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Abstract—Android malware continues to pose significant 

security threats, with evolving tactics that often bypass traditional 

detection systems. Existing detection mechanisms remain 

ineffective against obfuscated or novel malware variants, 

necessitating the development of more robust detection 

techniques. This study introduces a comprehensive machine 

learning framework for Android malware detection that leverages 

a systematic comparison between a deep Neural Network and 

diverse ensemble methods, including Voting Ensemble, Stacking 

Ensemble, XGBoost, and Random Forest. Unlike prior studies 

that often focus on individual approaches, this work provides an 

empirical benchmark that demonstrates how practical ensemble 

configurations can achieve superior performance while 

maintaining computational efficiency. The model is trained using 

the CIC-AndMal2017 dataset, incorporating a comprehensive set 

of static features, including API calls, permissions, services, 

receivers, and activities. Feature selection was performed to 

optimize model performance, reducing redundancy and 

improving detection accuracy. The models were evaluated on 

multiple classification metrics, including accuracy, F1-score, and 

confusion matrices, with the Voting Ensemble model achieving an 

accuracy of 94.14%, outperforming all other approaches, 

including the deep neural network. This study contributes to the 

field by demonstrating that a carefully constructed ensemble of 

diverse classifiers can not only improve detection accuracy but 

also offer a more scalable, lightweight solution compared to 

complex deep learning models. The research provides a significant 

advancement in practical Android malware detection by 

identifying optimal strategies that balance performance with 

computational efficiency. 
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calls; permissions; android security; malware classification 

I. INTRODUCTION 

The rise of mobile technology has made smartphones 
integral to daily life, often outpacing desktop systems in user 
interaction and internet engagement [1]. With vast amounts of 
sensitive data stored on mobile devices, including login 
credentials and banking information, they have become prime 
targets for cyber threats [2]. Android, with an 88% market share, 
leads the mobile ecosystem and powers billions of devices 
worldwide [3]. Its open-source nature, while enabling 
widespread adoption, also increases security vulnerabilities [4]. 
Its open-source architecture fosters broad adoption due to 
flexibility, cost-efficiency, and a vast application library. 

However, this openness also exposes it to heightened security 
risks, enabling malicious actors to exploit inherent system 
vulnerabilities and bypass inadequate security checks [5]. 
Research in Android malware detection has focused on static 
and dynamic analysis, as well as hybrid approaches [6]. Static 
analysis is scalable but ineffective against obfuscated malware, 
while dynamic analysis uncovers runtime threats at the cost of 
high computational demand. Hybrid methods aim to balance 
these strengths [7]. Static analysis inspects application code 
without execution, offering scalability but often failing against 
obfuscated or polymorphic malware. Conversely, dynamic 
analysis monitors real-time application behavior in controlled 
environments, effectively uncovering runtime threats but 
demanding significant computational resources. Hybrid 
methods strive to merge the strengths of both, achieving a trade-
off between performance and threat coverage [8]. Traditional 
network intrusion detection systems (NIDS), divided into 
signature-based, anomaly-based, and hybrid models, also 
enhance security but face challenges in detecting novel threats 
[9]. Therefore, the need for intelligent, adaptive, and lightweight 
malware detection frameworks remains a critical focus in the 
broader context of Android security. 

This work addresses a specific need in the current landscape 
of Android malware detection research. While previous studies 
have explored hybrid models that integrate deep learning with 
complex meta-heuristic optimizations [10, 11], there is a 
noticeable gap for a clear benchmark comparing a standard deep 
neural network against more straightforward ensemble 
constructions like Stacking and Voting. The relative 
performance of these high-accuracy ensemble methods against 
a deep learning baseline remains underexplored. Therefore, this 
study provides a crucial empirical comparison focusing on 
practical ensemble designs, offering valuable insights into the 
trade-offs between model complexity and detection 
performance for real-world applications. 

To overcome these challenges, our study proposes an 
enhanced static analysis framework that uses deep learning and 
ensemble classification models. This approach leverages static 
features from the CICAndMal2017 dataset, offering a 
lightweight, scalable solution that can detect both known and 
unseen malware with high accuracy and minimal overhead. The 
main contributions of this study are as follows: 
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 We propose an enhanced Android malware detection 
framework that integrates deep learning (neural network) 
and ensemble techniques (stacking and voting) to 
improve detection accuracy using static features, without 
the need for runtime analysis. 

 Extensive experimentation is performed using the 
publicly available CICAndMal2017 dataset, ensuring a 
realistic and diverse malware landscape. This dataset 
enables the extraction of meaningful static features that 
are representative of modern Android threats. 

 Our results indicate that ensemble models, particularly 
the Voting Ensemble, outperform both traditional 
machine learning classifiers and standalone deep 
learning models, demonstrating improved detection 
performance and robustness. 

 We provide a comparative analysis with baseline models, 
including Random Forest, XGBoost, and Neural 
Networks, highlighting the advantages of ensemble 
approaches in terms of accuracy, precision, and 
generalization for Android malware detection. 

This study is organized in the following way: Section II 
looks at the current research on finding Android malware. It 
examines the evolution of methodologies from conventional 
machine learning to contemporary deep learning and hybrid 
ensembles. Section III goes into detail about the proposed 
framework. It includes a description of the CICAndMal2017 

dataset, the steps for static analysis and feature extraction, and 
the setup of the learning algorithms that were tested. Section IV 
provides an extensive performance evaluation of the tested 
classifiers, including Neural Networks, Random Forest, 
XGBoost, and a Voting Ensemble, and examines the results that 
illustrate the ensemble's superiority. In Section V, the study 
comes to a close by listing the main contributions and suggesting 
some possible directions for future work on making malware 
detection technologies that are both effective and flexible. 

II. RELATED WORK 

The detection of Android malware has become a critical 
research focus due to the evolving complexity of malicious 
applications and their capacity to bypass conventional security 
mechanisms. To address these challenges, researchers have 
explored a range of approaches, including traditional machine 
learning, which involves selecting suitable classifiers for 
malware detection; feature engineering, which focuses on 
extracting and optimizing informative attributes; and ensemble 
learning, which integrates multiple models to enhance predictive 
accuracy and resilience. These techniques are applied within 
static, dynamic, or hybrid analysis frameworks and are generally 
categorized as signature-based or anomaly-based, depending on 
whether they rely on known attack patterns or behavioral 
deviations. Table I provides a consolidated summary of 
representative studies, outlining their methodologies, datasets, 
detection types, performance levels, and associated drawbacks. 

TABLE I.  SUMMARY OF LITERATURE REVIEW 

Ref. Approach Feature Type 
Detection 

Type 
Methodology Dataset Used 

Reported 

Accuracy 
Drawbacks 

[11] ML (DT, RF) Permissions Static 
Decision Tree, 

Random Forest 
Custom datasets 90% 

Weak against zero-day; 

limited feature diversity 

[20] ML Permissions Static 
Permission-based 

filtering 
Custom dataset 81% 

Insufficient as standalone; 

poor detection precision 

[21] ML (kNN) 
Permissions, 

API, Intents 
Static 

DroidMat with 

kNN 
Not specified 

Not 

reported 

Scalability issues; weak base 

learner 

[22] API Monitoring API Calls Dynamic 
Logcat 

instrumentation 
Custom dataset 

Not 

reported 

Resource-intensive; not 

scalable for large datasets 

[23] 
ML (Permissions + 

API) 

API + 

Permissions 
Static 

Feature fusion 

with ML 

classifiers 

Not specified 
Not 

reported 

Limited generalization; lacks 

robustness 

[12] ML (SVM) Permissions Static 
Reduced feature 

SVM 
Custom dataset 93.62% 

Vulnerable to obfuscation; 

limited feature scope 

[24] 
ML (Opcode 

Transformation) 
Dalvik Opcodes Static 

Grayscale opcode 

images + ML 
Custom dataset 91% (RF) 

High dimensionality; 

scalability issues 

[13] 
ML (Dynamic 

Features) 

CPU, Memory, 

Network 
Dynamic 

SVM on Drebin 

resource metrics 
Drebin dataset 94.2%* 

Computationally expensive; 

impractical for real-time use 

[17] 
Ensemble + 

Optimization 
Static Static 

OEL-AMD 

(BGWO + 

Ensemble) 

Not specified 92.4% 
High complexity; feature 

selection overhead 

[25] Graph-Based ML 

API 

Dependency 

Graphs 

Static 
DroidSIFT – 

graph similarity 
Genome 93% 

Heavy preprocessing; 

computationally expensive 

[21] 
Dynamic Analysis 

Tools 

API, Sys Calls, 

NetFlow 
Dynamic 

DroidBox, 

CopperDroid, 

AMAT 

Sandbox datasets 
Not 

reported 

Susceptible to anti-emulation 

evasion 

 

Machine learning has arisen as a potent method to address 
the shortcomings of conventional signature-based detection, 
facilitating the recognition of new and obscured malware. 
Various classifiers and feature sets have been employed, each 
offering unique strengths but facing specific challenges. 
Permission-based detection is one of the earliest lightweight 

methods. Aung et al. [12] used Decision Trees and Random 
Forest on permissions (~90% accuracy) but with weak zero-day 
resistance, while Huang et al. [13] found permissions effective 
as a quick filter (81%) though insufficient as a standalone 
solution. To improve robustness, DroidMat [14] combined 
permissions, API calls, and intents using kNN, though 
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scalability issues remained. Nishimoto et al. [15] proposed 
logcat-based API monitoring to track sensitive invocations, 
which detected obfuscation but required heavy resources. Chan 
and Song [16] showed that permissions combined with selected 
API calls improved accuracy over single features. Similarly, 
Li et al. [17] applied SVM on reduced permission sets with 
93.62% accuracy, but a limited feature scope reduced 
robustness. More advanced representations were explored by 
Anderson et al. [18] , who transformed Dalvik op-codes into 
grayscale images for classification (91% with RF), though 
dimensionality hindered scalability. Massarelli et al. [19] 
employed dynamic resource usage metrics with SVM (94.2%), 
but such runtime analysis introduced computational overhead, 
limiting real-time use. 

Ensemble learning and hybrid models aim to improve 
detection rates and reduce false positives by combining the 
strengths of multiple classifiers or methodologies. Ensemble 
learning aggregates predictions from several base models to 
produce a more accurate and robust result, while hybrid models 
integrate static and dynamic detection techniques or 
metaheuristic algorithms with machine learning. Optimized 
Ensemble Learning for Android Malware Detection OEL-
AMD, proposed by Sharma et al.[10], OEL-AMD, which used 
Binary Grey Wolf Optimization (BGWO) for feature selection 
and ensemble classification, achieved 92.4% accuracy with 
fewer false positives. Sharma and Agrawal et al. [11] developed 
a hybrid model combining the Intelligent Water Drop (IWD) 
algorithm with deep learning, reaching 94.5% accuracy while 
preserving key features. Droid SIFT [20] introduced weighted 
contextual API dependency graphs for classifying unknown 
apps, obtaining ~93% accuracy on the Genome dataset, though 
at a high computational cost. Tools like Droid Box, Copper 
Droid, and AMAT [21] used sandbox-based behavioral analysis, 
but their effectiveness is limited due to anti-emulation tactics, 
such as Telephony Manager checks, exploited by Pincer 
malware [22]. 

Feature engineering and selection methods have been widely 
used to enhance classification efficiency. Li et al. [23] 
introduced Significant Permission Identification (SigPID) to 
prune redundant permissions, improving performance. Bhagwat 
and Gupta [24] applied PCA and mutual information to reduce 
dimensionality while retaining informative features, achieving 
92.8%. Advanced optimization techniques like Harris Hawks 
Optimization (HHO) and Genetic Algorithms (GA) [25] further 
refined feature subsets for classification. Beyond malware-
specific studies, clustering-based methods also contribute to 
feature optimization. The Enhanced Gap Statistic (EGS) [26] 
improved optimal cluster determination by standardizing 
reference data. The Kernelized Rank Order Distance (KROD) 
method. In [27], the authors transformed non-spherical data into 
spherical form, enhancing clustering accuracy. An improved 
EGS variant [28] incorporated Gaussian standardization, 
outperforming classical clustering methods on large datasets. A 
modified cubic B-spline method [29] offered better error 
estimates in curve fitting, while a combined approach [30] 
integrated winsorization, KROMD, and enhanced gap statistic 
to improve K-means clustering stability. A comprehensive 
evaluation [31] of the Gap Statistic revealed efficiency on 
simple datasets but weaknesses on complex, high-dimensional 

data. Together, these studies emphasize the importance of 
clustering and optimization for improving feature selection and 
dimensionality reduction in malware detection pipelines. 

Deep learning models have gained increasing attention due 
to their ability to automatically learn complex feature 
relationships and uncover hidden patterns in large-scale 
malware datasets. Unlike traditional ML methods that rely 
heavily on handcrafted features, deep learning can extract 
hierarchical representations directly from raw or transformed 
data, making it well-suited for detecting obfuscation and 
polymorphic malware. Kim et al. [32] applied a CNN on API 
call graphs, achieving 96.2% accuracy and demonstrating 
effectiveness in detecting behavioral patterns. Fallah and 
Bidgoly [33] employed LSTMs to classify malware families 
based on temporal network traffic data, reaching 94% accuracy. 
While deep learning improves adaptability and accuracy, 
challenges remain regarding computational cost and 
interpretability, limiting deployment on resource-constrained 
devices. More recently, a survey by Kouliaridis and 
Kambourakis et al. [34] confirmed the effectiveness of ensemble 
models for Android malware detection, particularly with 
modern datasets. This supports our methodological choice of 
employing ensemble techniques on the CIC-AndMal2017 
dataset. Furthermore, a comprehensive review by Liu et al. [35]  
synthesizes the landscape of machine learning-based detection, 
underscoring the persistent challenge of balancing model 
performance with computational efficiency, a key gap our 
research addresses by demonstrating the efficacy of practical 
ensemble methods. 

In summary, prior studies demonstrate the evolution of 
Android malware detection from lightweight ML classifiers to 
advanced ensembles, feature engineering, and deep learning 
methods. However, existing approaches face trade-offs between 
scalability, accuracy, and robustness. These gaps highlight the 
need for an enhanced framework that leverages deep learning 
combined with ensemble techniques to achieve reliable, 
efficient, and scalable Android malware detection. 

III. METHODOLOGY 

The experimental framework established in this study is 
designed to construct a robust Android malware detection 
system. The procedure commences with dataset curation and 
preprocessing, advances through a critical feature selection 
process, and proceeds to the training phase of ensemble models 
(Voting and Stacking) and Neural Networks. The concluding 
phase entails a thorough performance assessment to verify the 
detecting capabilities. Fig 1 presents an illustrated overview of 
an end-to-end process. 

A. Dataset Collection and Preprocessing 

The efficacy of any machine learning model depends on the 
quality and diversity of the training dataset. In this study, we 
utilized the CIC-AndMal2017 dataset, a robust and 
comprehensive collection of labeled Android applications. This 
dataset serves as the cornerstone of our Android malware 
detection system and provides the foundation for building and 
evaluating the models. The dataset is rich with real-world 
samples, including both benign and malicious applications, 
which is essential for developing a model that can generalize 
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well to new, unseen data. The process began with collecting and 
preparing the data. Unlike other datasets, which often consist of 
a limited set of features, the CIC-AndMal2017 dataset includes 
a wide variety of attributes. These features cover different 
aspects of Android application behavior and functionality, 
making it a comprehensive source for malware detection. 

The CIC-AndMal2017 [36] dataset serves as the cornerstone 
of our Android malware detection system. It includes thousands 
of labeled APKs categorized into benign, adware, scareware, 

and SMS malware. These categories encompass a broad 
spectrum of practical applications and malware, guaranteeing 
varied and comprehensive training and testing data. Benign apps 
act as a baseline, representing non-malicious behavior, while 
adware apps disrupt user experience with intrusive ads. 
Scareware tricks users into harmful actions, and SMS malware 
exploits SMS functionality to send unauthorized messages or 
steal personal data. Together, these categories provide the 
foundation for an effective and comprehensive malware 
detection model, as summarized in Table II. 

 
Fig. 1. Proposed methodology framework. 

TABLE II.  DESCRIPTION OF THE CATEGORIES IN THE CIC-ANDMAL2017 ANDROID MALWARE DATASET 

Category Description 

Benign Applications Non-malicious apps that serve as a baseline for comparison. 

Adware Apps designed to display intrusive advertisements, often affecting user experience and consuming resources. 

Scareware Apps that use deceptive tactics to manipulate users, such as creating false alerts or urging unnecessary purchases. 

SMS Malware Apps that exploit SMS functionality for malicious purposes, like sending unauthorized messages or stealing data. 
 

The dataset is well-balanced, with the number of benign and 
malicious apps being approximately equal, ensuring that the 
model is trained on a balanced representation of both classes. 
The dataset provides 900+ samples, which are ideal for training 
machine learning models that need to generalize well on real-
world data. To prepare the data for machine learning model 
training, several preprocessing steps were undertaken to ensure 
that the features were clean, standardized, and ready for use. 
These steps included: 

1) Label Encoding: All categorical variables, such as 

feature labels and app categories, were encoded into numeric 

values using Label Encoder from scikit-learn. This 

transformation was essential to make the data compatible with 

machine learning algorithms. 

2) Feature scaling: Numerical features were standardized 

using StandardScaler to ensure that all features were on the 

same scale. This is crucial to avoid biases in model training, 

especially when certain features may have larger magnitudes 

than others. 

3) Handling missing data: Any missing or incomplete 

entries were handled through imputation or removal, ensuring 

no gaps in the dataset that could affect the model’s 

performance. 
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The models were trained on a 70% subset of the data, with 
the remaining 30% held out as a test set. This hold-out method 
is crucial for validating predictive performance and ensuring the 
models can generalize beyond the data they were trained on. 

B. Feature Extraction 

The Feature extraction is essential for transforming raw APK 
data into structured input for machine learning models. In this 
study, we extracted key features from the CIC-AndMal2017 
dataset, including API calls, permissions, services, receivers, 
and activities. These features play a critical role in distinguishing 
between benign and malicious applications. 

 API Calls: Methods invoked by the application during 
runtime, reflecting interactions with the system. 
Categorized into android_api, com_api, and java_api 
sets. 

 Permissions: Requested access rights by the app, such as 
accessing the location or sending SMS messages, which 
may indicate potential malicious activity. 

 Services: Background tasks run by the app, often 
indicating persistent behavior associated with malicious 
activity. 

 Receivers: Components that listen for system or app-
level events, often exploited by malware for covert 
operations. 

 Activities: UI components that define user interactions, 
providing insight into the app's intent. 

These extracted features were stored in JSON format, where 
each APK was represented as a file containing metadata and 
features. The dataset was organized into several configurations 
for model training: 

 API + Permissions + Services data: A comprehensive 
dataset integrating all three feature types. 

 API + Permissions data: Focused on API behavior and 
requested permissions. 

 API + Services data: Examining API interactions 
alongside background services 

 Permissions + Services data: Exploring the link between 
permissions and background behavior. 

 API data alone: Isolated API calls to assess their 
standalone predictive power. 

These datasets were stored as CSV files for efficient 
processing. The extracted features are summarized in Table III, 
while their distribution across different application types is 
shown in Table IV. These tables offer clarity on the features used 
for model training and their relevance for Android malware 
detection. 

TABLE III.  SUMMARY OF EXTRACTED FEATURES 

Feature Definition Example 

Permissions Privileges requested by the app to access system resources ACCESS_FINE_LOCATION 

API Calls Methods invoked during runtime java.net. HttpURLConnection 

Services Processes running in the background android.app.Service 

Receivers Components listening for broadcasts android.content.BroadcastReceiver 

Activities Screens/interfaces of the application android.app.Activity 

TABLE IV.  FEATURE COUNTS FOR DIFFERENT APK TYPES 

APK Type Permissions APIs Services Receivers Activities 

Benign 636 202820 1837 1514 11063 

Adware 320 14560 920 800 2300 

Scareware 200 10234 700 400 1200 

SMS Malware 150 9000 500 300 1000 
 

C. Feature Selection Using Correlation Analysis 

Feature selection is a critical step in enhancing the 
performance of machine learning models by reducing the 
dataset's complexity while retaining the most relevant features. 
In this study, we selected features from the CIC-AndMal2017 
dataset that would most effectively help distinguish between 
benign and malicious applications. The selection process 
focused on API calls, permissions, services, receivers, and 
activities, which together represent the application's behaviour 
and intent. To identify the most relevant features, we used the 
Pearson correlation coefficient to measure the linear relationship 
between each feature and the target variable (malicious = 1, 

benign = 0). The Pearson correlation coefficient is calculated 
using the formula: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖𝑗−𝑥𝑗̅̅ ̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖𝑗−𝑥𝑗̅̅ ̅)
2

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

𝑛
𝑖=1

  (1) 

where, 

 𝑥𝑖𝑗 is the value of feature 𝑥𝑗  for sample 𝑖, 

 𝑦𝑖  is the target label for sample 𝑖, 

 𝑥𝑗̅ and 𝑦̅ are the means of feature 𝑥𝑗  and target label 𝑦. 
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This approach allowed us to measure the correlation between 
each characteristic and the target variable, helping us determine 
which features were most strongly associated with detecting 
malicious behavior. 

Features with a correlation of ∣𝑟𝑥𝑦 ∣ < 0.3, indicating weak 

correlation with the target label, were excluded from further 
analysis. These features, such as services and receivers, showed 
minimal ability to distinguish between benign and malicious 
applications, and therefore did not contribute significantly to the 
classification task. On the other hand, features with stronger 
correlations, primarily API calls and permissions, were retained 
for training the model. These features demonstrated a high 
correlation with the target label, providing critical information 
to accurately classify applications as either benign or malicious. 
By focusing on these highly relevant features, we ensured the 
model was trained on the most meaningful data, enhancing its 
ability to make accurate predictions. 

D. Model Training and Evaluation 

This study utilized various machine learning models to 
categorize Android applications as benign or harmful. The 
models used include Voting Ensemble, Stacking Ensemble, and 
Neural Networks, which were all trained and evaluated using the 
extracted features from the CIC-AndMal2017 dataset. Each 
model was selected for its capacity to manage high-dimensional 
datasets and its resilience in practical application contexts. The 
initial phase of model construction involved partitioning the 
dataset into training and testing subsets. The dataset was divided 
into 70% for training and 30% for testing, ensuring that the 
models were trained on a significant volume of data while 
maintaining a distinct set for impartial performance assessment. 
We employed a scaled dataset for model training, applying 
StandardScaler to both the training and test sets to standardize 
all characteristics. The models were trained using the following 
approach: 

1) Neural network model: The Neural Network was 

constructed with a sequence of fully connected (Dense) layers, 

utilizing ReLU activation functions. To enhance training 

stability and prevent overfitting, batch normalization and 

dropout layers were strategically incorporated. A final output 

layer with a sigmoid activation function was employed for the 

binary classification task (benign versus malicious). 

2) Voting ensemble: The Voting Ensemble integrates 

predictions from several heterogeneous base estimators, 

including Random Forest, XGBoost, and Linear Models. It 

operates on a "soft voting" principle, where the final prediction 

is derived by averaging the class probabilities output by each 

constituent model, thereby leveraging the collective wisdom of 

the ensemble. 

3) Stacking ensemble: A Stacking Ensemble was 

implemented to synthesize the capabilities of diverse base 

classifiers. The predictions from these base models serve as 

input features for a meta-classifier, which was configured as a 

Logistic Regression model in this work. This two-tiered 

architecture aims to learn how to best combine the base models' 

outputs to achieve a more accurate and robust final prediction 

than any single model could provide. 

Each model was trained with a fixed number of epochs for 
the Neural Network model (50 epochs), while the ensemble 
models used the default settings for their classifiers. 

E. Hyperparameter Tuning and Evaluation Metrics 

To ensure optimal performance, hyperparameters were 
tuned for each model. In particular, the Random Forest model 
within the ensemble classifiers was configured with: 

Number of trees (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ): 100. 

Maximum depth: No limit to tree depth. 

Minimum samples per split: 2. 

Minimum samples per leaf: 1. 

These settings were selected to avoid overfitting, while 
maintaining model complexity to capture meaningful patterns 
from the data. The XGBoost model was also fine-tuned with a 
learning rate of 0.1 and a max depth of 6, aiming to balance 
model complexity and generalization. 

Each trained model's performance was assessed using a set 
of classification measures, including the Confusion Matrix, 
Accuracy, Recall, Precision, and F1-Score. These measures 
evaluate each model's capacity to distinguish between benign 
and malicious applications, with a particular focus on the F1-
Score due to its resilience in addressing class imbalances. 

Accuracy: Measures the overall correctness of the model by 
evaluating the proportion of correctly classified instances out of 
the total samples. It is calculated as: 

Accuracy: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (2) 

Precision: Evaluates how many of the predicted malicious 
applications are malicious. A higher precision score indicates 
fewer false positives. It is computed as: 

Precision: 

𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3) 

Recall (Sensitivity): Determines the model’s ability to 
correctly identify malware by measuring how many actual 
malicious applications were detected. It is given by: 

Recall: 

𝑇𝑃

𝑇𝑃+𝐹𝑁       
      (4) 

F1-Score: A mean of precision and recall that balances false 
positives and false negatives.  It is particularly advantageous 
when the dataset exhibits inequality. The formula is: 

F1-Score: 

2 ×
𝑝𝑟𝑒𝑐𝑖𝑜𝑛×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
          (5) 

This methodology utilizes a Voting Ensemble, Stacking 
Ensemble, and Neural Networks to detect Android malware, 
with feature selection based on all available features, including 
API calls, permissions, services, receivers, and activities. Unlike 
previous approaches that focused on a subset of features, this 
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study leverages the full spectrum of extracted features to train 
the models. By incorporating all relevant attributes, the 
approach ensures a comprehensive analysis of Android 
application behavior, leading to enhanced model performance 
and accuracy. The models effectively handle high-dimensional 
data, improving classification results while minimizing 
computational complexity. 

IV. RESULTS AND DISCUSSION 

In this section, we present the findings of the models 
assessed for malicious application detection, along by a 
comprehensive explanation of their performance. The models, 
comprising Voting Ensemble, Stacking Ensemble, XGBoost, 
Neural Networks, and Random Forest, were assessed utilizing 
conventional classification metrics. A comparison analysis was 
conducted to elucidate the advantages and drawbacks of each 
model. 

A. Experimental Setup 

The studies utilized the CIC-AndMal2017 dataset, 
comprising labeled Android applications classified as benign or 

malicious, including adware, scareware, and SMS malware. The 
dataset was pre-processed and divided into training (70%) and 
testing (30%) subsets. The features for classification included 
API calls, permissions, services, receivers, and activities, which 
were extracted from the dataset and encoded for use in machine 
learning models. The models were assessed using standard 
classification metrics to determine their capability to 
differentiate between benign and malicious apps. 

B. Model Training and Evaluation 

We trained five different models that we exercised during 
the training process. The selection of these models was 
predicated on their shown efficacy in managing complicated, 
high-dimensional datasets. Accuracy, precision, recall, and F1-
score were the metrics that were utilized to assess the 
performance of each model. The results from these examinations 
are described in Table V. 

TABLE V.  EVALUATION METRICS FOR ALL MODELS 

Model Accuracy 
Precision 

(Benign) 

Precision 

(Malware) 
Recall (Benign) 

Recall 

(Malware) 

F1-Score 

(Benign) 

F1-Score 

(Malware) 

Random Forest 91.21% 0.92 0.89 0.94 0.85 0.93 0.87 

Neural Network 92.67% 0.94 0.89 0.94 0.89 0.94 0.89 

XGBoost 93.41% 0.94 0.92 0.96 0.88 0.93 0.90 

Stacking 

Ensemble 
93.77% 0.94 0.92 0.94 0.92 0.94 0.91 

Voting 

Ensemble 
94.14% 0.95 0.93 0.97 0.89 0.96 0.91 

 

As shown in Table V, Voting Ensemble achieved the highest 
accuracy (94.14%), closely followed by the Stacking Ensemble 
(93.77%) and XGBoost (93.41%). The Neural Network model 
achieved a slightly lower accuracy of 92.67%, but it showed 
promising results in terms of recall for both classes, indicating 
its good generalization ability for classifying both safe and 
harmful applications. The Random Forest model, while robust, 
lagged slightly behind the other models in terms of overall 
accuracy and F1-score. 

C. Model Performance and Discussion 

Voting Ensemble demonstrated superior performance, 
achieving the highest accuracy and F1-score. This model 
combined multiple classifiers, which likely contributed to its 
robust performance across both benign and malicious 
classifications. Its high recall for benign applications (0.97) 
indicates that it was highly effective at correctly identifying non-
malicious apps, minimizing false negatives. 

Stacking Ensemble performed similarly to the Voting 
Ensemble, with only a slight reduction in accuracy and F1-score. 
This model combines base classifiers to improve prediction 
accuracy, and its balanced performance across both precision 
and recall suggests that it effectively handled the trade-off 
between false positives and false negatives. 

XGBoost, recognized for its efficacy and performance, 
achieved 93.41% accuracy. While it had comparable results to 
the Random Forest model, its lower precision for malware (0.92) 

compared to Voting Ensemble indicates that XGBoost may have 
struggled more with correctly classifying some malicious apps. 

Neural Networks were a strong performer in terms of recall, 
particularly for malware detection (0.89). However, their lower 
precision and accuracy in comparison to ensemble methods 
suggest that they may not be as reliable for this task without 
further hyperparameter tuning and training. 

Random Forest, despite being a widely used model for 
classification tasks, achieved the lowest accuracy in this 
experiment (91.21%). While it performed well on benign 
applications (precision = 0.92 and recall = 0.94), it faced 
challenges in classifying malware, particularly in reducing false 
negatives. 

D. Confusion Matrix 

A comprehensive assessment of model performance was 
conducted utilizing confusion matrices. These matrices 
facilitated the evaluation of false positives and false negatives in 
the predictions of each model. Below is a confusion matrix for 
the Voting Ensemble model, Fig. 3 offering a visual picture of 
the model's efficacy in differentiating between benign and 
malicious applications. The Voting Ensemble model effectively 
reduced both false positives and false negatives, demonstrating 
its durability and calibration. To further demonstrate the 
performance of the models, Fig. 4 presents confusion matrices 
for the individual models, including Neural Network, Stacking 
Ensemble, Random Forest, and XGBoost. 
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Fig. 2. Model accuracy comparison. 

 
Fig. 3. Confusion matrix for voting ensemble. 

 
Fig. 4. Comparison of confusion matrices for different models. 

E. Precision and Recall Curves 

Fig. 5 illustrates the ROC (Receiver Operating 
Characteristic) Curves for all the models evaluated in this study. 
The ROC curve plots the True Positive Rate against the False 
Positive Rate across various thresholds, helping to visualize the 

trade-offs between correctly identifying benign and malicious 
applications. The Area Under the Curve (AUC), derived from 
the ROC, quantifies the model's ability to distinguish between 
the two classes; a higher AUC indicates better discriminatory 
power. The curves allow for a deeper understanding of each 
model's performance beyond simple accuracy by demonstrating 
how well the model can maintain a balance between sensitivity 
(correctly identifying malicious apps) and specificity 
(minimizing false positives) under different conditions. Models 
with higher AUC scores are generally more robust and better at 
generalizing across varying thresholds, as shown in the figure. 

Additionally, Fig. 6 presents the Precision-Recall Curves for 
each model, highlighting how well the models balance precision 
and recall, particularly for the malware class. These curves 
further emphasize the strengths and weaknesses of each model 
in distinguishing between benign and malicious applications. 

 
Fig. 5. ROC curves of all the models. 

 
Fig. 6. Precision-recall curves. 

F. Comparison with Previous Work 

To further validate the effectiveness of our approach, we 
compared the performance of our models with recent studies in 
the field of Android malware detection. The following Table VI 
summarizes the accuracy and features used in several recent 
papers. While Fig. 2 presents a visual comparison of the 
detection accuracy across all models, highlighting the superior 
performance of the proposed ensemble-based approach. 
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TABLE VI.  COMPARISON WITH EXISTING METHODS 

Model Accuracy Dataset Features Used Year 

Voting Ensemble (Proposed) 94.14% CIC-AndMal2017 
API Calls, Permissions, Services, Receivers, 

Activities 
2025 

Random Forest [37] 93.0% Drebin Permissions, Intents 2020 

AdaBoost, k-NN, LR, NB [38] 91.7% AndroZoo Permissions, Intents, 2021 

RF, KNN and DT [39] 84.14% Custom dataset (300 benign, 183 malware) Dalvik op-codes as grayscale images 2018 

SVM[40] 91.7% AndroZoo Permissions, Intents 2021 

StormDroid [41] 93.80% Google Play, Contagio Permissions, API Calls, sequences 2016 
 

The comparative evaluation summarized in Table VI 
positions the proposed method within the broader context of 
existing research, highlighting its relevance and contribution to 
the field. Although direct accuracy comparisons are limited by 
the diversity of datasets and evaluation benchmarks across 
studies, the value of this work lies not solely in its high accuracy 
but in the methodological framework that enabled it. Unlike 
several high-performing approaches that depend on complex 
sequential architectures [41], meta-heuristic feature selection 
strategies [10], or hybrid deep learning frameworks [11], the 
proposed Voting Ensemble demonstrates that state-of-the-art 
performance can be achieved through a simpler and more 
reproducible methodology. This finding highlights an important 
insight: a carefully constructed ensemble of standard classifiers 
can serve as an efficient and practical alternative to more 
intricate and computationally demanding solutions, offering an 
optimal balance between performance, complexity, and 
practicality. 

V. CONCLUSION 

This study proposed a scalable framework for Android 
malware detection using static analysis of application features, 
including API calls, permissions, services, receivers, and 
activities. Through a comprehensive comparative analysis, we 
demonstrated that practical ensemble methods, particularly the 
Voting Ensemble, can achieve state-of-the-art accuracy 
(94.14%) while outperforming a more complex deep neural 
network. This finding is a key contribution, as it challenges the 
assumption that increasingly complex models are always 
necessary for high performance, offering a more lightweight and 
interpretable alternative. However, due to its reliance on static 
analysis, this approach is limited against advanced threats 
employing dynamic code loading or runtime evasion techniques. 
This limitation precisely defines the research gap our future 
work will address. The practical significance of this work lies in 
providing a highly effective and deployable solution for many 
real-world scenarios where computational resources are 
constrained. Future research will focus on integrating dynamic 
behavioral features, such as runtime API sequences and network 
traffic analysis, to create a hybrid detection framework. 
Exploring other ensemble strategies and adapting the model to 
detect zero-day malware through continual learning will also be 
critical. By building upon this foundation, we aim to develop 
even more resilient and adaptive security solutions capable of 
countering the evolving mobile threat landscape. 
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