic encryption, federated leaming
further strengthens data privacy during model training.

To this end, this paper proposes an IoT data privacy
protection method based on the collaborative optimization of
edge computing and federated learning. By combining the local
processing capability of edge computing with the distributed
leamning framework of federated leaming, a secure and
efficient IoT data privacy protection system is constructed.
While ensuring the security of data during local processing and
transmission, a distributed model training mechanism based on
federated learning is developed, allowing each edge node to
collaboratively train a global model without sharing raw data,
thus protecting data privacy. This provides theoretical support
and a technical path for efficient and secure privacy protection
in the IoT environment, and promotes the coordinated
development of edge intelligence and privacy computing. The
main contributions of this paper are summarized as follows:
We propose a novel hierarchical privacy protection architecture
for IoT data that integrates edge computing, federated leaming,
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computational loads and mitigating single-point failure risks.
We introduce a verifiable dual-key ElGamal homomorphic
encryption scheme optimized for resource-constrained IoT
devices, employing key segmentation and modular
exponentiation optimization to reduce computational overhead.
We design the MPSDGS algorithm and MP-Update dynamic
weighted averaging method at the edge layer to handle
participant dropouts, dynamically allocate aggregation weights
based on node capability, and maintain model training
continuity and accuracy. We establish a full-process ciphertext
operation pipeline from terminal local encryption, through
edge ciphertext aggregation, to global ciphertext aggregation
on the platform, ensuring data privacy throughout the IoT data
lifecycle. Through extensive simulations, we demonstrate that
our method achieves a high data privacy degree (above 0.8)
while keeping training and aggregation delays within
acceptable ranges for typical IoT scales, successfully balancing
privacy protection with computational efficiency.

II.  OVERALL ARCHITECTURE OF IOT DATA PRIVACY
PROTECTION BASED ON EDGE COMPUTING AND FEDERATED
LEARNING ALGORITHM

To address the challenges of loT data privacy protection, a
privacy protection system model integrating edge computing,
federated learning, and homomorphic encryption technology is
constructed. This model ensures privacy security throughout
the entire process of IoT data sensing, transmission, and
processing, achieving a balance between efficient computing
and privacy protection [13]. To prevent leakage of participants'
original sensing data during sensing tasks, homomorphic
encryption privacy protection technology is integrated into the
distributed edge computing network. The overall architecture
of IoT data privacy protection based on edge computing and
federated learning algorithm, as shown in Fig. 1, includes five
core entities:
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Fig. 1. Overall architecture of IoT data privacy protection based on edge computing and federated learning algorithm.
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1) Requester: As the initiator of sensing tasks and
consumer of sensing data, it issues task requests to the sensing
platform, executes sensing tasks, obtains encrypted training
model results, and completes data applications in the IoT.

2) Participant: As the producer of sensing data, it collects
sensing data using intelligent mobile devices, performs local
federated leaming model training, encrypts model parameters
using verifiable dual-key ElGamal homomorphic encryption
technology, and transmits the encrypted parameters to edge
computing nodes via wireless networks.

3) Edge computing node: As an intermediate processing
unit for sensing tasks, it has more sufficient storage and
computing resources than participants' mobile devices and is
deployed at the network edge. It receives encrypted model
parameters from participants, executes the MPSDGS
algorithm and MP-Update method for similarity calculation
and dropout supplementation, performs edge aggregation, and
then sends the updated edge model parameters to the sensing
platform.

4) Sensing platform: As the data processing and control
center, it has powerful storage and computing capabilities.
After receiving encrypted edge model parameters from edge
computing nodes, it uses homomorphic encryption technology
to complete global model aggregation and updates in
ciphertext form [14], and finally feeds back results to the
requester in encrypted form to complete the sensing task.

5) Key generation center: As a trusted authority, it is
responsible for generating and distributing certificate-
equipped keys adapted to verifiable dual-key ElGamal
encryption to all entities. It provides support for secure
training and aggregation processes, ensuring that participants'
privacy is not leaked during task collaboration.

B. Local Training and Homomorphic Encryption of
Parameters

In distributed machine learning scenarios, participants first
conduct local model training using the Stochastic Gradient
Descent (SGD) algorithm. Due to its characteristic of updating
parameters sample by sample, SGD can effectively handle
large-scale data and improve training efficiency. After
completing local training, to ensure the security and privacy of
model parameters, the wverifiable dual-key ElGamal
homomorphic encryption technology is adopted to encrypt the
model parameters. This encryption method not only has
homomorphic properties, allowing specific operations to be
performed on ciphertexts, but also can ensure the correctness of
the encryption process through a verifiable mechanism.
Considering the limited computing power of edge devices, the
encryption process is optimized to adapt to their computing
capabilities. On one hand, key segmentation technology is used
to split the key into multiple parts, reducing the complexity of
managing a single key and the computational pressure. On the
other hand, through the optimizaton of modular
exponentiation operations, the number of modular operations
in the computing process is reduced, thereby effectively
lowering the complexity of encryption computation. Finally,
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the encrypted model parameters are transmitted to edge nodes,
enabling secure and efficient model aggregation and updates.

1) Local model training: Traditional distributed machine
leamning requires concentrating the local data of participating
nodes in a server for training. However, the federated leaming
algorithm applied in this paper keeps the data local to avoid
privacy leakage. Participants use the Stochastic Gradient
Descent (SGD) algorithm for local training to minimize the
loss function. The SGD algorithm is chosen for its efficiency
in handling large-scale datasets and its suitability for the
iterative, distributed nature of federated learning. Its sample-
by-sample update characteristic makes it computationally
feasible for resource-constrained IoT devices. Define the N
participants in federated learning as P={R,P,,---,P,}. The
local data labels of a single participant P, as
dk = {(xl,yl),(xz,yz),~',(x,,,y,,)} , where X is the iIlpllt
parameter and y, is the expected output. The label dataset of
all participants is D = Ud[ . Let the model parameters of P,
trained locally be o, ={w,,®,,,-,®,,} . The goal of
federated learning is to obtain the globally trained model
Mg =h,(x), so as to minimize the loss function L(M,) of
the dataset D [15].

The loss function of a single participant P, for the data
label d, is defined as:

LS, ) (1)

dk | Jjedy

L(h,, (x')) = |

Among them, f;(h, (x'),y;) is the loss function of the
data label (xj, yj) based on the model 7, (x) . In T

iterations, the training goal of participant F, is to optimize the
local model h; (x") under the condition of privacy protection
to minimize the loss function, that is:

h, (x') = argmin L(h, (x"))

o ety (Dher
st.Pr(w, eR,) < ¢ Pr(w, € R,) 2
VF ePke(,2,--,N)

Among them, @, (¢) is the parameter set for the # -th round
of joint training, and T is the maximum number of parameter
update iterations; Pr(w, €R,)< ¢ Pr(w, €R,) is the
differential privacy condition for updating the parameter o, .

Participants use the Stochastic Gradient Descent (SGD)

algorithm for local training to minimize the loss function. The
gradient calculation formula is:

OL(h,, (x"))

VL(h,, (x)= o

3)
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In the ¢ -th iteration of participant £, , the update of model
parameters is defined as:

o, (t) = o, (t=)+a,-VL(h, (x")) “

Among them, ¢, is the leaming rate, moving in the
direction opposite to the gradient of the loss function to
approach the optimal result.

In addition, during local training of participants, local data
is trained according to the global model. Each participant,
based on the initial global model parameter @, and local data,

uses small-batch stochastic gradient descent for optimization.
Through forward propagation, loss calculation, back
propagation, and parameter update, a new local model @, is

obtained. The process is as follows:

3

w,, =0,
o, =af —n*g (Vr=1-,E) (%)
a)k :a)k

t+1 t,E

Among them, 7 is the learning rate, gﬁr is the random

gradient of the small-batch data sample, and £ is the number
of local training epochs.

2) Parameter  homomorphic  encryption:  Federated
learning provides basic privacy protection for raw data due to
its local training nature. However, participants may still suffer
malicious attacks leading to information leakage, so
encryption mechanisms are needed for enhanced protection. A
verifiable dual-key ElGamal homomorphic encryption
method, which combines Feldman’s Verifiable Secret Sharing
(VSS) and ElGamal encryption, is adopted to encrypt and
protect the model parameter @/, obtained from participants’
local training. The specific process is as follows:

a) System initialization and key generation: The Key
Generation Center (KGC), as a trusted third-party, performs
the following operations:

e Select large prime numbers p and ¢ satisfying

gl p—1, and choose a generator g in the multiplicative

group L modulo p;

 Generate a public-private key pair (sk,, pk, ) for each

sk,

participant B, where sk, €, L, and pk, =g™ modp ;

N
e Generate the global public key PK =H pk, mod p ,

k=1

and make (p, g, g, PK) public.

b) Parameter encryption process: After participant F,
completes local model training to obtain the parameter @/, ,

the following encryption steps are executed:
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e Convert the model parameter o

)y, into an integer

vector o

ok 3 K .
t+1 [a)t+l,1 s a)t+1,2 PR a)t+l,m ] 4

e For each parameter component @/, ., select a random

+1,j7 2

number r €, L ;
Jj TR Tq

e Calculate the encrypted parameter
k _ Al
Enc(w,,, ) =(c,;»¢, ;) . where €/ =8 mod p and
Gy = a)tk+1,_j “PK" modp
e Send the encrypted parameter vector

t+1

Enc(a)" )= [Enc(a)zﬁl,l)o Enc(a)zkﬂ,z ) RERN Enc(a)tkﬂ,m )] to
the edge computing node.

Through the above-mentioned encryption process, the local

model parameter @, of participant P, is converted into the

ciphertext form Enc(w!,), which has semantic security, so

that an attacker cannot infer the original parameter value from
the ciphertext.

C. Edge-Side Secure Aggregation Model

In the edge computing scenario, to enhance the efficiency
and security of model aggregation, edge computing nodes
adopt a series of innovative strategies. First, the MPSDGS
algorithm, which is based on participant similarity discovery
and a dropout-supplementation mechanism, is incorporated.
This algorithm can accurately identify similar participants and
construct a better aggregation group. Meanwhile, when a
participant drops out, its dropout-supplementation mechanism
can quickly find a suitable replacement, ensuring the continuity
of the aggregation process. Then, the MP-Update dynamic
weighted-average method based on recursive update rules is
used to supplement dropped-out participants, and aggregation
weights are dynamically allocated according to the computing
power of edge nodes. This measure avoids low-computing-
power nodes from becoming performance bottlenecks due to
insufficient processing capacity, guarantees the high efficiency
of overall aggregation, and maintains a relatively high
aggregation accuracy [16]. In terms of privacy protection, the
integrity of privacy protection is enhanced, and all operations
are carried out under the premise of strictly ensuring data
privacy. After that, edge-side model aggregation is completed
in the ciphertext form. The edge computing node, as a local
aggregation center, performs preliminary aggregation on
participants’ model parameters. This process can not only
effectively reduce the amount of data uploaded to the sensing
platform, lowering the security risks during data transmission,
but also significantly reduce the computing pressure on the
center. As a result, the entire model training and aggregation
process becomes more efficient and stable, meeting the strict
requirements for real-time performance and security in the
edge computing environment.

Privacy Protection Optimization Based on Participant
Dropout Resolution Mechanism
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The MPSDGS algorithm is described in the following
pseudocode (Algorithm 1):

Algorithm 1: MPSDGS (Participant Similarity Discovery and
Dropout Supplementation)

Input: Participant status list StSt, Local model parameters 6itfit for
online participants PiPi

Output: Supplemented participant set for aggregation

1: Initialize similarity list Sim«—[]Sim«[], corrected similarity
list CorrSim«—[]CorrSim«—[]

2: for each online participant PiPi do

3: for each online participant PjPj (j #1) do

4: Calculate Pearson correlation coefficient pijpij using Eq. (6)

5: Sim.append(pij)Sim.append(pij)

6: end for

7: end for

8: for each participant PkPk do

9: CorrSim[k]«St[k]xSim[k]CorrSim[k]«St[k]xSim[k] // Element-
wise multiplication with status list

10: end for
11: for each offline participant PoffPoff do
12: Find online participant PonPon with

max CorrSimCorrSim relative to PoffPoff

13: Supplement parameters: Oofft«—0ontOofft«—0Oont
14: end for

15: return Supplemented participant parameter set

1) Privacy protection optimization based on participant
dropout resolution mechanism: In the IoT environment,
federated learning relies on the collaborative training of local
data from multiple participants. However, participants are
prone to dropping out due to network fluctuations, device
failures, and other factors, resulting in data loss and abnormal
model convergence, which weakens the privacy protection
capability. To address this, edge computing nodes adopt the
MPSDGS algorithm (based on participant similarity discovery
and dropout supplementation) combined with the MP-Update
dynamic weighted-average method. From the two aspects of
data integrity restoration and accurate similarity evaluation,
the continuity of model training is guaranteed, laying a solid
foundation for privacy protection.

a) MPSDGS algorithm and participant  similarity
calculation: Edge nodes generate a  status  list
S=[5,,8,,",8,] (where K is the total number of

participants) based on the upload status and validity
verification results of participants' encrypted parameters,
marking online/offline statuses. When there are offline
participants, the MPSDGS algorithm uses the Pearson
correlation coefficient to measure the similarity of local model
parameters among participants [17], providing a basis for
offline participant supplementation. For online participants
i~ j, edge computing nodes calculate the linear correlation

degree Al, A/ based on the uploaded local model parameters
p(A),A)). The formula is:

Vol. 16, No. 11, 2025

3 (A )~ - )]
P(ALA) === (6)

Ji(A;’ —u)? \/ﬁ(A:’ )y

i=1 Jj=1

Among them, 4, u, are the sample means.

Offline supplementation maintains training continuity
through three steps, indirectly safeguarding loT data privacy:

e Satus Recognition: Edge computing nodes generate a
participant status list [1,0,0,1,1...] (1 for online, 0 for

offline) based on whether encrypted model parameters
are uploaded. The encrypted parameter transmission
link is protected by technologies such as homomorphic
encryption, and the recognition process does not
disclose raw data.

e Similarity Correction: Multiply the status list and the
Pearson similarity list element-by-element to set the
similarity of offline participants to 0, avoiding
interference from invalid similarity, ensuring the
accuracy of supplementary data, and indirectly reducing
the risk of privacy leakage caused by the introduction of
wrong parameters.

e Parameter Supplementation: Screen the online
participant corresponding to the maximum corrected
similarity and replace the offline participant with its
model parameters. The supplementation process
operates based on encrypted parameters (such as the
edge node aggregation process), ensuring the privacy of
data transmission and use, achieving the effect of full
participation of all participants, and maintaining the
integrity of model training.

b) MP-Update dynamic weighted averaging: Due to the
randomness of the initial model and the uncertainty of small-
batch gradient descent, the Pearson similarity in a single round
cannot accurately reflect participant associations. The MP-
Update method is based on recursive update rules [18],
dynamically adjusting weights by combining historical and
current similarities. The formula is:

1 i,j Ll_j i,j Lo
EPHJ ZL’; — P ij p’oLjeM,
P = o+ 2L +1 (7)
t
1 .. 1 ..
—PY 4= p otherwise
2 2

Among them, L’ is the number of rounds where both

participants were online before round #—1, and P/ is the
average similarity of the previous round.

This method dynamically balances historical data and
current states to accurately evaluate participant similarity
without exposing raw data, enabling the server to identify the
most suitable online participants for dropout replacement. This
approach enhances model convergence efficiency while
avoiding privacy leaks caused by incorrect similarity matching,
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deeply integrating with privacy-protection components such as
encryption and aggregation.

In summary, the participant dropout resolution mechanism
employed by edge computing nodes supports the privacy-
protection system of IoT federated leaming by ensuring
training continuity and optimizing similarity evaluation. It is an
indispensable robustness-enhancement module in the privacy-
protection framework.

2) Encrypted parameter aggregation and verification:
After completing dropout replacement, edge computing nodes
collect the encrypted local model parameters from
participants, perform aggregation and verification in
ciphertext form, and send the updated edge model parameters
to the sensing platform [19] without accessing the actual local
model parameters, thereby protecting participant privacy.

Under the edge computing network, the process of
aggregating and verifying the encrypted parameters of edge
computing nodes is as follows (for the ¢ th training round):

e The edge computing node downloads the encrypted
global model parameters Enc(w'é™"”) from the
previous round from the sensing platform, replaces its
existing model parameters Enc(@“®*”) , and sends

them to the selected participants.

e Randomly select k< max(K,pl) participants at a

proportion of o to form a set S and send

t

Enc(0®”™") to these participants.

e After the participants complete local encrypted training
in round ¢,, the edge computing node collects the new
local model parameters Enc(w') and the local loss

function F(w).

e Since the decryption key cannot be obtained, only
algebraic operations are performed on the ciphertext.

The received Enc(w') is weighted and averaged to
achieve edge-side secure aggregation and update:

Enc(w“*”) « Z&Enc(a)i) (8)

ies,
Among them, N, is the size of the dataset D, of the i -th

k

participant, and N = ZN,. , which reflects the additive
i=1

homomorphic property of homomorphic encryption.

When the number of local updates ¢, meets the conditions,
the edge computing node sends a signal to the participants to
stop training, and sends the encrypted edge model parameters
Enc(«“*”) and the loss function F“*"(w) to the sensing
platform; if the conditions are not met, the aggregated edge

model parameters are sent to the newly selected participants,
and the local model update and encryption continue.
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D. Global Secure Aggregation Model

The sensing platform, as the main control center for sensing
tasks, provides resources for complex data processing and
long-term storage. It does not directly interact with
participants. It receives the encrypted model parameters
aggregated and updated by edge computing nodes, follows the
cryptosystem of verifiable dual-key ElGamal encryption [20],
and performs global aggregation and update in ciphertext form.
This addresses the issue of sensitive data leakage caused by
single-point failure attacks and inference attacks, and trains an
ideal application model for sensing tasks.

The algorithm flow for global secure aggregation and
update is as follows:

e When the global cycle =0, the sensing platform
receives the task, initializes the model parameter o,
and sends it to all edge computing nodes, which then
distribute it to participants to initialize local model
parameters and conduct preliminary training.

e When ¢>0, the sensing platform sends the latest
encrypted global model parameters to edge computing
nodes for collaborative training with participants.

o After every ¢, rounds of edge secure aggregation
updates, the sensing platform receives the encrypted
edge model parameter results Enc(w*”) and

performs global aggregation and averaging in ciphertext
form:

M .
Enc(o®") « ZﬁEnc(a)f"dge) 9)

J=1

Among them, J is the number of edge computing nodes
participating in training, M, is the size of the aggregated
dataset of the j -th edge computing node, M, =N, and

J

M ="M, , reflecting the additive homomorphic property of
Jj=1

homomorphic encryption.

The sensing platform receives the edge loss function
F“*)(w), aggregates and averages it to obtain the global loss

S M.

function £ (@)=Y —LF'“*"(w).It then sends the latest
- M
Jj=1

encrypted global model parameters Enc(@®”) to edge

computing nodes for iterative training [21]. When the global
loss function converges or the maximum number of model
update rounds is reached, the sensing platform sends a signal to
edge computing nodes to stop training, and sends the encrypted
global model parameters to requesters to complete the sensing
task.

In summary, the global secure aggregation model achieves
a privacy protection loop among the sensing platform, edge
nodes, and terminal participants by combining ciphertext-state
collaborative training and hierarchical key management. On
one hand, relying on the additive homomorphic property of
homomorphic encryption, it ensures that model parameters are
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usable but invisible during the global aggregation stage,
avoiding platform-side model reverse-attack risks from the
system-top level. On the other hand, through multi-round
iterative ciphertext aggregation and loss-function convergence
control, it ensures that IoT data remains encrypted throughout
the entire IoT data flow process. This builds a multi-level, full-
link privacy protection system for terminal device sensitive
data, edge-node aggregated features, and platform global
model parameters.

III. EXPERIMENTAL ANALYSIS

To comprehensively evaluate the application effect of the
proposed IoT data privacy protection method, simulations are
conducted focusing on two core aspects: privacy protection
capability and computational efficiency (delay). While the
primary goal is robust privacy preservation, its practical
deployment in resource-constrained IoT environments
necessitates an assessment of the associated computational
overhead and time delays. Therefore, the experiments are
designed to verify that the proposed method achieves a
favorable balance between security and efficiency, ensuring
that strong privacy protection does not come at the cost of
unacceptable performance degradation for typical [oT services.

To verify the application effect of the IoT data privacy
protection method based on edge computing and federated
learning algorithm proposed in this paper, a privacy protection
system in the edge computing network environment is
simulated. A three-layer loT network architecture of user layer-
edge layer-perception layer is built using Python to simulate
the proposed system. One key generation center is set up to
generate and manage public and private keys,providing
cryptographic support for the training and encryption processes
of federated learning in the edge computing network. One
sensing platform (simulating the IoT application server) is
configured to be responsible for global model aggregation and
task scheduling, connecting 6 edge computing nodes
(simulating edge computing power carriers). Each node is
connected to 14 IoT terminal participants (such as smart
sensors, health monitoring devices, etc.), with a total of 84
participants, supporting a dynamic dropout rate of 10%-20% to
simulate scenarios such as network fluctuations and failures of
IoT devices. The participant data is set with non-independent
and identically distributed (Non-IID) settings, and each
participant is only assigned 2 types of local data samples to
reproduce the locality and heterogeneity of IoT terminal data
collection. The federated learning model and the verifiable
dual-key ElGamal homomorphic encryption algorithm
designed in this paper are implemented using PyTorch
(V1.13.1). The private key is only distributed to participants,
ensuring that participants can encrypt model parameters
locally, resisting the semi-honest attack risks of edge
computing nodes and the sensing platform, which conforms to
the privacy protection requirements of data cross-level
transmission in the loT environment.

The experimental dataset uses a custom industrial sensor
dataset to simulate terminal-collected data. This dataset is
collected by IoT sensors (acceleration sensors, temperature and
humidity sensors, electromagnetic sensors, etc.) deployed in
industrial sites, including 100,000 training samples and 15,000
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test samples. Each sample is a multi-dimensional feature
vector: covering the vibration frequency, temperature and
humidity, valve switch state, etc. during equipment operation,
and the label is the equipment health state (0 for normal, 1 for
abnormal waming), used for the abnormal detection
classification task.

The hardware environment of the sensing platform and
edge nodes is: Intel (R) Xeon (R) CPU E5-2630 v3 @
2.50GHz, 128GB RAM (without GPU), matching the
computing power of the edge and the platform; the hardware
environment of the participant terminal is: Raspberry Pi 4B
(quad-core Cortex-A72 @ 1.5GHz, 4GB RAM), simulating the
resource-constrained characteristics of IoT terminals; the
operating system is Ubuntu 20.04, ensuring cross-device
compatibility. The key parameter settings are shown in Table 1,
covering the training and encryption of federated learning and
the adaptation requirements of the IoT scenario.

TABLE I. DETAILS OF KEY PARAMETER SETTINGS
Parameter Numerical Value

Global aggregation times 30
Edge aggregation times 5
Local iteration times 20
Batch size of data 32
Leamingrate 0.01
Leamingrate decay rate 0.99
Learmingrate decay rounds 3
SGD momentum 0.9
ElGamalkey length 2048 bits
Pearson similarity calculation window 5 rounds

TABLE II. SIMULATION DETAILS OF MULTI LEVEL ATTACKS IN THE
INTERNET OF THINGS
Attack Attack Atta}ck Target Simulate Attack
Level Type (privacy theft Methods
content)
Raw sensitive data | Implant memory reading
collected by the | scripts into Raspberry Pi
Terminal Local data | terminal terminals, attempting to
side theft attack | (abnormal values | extract local model
of equipment | parameters and raw data
vibration) cache before encryption

Deploy ciphertext
Distribution of | analysis tools at edge
abnormal states of | nodes, input edge
Cipher terminal devices | aggregated  ciphertext,
Edge side reasoning (proportion of | use clustering algorithms
attack abnormal and homomorphic
production  line | encryption to  crack
vibrations) scripts, and infer teminal
data features in reverse
Run the model reverse
Full terminal | engineering algorithm on
Platform Model p-riva-cy . the platform server, input
side reverse dlstqbutlon global quel
attack (device health | parameterstloT terminal
profile) topology information,

and infer privacy profiles
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To verify the privacy protection ability of the method
proposed in this paper in the loT data privacy protection under
the edge computing and federated learning algorithm, the full
process of terminal local training — edge aggregation —
platform global training is completed according to the
experimental settings, and the intermediate data of each level
(local parameters before terminal encryption, ciphertext
parameters after edge aggregation, platform global model) are
saved. According to Table II, simulate semi-honest attacks and
malicious inference attacks at each level of IoT terminal —
edge — platform, and verify whether the method can protect
privacy information such as device status and sensitive features
in the actual data flow, and effectively resist multi-level threats
of the IoT. The privacy protection results are shown in
Table IIL

TABLEIII. PRIVACY PROTECTION RESULTS OF THE METHODS IN THIS

PAPER

Attack Level Protection Effect Core Protection Process

The private key is only

Terminal side

The attacker implanted a
memory read script and
was unable to obtain

valid sensitive
information about
abnormal device

vibration values.

directed to the terminal, and
the local model parameters of
the terminal are encrypted
with a verifiable dual key
ElGamal before uploading,
blocking the exposure of
sensitive information from the
source of the data

The  deployment of
ciphertext analysis tools
on edge nodes cannot
effectively infer the

The edge aggregation process
is based on homomorphic
encryption characteristics to
perform ciphertext operations,
combined with a verifiable

Edge side distribution of abnormal | dual key mechanism, to resist
states of terminal devices | inference attacks such as
after inputting | ciphertext parameter
aggregated ciphertext. clustering  analysis  and

cracking scripts
The platform  server | The global model aggregation
running model reverse | stage maintains the ciphertext
engineering algorithm, | form, relying on  the

Platform side

combined  with  the
topology information of
IoT terminals, cannot
restore the true privacy
distribution of all
terminals.

hierarchical key management
mechanism of the key
generation center to block the
expansion of global model
parameters and  terminal
deployment locations

By simulating typical attack scenarios on the IoT terminal
side, edge side, and platform side in Table II, the privacy
protection results of the method in Table I verify the
effectiveness of the method in multi-level privacy protection.
On the terminal side, through the localized deployment of
verifiable dual-key ElGamal encryption, the original sensitive
data is encrypted and uploaded, building a privacy protection
barrier from the source of data collection, and greatly reducing
the risk of privacy leakage caused by the intrusion of terminal
devices; on the edge side, using the ciphertext operation
characteristics of homomorphic encryption and the dual-key
verification logic, it resists ciphertext inference attacks in the
edge aggregation link, ensuring that privacy information such
as the abnormal state distribution of terminal devices is not
reversely deduced; on the platform side, through ciphertext-
state global aggregation and hierarchical key management, it
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blocks the associated attack path between model parameters
and IoT topology information, preventing the reverse
engineering of the full-volume terminal privacy distribution.
The privacy protection architecture of terminal local
encryption, edge ciphertext aggregation, and platform
ciphertext-state collaboration constructed by this method can
effectively adapt to the hierarchical scenario of IoT terminal-
edge-platform, and show strong protection ability for privacy
information such as device status and sensitive features in real
attack simulations, providing a feasible technical path for the
balance between data collaborative training and privacy
security in scenarios such as industrial IoT.

To verify the efficiency adaptability of the method in the
hierarchical collaborative training of the IoT, the experiment
focuses on the time consumption of the two core links of
terminal local training encryption of the federated leaming
algorithm and edge model aggregation of edge computing
nodes, and explores the delay characteristics of the method
under data flow and privacy protection operations under
different numbers of terminal participants and model
aggregation rounds. The experimental results are shown in
Fig. 2 and Fig. 3, respectively.
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Fig. 3. Edge model aggregation delay.
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Fig. 2 presents the law of the influence of the number of
terminal participants and the number of model aggregation
rounds on the terminal local training encryption delay, and
Fig. 3 shows the influence of the two on the edge model
aggregation delay. From the terminal side, when the number of
terminal participants is stable, the increase in the number of
model aggregation rounds significantly increases the delay.
This is because each round of aggregation needs to carry out
local model training and verifiable dual-key ElGamal
encryption in turn. The increase in rounds accumulates the time
consumption of training iterations and encryption operations,
and also pushes up the network transmission delay; while when
the number of model aggregation rounds is stable, the increase
in the number of participants disperses the training data volume
of a single terminal. Although the number of encryption
operations increases, the decrease in training time offsets the
increase in encryption time, and the delay shows a downward
trend. From the edge side analysis, when the number of model
aggregation rounds is stable, the increase in the number of
terminal participants continuously increases the edge model
aggregation delay and the growth rate accelerates. This is
because the edge node executes operations such as ciphertext
reception and parameter supplementation for dropped-out
participants. When the number of participants is small, the
constant optimization can offset the time consumption, and
when the number exceeds the threshold, the time consumption
of dropped-out supplementation dominated by complexity
increases sharply.

Comprehensively, from Fig. 2 and Fig. 3, through terminal
local verifiable dual-key ElGamal encryption, edge MPSDGS
dropout detection, and MP-Update dynamic weighted
aggregation, a hierarchical privacy protection system is built.
The terminal side effectively avoids the exposure of sensitive
data, and the edge side greatly reduces the risk of ciphertext
inference attacks, achieving the rigid protection of privacy in
the IoT data collaborative training at a reasonable delay cost; at
the same time, the delay growth law adapts to the
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characteristics of the IoT scenario. The delay on the terminal
side decreases with the increase in the number of participants,
which is in line with the IoT terminal distributed deployment
and data fragmentation processing mode, and has more
efficiency advantages in large-scale terminal collaboration.
Although the delay on the edge side increases with the scale, it
is still within an acceptable range under the typical business
scale of the IoT, reflecting the good balance between privacy
protection and efficiency adaptability of the method. Compared
with the plaintext federated learning without privacy protection
and the single encryption weak protection scheme, this method
achieves a several-fold increase in privacy protection strength
with a controllable delay increment, providing a solution with
both security and practicality for data collaborative training in
scenarios such as industrial loT.

To comprehensively verify the actual efficacy of this
method in the dimension of privacy protection, the data privacy
degree P, index is introduced for quantitative evaluation.

The methods studied by Bezanjani et al. [6] and Samriya et al.
[7] are selected as the control group. Through a controlled
variable experiment, the differences in privacy protection
intensity among different schemes are clearly presented. The
calculation formula of P, is as follows:

index

Var(A)—Var(T

i =)= 7D (10)
Var(A)

Among them, 4 is the original data, and T is the data

after applying privacy protection technology  for

transformation. The higher the value of P, , the greater the

difference between the transformed data and the original data,
and the better the privacy.

P,

index

The evaluation results of the data privacy degree of

the three methods under different numbers of terminal
participants are shown in Fig. 4.
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Analyzing the P, situation in Fig. 4, it can be seen that
the P,

) o Of this method always maintains a high-level interval
above 0.8, and shows a small upward trend as the number of
terminal participants increases from 0 to 80. This characteristic
originates from the architecture constructed in this paper:
terminal-side dual-key ElGamal encryption + edge ciphertext
aggregation (MP-Update algorithm). On the terminal side,
through the asymmetric key mechanism, it ensures that the
encrypted sensitive data of the device can only be verified and
cannot be broken; on the edge side, relying on the ciphertext
aggregation algorithm, the model parameter collaboration is
completed without decryption, fundamentally blocking the
privacy inference path in the data transmission-aggregation
link. Even if the terminal scale expands, the heterogeneous
encryption characteristics of multi-device data instead enhance

the anti-inference ability of the ciphertext, making P

achieve a positive gain as the number of terminals increases,
verifying the robustness of the method in terms of privacy
protection in large-scale lIoT scenarios. In contrast, although
the P, of the Bezanjani method [6] can be maintained in the

index
0.6-0.7 interval, its single-key design makes the central server a
single point of privacy leakage. The larger the terminal scale,
the higher the probability of ciphertext being broken, and the
privacy protection intensity shows a fluctuating downward
trend as the number of terminals increases, making it difficult
to adapt to the scenarios of IoT terminal dispersion and
dynamic scale. The P, of the Samriya method [7] has been

lower than 0.4 for a long time. The root cause is that its
complex cryptographic operations and model reasoning have
extremely high requirements for the computing power of edge
devices. The widespread resource-constrained problem of IoT
terminals makes it unable to complete efficient encryption and
analysis locally, and it is forced to rely on cloud computing,
resulting in an increased risk of privacy leakage during the data
transmission-cloud processing process, and the privacy
protection efficiency is always at a low level.

As shown in Fig. 4, our method maintains a privacy
degree above 0.8 across different participant scales,
significantly outperforming Bezanjani's method (0.6-0.7) and
Samriya's approach (<04). This superiority stems from our
dual-key encryption and ciphertext aggregation architecture,
which fundamentally blocks privacy inference paths during
data transmission and aggregation.

In summary, through the innovative design of hierarchical
encryption to decouple cloud-edge dependencies and ciphertext
aggregation to block inference paths, the proposed method
achieves dual breakthroughs in privacy protection intensity and
scenario adaptability. It can balance the needs of data
collaboration and the rigidity of privacy protection in complex
scenarios where the scale of IoT terminals changes
dynamically, providing more reliable privacy and security
guarantees for cross-level data flow in various application
fields of the IoT.

IV. CONCLUSION

Focusing on the challenges of IoT data privacy protection,
this paper proposes a privacy protection method based on the
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collaborative optimization of edge computing and federated
learning. It constructs a hierarchical architecture covering
multiple entities, integrates technologies such as homomorphic
encryption and dropout supplementation, and achieves
significant results through experimental verification. In terms
of privacy protection effectiveness, through terminal-local
dual-key ElGamal encryption, edge ciphertext aggregation, and
platform global secure aggregation, full-process privacy
protection of IoT data is realized. In the dimension of
efficiency adaptability, the terminal-local training encryption
delay increases with the number of aggregation rounds and
decreases with the increase in the number of participants.
Although the edge model aggregation delay accelerates with
scale growth, it remains within an acceptable range under
typical IoT business scales, verifying the efficiency resilience
of the method and achieving a balance between privacy
protection and computational efficiency. Therefore, the
proposed method breaks through the limitations of traditional
schemes such as cloud dependence, single-point risks, and poor
computing power adaptability. By means of hierarchical
encryption to decouple cloud-edge dependencies and ciphertext
aggregation to block inference paths, it provides reliable
privacy guarantees for cross-level data flow in fields such as
industrial IoT and smart healthcare, promotes the collaborative
development of edge intelligence and privacy computing, and
has good engineering application value and scenario expansion
potential. Future work can deepen research on lightweight
encryption algorithms to further adapt to IoT terminals with
extremely limited resources and improve the universality of the
method.

The proposed privacy-preserving framework exhibits
certain limitations that motivate subsequent research
endeavors. First, despite optimizing verifiable dual-key
ElGamal encryption, the computational overhead remains
prohibitive for ultra-low-power devices (e.g., Class 0 sensors),
necessitating  exploration of lightweight homomorphic
encryption or LWE-based alternatives. Second, current
validation is confined to single-domain industrial sensor data;
cross-domain  applicability —across heterogeneous IoT
ecosystems (smart healthcare, urban sensing) with divergent
data patterns and QoS demands requires rigorous evaluation.
Third, the threat model must expand beyond semi-honest
adversaries to counter sophisticated attacks like model
poisoning or coordinated edge-node compromises. Fourth,
ciphertext transmission overhead in large-scale deployments
demands communication-efficient strategies such as adaptive
aggregation or model compression. Finally, an end-to-end
energy consumption analysis on physical IoT hardware is
crucial to validate practical sustainability across encrypted
training cycles.Future research work will systematically
explore the core challenges of IoT security and efficiency: on
the one hand, it will focus on innovative lightweight security
mechanisms, develop customized homomorphic encryption
variants suitable for Class 0 IoT sensors with extremely limited
resources, and balance security and computational costs
through algorithm tailoring and hardware collaborative design;
On the other hand, expanding the boundaries of security
verification, building a unified verification framework across
heterogeneous scenarios such as intelligent healthcare and
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urban sensing, and solving the problems of privacy leakage and
permission control in multi domain data fusion.
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