(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

Enhanced Android Malware Detection Using Deep
Learning and Ensemble Techniques

Abdul Museeb™, Yaman Hamed?, Rajalingam Sokkalingam?®, Anis Amazigh Hamza*, Atta Ullah®, Iliyas Karim Khan®

Centre for Intelligent Asset Reliability-Institute of Emerging Digital Technologies-Department of Applied Sciences,
Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia® % 2
XLIM, UMR CNRS 7252, SRI (Smart Systems and Network), University of Limoges,
16 Rue Atlantis, 87068 Limoges Cedex, France*
Fundamental & Applied Sciences Department, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Perak, Malaysia®

Abstract—Android malware continues to pose significant
security threats, with evolving tactics that often bypass traditional
detection systems. Existing detection mechanisms remain
ineffective against obfuscated or novel malware variants,
necessitating the development of more robust detection
techniques. This study introduces a comprehensive machine
learning framework for Android malware detection that leverages
a systematic comparison between a deep Neural Network and
diverse ensemble methods, including Voting Ensemble, Stacking
Ensemble, XGBoost, and Random Forest. Unlike prior studies
that often focus on individual approaches, this work provides an
empirical benchmark that demonstrates how practical ensemble
configurations can achieve superior performance while
maintaining computational efficiency. The model is trained using
the CIC-AndMal2017 dataset, incorporating a comprehensive set
of static features, including API calls, permissions, services,
receivers, and activities. Feature selection was performed to
optimize model performance, reducing redundancy and
improving detection accuracy. The models were evaluated on
multiple classification metrics, including accuracy, F1-score, and
confusion matrices, with the Voting Ensemble model achieving an
accuracy of 94.14%, outperforming all other approaches,
including the deep neural network. This study contributes to the
field by demonstrating that a carefully constructed ensemble of
diverse classifiers can not only improve detection accuracy but
also offer a more scalable, lightweight solution compared to
complex deep learning models. The research provides a significant
advancement in practical Android malware detection by
identifying optimal strategies that balance performance with
computational efficiency.

Keywords—Android malware detection; machine learning; API
calls; permissions; android security; malware classification

l. INTRODUCTION

The rise of mobile technology has made smartphones
integral to daily life, often outpacing desktop systems in user
interaction and internet engagement [1]. With vast amounts of
sensitive data stored on mobile devices, including login
credentials and banking information, they have become prime
targets for cyber threats [2]. Android, with an 88% market share,
leads the mobile ecosystem and powers billions of devices
worldwide [3]. Its open-source nature, while enabling
widespread adoption, also increases security vulnerabilities [4].
Its open-source architecture fosters broad adoption due to
flexibility, cost-efficiency, and a vast application library.

*Corresponding author.

However, this openness also exposes it to heightened security
risks, enabling malicious actors to exploit inherent system
vulnerabilities and bypass inadequate security checks [5].
Research in Android malware detection has focused on static
and dynamic analysis, as well as hybrid approaches [6]. Static
analysis is scalable but ineffective against obfuscated malware,
while dynamic analysis uncovers runtime threats at the cost of
high computational demand. Hybrid methods aim to balance
these strengths [7]. Static analysis inspects application code
without execution, offering scalability but often failing against
obfuscated or polymorphic malware. Conversely, dynamic
analysis monitors real-time application behavior in controlled
environments, effectively uncovering runtime threats but
demanding significant computational resources. Hybrid
methods strive to merge the strengths of both, achieving a trade-
off between performance and threat coverage [8]. Traditional
network intrusion detection systems (NIDS), divided into
signature-based, anomaly-based, and hybrid models, also
enhance security but face challenges in detecting novel threats
[9]. Therefore, the need for intelligent, adaptive, and lightweight
malware detection frameworks remains a critical focus in the
broader context of Android security.

This work addresses a specific need in the current landscape
of Android malware detection research. While previous studies
have explored hybrid models that integrate deep learning with
complex meta-heuristic optimizations [10, 11], there is a
noticeable gap for a clear benchmark comparing a standard deep
neural network against more straightforward ensemble
constructions like Stacking and Voting. The relative
performance of these high-accuracy ensemble methods against
a deep learning baseline remains underexplored. Therefore, this
study provides a crucial empirical comparison focusing on
practical ensemble designs, offering valuable insights into the
trade-offs between model complexity and detection
performance for real-world applications.

To overcome these challenges, our study proposes an
enhanced static analysis framework that uses deep learning and
ensemble classification models. This approach leverages static
features from the CICAndMal2017 dataset, offering a
lightweight, scalable solution that can detect both known and
unseen malware with high accuracy and minimal overhead. The
main contributions of this study are as follows:

67|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

e We propose an enhanced Android malware detection
framework that integrates deep learning (neural network)
and ensemble techniques (stacking and voting) to
improve detection accuracy using static features, without
the need for runtime analysis.

e Extensive experimentation is performed using the
publicly available CICAndMal2017 dataset, ensuring a
realistic and diverse malware landscape. This dataset
enables the extraction of meaningful static features that
are representative of modern Android threats.

e Our results indicate that ensemble models, particularly
the Voting Ensemble, outperform both traditional
machine learning classifiers and standalone deep
learning models, demonstrating improved detection
performance and robustness.

e We provide a comparative analysis with baseline models,
including Random Forest, XGBoost, and Neural
Networks, highlighting the advantages of ensemble
approaches in terms of accuracy, precision, and
generalization for Android malware detection.

This study is organized in the following way: Section Il
looks at the current research on finding Android malware. It
examines the evolution of methodologies from conventional
machine learning to contemporary deep learning and hybrid
ensembles. Section Ill goes into detail about the proposed
framework. It includes a description of the CICAndMal2017

Vol. 16, No. 11, 2025

dataset, the steps for static analysis and feature extraction, and
the setup of the learning algorithms that were tested. Section IV
provides an extensive performance evaluation of the tested
classifiers, including Neural Networks, Random Forest,
XGBoost, and a Voting Ensemble, and examines the results that
illustrate the ensemble's superiority. In Section V, the study
comes to a close by listing the main contributions and suggesting
some possible directions for future work on making malware
detection technologies that are both effective and flexible.

Il. RELATED WORK

The detection of Android malware has become a critical
research focus due to the evolving complexity of malicious
applications and their capacity to bypass conventional security
mechanisms. To address these challenges, researchers have
explored a range of approaches, including traditional machine
learning, which involves selecting suitable classifiers for
malware detection; feature engineering, which focuses on
extracting and optimizing informative attributes; and ensemble
learning, which integrates multiple models to enhance predictive
accuracy and resilience. These techniques are applied within
static, dynamic, or hybrid analysis frameworks and are generally
categorized as signature-based or anomaly-based, depending on
whether they rely on known attack patterns or behavioral
deviations. Table | provides a consolidated summary of
representative studies, outlining their methodologies, datasets,
detection types, performance levels, and associated drawbacks.

TABLE I. SUMMARY OF LITERATURE REVIEW
Detection Reported
Ref. Approach Feature Type Type Methodology Dataset Used Accuracy Drawbacks
. . Decision Tree, o Weak against zero-day;
[11] ML (DT, RF) Permissions Static Random Eorest Custom datasets 90% limited feature diversity
[20] ML Permissions Static P_erm_nssnon-based Custom dataset 81% Insuffncnent_ as s@a_ndalone;
filtering poor detection precision
Permissions, . DroidMat with - Not Scalability issues; weak base
[21] ML (kNN) API, Intents Static kNN Not specified reported learner
- . Logcat Not Resource-intensive; not
[22] API Monitoring AP Calls Dynamic instrumentation Custom dataset reported scalable for large datasets
L Feature fusion . e
[23] ML (Permissions + | API o + Static with ML | Not specified Not Limited generalization; lacks
API) Permissions . reported robustness
classifiers
[12] ML (SVM) Permissions Static Reduced feature Custom dataset 93.62% _/ul_nerable to obfuscation;
SVM limited feature scope
ML (Opcode . . Grayscale opcode o High dimensionality;
[24] Transformation) Dalvik Opcodes | Static images + ML Custom dataset 91% (RF) scalability issues
ML (Dynamic | CPU, Memory, - SVM on Drebin - o/ Computationally expensive;
[13] Features) Network Dynamic resource metrics Drebin dataset 94.2% impractical for real-time use
OEL-AMD . .
Ensemble + - . - 0 High complexity; feature
[17] Optimization Static Static (BGWO + | Not specified 92.4% selection overhead
Ensemble)
API . .
) . DroidSIFT - 0 Heavy preprocessing;
[25] Graph-Based ML gfggﬁgency Static graph similarity Genome 93% computationally expensive
: - DroidBox . . .
Dynamic Analysis | API, Sys Calls, . . Not Susceptible to anti-emulation
[21] Tools NetFlow Dynamic 2?\|AozeTrDr0|d, Sandbox datasets reported evasion

Machine learning has arisen as a potent method to address
the shortcomings of conventional signature-based detection,
facilitating the recognition of new and obscured malware.
Various classifiers and feature sets have been employed, each
offering unique strengths but facing specific challenges.
Permission-based detection is one of the earliest lightweight

methods. Aung et al. [12] used Decision Trees and Random
Forest on permissions (~90% accuracy) but with weak zero-day
resistance, while Huang et al. [13] found permissions effective
as a quick filter (81%) though insufficient as a standalone
solution. To improve robustness, DroidMat [14] combined
permissions, APl calls, and intents using kNN, though

68|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

scalability issues remained. Nishimoto et al. [15] proposed
logcat-based APl monitoring to track sensitive invocations,
which detected obfuscation but required heavy resources. Chan
and Song [16] showed that permissions combined with selected
API calls improved accuracy over single features. Similarly,
Liet al. [17] applied SVM on reduced permission sets with
93.62% accuracy, but a limited feature scope reduced
robustness. More advanced representations were explored by
Anderson et al. [18] , who transformed Dalvik op-codes into
grayscale images for classification (91% with RF), though
dimensionality hindered scalability. Massarelli et al. [19]
employed dynamic resource usage metrics with SVM (94.2%),
but such runtime analysis introduced computational overhead,
limiting real-time use.

Ensemble learning and hybrid models aim to improve
detection rates and reduce false positives by combining the
strengths of multiple classifiers or methodologies. Ensemble
learning aggregates predictions from several base models to
produce a more accurate and robust result, while hybrid models
integrate static and dynamic detection techniques or
metaheuristic algorithms with machine learning. Optimized
Ensemble Learning for Android Malware Detection OEL-
AMD, proposed by Sharma et al.[10], OEL-AMD, which used
Binary Grey Wolf Optimization (BGWO) for feature selection
and ensemble classification, achieved 92.4% accuracy with
fewer false positives. Sharma and Agrawal et al. [11] developed
a hybrid model combining the Intelligent Water Drop (IWD)
algorithm with deep learning, reaching 94.5% accuracy while
preserving key features. Droid SIFT [20] introduced weighted
contextual APl dependency graphs for classifying unknown
apps, obtaining ~93% accuracy on the Genome dataset, though
at a high computational cost. Tools like Droid Box, Copper
Droid, and AMAT [21] used sandbox-based behavioral analysis,
but their effectiveness is limited due to anti-emulation tactics,
such as Telephony Manager checks, exploited by Pincer
malware [22].

Feature engineering and selection methods have been widely
used to enhance classification efficiency. Li et al. [23]
introduced Significant Permission ldentification (SigPID) to
prune redundant permissions, improving performance. Bhagwat
and Gupta [24] applied PCA and mutual information to reduce
dimensionality while retaining informative features, achieving
92.8%. Advanced optimization techniques like Harris Hawks
Optimization (HHO) and Genetic Algorithms (GA) [25] further
refined feature subsets for classification. Beyond malware-
specific studies, clustering-based methods also contribute to
feature optimization. The Enhanced Gap Statistic (EGS) [26]
improved optimal cluster determination by standardizing
reference data. The Kernelized Rank Order Distance (KROD)
method. In [27], the authors transformed non-spherical data into
spherical form, enhancing clustering accuracy. An improved
EGS variant [28] incorporated Gaussian standardization,
outperforming classical clustering methods on large datasets. A
modified cubic B-spline method [29] offered better error
estimates in curve fitting, while a combined approach [30]
integrated winsorization, KROMD, and enhanced gap statistic
to improve K-means clustering stability. A comprehensive
evaluation [31] of the Gap Statistic revealed efficiency on
simple datasets but weaknesses on complex, high-dimensional

Vol. 16, No. 11, 2025

data. Together, these studies emphasize the importance of
clustering and optimization for improving feature selection and
dimensionality reduction in malware detection pipelines.

Deep learning models have gained increasing attention due
to their ability to automatically learn complex feature
relationships and uncover hidden patterns in large-scale
malware datasets. Unlike traditional ML methods that rely
heavily on handcrafted features, deep learning can extract
hierarchical representations directly from raw or transformed
data, making it well-suited for detecting obfuscation and
polymorphic malware. Kim et al. [32] applied a CNN on API
call graphs, achieving 96.2% accuracy and demonstrating
effectiveness in detecting behavioral patterns. Fallah and
Bidgoly [33] employed LSTMs to classify malware families
based on temporal network traffic data, reaching 94% accuracy.
While deep learning improves adaptability and accuracy,
challenges remain regarding computational cost and
interpretability, limiting deployment on resource-constrained
devices. More recently, a survey by Kouliaridis and
Kambourakis et al. [34] confirmed the effectiveness of ensemble
models for Android malware detection, particularly with
modern datasets. This supports our methodological choice of
employing ensemble techniques on the CIC-AndMal2017
dataset. Furthermore, a comprehensive review by Liu et al. [35]
synthesizes the landscape of machine learning-based detection,
underscoring the persistent challenge of balancing model
performance with computational efficiency, a key gap our
research addresses by demonstrating the efficacy of practical
ensemble methods.

In summary, prior studies demonstrate the evolution of
Android malware detection from lightweight ML classifiers to
advanced ensembles, feature engineering, and deep learning
methods. However, existing approaches face trade-offs between
scalability, accuracy, and robustness. These gaps highlight the
need for an enhanced framework that leverages deep learning
combined with ensemble techniques to achieve reliable,
efficient, and scalable Android malware detection.

I1l. METHODOLOGY

The experimental framework established in this study is
designed to construct a robust Android malware detection
system. The procedure commences with dataset curation and
preprocessing, advances through a critical feature selection
process, and proceeds to the training phase of ensemble models
(Voting and Stacking) and Neural Networks. The concluding
phase entails a thorough performance assessment to verify the
detecting capabilities. Fig 1 presents an illustrated overview of
an end-to-end process.

A. Dataset Collection and Preprocessing

The efficacy of any machine learning model depends on the
quality and diversity of the training dataset. In this study, we
utilized the CIC-AndMal2017 dataset, a robust and
comprehensive collection of labeled Android applications. This
dataset serves as the cornerstone of our Android malware
detection system and provides the foundation for building and
evaluating the models. The dataset is rich with real-world
samples, including both benign and malicious applications,
which is essential for developing a model that can generalize

69|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

well to new, unseen data. The process began with collecting and
preparing the data. Unlike other datasets, which often consist of
a limited set of features, the CIC-AndMal2017 dataset includes
a wide variety of attributes. These features cover different
aspects of Android application behavior and functionality,
making it a comprehensive source for malware detection.

The CIC-AndMal2017 [36] dataset serves as the cornerstone
of our Android malware detection system. It includes thousands
of labeled APKs categorized into benign, adware, scareware,

Dataset Collection

— |Random Forest |

' CICAndMal2017 »
]
= | XG Boost |
N— a
E ‘—J ™ | Support Vector
o Machine
(7]
©
@

ry

- | Neural Network |

Data Preprocessing

‘ Removing Duplicates [

lHandIing Missing Data I
I \]";Ct)j @

| Encode Features I

| Data Normalization

| Scale Features | Feature Engineering

I)

Vol. 16, No. 11, 2025

and SMS malware. These categories encompass a broad
spectrum of practical applications and malware, guaranteeing
varied and comprehensive training and testing data. Benign apps
act as a baseline, representing non-malicious behavior, while
adware apps disrupt user experience with intrusive ads.
Scareware tricks users into harmful actions, and SMS malware
exploits SMS functionality to send unauthorized messages or
steal personal data. Together, these categories provide the
foundation for an effective and comprehensive malware
detection model, as summarized in Table II.

Apply Ensemble Methods
A

' N

| Voting Classifier I | Stacking Classifier I

v v

| Soft Voting I | Meta - Classifier |
AL
L B
g £ 8
% =
N - J
Final Prediction
A
(\
tﬁl |f‘|

Malware App

Fig. 1. Proposed methodology framework.

TABLE II.

DESCRIPTION OF THE CATEGORIES IN THE CIC-ANDMAL2017 ANDROID MALWARE DATASET

Category

Description

Benign Applications

Non-malicious apps that serve as a baseline for comparison.

Adware Apps designed to display intrusive advertisements, often affecting user experience and consuming resources.
Scareware Apps that use deceptive tactics to manipulate users, such as creating false alerts or urging unnecessary purchases.
SMS Malware Apps that exploit SMS functionality for malicious purposes, like sending unauthorized messages or stealing data.

The dataset is well-balanced, with the number of benign and
malicious apps being approximately equal, ensuring that the
model is trained on a balanced representation of both classes.
The dataset provides 900+ samples, which are ideal for training
machine learning models that need to generalize well on real-
world data. To prepare the data for machine learning model
training, several preprocessing steps were undertaken to ensure
that the features were clean, standardized, and ready for use.
These steps included:

1) Label Encoding: All categorical variables, such as
feature labels and app categories, were encoded into numeric
values using Label Encoder from scikit-learn. This

transformation was essential to make the data compatible with
machine learning algorithms.

2) Feature scaling: Numerical features were standardized
using StandardScaler to ensure that all features were on the
same scale. This is crucial to avoid biases in model training,
especially when certain features may have larger magnitudes
than others.

3) Handling missing data: Any missing or incomplete
entries were handled through imputation or removal, ensuring
no gaps in the dataset that could affect the model’s
performance.

70|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

The models were trained on a 70% subset of the data, with
the remaining 30% held out as a test set. This hold-out method
is crucial for validating predictive performance and ensuring the
models can generalize beyond the data they were trained on.

B. Feature Extraction

The Feature extraction is essential for transforming raw APK
data into structured input for machine learning models. In this
study, we extracted key features from the CIC-AndMal2017
dataset, including API calls, permissions, services, receivers,
and activities. These features play a critical role in distinguishing
between benign and malicious applications.

e API Calls: Methods invoked by the application during
runtime, reflecting interactions with the system.
Categorized into android_api, com_api, and java_api
sets.

e Permissions: Requested access rights by the app, such as
accessing the location or sending SMS messages, which
may indicate potential malicious activity.

e Services: Background tasks run by the app, often
indicating persistent behavior associated with malicious
activity.

e Receivers: Components that listen for system or app-
level events, often exploited by malware for covert

Vol. 16, No. 11, 2025

e Activities: Ul components that define user interactions,
providing insight into the app's intent.

These extracted features were stored in JSON format, where
each APK was represented as a file containing metadata and
features. The dataset was organized into several configurations
for model training:

e API + Permissions + Services data: A comprehensive
dataset integrating all three feature types.

e API + Permissions data: Focused on API behavior and
requested permissions.

e APl + Services data: Examining API interactions
alongside background services

e Permissions + Services data: Exploring the link between
permissions and background behavior.

e API data alone: Isolated API calls to assess their
standalone predictive power.

These datasets were stored as CSV files for efficient
processing. The extracted features are summarized in Table III,
while their distribution across different application types is
shown in Table V. These tables offer clarity on the features used
for model training and their relevance for Android malware
detection.

operations.
TABLE Ill. SUMMARY OF EXTRACTED FEATURES
Feature Definition Example
Permissions Privileges requested by the app to access system resources ACCESS_FINE_LOCATION
API Calls Methods invoked during runtime java.net. HttpURL Connection
Services Processes running in the background android.app.Service
Receivers Components listening for broadcasts android.content.BroadcastReceiver
Activities Screens/interfaces of the application android.app.Activity
TABLE IV. FEATURE COUNTS FOR DIFFERENT APK TYPES
APK Type Permissions APIs Services Receivers Activities
Benign 636 202820 1837 1514 11063
Adware 320 14560 920 800 2300
Scareware 200 10234 700 400 1200
SMS Malware 150 9000 500 300 1000

C. Feature Selection Using Correlation Analysis

Feature selection is a critical step in enhancing the
performance of machine learning models by reducing the
dataset's complexity while retaining the most relevant features.
In this study, we selected features from the CIC-AndMal2017
dataset that would most effectively help distinguish between
benign and malicious applications. The selection process
focused on API calls, permissions, services, receivers, and
activities, which together represent the application's behaviour
and intent. To identify the most relevant features, we used the
Pearson correlation coefficient to measure the linear relationship
between each feature and the target variable (malicious = 1,

benign = 0). The Pearson correlation coefficient is calculated
using the formula:

Y (=) =)

y —
\/Zﬁl(xij—ﬂ)z Y, 0i-9)?

Tx

@)

where,
e Xx;; isthe value of feature x; for sample i,
e y; is the target label for sample i,

e X and y are the means of feature x; and target label y.

71|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

This approach allowed us to measure the correlation between
each characteristic and the target variable, helping us determine
which features were most strongly associated with detecting
malicious behavior.

Features with a correlation of |r,,, | < 0.3, indicating weak
correlation with the target label, were excluded from further
analysis. These features, such as services and receivers, showed
minimal ability to distinguish between benign and malicious
applications, and therefore did not contribute significantly to the
classification task. On the other hand, features with stronger
correlations, primarily API calls and permissions, were retained
for training the model. These features demonstrated a high
correlation with the target label, providing critical information
to accurately classify applications as either benign or malicious.
By focusing on these highly relevant features, we ensured the
model was trained on the most meaningful data, enhancing its
ability to make accurate predictions.

D. Model Training and Evaluation

This study utilized various machine learning models to
categorize Android applications as benign or harmful. The
models used include VVoting Ensemble, Stacking Ensemble, and
Neural Networks, which were all trained and evaluated using the
extracted features from the CIC-AndMal2017 dataset. Each
model was selected for its capacity to manage high-dimensional
datasets and its resilience in practical application contexts. The
initial phase of model construction involved partitioning the
dataset into training and testing subsets. The dataset was divided
into 70% for training and 30% for testing, ensuring that the
models were trained on a significant volume of data while
maintaining a distinct set for impartial performance assessment.
We employed a scaled dataset for model training, applying
StandardScaler to both the training and test sets to standardize
all characteristics. The models were trained using the following
approach:

1) Neural network model: The Neural Network was
constructed with a sequence of fully connected (Dense) layers,
utilizing ReLU activation functions. To enhance training
stability and prevent overfitting, batch normalization and
dropout layers were strategically incorporated. A final output
layer with a sigmoid activation function was employed for the
binary classification task (benign versus malicious).

2) Voting ensemble: The Voting Ensemble integrates
predictions from several heterogeneous base estimators,
including Random Forest, XGBoost, and Linear Models. It
operates on a "soft voting" principle, where the final prediction
is derived by averaging the class probabilities output by each
constituent model, thereby leveraging the collective wisdom of
the ensemble.

3) Stacking ensemble: A Stacking Ensemble was
implemented to synthesize the capabilities of diverse base
classifiers. The predictions from these base models serve as
input features for a meta-classifier, which was configured as a
Logistic Regression model in this work. This two-tiered
architecture aims to learn how to best combine the base models'
outputs to achieve a more accurate and robust final prediction
than any single model could provide.

Vol. 16, No. 11, 2025

Each model was trained with a fixed number of epochs for
the Neural Network model (50 epochs), while the ensemble
models used the default settings for their classifiers.

E. Hyperparameter Tuning and Evaluation Metrics

To ensure optimal performance, hyperparameters were
tuned for each model. In particular, the Random Forest model
within the ensemble classifiers was configured with:

Number of trees (Ngstimators): 100.
Maximum depth: No limit to tree depth.
Minimum samples per split: 2.
Minimum samples per leaf: 1.

These settings were selected to avoid overfitting, while
maintaining model complexity to capture meaningful patterns
from the data. The XGBoost model was also fine-tuned with a
learning rate of 0.1 and a max depth of 6, aiming to balance
model complexity and generalization.

Each trained model's performance was assessed using a set
of classification measures, including the Confusion Matrix,
Accuracy, Recall, Precision, and F1-Score. These measures
evaluate each model's capacity to distinguish between benign
and malicious applications, with a particular focus on the F1-
Score due to its resilience in addressing class imbalances.

Accuracy: Measures the overall correctness of the model by
evaluating the proportion of correctly classified instances out of
the total samples. It is calculated as:

Accuracy:

TP+TN
TP+TN+FP+FN (2)

Precision: Evaluates how many of the predicted malicious

applications are malicious. A higher precision score indicates
fewer false positives. It is computed as:

Precision:

TP
TP+FP &)

Recall (Sensitivity): Determines the model’s ability to
correctly identify malware by measuring how many actual
malicious applications were detected. It is given by:

Recall:

TP
TPrEN “)

F1-Score: A mean of precision and recall that balances false
positives and false negatives. It is particularly advantageous
when the dataset exhibits inequality. The formula is:

F1-Score:

precionXsensitivity (5)
precion+sensitivity

This methodology utilizes a Voting Ensemble, Stacking
Ensemble, and Neural Networks to detect Android malware,
with feature selection based on all available features, including
API calls, permissions, services, receivers, and activities. Unlike
previous approaches that focused on a subset of features, this

72|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

study leverages the full spectrum of extracted features to train
the models. By incorporating all relevant attributes, the
approach ensures a comprehensive analysis of Android
application behavior, leading to enhanced model performance
and accuracy. The models effectively handle high-dimensional
data, improving classification results while minimizing
computational complexity.

IV. RESULTS AND DISCUSSION

In this section, we present the findings of the models
assessed for malicious application detection, along by a
comprehensive explanation of their performance. The models,
comprising Voting Ensemble, Stacking Ensemble, XGBoost,
Neural Networks, and Random Forest, were assessed utilizing
conventional classification metrics. A comparison analysis was
conducted to elucidate the advantages and drawbacks of each
model.

A. Experimental Setup

The studies utilized the CIC-AndMal2017 dataset,
comprising labeled Android applications classified as benign or

Vol. 16, No. 11, 2025

malicious, including adware, scareware, and SMS malware. The
dataset was pre-processed and divided into training (70%) and
testing (30%) subsets. The features for classification included
API calls, permissions, services, receivers, and activities, which
were extracted from the dataset and encoded for use in machine
learning models. The models were assessed using standard
classification metrics to determine their capability to
differentiate between benign and malicious apps.

B. Model Training and Evaluation

We trained five different models that we exercised during
the training process. The selection of these models was
predicated on their shown efficacy in managing complicated,
high-dimensional datasets. Accuracy, precision, recall, and F1-
score were the metrics that were utilized to assess the
performance of each model. The results from these examinations
are described in Table V.

TABLEV. EVALUATION METRICS FOR ALL MODELS
Precision Precision . Recall F1-Score F1-Score
Model Accuracy (Benign) (Malware) Recall (Benign) (Malware) (Benign) (Malware)
Random Forest 91.21% 0.92 0.89 0.94 0.85 0.93 0.87
Neural Network | 92.67% 0.94 0.89 0.94 0.89 0.94 0.89
XGBoost 93.41% 0.94 0.92 0.96 0.88 0.93 0.90
Stacking 93.77% 0.94 0.92 0.94 0.92 0.94 0.91
Ensemble
Voting 94.14% 0.95 0.93 0.97 0.89 0.96 0.91
Ensemble

As shown in Table V, Voting Ensemble achieved the highest
accuracy (94.14%), closely followed by the Stacking Ensemble
(93.77%) and XGBoost (93.41%). The Neural Network model
achieved a slightly lower accuracy of 92.67%, but it showed
promising results in terms of recall for both classes, indicating
its good generalization ability for classifying both safe and
harmful applications. The Random Forest model, while robust,
lagged slightly behind the other models in terms of overall
accuracy and F1-score.

C. Model Performance and Discussion

Voting Ensemble demonstrated superior performance,
achieving the highest accuracy and Fl1-score. This model
combined multiple classifiers, which likely contributed to its
robust performance across both benign and malicious
classifications. Its high recall for benign applications (0.97)
indicates that it was highly effective at correctly identifying non-
malicious apps, minimizing false negatives.

Stacking Ensemble performed similarly to the Voting
Ensemble, with only a slight reduction in accuracy and F1-score.
This model combines base classifiers to improve prediction
accuracy, and its balanced performance across both precision
and recall suggests that it effectively handled the trade-off
between false positives and false negatives.

XGBoost, recognized for its efficacy and performance,
achieved 93.41% accuracy. While it had comparable results to
the Random Forest model, its lower precision for malware (0.92)

compared to Voting Ensemble indicates that XGBoost may have
struggled more with correctly classifying some malicious apps.

Neural Networks were a strong performer in terms of recall,
particularly for malware detection (0.89). However, their lower
precision and accuracy in comparison to ensemble methods
suggest that they may not be as reliable for this task without
further hyperparameter tuning and training.

Random Forest, despite being a widely used model for
classification tasks, achieved the lowest accuracy in this
experiment (91.21%). While it performed well on benign
applications (precision = 0.92 and recall = 0.94), it faced
challenges in classifying malware, particularly in reducing false
negatives.

D. Confusion Matrix

A comprehensive assessment of model performance was
conducted utilizing confusion matrices. These matrices
facilitated the evaluation of false positives and false negatives in
the predictions of each model. Below is a confusion matrix for
the Voting Ensemble model, Fig. 3 offering a visual picture of
the model's efficacy in differentiating between benign and
malicious applications. The Voting Ensemble model effectively
reduced both false positives and false negatives, demonstrating
its durability and calibration. To further demonstrate the
performance of the models, Fig. 4 presents confusion matrices
for the individual models, including Neural Network, Stacking
Ensemble, Random Forest, and XGBoost.

73|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Accuracy Comparison of All Models

94.5
94.14%

94.0 93.77%

93.5 93.41%
::e:
930
&
Lo2s5
(%]
1%}
< 92,0

L5 91.21%

91.0

p\e mble_gq0st work rest
gnse™ nse™PycB et o
\,ot\t\QE orad ing © Ne\)‘a‘ pando™
Model
Fig. 2. Model accuracy comparison.
Voting Ensemble
Benign 6

@
=
=
@
=
=

Malicious 10

Benign Malicious
Predicted label

Fig. 3. Confusion matrix for voting ensemble.

Neural Network Random Forest

Benign Benign
°]
E-} -]
= K
o o
2 2
F S
Malicious Malicious
Benign Malicious Benign Malicious
Predicted label Predicted label
XGBoost Stacking Ensemble
Benign Benign
T]
a -]
5 &
o o
2 2
= -

Malicious Malicious

Benign Malicious Benign Malicious
Predicted label Predicted label

Fig. 4. Comparison of confusion matrices for different models.

E. Precision and Recall Curves

Fig. 5 illustrates the ROC (Receiver Operating
Characteristic) Curves for all the models evaluated in this study.
The ROC curve plots the True Positive Rate against the False
Positive Rate across various thresholds, helping to visualize the

Vol. 16, No. 11, 2025

trade-offs between correctly identifying benign and malicious
applications. The Area Under the Curve (AUC), derived from
the ROC, quantifies the model's ability to distinguish between
the two classes; a higher AUC indicates better discriminatory
power. The curves allow for a deeper understanding of each
model's performance beyond simple accuracy by demonstrating
how well the model can maintain a balance between sensitivity
(correctly identifying malicious apps) and specificity
(minimizing false positives) under different conditions. Models
with higher AUC scores are generally more robust and better at
generalizing across varying thresholds, as shown in the figure.

Additionally, Fig. 6 presents the Precision-Recall Curves for
each model, highlighting how well the models balance precision
and recall, particularly for the malware class. These curves
further emphasize the strengths and weaknesses of each model
in distinguishing between benign and malicious applications.

ROC Curves
1.0
08 o
[
-
o ’
3
06 .
g =
s o
] -
o -
s .
@ 0.4 =
2 L
L . —— Neural Network (AUC=0.977)
- —— Stacking Ensemble (AUC=0.982)
0.2 - L == _\loting Ensemble (AUC=0.981)
e —— Random Forest (AUC=0.967)
-~ —— XGBoost (AUC=0.983)
e --- Chance
0.0
0.0 0.2 0.4 06 0.8 10
False Positive Rate
Fig. 5. ROC curves of all the models.
Precision-Recall Curves
1.0 L/
0.8
§o6
]
O
o
o

o
>

—— Neural Network (AP=0.968)
——— Stacking Ensemble (AP=0.964)

0.24 = Voting Ensemble (AP=0.973)
—— Random Forest (AP=0.953)
—— XGBoost (AP=0.974)

--- Baseline (Pos rate=0.34)

0.0
0.

o

0.2 0.4 0.6 0.8 1.0
Recall

Fig. 6. Precision-recall curves.

F. Comparison with Previous Work

To further validate the effectiveness of our approach, we
compared the performance of our models with recent studies in
the field of Android malware detection. The following Table VI
summarizes the accuracy and features used in several recent
papers. While Fig. 2 presents a visual comparison of the
detection accuracy across all models, highlighting the superior
performance of the proposed ensemble-based approach.

74|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

TABLE VI. COMPARISON WITH EXISTING METHODS
Model Accuracy Dataset Features Used Year
Voting Ensemble (Proposed) 94.14% CIC-AndMal2017 ﬁstlivitiiasnsy Permissions, Services, Receivers, 2025
Random Forest [37] 93.0% Drebin Permissions, Intents 2020
AdaBoost, k-NN, LR, NB [38] 91.7% AndroZoo Permissions, Intents, 2021
RF, KNN and DT [39] 84.14% Custom dataset (300 benign, 183 malware) | Dalvik op-codes as grayscale images 2018
SVM[40] 91.7% AndroZoo Permissions, Intents 2021
StormDroid [41] 93.80% Google Play, Contagio Permissions, API Calls, sequences 2016

The comparative evaluation summarized in Table VI
positions the proposed method within the broader context of
existing research, highlighting its relevance and contribution to
the field. Although direct accuracy comparisons are limited by
the diversity of datasets and evaluation benchmarks across
studies, the value of this work lies not solely in its high accuracy
but in the methodological framework that enabled it. Unlike
several high-performing approaches that depend on complex
sequential architectures [41], meta-heuristic feature selection
strategies [10], or hybrid deep learning frameworks [11], the
proposed Voting Ensemble demonstrates that state-of-the-art
performance can be achieved through a simpler and more
reproducible methodology. This finding highlights an important
insight: a carefully constructed ensemble of standard classifiers
can serve as an efficient and practical alternative to more
intricate and computationally demanding solutions, offering an
optimal balance between performance, complexity, and
practicality.

V. CONCLUSION

This study proposed a scalable framework for Android
malware detection using static analysis of application features,
including API calls, permissions, services, receivers, and
activities. Through a comprehensive comparative analysis, we
demonstrated that practical ensemble methods, particularly the
Voting Ensemble, can achieve state-of-the-art accuracy
(94.14%) while outperforming a more complex deep neural
network. This finding is a key contribution, as it challenges the
assumption that increasingly complex models are always
necessary for high performance, offering a more lightweight and
interpretable alternative. However, due to its reliance on static
analysis, this approach is limited against advanced threats
employing dynamic code loading or runtime evasion techniques.
This limitation precisely defines the research gap our future
work will address. The practical significance of this work lies in
providing a highly effective and deployable solution for many
real-world scenarios where computational resources are
constrained. Future research will focus on integrating dynamic
behavioral features, such as runtime APl sequences and network
traffic analysis, to create a hybrid detection framework.
Exploring other ensemble strategies and adapting the model to
detect zero-day malware through continual learning will also be
critical. By building upon this foundation, we aim to develop
even more resilient and adaptive security solutions capable of
countering the evolving mobile threat landscape.

(1]

[2]

(3]

(4]

(5]

(6]

(7]

(8]
(0]

[10]

[11]

[12]

[13]

[14]

REFERENCES

B. D. Deebak and S. O. Hwang, "Healthcare applications using
blockchain with a cloud-assisted decentralized privacy-preserving
framework," IEEE Transactions on Mobile Computing, 2023.

M. Chaieb, M. A. Ghorab, and M. A. Saied, "Detecting Android Malware:
From Neural Embeddings to Hands-On Validation with BERTroid,"
arXiv preprint arXiv:2405.03620, 2024.

M. Gohari, S. Hashemi, and L. Abdi, "Android malware detection and
classification based on network traffic using deep learning," in 2021 7th
International Conference on Web Research (ICWR), 2021: IEEE, pp. 71-
7.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, "A review of android
malware detection approaches based on machine learning," IEEE access,
vol. 8, pp. 124579-124607, 2020.

P. Faruki et al., "Android security: a survey of issues, malware
penetration, and defenses,"” IEEE communications surveys & tutorials,
vol. 17, no. 2, pp. 998-1022, 2014.

J. Garcia, M. Hammad, and S. Malek, "Lightweight, obfuscation-resilient
detection and family identification of android malware,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol.
26, no. 3, pp. 1-29, 2018.

P. Panagiotou, N. Mengidis, T. Tsikrika, S. Vrochidis, and I.
Kompatsiaris, "Host-based intrusion detection using signature-based and
ai-driven anomaly detection methods," Information & Security: An
International Journal, vol. 50, no. 1, pp. 37-48, 2021.

I. F. Darwin, Android Cookbook: Problems and Solutions for Android
Developers. " O'Reilly Media, Inc.", 2017.

R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, "The android
platform security model," ACM Transactions on Privacy and Security
(TOPS), vol. 24, no. 3, pp. 1-35, 2021.

S. K. Smmarwar, G. P. Gupta, S. Kumar, and P. Kumar, "An optimized
and efficient android malware detection framework for future sustainable
computing,” Sustainable Energy Technologies and Assessments, vol. 54,
p. 102852, 2022.

R. M. Sharma and C. P. Agrawal, "MH-DLdroid: A Meta-Heuristic and
Deep Learning-Based Hybrid Approach for Android Malware Detection,"
Int. J. Intell. Eng. Syst, vol. 15, pp. 425-435, 2022.

W. Z. Zarni Aung, "Permission-based android malware detection,"
International Journal of Scientific & Technology Research, vol. 2, no. 3,
pp. 228-234, 2013.

C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, "Performance evaluation on
permission-based detection for android malware," in Advances in
Intelligent Systems and Applications-Volume 2: Proceedings of the
International Computer Symposium ICS 2012 Held at Hualien, Taiwan,
December 12-14, 2012, 2013: Springer, pp. 111-120.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, "Droidmat:
Android malware detection through manifest and api calls tracing," in
2012 Seventh Asia joint conference on information security, 2012: IEEE,
pp. 62-69.

75|Page

www.ijacsa.thesai.org

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Y. Nishimoto, N. Kajiwara, S. Matsumoto, Y. Hori, and K. Sakurali,
"Detection of android api call using logging mechanism within android
framework," in International Conference on Security and Privacy in
Communication Systems, 2013: Springer, pp. 393-404.

P. P. Chan and W.-K. Song, "Static detection of Android malware by
using permissions and API calls," in 2014 International Conference on
Machine Learning and Cybernetics, 2014, vol. 1: IEEE, pp. 82-87.

W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, "Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1869-1882, 2014.

H. S. Anderson and P. Roth, "Ember: an open dataset for training static
pe malware machine learning models," arXiv preprint arXiv:1804.04637,
2018.

L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and R.
Baldoni, "Android malware family classification based on resource
consumption over time,” in 2017 12th International Conference on
Malicious and Unwanted Software (MALWARE), 2017: IEEE, pp. 31-
38.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, "Semantics-aware android
malware classification using weighted contextual api dependency
graphs," in Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, 2014, pp. 1105-1116.

V. Regard, "Studying the effectiveness of dynamic analysis for
fingerprinting Android malware behavior," ed, 2019.

T. Vidas and N. Christin, "Evading android runtime analysis via sandbox
detection," in Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 447-458.

J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, "Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3216-3225, 2018.

S. Bhagwat and G. P. Gupta, "Android malware detection using hybrid
meta-heuristic feature selection and ensemble learning techniques,” in
International conference on advances in computing and data sciences,
2022: Springer, pp. 145-156.

O. A. Alzubi, J. A. Alzubi, A. M. Al-Zoubi, M. A. Hassonah, and U. Kose,
"An efficient malware detection approach with feature weighting based
on Harris Hawks optimization," Cluster Computing, pp. 1-19, 2022.

I. K. Khan, H. Daud, N. Zainuddin, and R. Sokkalingam, "Standardizing
reference data in gap statistic for selection optimal number of cluster in
K-means algorithm," Alexandria Engineering Journal, vol. 118, pp. 246-
260, 2025.

I. K. Khan et al., "Numerical solution by kernelized rank order distance
(KROD) for non-spherical data conversion to spherical data,” in AIP
Conference Proceedings, 2024, vol. 3123, no. 1: AIP Publishing LLC, p.
020011.

[28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

[40]

[41]

Vol. 16, No. 11, 2025

I. K. Khan et al., "Standardization of expected value in gap statistic using
Gaussian distribution for optimal number of clusters selection in K-
means,” Egyptian Informatics Journal, vol. 30, p. 100701, 2025.

M. Igbal et al., "A modified basis of cubic B-spline with free parameter
for linear second order boundary value problems: Application to
engineering problems," Journal of King Saud University-Science, vol. 36,
no. 9, p. 103397, 2024.

A. M. Abdussamad and A. Inayat, "Addressing limitations of the K-means
clustering algorithm: Outliers, non-spherical data, and optimal cluster
selection," AIMS Math, vol. 9, no. 9, pp. 25070-25097, 2024.

1. K. Khan et al., "Optimal Cluster Determination in K-Means Using Gap
Statistic Analysis Across Diverse Datasets," European Journal of
Statistics, vol. 5, pp. 8-8, 2025.

J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, "MAPAS: a practical deep
learning-based android malware detection system," International Journal
of Information Security, vol. 21, no. 4, pp. 725-738, 2022.

S. Fallah and A. J. Bidgoly, "Android malware detection using network
traffic based on sequential deep learning models," Software: Practice and
Experience, vol. 52, no. 9, pp. 1987-2004, 2022.

V. Kouliaridis and G. Kambourakis, "A comprehensive survey on
machine learning techniques for android malware detection,"”
Information, vol. 12, no. 5, p. 185, 2021.

M. Dhalaria and E. Gandotra, "Android malware detection techniques: A
literature review," Recent Patents on Engineering, vol. 15, no. 2, pp. 225-
245, 2021.

A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, "Toward
developing a systematic approach to generate benchmark android
malware datasets and classification,” in 2018 International Carnahan
conference on security technology (ICCST), 2018: IEEE, pp. 1-7.

E. Odat and Q. M. Yaseen, "A novel machine learning approach for
android malware detection based on the co-existence of features," IEEE
Access, vol. 11, pp. 15471-15484, 2023.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, "Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th international conference on mining software
repositories, 2016, pp. 468-471.

F. M. Darus, N. A. A. Salleh, and A. F. M. Ariffin, "Android malware
detection using machine learning on image patterns,” in 2018 Cyber
Resilience Conference (CRC), 2018: IEEE, pp. 1-2.

S. K. Dash et al., "Droidscribe: Classifying android malware based on
runtime behavior,” in 2016 IEEE Security and Privacy Workshops
(SPW), 2016: IEEE, pp. 252-261.

S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, "Stormdroid: A
streaminglized machine learning-based system for detecting android
malware," in Proceedings of the 11th ACM on Asia conference on
computer and communications security, 2016, pp. 377-388.

76|Page

www.ijacsa.thesai.org

