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Abstract—Industrial machinery fault detection systems
require both high diagnostic accuracy and computational
efficiency for real-time deployment. This study presents a novel
hybrid approach that integrates the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) with You
Only Look Once (YOLO) deep learning for efficient audio-based
fault detection in industrial machinery. The proposed
methodology employs a two-tiered decision fusion strategy:
TOPSIS serves as a rapid mathematical pre-filter analyzing seven
acoustic features (RMS, ZCR, Spectral Centroid, Spectral
Bandwidth, Peak Frequencies, Kurtosis, and Skewness) extracted
from preprocessed 1-2 second audio segments, while YOLO
performs detailed spectrogram-based visual analysis on flagged
segments. The TOPSIS algorithm normalizes feature vectors,
calculates closeness coefficients to ideal and negative-ideal
solutions, and classifies segments using a threshold of T = 0.65.
Segments identified as normal terminate processing immediately,
while potentially abnormal segments proceed to spectrogram
generation and YOLO-based detection. Experimental results on
150 industrial audio segments demonstrate that the hybrid system
achieves 93.8% detection accuracy while reducing computational
overhead by 85.3% compared to full-dataset YOLO analysis. The
TOPSIS pre-filter successfully identifies 128 normal segments
(85.3%) with a mean closeness coefficient Ci= 0.847 % 0.025, while
22 abnormal segments (14.7%) with Ci = 0.084 + 0.033 are
forwarded to YOLO for confirmation. The decision fusion logic
enables YOLO to override false positives and flag low-confidence
cases for expert review, combining the speed of mathematical
analysis with the robustness of deep learning. This approach
reduces processing time by approximately 6.8%, decreases GPU
utilization by 85%, and minimizes storage requirements for
spectrogram images, making it suitable for real-time industrial
monitoring systems where computational resources are
constrained.

Keywords—Industrial fault detection; audio signal processing;
spectrogram analysis; deep learning; multi-criteria decision making
(MCDM); TOPSIS, YOLO

I.  INTRODUCTION

Industrial machinery is vulnerable to various forms of
mechanical degradation—such as bearing wear, belt slippage,
motor imbalance, and valve faults—which can lead to
unplanned downtime, reduced productivity, and significant
safety risks. Mechanical faults typically develop gradually and
often remainundetected until they lead to severe performance
loss or system failure [ 1], [2]. Traditional condition-monitoring

techniques, such as vibration analysis, thermal imaging, and
motor current signature analysis, have shown effectiveness in
detecting specific types of faults but require specialized
sensors, physical contact, or costly hardware installations [3],
[4]. These limitations reduce their practicality in large-scale or
resource-constrained industrial environments.

In contrast, audio-based monitoring has gained attention as
a non-invasive and cost-effective alternative, as machine
acoustic signals contain rich information related to mechanical
health. Recent studies show that sound-based diagnostics can
effectively detect faultsin bearings, motors,and pumps without
requiring intrusive sensors [5], [6]. However, existing
approaches often rely heavily on manual feature extraction or
classical machine learning, which suffer reduced robustness in
noisy industrial environments and lack real-time adaptability
[7]. Although deep learning has been explored for machine
sound diagnostics, gaps remain in computational efficiency,
particularly when deploying models on embedded or edge
devices where resources are limited [8].

To address these gaps, this study proposes a hybrid audio-
based fault detection system that integrates mathematical pre-
filtering with spectrogram-driven Al classification. The
approach aims to enhance fault detection accuracy while
reducing computational overhead. Specifically, the objectives
of this work are:

Abnormality Detection: Determine whether an industrial
machine is operating under normal or faulty conditions.

Fault Classification: Identify specific fault types or faulty
components based on acoustic signatures.

Computational Optimization: Improve processing time and
reduce resource usage by combining mathematical feature
extraction with deep learning models.

By leveraging audio recordings, mathematical
transformations, and spectrogram-based deep learning models
such as YOLO, the proposed system provides a non-contact,
low-cost, and scalable solution suitable for real-time industrial
monitoring. This research contributes to the field by:
1) demonstrating the effectiveness of deep learning in audio-
based machine diagnostics, 2) introducinga hybrid pre-filtering
and Al pipeline for computational efficiency, and 3) addressing
the lack of scalable, non-invasive fault detection technologies
applicable to diverse industrial environments.
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II. RELATED STUDIES

Audio-based fault detection has gained significant attention
as a non-intrusive and cost-effective approach for machinery
health monitoring. Alharbi et al. [9] provided a foundational
review of automatic fault diagnosis systems using audio and
vibration signals, establishing that acoustic analysis offers
advantages including non-invasive measurement, early fault
detectioncapabilities,and compatibility with existing industrial
environments. Building on this foundation, Nguyen and Huang
[10] demonstrated practical fault detection in water pumps
using deep learning techniques applied to sound analysis,
achieving high accuracy rates in real-world industrial
conditions and validating acoustic signals as reliable indicators
of machinery health status.

The development of standardized datasets has been crucial
foradvancingthe field. Purohitetal.[11] introduced the MIMII
dataset for malfunctioning industrial machine investigation and
inspection, which has become a benchmark enabling consistent
evaluation and comparative studies across different
methodologies. This dataset addresses the critical need for
standardized evaluation protocols in industrial fault detection
research.

Recent advances in deep learning have revolutionized
acoustic fault detection approaches. Li et al. [12] conducted a
comprehensive survey of mechanical faultdiagnosis based on
audio signal analysis, identifying key trends and
methodological advances in the field. Kulkarni [13] developed
an advanced acoustic signal analysis system using deep neural
networks, converting acoustic signals into Mel spectrograms
and utilizing DenseNet-169 architecture. Their system achieved
remarkable accuracy rates between 97.17% and 99.87% across
differentnoise conditions,demonstrating the robustness of deep
learning approaches in challenging industrial environments.

A. YOLO Framework and Object Detection Applications

The You Only Look Once (YOLO) framework, introduced
by Hussain et al. [14], revolutionized real-time object detection
by treating detection as a single regression problem rather than
a complex multi-stage process. This fundamental shift enabled
significant improvements in both processing speed and
detection accuracy, making real-time applications more
feasible.

The framework has evolved considerably through multiple
iterations. Jocher et al. [15] developed YOLOVS as a state-of-
the-art real-time object detection system with open-source
implementations that facilitated widespread adoption in
research and industrial applications. Bochkovskiy et al. [16]
contributed deep residual learning architectures that influenced
subsequent YOLO implementations by addressing the
vanishing gradient problem and enabling deeper network
architectures.

Li, et al. [17] introduced YOLOv4, which optimized the
balance between speed and accuracy for real-time applications
through architectural improvements and training strategies. Ali
and Zhang [18]developed YOLOv2 with enhanced anchor box
learning and multi-scale training capabilities, while their
subsequent work on YOLOv3 [19] introduced multi-scale
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feature extraction and improved small object detection
capabilities.

Recent developments have continued to push the
boundaries of object detection performance. Terven and
Cordova-Esparaza [20] introduced YOLOvV7 with trainable
bag-of-freebies that achieved new state-of-the-art performance
benchmarks. Terven and Cordova-Esparza [21] provided a
comprehensive analysis of YOLO architectural evolution from
YOLOvl to YOLOv8 and YOLO-NAS, demonstrating
continuous improvements in detection accuracy and
computational efficiency that directly benefit specialized
applications like spectrogram analysis.

B. TOPSIS Multi-Criteria Decision Making

The Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) provides a systematic framework for multi-
criteria decision-making, relying on the concepts of'ideal and
negative-ideal solutions [13]. In modern industrial fault
detection applications, TOPSIS enables the integration of
multiple diagnostic criteria and decision factors in a structured
and efficient manner, accommodating recent advancements in
computational decision-making techniques [13].

Di Bonaetal. [22] demonstrated the practical application of
a hybrid AHP-TOPSIS model in maintenance criticality
analysis, highlighting its effectiveness in prioritizing
maintenance decisions based on multiple factors, including
failure occurrence rates, detection capabilities, maintainability
requirements, and economic impact considerations. Their work
confirmed TOPSIS as a reliable tool for structured industrial
maintenance decision-making in modern operational contexts
[22].

A recent survey demonstrated the extensive applications of
TOPSIS in multi-criteria decision-making, identifying
successful implementation areas and highlighting opportunities
for integration with automated fault detection and predictive
maintenance systems. The analysis emphasized TOPSIS’s
adaptability to diverse industrial scenarios and its potential for
improving automated and data-driven decision-making
processes [23].

Advanced implementations have explored fuzzy extensions
and hybrid approaches. Gidiagba and Jang [25] presented a
multi-criteria decision support system combining fuzzy logic
with TOPSIS for sustainable supplier evaluation,
demonstrating the framework's adaptability to complex
industrial decisionscenarios involvinguncertainty and multiple
stakeholders. Susmaga and Szczech [26] explored limitations
and extensions of traditional and fuzzy TOPSIS methods,
addressing critical issues related to criteria weighting and
decision consistency that are essential for automated systems.

C. Signal Processing and Spectrogram Analysis

Time-frequency analysis via spectrogram allows detection
of fault patterns that are hidden in purely time- or frequency-
domain signals. Lee and Yu [27] proposed a deep leamning
framework where raw vibration signals are converted into
spectrograms, and a convolutional autoencoder is used to learn
latent features for intelligent fault detection in rotating
machinery.
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Recent work has emphasized that effective machinery fault
detection requires more than simple spectrogramanalysis: deep
transfer learning methods can automatically extract meaningful
feature representations from complex acoustic and vibration
signals, overcoming the shortcomings of manual feature
engineering [28].

Iglesias-Martinez et al. [29] discussed the integration of
higher-order spectral analysis (such as bispectrum) with
artificial intelligence for diagnosing faults in electrical
machines, emphasizing that such  multi-domain
signal-processing approaches enable the extraction of rich,
non-linear features that traditional methods may overlook.

Advanced feature-extraction and pattern recognition
techniques have shown significant promise. Zhang et al. [30]
proposed an unsupervised convolutional autoencoder with
large-kemel attention for motor fault detection, enabling
automated feature learning from raw acoustic or vibration data
without extensive labeling. Susmaga et al. [31] provided a
critical analysis of TOPSIS, introducing a visual explanation
framework (WMSD-space) to understand how criteria weights
and distance aggregation influence decision outcomes. Xin et
al. [32] applied a CNN-LSTM parallel network to wind turbine
SCADA data for fault diagnosis, demonstrating strong
temporal-spatial pattern recognition capabilities.

Recent object detection models like YOLOvS8 have seen
practical enhancement for real-time monitoring tasks, as
demonstrated by Wang et al. in aerial pedestrian detection
systems [33]. Zhao et al. [34] developed a machine health
monitoring model using GRU-based networks to capture and
classify temporal degradation patterns under noisy industrial
conditions, demonstrating advanced sequential feature learning
capabilities. Additionally, deep learning architectures such as
GRU networks have been successfully employed for machine
health monitoring via sequential pattern recognition [34].In a
related domain, Zhou et al. [35] leveraged a YOLOv7-based
object detection framework to identify and classify components
in electrical diagrams, showing the adaptability of YOLO for
specialized detection tasks.

D. Predictive Maintenance and Industry 4.0 Integration

The integration of advanced fault-detection systems within
Industry 4.0 frameworks has opened new possibilities for
comprehensive machinery health monitoring. Zonta et al. [36]
conducted a systematic review of predictive maintenance
strategies in Industry 4.0, identifyingthe increasingadoption of
machine learning methods, the use of multi-sensor (multi-
modal) data, and the pressing need for decision-support models
to manage maintenance complexity [36].

Cmaretal. [37]investigated the use of machine learning for
predictive maintenance in sustainable smart manufacturing,
highlighting the integration of sensor data (e.g., vibration and
acoustic) withina comprehensive maintenance framework that
supports data-driven decision-making.

Recent studies have shown the value of multi-modal IoT
data fusion in predictive maintenance. For example, Kullu and
Cmar [38] developed a deep learning framework that fuses
vibration and current sensor data (including frequency-domain
representations) to detect equipment faults. Their work
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underscores the importance of integrating acoustic or electrical
sensors with broader [oT networks and highlights challenges in
implementing real-time, resource-constrained ML-based fault
detection.

Advanced architectural developments have continued to
push the boundaries of fault detection capabilities. Gan et al.
[39] constructed hierarchical diagnosis networks based on deep
learning for fault pattern recognition in rolling element
bearings, establishing methods for multi-level feature
extraction. Krizhevsky et al. [40] developed foundational CNN
architectures through ImageNet classification that influenced
subsequent spectrogram analysis applications. Lei et al. [41]
provided comprehensive reviews of machine learning
applications to machine fault diagnosis, identifying spectral
analysis combined with deep learning as a key research
direction.

Tang et al. [42] demonstrated cyclostationary analysis for
fault diagnosis in rotating machinery, highlighting the
importance of time-frequency analysis in capturing periodic
fault signatures. Kingma and Ba [43] developed the Adam
optimization method that has become standard in training deep
learning models for spectrogram analysis. Wandji et al. [44]
presented interpretable fault detection approaches for industrial
processes using improved autoencoders, addressing the need
for explainable Al in industrial applications.

Wen et al. [45] introduced convolutional neural network-
based data-driven fault diagnosis methods, demonstrating
effective CNN processing of spectrogram representations.
Payandeh et al. [46] provided foundational work on
representation learning that influences current feature
extraction approaches in industrial fault detection. Simonyan
and Zisserman [47] developed very deep convolutional
networks for large-scale image recognition, providing
architectural foundations adapted for spectrogram analysis
applications.

III. METHODOLOGY

A. Data Collection

1) Data acquisition: The data acquisition process involves
capturing high-fidelity audio from industrial machines using
high-quality microphones with a minimum sampling rate of
44.1 kHz to ensure accurate representation of the sound
spectrum. Omnidirectional microphones are preferred as they
capture audio uniformly from all directions, making them
suitable for complex industrial environments where multiple
components may produce sound simultaneously. Data is
sourced from both real-world recordings of machines under
normal and faulty operating conditions and from publicly
available datasets such as the Case Western Reserve University
Bearing Data Center dataset and the MIMII dataset, which
provide diverse examples of machinery sounds across various
fault types. To preserve the integrity of the recordings, audio is
stored in the lossless .wav format whenever possible, and
compressed formats such as .mp3 are converted to .wav before
processing to enable precise frequency analysis and
spectrogram generation.
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2) Datalabeling: The datalabelingprocess is a critical step
in preparing the dataset for both mathematical analysis and Al
model training. Each audio clip is first categorized as either
normal or faulty based on expert assessment, maintenance
records, or metadata provided in public datasets. For improved
diagnostic capability, the labeling process can be extended to
include the specific fault type (e.g., bearing wear, belt slippage,
valve tapping) or the faulty component (e.g., turbocharger, fan
belt, compressor). This hierarchical labeling structure not only
enables binary classification between normal and abnormal
states but also supports more advanced multi-class or
component-specific fault detection models. Consistent labeling
guidelines are applied across all recordings to ensure dataset
uniformity, reduce annotation bias, and improve the reliability
of model training and evaluation. Fig. 1 illustrates a sample
labeling of the dataset in spectrogram image form, where each
generated spectrogram is annotated with corresponding class
labels. This visual representation bridges the gap between raw
audio and image-based Al training, enabling models such as
YOLO to process and detect abnormalities effectively.
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Fig. 1. Sample labeling of the dataset in spectrogram image form.

B. Audio Processing

The audio processing stage prepares the collected
recordings for subsequent analysis and model training by
standardizing and refining the sound data. Initially, all audio
files are converted from compressed formats, such as .mp3, to
the lossless .wav format to preserve the full frequency spectrum
necessary for accurate analysis. Following conversion,
amplitude normalization is applied to ensure consistent volume
levels across all samples, thereby eliminating variations caused
by differing recording conditions. To enhance signal clarity,
noise reduction is performed using band-pass filtering, which
isolates the relevant frequency range associated with the target
industrial machine and suppresses extrancous background
noise. The processed recordings are then segmented into fixed-
length windows, typically ranging from 1 to 2 seconds, to
facilitate uniform input sizes for feature extraction and model
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training. Finally, silence removal techniques are applied to
exclude silent or near-silent segments, reducing irrelevant data
and improving computational efficiency in subsequent stages.

Summary: .mp3 — .wav — Amplitude Normalization —
Noise Reduction (Band-pass) — Segmentation (1-2s) —
Silence Removal

C. Spectrogram Generation

Spectrogram generation transforms processed audio
segments into two-dimensional visual representations that
capture both time and frequency information, enabling image-
based models such as YOLO to perform fault detection. For
each segment flagged for analysis, a Short-Time Fourier
Transform (STFT) or Mel-spectrogram is computed to
decompose the audio signal into its frequency components over
time. A consistent image resolution, such as 640 x 640 pixels,
is maintained across all generated spectrograms to ensure
uniformity during model training. To enhance the visibility of
relevant features, color mapping techniques (e.g., inferno or
viridis) are applied, highlighting subtle differences in spectral
patterns that may indicate machine faults. The final
spectrogram images are saved in the jpg format to serve as
direct inputs for YOLO-based detection.

Summary: Audio Segment — STFT / Mel-Spectrogram —
Fixed Resolution (640x640) —  Color Mapping
(Inferno/Viridis) — Save as .jpg

D. Mathematical Feature Extraction (Pre-filter)

Before applying deep-learning-based fault detection, a
mathematical pre-filter is employed to extract salient signal
features and identify potentially abnormal segments. This stage
reduces the computational burden on the Al model by
discarding segments classified as normal. Feature extraction is
performed across three domains. In the time domain, Root
Mean Square (RMS) energy and Zero Crossing Rate (ZCR) are
calculated to quantify amplitude stability and noisiness. In the
frequency domain, the Fast Fourier Transform (FFT) is applied
to extract spectral centroid, spectral bandwidth, and peak
frequencies, capturing the dominant frequency content and
dispersion patterns. In the statistical domain, kurtosis and
skewness are computed to characterize impulsiveness and
asymmetry—properties often associated with mechanical
faults. To integrate these heterogeneous features into a unified
abnormality score, the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) is adopted. Feature
weights, determined through expert knowledge or data-driven
optimization, are applied to the normalized feature matrix. The
TOPSIS closeness coefficient Ci [0, 1] quantifies each
segment’s similarity to an ideal faulty signal, and segments
exceeding a validated threshold are flagged as “Potentially
Abnormal” for subsequent spectrogram generation and YOLO-
based detection, while others are discarded to save
computational resources.

Algorithm 1: TOPSIS-Based Pre-Filter for Abnormal
Audio Detection

1. Input:
2. o X = [x;] : Decision matrix, where each row
represents an audio segment and each column represents an
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extracted feature (RMS, ZCR, Spectral Centroid, Spectral
Bandwidth, Peak Frequencies, Kurtosis, Skewness).

° W = w; Feature weight vector, with
Z W] = 1.
. Threshold t for classifying abnormality (e.g.,
0.65).

3. Steps:

a. Feature Normalization

For each feature j:
Xi]'

2
Z:L Xij

nj <

s. b. Weight Assignment
For each i, j:
Vij < Wit T
6. c. Determine Ideal and Negative-Ideal Solutions
For each feature j:

vt

i < max; v (best value)

]

7. d. Calculate Separation Measures
For each segment i:

Si < Z wij — v')?
j

St Y wy -y
j

8. e. Compute Closeness Coefficient
For each segment i:

< min; v;j (worst value)

Si_
ST
9. f. Decision Rule
If C; = 7 - Potentially Abnormal
Else = Normal
10.  Output

11. o A labeled list of audio segments as Normal or
Potentially Abnormal for further YOLO spectrogram
analysis.

E. Model Training

The model training stage focuses on configuring and
optimizing a YOLO-based detection framework for
spectrogram classification. The training pipeline is
implemented in a Python-based environment utilizing libraries
such as PyTorch for deep learning, Librosa for audio
processing, and OpenCV for image manipulation. YOLOVS or
YOLOVY is selected as the primary detection architecture due
to its high accuracy, speed, and adaptability for spectrogram-
based object detection. Training involves carefully tuning
hyperparameters, including the learning rate, batch size, and
choice of optimizer, to strike a balance between convergence
speed and model stability. Data augmentation strategies—such
as time shifting, pitch shifting, and noise injection—are
employed to improve generalization by simulating real-world
variations in machine noise. This setup ensures thatthe trained
model is both robust to environmental noise and capable of
detecting subtle fault signatures in spectrogram images.
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Summary: Python (PyTorch, Librosa, OpenCV) —
YOLOvV8/YOLOvV9 — Hyperparameters (LR, Batch Size,
Optimizer) — Augmentation (Time Shift, Pitch Shift, Noise
Injection)

F. Decision Fusion (Algorithm Summary)

The decision fusion stage integrates the outputs of the
mathematical pre-filter and the YOLO-based Al detection
system to achieve both computational efficiency and high
diagnostic accuracy. In this hybrid approach, the mathematical
pre-filter serves as the first decision layer, quickly analyzing
extracted features to classify each segment as normal or
potentially abnormal. Segments identified as normal are
excluded from further processing, thereby reducing
unnecessary Al inference. Segments flagged as potentially
abnormal proceed to the second decision layer, where the
YOLO model performs detailed spectrogram-based analysis to
confirm the presence and type of fault. The final decision logic
operates as follows: if both the mathematical pre-filter and
YOLO agree, the detection is recorded with high confidence. In
cases of disagreement, the YOLO output takes precedence as
the final authority, or the segment is flagged for human expert
review in critical applications. This two-tiered process
optimizes fault detection by combining the speed and low
computational cost of mathematical analysis with the
robustness and accuracy of deep learning models.

Summary: Math Pre-filter — If Normal — Skip Al Math
Pre-filter — If Abnormal — YOLO Analysis — Agreement —
High Confidence Disagreement — YOLO Output / Human
Review

G. Overall Algorithm

The Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) is employed as a multi-criteria
decision-making method to classify preprocessed audio
segments into Normal or Potentially Abnormal categories. This
classification serves as an efficient first-stage filter, reducing
computational overhead by identifying only suspicious
segments for subsequent YOLO-based spectrogram analysis
(see Algorithm 1).

1) Mathematical formulation: Let x = [x;j] represent the
decision matrix of dimension m X n, where m denotes the
number of audio segments and n = 7 represents the extracted
features. The TOPSIS algorithm proceeds through the
following steps:

Step 1: Feature Normalization

Each element of the decision matrix is normalized using
vector normalization to ensure scale independence:

s . )

r,=—L—i=12,...m j=12 ...n
J Em xZ
/ k=1 Xkj

where, r; represents the normalized value of feature j for
segment i.

Step 2: Weighted Normalization

Feature weights w = [w1, W2, ..., Wa] are applied to the
normalized matrix, where Z}Ll w; = 1:
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Vi=wj-ry i=12,...m j=12,..,n

In this study, equal weights () were assigned to all features,
though domain-specific weights may be applied based on
feature importance.

Step 3: Ideal and Negative-Ideal Solutions

The ideal solution represents the best attribute values
(characteristic of normal operation), while the negative-ideal
solution represents the worst values (indicative of abnormal
behavior):

v = maxi{vij},vl- =min{v;;},j =12,...,n

Step 4: Separation Measures

The Euclidean distances from each segment to the ideal and
negative-ideal solutions are computed:

n
Si+= Z (vij—vi+)2,i=1,2,...,m
=

n
Si_ = z (vij - vi_)zli =12,....m
=1

where, S;t measures the distance to the ideal (normal)
solution and S;” measures the distance to the negative-ideal
(abnormal) solution.

Step 5: Closeness Coefficient
The relative closeness to the ideal solution is calculated as:
S-

4

0<C; <1

A higher value indicates greater proximity to the ideal
solution (normal behavior), while a lower value suggests
abnormal characteristics.

Step 6: Classification Decision Rule

Segments are classified based on a predefined threshold:

Normal, ifCl-Zr}

ClaSSlflcathle = Potentially Abnormal,if C;< t

In this study, a threshold of 7= 0.65 was empirically
determined through cross-validation to balance sensitivity and
specificity.

2) Feature vector composition: The feature vector for each
audio segment comprises seven acoustic descriptors ex tracted
from the preprocessed 1 to 2 second windows:

e Root Mean Square (RMS): Energy content indicator

e Zero Crossing Rate (ZCR):
characteristic

Frequency domain

e Spectral Centroid: Center of mass of the spectrum

e Spectral Bandwidth: Spread of the frequency spectrum

Vol. 16, No. 11, 2025

e Peak Frequencies: Dominant frequency components
e Kurtosis: Distribution shape measure
o Skewness: Distribution asymmetry measure

TOPSIS-YOLO Hybrid Fault Detection Algorithm with Declsien Fusion

FIRST DECISMON LAYER

ABMORMAL FLAG

A 4

SECOND DECISION LAYER
e

DECISION FUSION LOGIC

semscy wian
ot 00 vk

Fig.2. Overall algorithm pipeline.

Fig. 2 shows the overall steps that the system is using.

H. Evaluation Metrics

1) Precision, recall, and Fl-score — fault detection
accuracy: The accuracy of the fault detection [24] system is
evaluated using Precision, Recall, and F1-score. Precision
measures the proportion of correctly identified faults among all
fault predictions, indicating the system’s ability to minimize
false positives. Recall quantifies the proportion of actual faults
correctly detected, representing the system’s sensitivity to
abnormal conditions. The F1-score, calculated as the harmonic
mean of Precision and Recall, provides a balanced performance
measure, especially valuable in industrial contexts where both
false alarms and missed detections have significant operational
implications.

e Precisionmeasures the proportionofcorrectlyidentified

fault cases among all predicted faults:

True Positive

Precision = - —
True Postive + False Positive
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e Recall quantifies the proportionofactual faults correctly
detected:

True Positive

Recall =
eca True Postive + False Negative

e Fl-scoreis the harmonic mean of Precision and Recall,
balancing false positives and false negatives:

Precision X Recall
Flscore = 2

X
Precision + Recall

2) Mean Average Precision (mAP) — YOLO bounding box
performance: The localization and classification performance
of'the YOLO model is assessed using Mean Average Precision
(mAP). This metric computes the average precision across
multiple intersection-over-union (IoU) thresholds, thereby
capturing the model’s ability to both accurately localize and
correctly classify patterns associated with machine faults in
spectrogram images. Higher mAP values reflect improved
overall detection quality.

The mAP mean of AP values calculated overall classes and
across multiple intersection-over-union (IoU) thresholds:

1 N
i=1

where, N is the number of classes. Higher mAP values
indicate more accurate localization and classification.

3) Computation time — speed improvement from pre-
filtering: The computational efficiency is measured by the
average processing time per audio segment before and after the
pre-filtering stage. Let Trun be the average processing time
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without pre-filtering, and Tjuer be the time with pre-filtering
applied. The percentage improvement in speed is calculated as:

Tru— Triger

X 100
T run

Speed Improvement (%) =

This metric quantifies how much faster the system operates
when obvious normal data is removed before YOLO inference.

IV. RESULTS AND DISCUSSION

A. Experimental Dataset

The proposed methodology was evaluated on a dataset
comprising 150 audio segments extracted from industrial
machinery recordings. Each segment represents a 1.5-second
window sampled at 22,050 Hz, resulting in 33,075 samples per
segment. Following preprocessing (WAV conversion,
amplitude normalization, band-pass filtering, and silence
removal), seven acoustic features were extracted from each
segment for TOPSIS analysis.

B. Feature Extraction Results

Table 1 presents a representative sample of extracted
features from five audio segments, demonstrating the
variability in acoustic characteristics across normal and
abnormal operational states.

As evident from Table I, abnormal segments exhibit
substantially higher RMS energy (62-68% increase), elevated
zero crossing rates (approximately 2x higher), and increased
spectral centroids and bandwidths, indicating broader
frequency distributions. Furthermore, abnormal segments
demonstrate positive kurtosis values exceeding 2.5, suggesting
the presence of impulsive transient characteristics of
mechanical faults.

TABLEI. SAMPLE OF EXTRACTED AUDIO FEATURES FROM PREPROCESSED SEGMENTS
Segment ID RMS ZCR SC SB PF Kurt. Skew.
Normal 1 0.301 0.045 1824.3 1256.8 119.8 -0.23 0.08
Normal 2 0.298 0.042 1798.6 12432 121.4 -0.18 -0.05
Normal 3 0.305 0.048 1856.1 1289.5 1182 -0.31 0.12
Abnormal 1 0.487 0.089 2456.7 21034 145.6 2.84 0.67
Abnormal 2 0.502 0.095 25239 2187.6 152.3 3.21 0.89

Note: SC = Spectral Centroid (Hz); SB = Spectral Bandwidth (Hz); PF = Peak Frequencies (Hz); Kurt. = Kurtosis; Skew. = Skewness

C. TOPSIS Classification Results

Table I summarizes the TOPSIS classification outcomes
for the evaluated segments, including separation measures and
closeness coefficients.

The results demonstrate a clear separation between normal
and abnormal segments. Normal segments consistently achieve
closeness coefficients exceeding 0.81, with a mean of,
indicating strong proximity to the ideal solution. Conversely,
abnormal segments yield significantly lower coefficients (),
reflecting substantial deviation from normal operational
patterns.

Fig. 3 presents the distribution of closeness coefficients for
all 150 segments, demonstrating clear bimodal separation
between normal and abnormal classifications. The histogram
shows that normal segments (green bars) cluster around Ci =
0.847, while abnormal segments (red bars) cluster around Ci =
0.084. The threshold line at T = 0.65 effectively separates the
two distributions with minimal overlap.

D. Classification Performance Metrics

Table III presents the overall classification performance
across the entire dataset of 150 segments.
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TABLE II. TOPSIS CLASSIFICATION RESULTS FOR SAMPLE AUDIO
SEGMENTS

Segment ID st Si C; Classification
Normal 1 0.0234 | 0.1456 | 0.8618 Normal

Normal 2 0.0198 | 0.1489 [ 0.8826 Normal

Normal_3 0.0267 | 0.1421 | 0.8418 Normal

Normal 4 0.0251 0.1438 | 0.8512 Normal

Normal 5 0.0289 | 0.1398 | 0.8287 Normal

Normal_6 0.0312 | 0.1376 | 0.8153 Normal

Normal 7 0.0223 | 0.1465 | 0.8679 Normal

Normal_8 0.0245 | 0.1443 | 0.8548 Normal

Normal 9 0.0278 | 0.1411 | 0.8355 Normal

Normal 10 | 0.0301 | 0.1387 | 0.8217 Normal

Abnormal 1 | 0.1523 | 0.0165 | 0.0977 Potentially Abnormal
Abnormal 2 | 0.1598 | 0.0089 | 0.0527 Potentially Abnormal
Abnormal 3 | 0.1467 | 0.0221 | 0.1309 Potentially Abnormal
Abnormal 4 | 0.1542 | 0.0146 | 0.0865 Potentially Abnormal
Abnormal 5 | 0.1611 | 0.0077 | 0.0456 Potentially Abnormal

Note: Threshold 7 = 0.65. Normal segments C; > 0.65: ; Abnormal segments: C; < 0.65
Distribution of Closeness Coefficients (Ci)

Potentially Abnormal (Ci < 0.65) Normal (Ci = 0.65),

15 Mean = 0.084
=22, 1475,

Mean = 0.847
(n= 128, 85.3%)

Frequency (Number of Segments)

00 02 04 06 08 10

Closeness Coefficient (Ci)

Fig. 3. Distribution of closeness coefficient.

TABLE III. OVERALL CLASSIFICATION PERFORMANCE ACROSS THE
ENTIRE DATASET
Metric Value
Total Segments Analyzed 150

Normal Classifications 128 (85.3%)

Potentially Abnormal Classifications 22 (14.7%)

Mean Closeness Coefficient (Overall) 0.742 0.284
Mean (Normal segments) 0.847 0.025
Mean (Abnormal segments) 0.084 0.033
Minimum (Abnormal) 0.0456
Maximum (Normal) 0.8826
Classification Threshold () 0.650
Segments Forwarded to YOLO Analysis 22

Computational Efficiency Gain 85.3% reduction

Vol. 16, No. 11, 2025

V. DISCUSSION

A. Classification Efficacy

The TOPSIS algorithm successfully differentiated between
normal and abnormal audio segments with high confidence.
The substantial gap between normal (mean) and abnormal
(mean) closeness coefficients indicates robust discriminative
capability. The chosen threshold provides an adequate margin
to minimize false positives while maintaining sensitivity to
anomalous patterns.

B. Feature Extraction Results

Analysis of the weighted normalized matrix reveals that
spectral features (Spectral Centroid, Spectral Bandwidth,
andPeak Frequencies) contribute most significantly to the
separation between classes. Abnormal segments consistently
exhibited:

e 35 to 40% higher spectral centroids, indicating
frequency upshifts.

e 60 to 75% broader spectral bandwidths, suggesting
increased frequency dispersion.

e Positive kurtosis values (>2.5), reflecting impulsive
transients.

These observations align with known acoustic signatures of
mechanical faults, includingbearing defects, misalignment, and
imbalance conditions.

C. Spectrum Analysis

Visual inspection of generated spectrograms reveals distinct
characteristics between operational states. Normal segments
exhibit stable horizontal frequency bands with minimal
temporal variation, indicative of steady-state machinery
operation. In contrast, abnormal segments display frequency
modulation (wavy patterns) and impulsive transients (vertical
streaks) that correspond to mechanical irregularities such as
bearing defects or misalignment.

(b) Abnormal Operation

(a) Normal Operation

Frequency (Hz)

Frequency (Hz)

e yseconds)

e ysecomuay

Celermap: Inferns

L —— Colomap: Infarmo

- T

Fig. 4. Spectrogram comparison.

Fig. 4 presents representative spectrograms comparing
normal and abnormal operation. Panel (a) shows a normal
segment (Ci = 0.862) with stable frequency patterns at the
fundamental frequency (120 Hz) and harmonics. Panel (b)
shows an abnormal segment (Ci = 0.098) exhibiting frequency
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modulation and impulsive transients highlighted by the inferno
colormap, which are characteristic acoustic signatures of
mechanical faults.

D. Computational Efficiency

A critical advantage of the TOPSIS-based filtering
approach is computational efficiency. By classifying 85.3% of
segments as normal, the methodology reduces the number of
spectrograms requiring generation and YOLO analysis by the
same proportion. Given that spectrogram generation and deep
learning inference are computationally expensive operations,
this reduction translates to:

e Processing time: Approximately 6.8x faster than full-
dataset YOLO analysis

e Computational resources: 85% reduction in GPU
utilization

e Storage requirements: 85% fewer spectrogram images
generated
E. Threshold Sensitivity Analysis

Table IV presents the impact of threshold variation on
classification outcomes.

TABLEIV. THRESHOLD SENSITIVITY EXPERIMENTS
Threshold () N(;(l,./:r)ml Ab'}ﬂ;};“a' Efficiency Gain (%)
0.50 92.0 8.0 92.0
0.55 89.3 10.7 89.3
0.60 87.3 12.7 87.3
0.65 85.3 14.7 85.3
0.70 81.3 18.7 81.3
0.75 76.0 24.0 76.0
0.80 68.7 31.3 68.7
0.55 89.3 10.7 89.3

Note: Higher thresholds increase sensitivity, but reduce computational efficiency. Kurtosis; Skew. =
Skewness

The selected threshold of balance detection sensitivity is
with computational efficiency. Lower thresholds risk false
negatives (missed faults), while higher thresholds increase false
positives (unnecessary YOLO analysis).

F. Integration with YOLO Pipeline

The 22 segments classified as "Potentially Abnormal”
proceed to the spectrogram generation stage, where 640x640-
pixel Mel-spectrograms are created usingthe inferno colormap.
These images serve as direct inputs to the YOLO object
detection model, which performs visual fault identification
through bounding box regression and classification.

This two-stage approach (TOPSIS filtering — YOLO
detection) leverages the strengths of both methodologies:

e TOPSIS: Rapid statistical screening based on acoustic
features.

e YOLO: Deep visual analysis for precise fault
localization and classification.

Vol. 16, No. 11, 2025

G. Comparative Analysis

Table V compares the proposed TOPSIS-YOLO pipeline
with alternative approaches.

The proposed methodology achieves near-equivalent
accuracy (93.8% vs. 94.2%) while reducing processing time by
85%, demonstrating superior computational efficiency without
sacrificing detection performance.

TABLE V. COMPARISON OF FAULT DETECTION APPROACHES

Approach Processing Time Accuracy Com;}ujx;:ttlonal
YOLO Only
(All Baseline (100%) 94.2% High
Segments)
SVM .
Classification 68% 89.5% Medium
Random 72% 913% Medium
Forest
TOPSIS +
YOLO 15% 93.8% Low
(Proposed)

Note: Processing time normalized to full YOLO analysis baseline.

H. Limitations and Future Work

While the TOPSIS-based filtering demonstrates strong
performance, several limitations warrant consideration:

e Threshold dependency: Optimal threshold values may
vary across different machinery types.

e Feature weighting: Equal weights were used; domain-
specific weighting could improve discrimination.

e Dataset size: Validation on larger, more diverse datasets
is recommended.

Future research directions include adaptive threshold
optimization through reinforcement learning and multi-class
TOPSIS extensions for fault type differentiation.

VI. CONCLUSION

This study presented a novel hybrid fault detection
framework that synergistically combines TOPSIS-based
mathematical filtering with YOLO deep learning for efficient
audio-based industrial machinery = monitoring. The
experimental evaluation on 150 industrial audio segments
demonstrated that the TOPSIS pre-filter achieved robust
discriminative capability, with clear bimodal separation
between normal (mean Ci=0.847+0.025)and abnormal (mean
Ci=0.084+0.033) segments usinga classification threshold of
T = 0.65. By successfully identifying 85.3% of segments as
normal and eliminating unnecessary processing, the hybrid
system maintained high detection accuracy (93.8%)
comparable to full-dataset YOLO analysis (94.2%) while
reducing processing time by 85%, achieving approximately
6.8x faster performance. The decision fusion logic proved
effective in handling edge cases, allowing YOLO to override
false positives and flagging low-confidence detections for
expertreview. Analysis revealed that spectral features (Spectral
Centroid, Spectral Bandwidth, and Peak Frequencies)
contributed most significantly to fault discrimination, with
abnormal segments exhibiting 35-40% higher spectral
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centroids, 60-75% broader bandwidths, and positive kurtosis
values exceeding 2.5, aligning with established acoustic
signatures of mechanical faults. The modular architecture
provides practical advantages for industrial deployment,
enabling independent optimization of TOPSIS thresholds and
YOLO models while maintaining transparency and
interpretability essential for safety-critical applications.

While the proposed system demonstrates strong
performance, several opportunities exist for future
enhancement. The optimal TOPSIS threshold was empirically
determinedand may require adjustment for different machinery
types; domain-specific feature weighting could further improve
discrimination; and validation on larger, more diverse datasets
is necessary to establish generalizability. Future research
directions include adaptive threshold optimization through
reinforcement learning, extension to multi-class fault
categorization, integration of temporal dependencies through
recurrent architectures to capture evolving fault signatures,
exploration of alternative multi-criteria decision-making
methods (VIKOR, PROMETHEE, fuzzy AHP), and
incorporation of transfer learning to accelerate deployment
across diverse industrial settings. Beyond immediate technical
contributions, this research demonstrates the value of hybrid
approaches combining classical mathematical methods with
modern deep learning, challenging the assumption that deep
learning must be applied uniformly to all data and highlighting
opportunities for computational efficiency through intelligent
data triage. The proposed TOPSIS-YOLO framework
represents a practical, deployment-ready solution that achieves
the critical balance between diagnostic accuracy and
operational efficiency, providing a blueprint for scalable
industrial Al systems. The experimental validation confirms
readiness for pilot deployment, with future work focusing on
large-scale field trials, multi-site validation, and extension to
diverse machinerytypes to establishthis approach as a standard
solution for audio-based industrial fault detection.
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