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Abstract—This paper proposes a privacy protection method 

for IoT data integrating edge computing and federated learning. 

To address challenges including edge node heterogeneity, central 

server bottlenecks in traditional federated learning, and high 

overhead of homomorphic encryption, we design a hierarchical 

architecture comprising requesters, participants, edge nodes, a 

sensing platform, and a key generation center. Participants train 

models locally using SGD, encrypt parameters with an optimized 

verifiable dual-key ElGamal homomorphic encryption scheme, 

and transmit them to edge nodes. Edge nodes employ the 

MPSDGS algorithm for participant similarity discovery and 

dropout supplementation, and the MP-Update method for 

dynamic weighted averaging to ensure continuity and accuracy. 

Edge-side ciphertext aggregation reduces data volume to the 

platform. The sensing platform performs global secure 

aggregation in ciphertext. Experiments demonstrate that the 

method maintains data privacy above 0.8, with training and 

aggregation delays within acceptable ranges for typical IoT 

scales, balancing privacy and efficiency. 

Keywords—Edge computing; federated learning; Internet of 
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I. INTRODUCTION 

The massive devices in the Internet of Things (IoT) 
generate and transmit sensitive data continuously, providing a 
rich information foundation for intelligent services [1]. 
However, the explosive growth of data from these devices 
includes not only basic data such as device operating status and 
environmental information but also sensitive information like 
users' personal privacy and enterprises' commercial secrets. In 
traditional cloud computing models, data must be centrally 
uploaded to the cloud for processing and analysis, which not 
only faces issues such as high latency and bandwidth 
congestion but also poses significant risks of data privacy 
leakage [2-3]. Especially in sensitive fields such as healthcare 
and finance, leaks or misuse of such data could bring severe 
security risks and economic losses to users [4], and may even 
trigger social trust crises, hindering the healthy development of 
the IoT industry [5]. Balancing data utility, service quality, 
privacy security, and computational efficiency has become a 
critical challenge in the current IoT field. 

To tackle IoT data privacy concerns, scholarly research has 
introduced diverse conventional approaches. Bezanjani et al. 
[6] leveraged blockchain-based encryption techniques to secure 
data transaction workflows while implementing request pattern 
analysis mechanisms. By integrating multi-source data 

validation, they identified unauthorized access patterns to 
proactively mitigate leakage risks. Furthermore, feature 
optimization combined with Bidirectional LSTM networks 
enhanced intrusion detection precision against privacy threats. 
Nevertheless, this approach's excessive dependence on 
blockchain consensus protocols results in prohibitive 
computation overhead when handling large-scale IoT data 
streams, compromising real-time performance requirements. 
Additionally, deploying sophisticated machine learning models 
on constrained IoT endpoints creates operational burdens that 
impede normal device functions and timely data processing. 
Samriya et al. [7] established multi-layered IoT privacy 
protection through cloud-level security enhancements using 
trusted cryptographic analysis approaches. For device-level 
data processing, they employed structured Markov sparse 
Bayesian neural networks to extract actionable insights while 
preserving confidentiality, supplemented by adversarial 
machine learning for real-time anomaly detection against 
network intrusions. However, the computational intensity of 
cryptographic analysis and neural computations creates 
processing bottlenecks on resource-limited edge devices, 
necessitating cloud dependency and thereby increasing 
transmission-related privacy exposure risks. Prakash et al. [8] 
secured IoT communications through elliptic curve 
cryptography (ECC) for confidentiality preservation coupled 
with zero-knowledge proofs (ZKP) for authentication 
validation. This dual-mechanism approach ensures end-to-end 
data security by enabling identity verification without content 
exposure. However, the combined computational complexity 
of ECC operations and ZKP protocols imposes significant 
energy consumption and latency penalties on constrained 
devices, reducing battery efficiency and responsiveness while 
requiring specialized cryptographic expertise for 
implementation. Shree et al. [9] integrated blockchain with 
Inter Planetary File System (IPFS) decentralized storage, 
employing secret sharing algorithms (SSA) to fragment 
sensitive data across distributed IPFS nodes. This configuration 
leverages SSA's information-theoretic security properties to 
maintain confidentiality even when access keys are 
compromised, with blockchain integration ensuring transparent 
data provenance tracking. However, the dynamic accessibility 
patterns of IoT devices complicate threshold management for 
data reconstruction from fragmented storage, while the 
framework provides inadequate protection for edge-side data 
processing activities. 

Edge computing, an emerging paradigm, migrates 
computing tasks from the cloud to network edge devices, 
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enabling data processing near data sources [10]. In IoT 
scenarios, edge computing can preliminarily process and filter 
locally generated data, uploading only necessary information to 
the cloud—reducing data transmission and leakage risks [11]. 
Edge devices with moderate computing power can execute 
simple encryption and privacy protection algorithms locally, 
enhancing data security. They also enable local data storage 
and management, reducing cloud dependency and improving 
data controllability and privacy. Federated learning, a 
distributed machine learning framework, allows multiple 
parties to collaboratively train a global model without sharing 
raw data. In IoT, devices or edge nodes can act as participants, 
training models with local data and uploading parameters to a 
central server for aggregation and global model updates [12]. 
This avoids centralized storage and transmission of raw data, 
protecting privacy at the source. Combined with differential 
privacy and homomorphic encryption, federated learning 
further strengthens data privacy during model training. 

To this end, this paper proposes an IoT data privacy 
protection method based on the collaborative optimization of 
edge computing and federated learning. By combining the local 
processing capability of edge computing with the distributed 
learning framework of federated learning, a secure and 
efficient IoT data privacy protection system is constructed. 
While ensuring the security of data during local processing and 
transmission, a distributed model training mechanism based on 
federated learning is developed, allowing each edge node to 
collaboratively train a global model without sharing raw data, 
thus protecting data privacy. This provides theoretical support 
and a technical path for efficient and secure privacy protection 
in the IoT environment, and promotes the coordinated 
development of edge intelligence and privacy computing. The 
main contributions of this paper are summarized as follows: 
We propose a novel hierarchical privacy protection architecture 
for IoT data that integrates edge computing, federated learning, 
and homomorphic encryption, effectively distributing 

computational loads and mitigating single-point failure risks. 
We introduce a verifiable dual-key ElGamal homomorphic 
encryption scheme optimized for resource-constrained IoT 
devices, employing key segmentation and modular 
exponentiation optimization to reduce computational overhead. 
We design the MPSDGS algorithm and MP-Update dynamic 
weighted averaging method at the edge layer to handle 
participant dropouts, dynamically allocate aggregation weights 
based on node capability, and maintain model training 
continuity and accuracy. We establish a full-process ciphertext 
operation pipeline from terminal local encryption, through 
edge ciphertext aggregation, to global ciphertext aggregation 
on the platform, ensuring data privacy throughout the IoT data 
lifecycle. Through extensive simulations, we demonstrate that 
our method achieves a high data privacy degree (above 0.8) 
while keeping training and aggregation delays within 
acceptable ranges for typical IoT scales, successfully balancing 
privacy protection with computational efficiency. 

II. OVERALL ARCHITECTURE OF IOT DATA PRIVACY 

PROTECTION BASED ON EDGE COMPUTING AND FEDERATED 

LEARNING ALGORITHM 

To address the challenges of IoT data privacy protection, a 
privacy protection system model integrating edge computing, 
federated learning, and homomorphic encryption technology is 
constructed. This model ensures privacy security throughout 
the entire process of IoT data sensing, transmission, and 
processing, achieving a balance between efficient computing 
and privacy protection [13]. To prevent leakage of participants' 
original sensing data during sensing tasks, homomorphic 
encryption privacy protection technology is integrated into the 
distributed edge computing network. The overall architecture 
of IoT data privacy protection based on edge computing and 
federated learning algorithm, as shown in Fig. 1, includes five 
core entities: 
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Fig. 1. Overall architecture of IoT data privacy protection based on edge computing and federated learning algorithm. 
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1) Requester: As the initiator of sensing tasks and 

consumer of sensing data, it issues task requests to the sensing 

platform, executes sensing tasks, obtains encrypted training 

model results, and completes data applications in the IoT. 

2) Participant: As the producer of sensing data, it collects 

sensing data using intelligent mobile devices, performs local 

federated learning model training, encrypts model parameters 

using verifiable dual-key ElGamal homomorphic encryption 

technology, and transmits the encrypted parameters to edge 

computing nodes via wireless networks. 

3) Edge computing node: As an intermediate processing 

unit for sensing tasks, it has more sufficient storage and 

computing resources than participants' mobile devices and is 

deployed at the network edge. It receives encrypted model 

parameters from participants, executes the MPSDGS 

algorithm and MP-Update method for similarity calculation 

and dropout supplementation, performs edge aggregation, and 

then sends the updated edge model parameters to the sensing 

platform. 

4) Sensing platform: As the data processing and control 

center, it has powerful storage and computing capabilities. 

After receiving encrypted edge model parameters from edge 

computing nodes, it uses homomorphic encryption technology 

to complete global model aggregation and updates in 

ciphertext form [14], and finally feeds back results to the 

requester in encrypted form to complete the sensing task. 

5) Key generation center: As a trusted authority, it is 

responsible for generating and distributing certificate-

equipped keys adapted to verifiable dual-key ElGamal 

encryption to all entities. It provides support for secure 

training and aggregation processes, ensuring that participants' 

privacy is not leaked during task collaboration. 

B. Local Training and Homomorphic Encryption of 

Parameters 

In distributed machine learning scenarios, participants first 
conduct local model training using the Stochastic Gradient 
Descent (SGD) algorithm. Due to its characteristic of updating 
parameters sample by sample, SGD can effectively handle 
large-scale data and improve training efficiency. After 
completing local training, to ensure the security and privacy of 
model parameters, the verifiable dual-key ElGamal 
homomorphic encryption technology is adopted to encrypt the 
model parameters. This encryption method not only has 
homomorphic properties, allowing specific operations to be 
performed on ciphertexts, but also can ensure the correctness of 
the encryption process through a verifiable mechanism. 
Considering the limited computing power of edge devices, the 
encryption process is optimized to adapt to their computing 
capabilities. On one hand, key segmentation technology is used 
to split the key into multiple parts, reducing the complexity of 
managing a single key and the computational pressure. On the 
other hand, through the optimization of modular 
exponentiation operations, the number of modular operations 
in the computing process is reduced, thereby effectively 
lowering the complexity of encryption computation. Finally, 

the encrypted model parameters are transmitted to edge nodes, 
enabling secure and efficient model aggregation and updates. 

1) Local model training: Traditional distributed machine 

learning requires concentrating the local data of participating 

nodes in a server for training. However, the federated learning 

algorithm applied in this paper keeps the data local to avoid 

privacy leakage. Participants use the Stochastic Gradient 

Descent (SGD) algorithm for local training to minimize the 

loss function. The SGD algorithm is chosen for its efficiency 

in handling large-scale datasets and its suitability for the 

iterative, distributed nature of federated learning. Its sample-

by-sample update characteristic makes it computationally 

feasible for resource-constrained IoT devices. Define the N  

participants in federated learning as 
1 2{ , , , }NP P P P=  . The 

local data labels of a single participant 
kP  as 

1 1 2 2{( , ),( , ), ,( , )}k n nd x y x y x y=  , where 
ix  is the input 

parameter and 
iy  is the expected output. The label dataset of 

all participants is 
iD d= . Let the model parameters of 

kP  

trained locally be 1 2{ , , , }k k k km   =  . The goal of 

federated learning is to obtain the globally trained model 

( )i

GM h x= , so as to minimize the loss function ( )GL M  of 

the dataset D  [15]. 

The loss function of a single participant kP  for the data 

label kd  is defined as: 
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Among them, ( )k t  is the parameter set for the t -th round 

of joint training, and T  is the maximum number of parameter 

update iterations; Pr( ) Pr( )k d k dR e R 

    is the 

differential privacy condition for updating the parameter k . 

Participants use the Stochastic Gradient Descent (SGD) 
algorithm for local training to minimize the loss function. The 
gradient calculation formula is: 

 
( ( ))

( ( )  ) k

k

i

i

k

L h x
L h x







 =


 () 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 11, 2025 

810 | P a g e  
www.ijacsa.thesai.org 

In the t -th iteration of participant 
kP , the update of model 

parameters is defined as: 

 ( ) ( 1) ( ( ))
kt

i

k k tt t L h x  = − +   () 

Among them, 
t  is the learning rate, moving in the 

direction opposite to the gradient of the loss function to 
approach the optimal result. 

In addition, during local training of participants, local data 
is trained according to the global model. Each participant, 
based on the initial global model parameter 

t  and local data, 

uses small-batch stochastic gradient descent for optimization. 
Through forward propagation, loss calculation, back 

propagation, and parameter update, a new local model 
1

k

t +
 is 

obtained. The process is as follows: 
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Among them,   is the learning rate, ,

k

tg   is the random 

gradient of the small-batch data sample, and E  is the number 
of local training epochs. 

2) Parameter homomorphic encryption: Federated 

learning provides basic privacy protection for raw data due to 

its local training nature. However, participants may still suffer 

malicious attacks leading to information leakage, so 

encryption mechanisms are needed for enhanced protection. A 

verifiable dual-key ElGamal homomorphic encryption 

method, which combines Feldman’s Verifiable Secret Sharing 

(VSS) and ElGamal encryption, is adopted to encrypt and 

protect the model parameter 1

k

t +  obtained from participants’ 

local training. The specific process is as follows: 

a) System initialization and key generation: The Key 
Generation Center (KGC), as a trusted third-party, performs 

the following operations: 

• Select large prime numbers p  and q  satisfying 

1q p −∣ , and choose a generator g  in the multiplicative 

group *

pL modulo p ; 

• Generate a public-private key pair ( ),  k ksk pk  for each 

participant kP , where 
k R qsk L  and m  odksk

kpk g p= ; 

• Generate the global public key 
1

mod
N

k

k

PK pk p
=

=  , 

and make ( ),  ,  ,  p q g PK  public. 

b) Parameter encryption process: After participant kP  

completes local model training to obtain the parameter 1

k

t + , 

the following encryption steps are executed: 

• Convert the model parameter 
1

k

t +
 into an integer 

vector 
1 1,1 1,2 1,[ , , , ]k k k k

t t t t m   + + + +=  ; 

• For each parameter component 
1,

k

t j +
, select a random 

number 
j R qr L ; 

• Calculate the encrypted parameter 

1, 1, 2,( ) ( , )k

t j j jEnc c c + =
, where 1, modjr

jc g p=
 and 

2, 1, modjrk

j t jc PK p += 
; 

• Send the encrypted parameter vector 

1 1,1 1,2 1,( ) [ ( ), ( ), , ( )]k k k k

t t t t mEnc Enc Enc Enc   + + + +=   to 

the edge computing node. 

Through the above-mentioned encryption process, the local 

model parameter 
1

k

t +
 of participant 

kP  is converted into the 

ciphertext form 
1( )k

tEnc  +
, which has semantic security, so 

that an attacker cannot infer the original parameter value from 
the ciphertext. 

C. Edge-Side Secure Aggregation Model 

In the edge computing scenario, to enhance the efficiency 
and security of model aggregation, edge computing nodes 
adopt a series of innovative strategies. First, the MPSDGS 
algorithm, which is based on participant similarity discovery 
and a dropout-supplementation mechanism, is incorporated. 
This algorithm can accurately identify similar participants and 
construct a better aggregation group. Meanwhile, when a 
participant drops out, its dropout-supplementation mechanism 
can quickly find a suitable replacement, ensuring the continuity 
of the aggregation process. Then, the MP-Update dynamic 
weighted-average method based on recursive update rules is 
used to supplement dropped-out participants, and aggregation 
weights are dynamically allocated according to the computing 
power of edge nodes. This measure avoids low-computing-
power nodes from becoming performance bottlenecks due to 
insufficient processing capacity, guarantees the high efficiency 
of overall aggregation, and maintains a relatively high 
aggregation accuracy [16]. In terms of privacy protection, the 
integrity of privacy protection is enhanced, and all operations 
are carried out under the premise of strictly ensuring data 
privacy. After that, edge-side model aggregation is completed 
in the ciphertext form. The edge computing node, as a local 
aggregation center, performs preliminary aggregation on 
participants’ model parameters. This process can not only 
effectively reduce the amount of data uploaded to the sensing 
platform, lowering the security risks during data transmission, 
but also significantly reduce the computing pressure on the 
center. As a result, the entire model training and aggregation 
process becomes more efficient and stable, meeting the strict 
requirements for real-time performance and security in the 
edge computing environment. 

Privacy Protection Optimization Based on Participant 
Dropout Resolution Mechanism 
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The MPSDGS algorithm is described in the following 
pseudocode (Algorithm 1): 

Algorithm 1: MPSDGS (Participant Similarity Discovery and 

Dropout Supplementation) 

Input: Participant status list StSt, Local model parameters θitθit for 

online participants PiPi 

Output: Supplemented participant set for aggregation 

1: Initialize similarity list Sim←[]Sim←[], corrected similarity 

list CorrSim←[]CorrSim←[] 

2: for each online participant PiPi do 

3: for each online participant PjPj (j ≠ i) do 

4: Calculate Pearson correlation coefficient ρijρij using Eq. (6) 

5: Sim.append(ρij)Sim.append(ρij) 

6: end for 

7: end for 

8: for each participant PkPk do 

9: CorrSim[k]←St[k]×Sim[k]CorrSim[k]←St[k]×Sim[k] // Element-

wise multiplication with status list 

10: end for 

11: for each offline participant PoffPoff do 

12: Find online participant PonPon with 

max CorrSimCorrSim relative to PoffPoff 

13: Supplement parameters: θofft←θontθofft←θont 

14: end for 

15: return Supplemented participant parameter set 

1) Privacy protection optimization based on participant 

dropout resolution mechanism: In the IoT environment, 

federated learning relies on the collaborative training of local 

data from multiple participants. However, participants are 

prone to dropping out due to network fluctuations, device 

failures, and other factors, resulting in data loss and abnormal 

model convergence, which weakens the privacy protection 

capability. To address this, edge computing nodes adopt the 

MPSDGS algorithm (based on participant similarity discovery 

and dropout supplementation) combined with the MP-Update 

dynamic weighted-average method. From the two aspects of 

data integrity restoration and accurate similarity evaluation, 

the continuity of model training is guaranteed, laying a solid 

foundation for privacy protection. 

a) MPSDGS algorithm and participant similarity 
calculation: Edge nodes generate a status list 

1 2[ , , , ]KS s s s=   (where K  is the total number of 

participants) based on the upload status and validity 

verification results of participants' encrypted parameters, 
marking online/offline statuses. When there are offline 
participants, the MPSDGS algorithm uses the Pearson 
correlation coefficient to measure the similarity of local model 
parameters among participants [17], providing a basis for 
offline participant supplementation. For online participants 

i j、 , edge computing nodes calculate the linear correlation 

degree i

t , j

t  based on the uploaded local model parameters 

( , )i j

t tp   . The formula is: 

 
1, 1

2 2

1 1

( ) ( )

( , )

( ) ( )

n
i j

t i t j

i ji j

t t
n n

i j

t i t j

i j

p

 

 

= =

= =

  − −  − 
  =

 −  −



 

 () 

Among them, ,i j   are the sample means. 

Offline supplementation maintains training continuity 
through three steps, indirectly safeguarding IoT data privacy: 

• Satus Recognition: Edge computing nodes generate a 

participant status list  1,0,0,1,1...  (1 for online, 0 for 

offline) based on whether encrypted model parameters 
are uploaded. The encrypted parameter transmission 
link is protected by technologies such as homomorphic 
encryption, and the recognition process does not 
disclose raw data. 

• Similarity Correction: Multiply the status list and the 
Pearson similarity list element-by-element to set the 
similarity of offline participants to 0, avoiding 
interference from invalid similarity, ensuring the 
accuracy of supplementary data, and indirectly reducing 
the risk of privacy leakage caused by the introduction of 
wrong parameters. 

• Parameter Supplementation: Screen the online 
participant corresponding to the maximum corrected 
similarity and replace the offline participant with its 
model parameters. The supplementation process 
operates based on encrypted parameters (such as the 
edge node aggregation process), ensuring the privacy of 
data transmission and use, achieving the effect of full 
participation of all participants, and maintaining the 
integrity of model training. 

b) MP-Update dynamic weighted averaging: Due to the 
randomness of the initial model and the uncertainty of small-

batch gradient descent, the Pearson similarity in a single round 
cannot accurately reflect participant associations. The MP-
Update method is based on recursive update rules [18], 
dynamically adjusting weights by combining historical and 

current similarities. The formula is: 

 

,

, , ,1

1 1, ,
, 1 1

, ,

1

1 1
,

2 2 1 2 1

1 1

2

 

2

i j

i j i j i jt

t t t ti j i j
i j t t

t

i j i j

t t

L
P P p i j M

L L
P

P p otherwise

−

− −

− −

−


+ + 

 + +
= 


+

() 

Among them, ,

1

i j

tL −  is the number of rounds where both 

participants were online before round 1t − , and ,

1

i j

tP−  is the 

average similarity of the previous round. 

This method dynamically balances historical data and 
current states to accurately evaluate participant similarity 
without exposing raw data, enabling the server to identify the 
most suitable online participants for dropout replacement. This 
approach enhances model convergence efficiency while 
avoiding privacy leaks caused by incorrect similarity matching, 
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deeply integrating with privacy-protection components such as 
encryption and aggregation. 

In summary, the participant dropout resolution mechanism 
employed by edge computing nodes supports the privacy-
protection system of IoT federated learning by ensuring 
training continuity and optimizing similarity evaluation. It is an 
indispensable robustness-enhancement module in the privacy-
protection framework. 

2) Encrypted parameter aggregation and verification: 

After completing dropout replacement, edge computing nodes 

collect the encrypted local model parameters from 

participants, perform aggregation and verification in 

ciphertext form, and send the updated edge model parameters 

to the sensing platform [19] without accessing the actual local 

model parameters, thereby protecting participant privacy. 

Under the edge computing network, the process of 
aggregating and verifying the encrypted parameters of edge 
computing nodes is as follows (for the t th training round): 

• The edge computing node downloads the encrypted 

global model parameters ( )

1( )global

tEnc  −
 from the 

previous round from the sensing platform, replaces its 

existing model parameters ( )

1( )edge

tEnc  −
, and sends 

them to the selected participants. 

• Randomly select max( , 1)k K   participants at a 

proportion of   to form a set tS , and send 
( )

1( )global

tEnc  −
 to these participants. 

• After the participants complete local encrypted training 
in round 1t , the edge computing node collects the new 

local model parameters ( )iEnc   and the local loss 

function ( ) ( )t

iF  . 

• Since the decryption key cannot be obtained, only 
algebraic operations are performed on the ciphertext. 

The received ( )iEnc   is weighted and averaged to 

achieve edge-side secure aggregation and update: 

 ( )( ) ( )
t

edge ii

t

i S

N
Enc Enc

N
 



   () 

Among them, iN  is the size of the dataset iD  of the i -th 

participant, and 
1

k

i

i

N N
=

=  , which reflects the additive 

homomorphic property of homomorphic encryption. 

When the number of local updates 1t  meets the conditions, 

the edge computing node sends a signal to the participants to 
stop training, and sends the encrypted edge model parameters 

( )( )edge

tEnc   and the loss function ( ) ( )edge

tF   to the sensing 

platform; if the conditions are not met, the aggregated edge 
model parameters are sent to the newly selected participants, 
and the local model update and encryption continue. 

D. Global Secure Aggregation Model 

The sensing platform, as the main control center for sensing 
tasks, provides resources for complex data processing and 
long-term storage. It does not directly interact with 
participants. It receives the encrypted model parameters 
aggregated and updated by edge computing nodes, follows the 
cryptosystem of verifiable dual-key ElGamal encryption [20], 
and performs global aggregation and update in ciphertext form. 
This addresses the issue of sensitive data leakage caused by 
single-point failure attacks and inference attacks, and trains an 
ideal application model for sensing tasks. 

The algorithm flow for global secure aggregation and 
update is as follows: 

• When the global cycle 0t = , the sensing platform 

receives the task, initializes the model parameter 
0  

and sends it to all edge computing nodes, which then 
distribute it to participants to initialize local model 
parameters and conduct preliminary training. 

• When 0t  , the sensing platform sends the latest 

encrypted global model parameters to edge computing 
nodes for collaborative training with participants. 

• After every 2t  rounds of edge secure aggregation 

updates, the sensing platform receives the encrypted 

edge model parameter results ( )( )edge

tEnc   and 

performs global aggregation and averaging in ciphertext 
form: 

 ( ) ( )

1

( ) (
J

jglobal edge

t t

j

M
Enc Enc

M
 

=

   () 

Among them, J  is the number of edge computing nodes 

participating in training, 
jM  is the size of the aggregated 

dataset of the j -th edge computing node, 
jM N= , and 

1

J

j

j

M M
=

=  , reflecting the additive homomorphic property of 

homomorphic encryption. 

The sensing platform receives the edge loss function 
( ) ( )edge

tF  , aggregates and averages it to obtain the global loss 

function ( ) ( )

1

( ) ( )
J

jglobal edge

t t

j

M
F F

M
 

=

=  . It then sends the latest 

encrypted global model parameters ( )( )global

tEnc   to edge 

computing nodes for iterative training [21]. When the global 
loss function converges or the maximum number of model 
update rounds is reached, the sensing platform sends a signal to 
edge computing nodes to stop training, and sends the encrypted 
global model parameters to requesters to complete the sensing 
task. 

In summary, the global secure aggregation model achieves 
a privacy protection loop among the sensing platform, edge 
nodes, and terminal participants by combining ciphertext-state 
collaborative training and hierarchical key management. On 
one hand, relying on the additive homomorphic property of 
homomorphic encryption, it ensures that model parameters are 
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usable but invisible during the global aggregation stage, 
avoiding platform-side model reverse-attack risks from the 
system-top level. On the other hand, through multi-round 
iterative ciphertext aggregation and loss-function convergence 
control, it ensures that IoT data remains encrypted throughout 
the entire IoT data flow process. This builds a multi-level, full-
link privacy protection system for terminal device sensitive 
data, edge-node aggregated features, and platform global 
model parameters. 

III. EXPERIMENTAL ANALYSIS 

To comprehensively evaluate the application effect of the 
proposed IoT data privacy protection method, simulations are 
conducted focusing on two core aspects: privacy protection 
capability and computational efficiency (delay). While the 
primary goal is robust privacy preservation, its practical 
deployment in resource-constrained IoT environments 
necessitates an assessment of the associated computational 
overhead and time delays. Therefore, the experiments are 
designed to verify that the proposed method achieves a 
favorable balance between security and efficiency, ensuring 
that strong privacy protection does not come at the cost of 
unacceptable performance degradation for typical IoT services. 

To verify the application effect of the IoT data privacy 
protection method based on edge computing and federated 
learning algorithm proposed in this paper, a privacy protection 
system in the edge computing network environment is 
simulated. A three-layer IoT network architecture of user layer-
edge layer-perception layer is built using Python to simulate 
the proposed system. One key generation center is set up to 
generate and manage public and private keys,providing 
cryptographic support for the training and encryption processes 
of federated learning in the edge computing network. One 
sensing platform (simulating the IoT application server) is 
configured to be responsible for global model aggregation and 
task scheduling, connecting 6 edge computing nodes 
(simulating edge computing power carriers). Each node is 
connected to 14 IoT terminal participants (such as smart 
sensors, health monitoring devices, etc.), with a total of 84 
participants, supporting a dynamic dropout rate of 10%-20% to 
simulate scenarios such as network fluctuations and failures of 
IoT devices. The participant data is set with non-independent 
and identically distributed (Non-IID) settings, and each 
participant is only assigned 2 types of local data samples to 
reproduce the locality and heterogeneity of IoT terminal data 
collection.  The federated learning model and the verifiable 
dual-key ElGamal homomorphic encryption algorithm 
designed in this paper are implemented using PyTorch 
(V1.13.1). The private key is only distributed to participants, 
ensuring that participants can encrypt model parameters 
locally, resisting the semi-honest attack risks of edge 
computing nodes and the sensing platform, which conforms to 
the privacy protection requirements of data cross-level 
transmission in the IoT environment. 

The experimental dataset uses a custom industrial sensor 
dataset to simulate terminal-collected data. This dataset is 
collected by IoT sensors (acceleration sensors, temperature and 
humidity sensors, electromagnetic sensors, etc.) deployed in 
industrial sites, including 100,000 training samples and 15,000 

test samples. Each sample is a multi-dimensional feature 
vector: covering the vibration frequency, temperature and 
humidity, valve switch state, etc. during equipment operation, 
and the label is the equipment health state (0 for normal, 1 for 
abnormal warning), used for the abnormal detection 
classification task. 

The hardware environment of the sensing platform and 
edge nodes is: Intel (R) Xeon (R) CPU E5-2630 v3 @ 
2.50GHz, 128GB RAM (without GPU), matching the 
computing power of the edge and the platform; the hardware 
environment of the participant terminal is: Raspberry Pi 4B 
(quad-core Cortex-A72 @ 1.5GHz, 4GB RAM), simulating the 
resource-constrained characteristics of IoT terminals; the 
operating system is Ubuntu 20.04, ensuring cross-device 
compatibility. The key parameter settings are shown in Table I, 
covering the training and encryption of federated learning and 
the adaptation requirements of the IoT scenario. 

TABLE I.  DETAILS OF KEY PARAMETER SETTINGS 

Parameter Numerical Value 

Global aggregation times 30 

Edge aggregation times 5 

Local iteration times 20 

Batch size of data  32 

Learning rate 0.01 

Learning rate decay rate 0.99 

Learning rate decay rounds 3 

SGD momentum 0.9 

ElGamal key length 2048 bits 

Pearson similarity calculation window 5 rounds 

TABLE II.  SIMULATION DETAILS OF MULTI LEVEL ATTACKS IN THE 

INTERNET OF THINGS 

Attack 

Level 

Attack 

Type 

Attack Target 

(privacy theft 

content) 

Simulate Attack 

Methods 

Terminal 

side 

Local data 

theft attack 

Raw sensitive data 

collected by the 

terminal 

(abnormal values 

of equipment 

vibration) 

Implant memory reading 

scripts into Raspberry Pi  

terminals, attempting to 

extract local model 

parameters and raw data 

cache before encryption 

Edge side 

Cipher 

reasoning 

attack 

Distribution of 

abnormal states of 

terminal devices 

(proportion of 

abnormal 

production line 

vibrations) 

Deploy ciphertext 

analysis tools at edge 

nodes, input edge 

aggregated ciphertext, 

use clustering algorithms 

and homomorphic 

encryption to crack 

scripts, and infer terminal 

data features in reverse 

Platform 

side 

Model 

reverse 

attack 

Full terminal 

privacy 

distribution 

(device health 

profile) 

Run the model reverse 

engineering algorithm on 

the platform server, input 

global model 

parameters+IoT terminal 

topology information, 

and infer privacy profiles 
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To verify the privacy protection ability of the method 
proposed in this paper in the IoT data privacy protection under 
the edge computing and federated learning algorithm, the full 
process of terminal local training → edge aggregation → 
platform global training is completed according to the 
experimental settings, and the intermediate data of each level 
(local parameters before terminal encryption, ciphertext 
parameters after edge aggregation, platform global model) are 
saved. According to Table II, simulate semi-honest attacks and 
malicious inference attacks at each level of IoT terminal → 
edge → platform, and verify whether the method can protect 
privacy information such as device status and sensitive features 
in the actual data flow, and effectively resist multi-level threats 
of the IoT. The privacy protection results are shown in 
Table III. 

TABLE III.  PRIVACY PROTECTION RESULTS OF THE METHODS IN THIS 

PAPER 

Attack Level Protection Effect Core Protection Process 

Terminal side 

The attacker implanted a 

memory read script and 

was unable to obtain 

valid sensitive 

information about 

abnormal device 

vibration values. 

The private key is only 

directed to the terminal, and 

the local model parameters of 

the terminal are encrypted 

with a verifiable dual key 

ElGamal before uploading, 

blocking the exposure of 

sensitive information from the 

source of the data  

Edge side 

The deployment of 

ciphertext analysis tools 

on edge nodes cannot 

effectively infer the 

distribution of abnormal 

states of terminal devices 

after inputting 

aggregated ciphertext. 

The edge aggregation process 

is based on homomorphic 

encryption characteristics to 

perform ciphertext operations, 

combined with a verifiable 

dual key mechanism, to resist 

inference attacks such as 

ciphertext parameter 

clustering analysis and 

cracking scripts 

Platform side 

The platform server 

running model reverse 

engineering algorithm, 

combined with the 

topology information of 

IoT terminals, cannot 

restore the true privacy 

distribution of all 

terminals. 

The global model aggregation 

stage maintains the ciphertext 

form, relying on the 

hierarchical key management 

mechanism of the key 

generation center to block the 

expansion of global model 

parameters and terminal 

deployment locations 

By simulating typical attack scenarios on the IoT terminal 
side, edge side, and platform side in Table II, the privacy 
protection results of the method in Table III verify the 
effectiveness of the method in multi-level privacy protection. 
On the terminal side, through the localized deployment of 
verifiable dual-key ElGamal encryption, the original sensitive 
data is encrypted and uploaded, building a privacy protection 
barrier from the source of data collection, and greatly reducing 
the risk of privacy leakage caused by the intrusion of terminal 
devices; on the edge side, using the ciphertext operation 
characteristics of homomorphic encryption and the dual-key 
verification logic, it resists ciphertext inference attacks in the 
edge aggregation link, ensuring that privacy information such 
as the abnormal state distribution of terminal devices is not 
reversely deduced; on the platform side, through ciphertext-
state global aggregation and hierarchical key management, it 

blocks the associated attack path between model parameters 
and IoT topology information, preventing the reverse 
engineering of the full-volume terminal privacy distribution. 
The privacy protection architecture of terminal local 
encryption, edge ciphertext aggregation, and platform 
ciphertext-state collaboration constructed by this method can 
effectively adapt to the hierarchical scenario of IoT terminal-
edge-platform, and show strong protection ability for privacy 
information such as device status and sensitive features in real 
attack simulations, providing a feasible technical path for the 
balance between data collaborative training and privacy 
security in scenarios such as industrial IoT. 

To verify the efficiency adaptability of the method in the 
hierarchical collaborative training of the IoT, the experiment 
focuses on the time consumption of the two core links of 
terminal local training encryption of the federated learning 
algorithm and edge model aggregation of edge computing 
nodes, and explores the delay characteristics of the method 
under data flow and privacy protection operations under 
different numbers of terminal participants and model 
aggregation rounds. The experimental results are shown in 
Fig. 2 and Fig. 3, respectively. 
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Fig. 2. Local training encryption delay of terminal. 
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Fig. 3. Edge model aggregation delay. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 11, 2025 

815 | P a g e  
www.ijacsa.thesai.org 

Fig. 2 presents the law of the influence of the number of 
terminal participants and the number of model aggregation 
rounds on the terminal local training encryption delay, and 
Fig. 3 shows the influence of the two on the edge model 
aggregation delay. From the terminal side, when the number of 
terminal participants is stable, the increase in the number of 
model aggregation rounds significantly increases the delay. 
This is because each round of aggregation needs to carry out 
local model training and verifiable dual-key ElGamal 
encryption in turn. The increase in rounds accumulates the time 
consumption of training iterations and encryption operations, 
and also pushes up the network transmission delay; while when 
the number of model aggregation rounds is stable, the increase 
in the number of participants disperses the training data volume 
of a single terminal. Although the number of encryption 
operations increases, the decrease in training time offsets the 
increase in encryption time, and the delay shows a downward 
trend. From the edge side analysis, when the number of model 
aggregation rounds is stable, the increase in the number of 
terminal participants continuously increases the edge model 
aggregation delay and the growth rate accelerates. This is 
because the edge node executes operations such as ciphertext 
reception and parameter supplementation for dropped-out 
participants. When the number of participants is small, the 
constant optimization can offset the time consumption, and 
when the number exceeds the threshold, the time consumption 
of dropped-out supplementation dominated by complexity 
increases sharply. 

Comprehensively, from Fig. 2 and Fig. 3, through terminal 
local verifiable dual-key ElGamal encryption, edge MPSDGS 
dropout detection, and MP-Update dynamic weighted 
aggregation, a hierarchical privacy protection system is built. 
The terminal side effectively avoids the exposure of sensitive 
data, and the edge side greatly reduces the risk of ciphertext 
inference attacks, achieving the rigid protection of privacy in 
the IoT data collaborative training at a reasonable delay cost; at 
the same time, the delay growth law adapts to the 

characteristics of the IoT scenario. The delay on the terminal 
side decreases with the increase in the number of participants, 
which is in line with the IoT terminal distributed deployment 
and data fragmentation processing mode, and has more 
efficiency advantages in large-scale terminal collaboration. 
Although the delay on the edge side increases with the scale, it 
is still within an acceptable range under the typical business 
scale of the IoT, reflecting the good balance between privacy 
protection and efficiency adaptability of the method. Compared 
with the plaintext federated learning without privacy protection 
and the single encryption weak protection scheme, this method 
achieves a several-fold increase in privacy protection strength 
with a controllable delay increment, providing a solution with 
both security and practicality for data collaborative training in 
scenarios such as industrial IoT. 

To comprehensively verify the actual efficacy of this 
method in the dimension of privacy protection, the data privacy 
degree 

indexP  index is introduced for quantitative evaluation. 

The methods studied by Bezanjani et al. [6] and Samriya et al. 
[7] are selected as the control group. Through a controlled 
variable experiment, the differences in privacy protection 
intensity among different schemes are clearly presented. The 
calculation formula of indexP  is as follows: 

 
( ) ( )

( )
index

Var A Var T
P

Var A

−
=  () 

Among them, A  is the original data, and T  is the data 
after applying privacy protection technology for 
transformation. The higher the value of indexP , the greater the 

difference between the transformed data and the original data, 
and the better the privacy. 

The evaluation results of the data privacy degree indexP  of 

the three methods under different numbers of terminal 
participants are shown in Fig. 4. 
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Fig. 4. Evaluation results of data privacy level indexP  for three methods. 
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Analyzing the 
indexP  situation in Fig. 4, it can be seen that 

the 
indexP  of this method always maintains a high-level interval 

above 0.8, and shows a small upward trend as the number of 
terminal participants increases from 0 to 80. This characteristic 
originates from the architecture constructed in this paper: 
terminal-side dual-key ElGamal encryption + edge ciphertext 
aggregation (MP-Update algorithm). On the terminal side, 
through the asymmetric key mechanism, it ensures that the 
encrypted sensitive data of the device can only be verified and 
cannot be broken; on the edge side, relying on the ciphertext 
aggregation algorithm, the model parameter collaboration is 
completed without decryption, fundamentally blocking the 
privacy inference path in the data transmission-aggregation 
link. Even if the terminal scale expands, the heterogeneous 
encryption characteristics of multi-device data instead enhance 
the anti-inference ability of the ciphertext, making 

indexP  

achieve a positive gain as the number of terminals increases, 
verifying the robustness of the method in terms of privacy 
protection in large-scale IoT scenarios. In contrast, although 
the indexP  of the Bezanjani method [6] can be maintained in the 

0.6-0.7 interval, its single-key design makes the central server a 
single point of privacy leakage. The larger the terminal scale, 
the higher the probability of ciphertext being broken, and the 
privacy protection intensity shows a fluctuating downward 
trend as the number of terminals increases, making it difficult 
to adapt to the scenarios of IoT terminal dispersion and 
dynamic scale. The indexP  of the Samriya method [7] has been 

lower than 0.4 for a long time. The root cause is that its 
complex cryptographic operations and model reasoning have 
extremely high requirements for the computing power of edge 
devices. The widespread resource-constrained problem of IoT 
terminals makes it unable to complete efficient encryption and 
analysis locally, and it is forced to rely on cloud computing, 
resulting in an increased risk of privacy leakage during the data 
transmission-cloud processing process, and the privacy 
protection efficiency is always at a low level. 

As shown in Fig. 4, our method maintains a privacy 
degree above 0.8 across different participant scales, 
significantly outperforming Bezanjani's method (0.6-0.7) and 
Samriya's approach (<0.4). This superiority stems from our 

dual-key encryption and ciphertext aggregation architecture, 
which fundamentally blocks privacy inference paths during 

data transmission and aggregation. 

In summary, through the innovative design of hierarchical 
encryption to decouple cloud-edge dependencies and ciphertext 
aggregation to block inference paths, the proposed method 
achieves dual breakthroughs in privacy protection intensity and 
scenario adaptability. It can balance the needs of data 
collaboration and the rigidity of privacy protection in complex 
scenarios where the scale of IoT terminals changes 
dynamically, providing more reliable privacy and security 
guarantees for cross-level data flow in various application 
fields of the IoT. 

IV. CONCLUSION 

Focusing on the challenges of IoT data privacy protection, 
this paper proposes a privacy protection method based on the 

collaborative optimization of edge computing and federated 
learning. It constructs a hierarchical architecture covering 
multiple entities, integrates technologies such as homomorphic 
encryption and dropout supplementation, and achieves 
significant results through experimental verification. In terms 
of privacy protection effectiveness, through terminal-local 
dual-key ElGamal encryption, edge ciphertext aggregation, and 
platform global secure aggregation, full-process privacy 
protection of IoT data is realized. In the dimension of 
efficiency adaptability, the terminal-local training encryption 
delay increases with the number of aggregation rounds and 
decreases with the increase in the number of participants. 
Although the edge model aggregation delay accelerates with 
scale growth, it remains within an acceptable range under 
typical IoT business scales, verifying the efficiency resilience 
of the method and achieving a balance between privacy 
protection and computational efficiency. Therefore, the 
proposed method breaks through the limitations of traditional 
schemes such as cloud dependence, single-point risks, and poor 
computing power adaptability. By means of hierarchical 
encryption to decouple cloud-edge dependencies and ciphertext 
aggregation to block inference paths, it provides reliable 
privacy guarantees for cross-level data flow in fields such as 
industrial IoT and smart healthcare, promotes the collaborative 
development of edge intelligence and privacy computing, and 
has good engineering application value and scenario expansion 
potential. Future work can deepen research on lightweight 
encryption algorithms to further adapt to IoT terminals with 
extremely limited resources and improve the universality of the 
method. 

The proposed privacy-preserving framework exhibits 
certain limitations that motivate subsequent research 
endeavors. First, despite optimizing verifiable dual-key 
ElGamal encryption, the computational overhead remains 
prohibitive for ultra-low-power devices (e.g., Class 0 sensors), 
necessitating exploration of lightweight homomorphic 
encryption or LWE-based alternatives. Second, current 
validation is confined to single-domain industrial sensor data; 
cross-domain applicability across heterogeneous IoT 
ecosystems (smart healthcare, urban sensing) with divergent 
data patterns and QoS demands requires rigorous evaluation. 
Third, the threat model must expand beyond semi-honest 
adversaries to counter sophisticated attacks like model 
poisoning or coordinated edge-node compromises. Fourth, 
ciphertext transmission overhead in large-scale deployments 
demands communication-efficient strategies such as adaptive 
aggregation or model compression. Finally, an end-to-end 
energy consumption analysis on physical IoT hardware is 
crucial to validate practical sustainability across encrypted 
training cycles.Future research work will systematically 
explore the core challenges of IoT security and efficiency: on 
the one hand, it will focus on innovative lightweight security 
mechanisms, develop customized homomorphic encryption 
variants suitable for Class 0 IoT sensors with extremely limited 
resources, and balance security and computational costs 
through algorithm tailoring and hardware collaborative design; 
On the other hand, expanding the boundaries of security 
verification, building a unified verification framework across 
heterogeneous scenarios such as intelligent healthcare and 
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urban sensing, and solving the problems of privacy leakage and 
permission control in multi domain data fusion. 
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