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Abstract—Industrial machinery fault detection systems 

require both high diagnostic accuracy and computational 

efficiency for real-time deployment. This study presents a novel 

hybrid approach that integrates the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) with You 

Only Look Once (YOLO) deep learning for efficient audio-based 

fault detection in industrial machinery. The proposed 

methodology employs a two-tiered decision fusion strategy: 

TOPSIS serves as a rapid mathematical pre-filter analyzing seven 

acoustic features (RMS, ZCR, Spectral Centroid, Spectral 

Bandwidth, Peak Frequencies, Kurtosis, and Skewness) extracted 

from preprocessed 1-2 second audio segments, while YOLO 

performs detailed spectrogram-based visual analysis on flagged 

segments. The TOPSIS algorithm normalizes feature vectors, 

calculates closeness coefficients to ideal and negative-ideal 

solutions, and classifies segments using a threshold of τ = 0.65. 

Segments identified as normal terminate processing immediately, 

while potentially abnormal segments proceed to spectrogram 

generation and YOLO-based detection. Experimental results on 

150 industrial audio segments demonstrate that the hybrid system 

achieves 93.8% detection accuracy while reducing computational 

overhead by 85.3% compared to full-dataset YOLO analysis. The 

TOPSIS pre-filter successfully identifies 128 normal segments 

(85.3%) with a mean closeness coefficient Ci = 0.847 ± 0.025, while 

22 abnormal segments (14.7%) with Ci = 0.084 ± 0.033 are 

forwarded to YOLO for confirmation. The decision fusion logic 

enables YOLO to override false positives and flag low-confidence 

cases for expert review, combining the speed of mathematical 

analysis with the robustness of deep learning. This approach 

reduces processing time by approximately 6.8×, decreases GPU 

utilization by 85%, and minimizes storage requirements for 

spectrogram images, making it suitable for real-time industrial 

monitoring systems where computational resources are 

constrained. 

Keywords—Industrial fault detection; audio signal processing; 

spectrogram analysis; deep learning; multi-criteria decision making 
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I. INTRODUCTION 

Industrial machinery is vulnerable to various forms of 
mechanical degradation—such as bearing wear, belt slippage, 
motor imbalance, and valve faults—which can lead to 
unplanned downtime, reduced productivity, and significant 
safety risks. Mechanical faults typically develop gradually and 
often remain undetected until they lead to severe performance 
loss or system failure [1], [2]. Traditional condition-monitoring 

techniques, such as vibration analysis, thermal imaging, and 
motor current signature analysis, have shown effectiveness in 
detecting specific types of faults but require specialized 
sensors, physical contact, or costly hardware installations [3], 
[4]. These limitations reduce their practicality in large-scale or 
resource-constrained industrial environments. 

In contrast, audio-based monitoring has gained attention as 
a non-invasive and cost-effective alternative, as machine 
acoustic signals contain rich information related to mechanical 
health. Recent studies show that sound-based diagnostics can 
effectively detect faults in bearings, motors, and pumps without 
requiring intrusive sensors [5], [6]. However, existing 
approaches often rely heavily on manual feature extraction or 
classical machine learning, which suffer reduced robustness in 
noisy industrial environments and lack real-time adaptability 
[7]. Although deep learning has been explored for machine 
sound diagnostics, gaps remain in computational efficiency, 
particularly when deploying models on embedded or edge 
devices where resources are limited [8]. 

To address these gaps, this study proposes a hybrid audio-
based fault detection system that integrates mathematical pre-
filtering with spectrogram-driven AI classification. The 
approach aims to enhance fault detection accuracy while 
reducing computational overhead. Specifically, the objectives 
of this work are: 

Abnormality Detection: Determine whether an industrial 
machine is operating under normal or faulty conditions. 

Fault Classification: Identify specific fault types or faulty 
components based on acoustic signatures. 

Computational Optimization: Improve processing time and 
reduce resource usage by combining mathematical feature 
extraction with deep learning models. 

By leveraging audio recordings, mathematical 
transformations, and spectrogram-based deep learning models 
such as YOLO, the proposed system provides a non-contact, 
low-cost, and scalable solution suitable for real-time industrial 
monitoring. This research contributes to the field by: 
1) demonstrating the effectiveness of deep learning in audio-
based machine diagnostics, 2) introducing a hybrid pre-filtering 
and AI pipeline for computational efficiency, and 3) addressing 
the lack of scalable, non-invasive fault detection technologies 
applicable to diverse industrial environments. 
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II. RELATED STUDIES 

Audio-based fault detection has gained significant attention 
as a non-intrusive and cost-effective approach for machinery 
health monitoring. Alharbi et al. [9] provided a foundational 
review of automatic fault diagnosis systems using audio and 
vibration signals, establishing that acoustic analysis offers 
advantages including non-invasive measurement, early fault 
detection capabilities, and compatibility with existing industrial 
environments. Building on this foundation, Nguyen and Huang 
[10] demonstrated practical fault detection in water pumps 
using deep learning techniques applied to sound analysis, 
achieving high accuracy rates in real-world industrial 
conditions and validating acoustic signals as reliable indicators 
of machinery health status. 

The development of standardized datasets has been crucial 
for advancing the field. Purohit et al. [11] introduced the MIMII 
dataset for malfunctioning industrial machine investigation and 
inspection, which has become a benchmark enabling consistent 
evaluation and comparative studies across different 
methodologies. This dataset addresses the critical need for 
standardized evaluation protocols in industrial fault detection 
research. 

Recent advances in deep learning have revolutionized 
acoustic fault detection approaches. Li et al. [12] conducted a 
comprehensive survey of mechanical fault diagnosis based on 
audio signal analysis, identifying key trends and 
methodological advances in the field. Kulkarni [13] developed 
an advanced acoustic signal analysis system using deep neural 
networks, converting acoustic signals into Mel spectrograms 
and utilizing DenseNet-169 architecture. Their system achieved 
remarkable accuracy rates between 97.17% and 99.87% across 
different noise conditions, demonstrating the robustness of deep 
learning approaches in challenging industrial environments. 

A. YOLO Framework and Object Detection Applications 

The You Only Look Once (YOLO) framework, introduced 
by Hussain et al. [14], revolutionized real-time object detection 
by treating detection as a single regression problem rather than 
a complex multi-stage process. This fundamental shift enabled 
significant improvements in both processing speed and 
detection accuracy, making real-time applications more 
feasible. 

The framework has evolved considerably through multiple 
iterations. Jocher et al. [15] developed YOLOv5 as a state-of-
the-art real-time object detection system with open-source 
implementations that facilitated widespread adoption in 
research and industrial applications.  Bochkovskiy et al. [16] 
contributed deep residual learning architectures that influenced 
subsequent YOLO implementations by addressing the 
vanishing gradient problem and enabling deeper network 
architectures. 

 Li, et al. [17] introduced YOLOv4, which optimized the 
balance between speed and accuracy for real-time applications 
through architectural improvements and training strategies. Ali 
and Zhang [18] developed YOLOv2 with enhanced anchor box 
learning and multi-scale training capabilities, while their 
subsequent work on YOLOv3 [19] introduced multi-scale 

feature extraction and improved small object detection 
capabilities. 

Recent developments have continued to push the 
boundaries of object detection performance. Terven and 
Cordova-Esparaza [20] introduced YOLOv7 with trainable 
bag-of-freebies that achieved new state-of-the-art performance 
benchmarks. Terven and Cordova-Esparza [21] provided a 
comprehensive analysis of YOLO architectural evolution from 
YOLOv1 to YOLOv8 and YOLO-NAS, demonstrating 
continuous improvements in detection accuracy and 
computational efficiency that directly benefit specialized 
applications like spectrogram analysis. 

B. TOPSIS Multi-Criteria Decision Making 

The Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) provides a systematic framework for multi-
criteria decision-making, relying on the concepts of ideal and 
negative-ideal solutions [13]. In modern industrial fault 
detection applications, TOPSIS enables the integration of 
multiple diagnostic criteria and decision factors in a structured 
and efficient manner, accommodating recent advancements in 
computational decision-making techniques [13]. 

Di Bona et al. [22] demonstrated the practical application of 
a hybrid AHP‑TOPSIS model in maintenance criticality 
analysis, highlighting its effectiveness in prioritizing 
maintenance decisions based on multiple factors, including 
failure occurrence rates, detection capabilities, maintainability 
requirements, and economic impact considerations. Their work 
confirmed TOPSIS as a reliable tool for structured industrial 
maintenance decision-making in modern operational contexts 
[22]. 

A recent survey demonstrated the extensive applications of 
TOPSIS in multi-criteria decision-making, identifying 
successful implementation areas and highlighting opportunities 
for integration with automated fault detection and predictive 
maintenance systems. The analysis emphasized TOPSIS’s 
adaptability to diverse industrial scenarios and its potential for 
improving automated and data-driven decision-making 
processes [23]. 

Advanced implementations have explored fuzzy extensions 
and hybrid approaches. Gidiagba and Jang [25] presented a 
multi-criteria decision support system combining fuzzy logic 
with TOPSIS for sustainable supplier evaluation, 
demonstrating the framework's adaptability to complex 
industrial decision scenarios involving uncertainty and multiple 
stakeholders. Susmaga and Szczech [26] explored limitations 
and extensions of traditional and fuzzy TOPSIS methods, 
addressing critical issues related to criteria weighting and 
decision consistency that are essential for automated systems. 

C. Signal Processing and Spectrogram Analysis 

Time-frequency analysis via spectrogram allows detection 
of fault patterns that are hidden in purely time- or frequency-
domain signals. Lee and Yu [27] proposed a deep learning 
framework where raw vibration signals are converted into 
spectrograms, and a convolutional autoencoder is used to learn 
latent features for intelligent fault detection in rotating 
machinery. 
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Recent work has emphasized that effective machinery fault 
detection requires more than simple spectrogram analysis: deep 
transfer learning methods can automatically extract meaningful 
feature representations from complex acoustic and vibration 
signals, overcoming the shortcomings of manual feature 
engineering [28]. 

Iglesias‑Martínez et al. [29] discussed the integration of 
higher‑order spectral analysis (such as bispectrum) with 
artificial intelligence for diagnosing faults in electrical 
machines, emphasizing that such multi-domain 
signal‑processing approaches enable the extraction of rich, 
non‑linear features that traditional methods may overlook. 

Advanced feature‑extraction and pattern recognition 
techniques have shown significant promise. Zhang et al. [30] 
proposed an unsupervised convolutional autoencoder with 
large‑kernel attention for motor fault detection, enabling 
automated feature learning from raw acoustic or vibration data 
without extensive labeling. Susmaga et al. [31] provided a 
critical analysis of TOPSIS, introducing a visual explanation 
framework (WMSD‑space) to understand how criteria weights 
and distance aggregation influence decision outcomes. Xin et 
al. [32] applied a CNN‑LSTM parallel network to wind turbine 
SCADA data for fault diagnosis, demonstrating strong 
temporal‑spatial pattern recognition capabilities. 

Recent object detection models like YOLOv8 have seen 
practical enhancement for real-time monitoring tasks, as 
demonstrated by Wang et al. in aerial pedestrian detection 
systems [33]. Zhao et al. [34] developed a machine health 
monitoring model using GRU-based networks to capture and 
classify temporal degradation patterns under noisy industrial 
conditions, demonstrating advanced sequential feature learning 
capabilities. Additionally, deep learning architectures such as 
GRU networks have been successfully employed for machine 
health monitoring via sequential pattern recognition [34]. In a 
related domain, Zhou et al. [35] leveraged a YOLOv7-based 
object detection framework to identify and classify components 
in electrical diagrams, showing the adaptability of YOLO for 
specialized detection tasks. 

D. Predictive Maintenance and Industry 4.0 Integration 

The integration of advanced fault-detection systems within 
Industry 4.0 frameworks has opened new possibilities for 
comprehensive machinery health monitoring. Zonta et al. [36] 
conducted a systematic review of predictive maintenance 
strategies in Industry 4.0, identifying the increasing adoption of 
machine learning methods, the use of multi-sensor (multi-
modal) data, and the pressing need for decision-support models 
to manage maintenance complexity [36]. 

Çınar et al. [37] investigated the use of machine learning for 
predictive maintenance in sustainable smart manufacturing, 
highlighting the integration of sensor data (e.g., vibration and 
acoustic) within a comprehensive maintenance framework that 
supports data‑driven decision-making. 

Recent studies have shown the value of multi-modal IoT 
data fusion in predictive maintenance. For example, Kullu and 
Çınar [38] developed a deep learning framework that fuses 
vibration and current sensor data (including frequency-domain 
representations) to detect equipment faults. Their work 

underscores the importance of integrating acoustic or electrical 
sensors with broader IoT networks and highlights challenges in 
implementing real-time, resource-constrained ML-based fault 
detection. 

Advanced architectural developments have continued to 
push the boundaries of fault detection capabilities. Gan et al. 
[39] constructed hierarchical diagnosis networks based on deep 
learning for fault pattern recognition in rolling element 
bearings, establishing methods for multi-level feature 
extraction. Krizhevsky et al. [40] developed foundational CNN 
architectures through ImageNet classification that influenced 
subsequent spectrogram analysis applications. Lei et al. [41] 
provided comprehensive reviews of machine learning 
applications to machine fault diagnosis, identifying spectral 
analysis combined with deep learning as a key research 
direction. 

Tang et al. [42] demonstrated cyclostationary analysis for 
fault diagnosis in rotating machinery, highlighting the 
importance of time-frequency analysis in capturing periodic 
fault signatures. Kingma and Ba [43] developed the Adam 
optimization method that has become standard in training deep 
learning models for spectrogram analysis. Wandji et al. [44] 
presented interpretable fault detection approaches for industrial 
processes using improved autoencoders, addressing the need 
for explainable AI in industrial applications. 

Wen et al. [45] introduced convolutional neural network-
based data-driven fault diagnosis methods, demonstrating 
effective CNN processing of spectrogram representations. 
 Payandeh et al. [46] provided foundational work on 
representation learning that influences current feature 
extraction approaches in industrial fault detection. Simonyan 
and Zisserman [47] developed very deep convolutional 
networks for large-scale image recognition, providing 
architectural foundations adapted for spectrogram analysis 
applications. 

III. METHODOLOGY 

A. Data Collection 

1) Data acquisition: The data acquisition process involves 

capturing high-fidelity audio from industrial machines using 

high-quality microphones with a minimum sampling rate of 

44.1 kHz to ensure accurate representation of the sound 

spectrum. Omnidirectional microphones are preferred as they 

capture audio uniformly from all directions, making them 

suitable for complex industrial environments where multiple 

components may produce sound simultaneously. Data is 

sourced from both real-world recordings of machines under 

normal and faulty operating conditions and from publicly 

available datasets such as the Case Western Reserve University 

Bearing Data Center dataset and the MIMII dataset, which 

provide diverse examples of machinery sounds across various 

fault types. To preserve the integrity of the recordings, audio is 

stored in the lossless .wav format whenever possible, and 

compressed formats such as .mp3 are converted to .wav before 

processing to enable precise frequency analysis and 

spectrogram generation. 
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2) Data labeling: The data labeling process is a critical step 

in preparing the dataset for both mathematical analysis and AI 

model training. Each audio clip is first categorized as either 

normal or faulty based on expert assessment, maintenance 

records, or metadata provided in public datasets. For improved 

diagnostic capability, the labeling process can be extended to 

include the specific fault type (e.g., bearing wear, belt slippage, 

valve tapping) or the faulty component (e.g., turbocharger, fan 

belt, compressor). This hierarchical labeling structure not only 

enables binary classification between normal and abnormal 

states but also supports more advanced multi-class or 

component-specific fault detection models. Consistent labeling 

guidelines are applied across all recordings to ensure dataset 

uniformity, reduce annotation bias, and improve the reliability 

of model training and evaluation. Fig. 1 illustrates a sample 

labeling of the dataset in spectrogram image form, where each 

generated spectrogram is annotated with corresponding class 

labels. This visual representation bridges the gap between raw 

audio and image-based AI training, enabling models such as 

YOLO to process and detect abnormalities effectively. 

 

Fig. 1. Sample labeling of the dataset in spectrogram image form. 

B. Audio Processing 

The audio processing stage prepares the collected 
recordings for subsequent analysis and model training by 
standardizing and refining the sound data. Initially, all audio 
files are converted from compressed formats, such as .mp3, to 
the lossless .wav format to preserve the full frequency spectrum 
necessary for accurate analysis. Following conversion, 
amplitude normalization is applied to ensure consistent volume 
levels across all samples, thereby eliminating variations caused 
by differing recording conditions. To enhance signal clarity, 
noise reduction is performed using band-pass filtering, which 
isolates the relevant frequency range associated with the target 
industrial machine and suppresses extraneous background 
noise. The processed recordings are then segmented into fixed-
length windows, typically ranging from 1 to 2 seconds, to 
facilitate uniform input sizes for feature extraction and model 

training. Finally, silence removal techniques are applied to 
exclude silent or near-silent segments, reducing irrelevant data 
and improving computational efficiency in subsequent stages. 

Summary:  .mp3 → .wav → Amplitude Normalization → 
Noise Reduction (Band-pass) → Segmentation (1–2s) → 
Silence Removal 

C. Spectrogram Generation 

Spectrogram generation transforms processed audio 
segments into two-dimensional visual representations that 
capture both time and frequency information, enabling image-
based models such as YOLO to perform fault detection. For 
each segment flagged for analysis, a Short-Time Fourier 
Transform (STFT) or Mel-spectrogram is computed to 
decompose the audio signal into its frequency components over 
time. A consistent image resolution, such as 640 × 640 pixels, 
is maintained across all generated spectrograms to ensure 
uniformity during model training. To enhance the visibility of 
relevant features, color mapping techniques (e.g., inferno or 
viridis) are applied, highlighting subtle differences in spectral 
patterns that may indicate machine faults. The final 
spectrogram images are saved in the .jpg format to serve as 
direct inputs for YOLO-based detection. 

Summary: Audio Segment → STFT / Mel-Spectrogram → 
Fixed Resolution (640×640) → Color Mapping 
(Inferno/Viridis) → Save as .jpg 

D. Mathematical Feature Extraction (Pre-filter) 

Before applying deep-learning-based fault detection, a 
mathematical pre-filter is employed to extract salient signal 
features and identify potentially abnormal segments. This stage 
reduces the computational burden on the AI model by 
discarding segments classified as normal. Feature extraction is 
performed across three domains. In the time domain, Root 
Mean Square (RMS) energy and Zero Crossing Rate (ZCR) are 
calculated to quantify amplitude stability and noisiness. In the 
frequency domain, the Fast Fourier Transform (FFT) is applied 
to extract spectral centroid, spectral bandwidth, and peak 
frequencies, capturing the dominant frequency content and 
dispersion patterns. In the statistical domain, kurtosis and 
skewness are computed to characterize impulsiveness and 
asymmetry—properties often associated with mechanical 
faults. To integrate these heterogeneous features into a unified 
abnormality score, the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) is adopted. Feature 
weights, determined through expert knowledge or data-driven 
optimization, are applied to the normalized feature matrix. The 
TOPSIS closeness coefficient Ci [0, 1] quantifies each 
segment’s similarity to an ideal faulty signal, and segments 
exceeding a validated threshold are flagged as “Potentially 
Abnormal” for subsequent spectrogram generation and YOLO-
based detection, while others are discarded to save 
computational resources. 

Algorithm 1: TOPSIS-Based Pre-Filter for Abnormal 

Audio Detection 

1. Input: 

2. ● 𝑿 =  [𝒙𝒊𝒋] : Decision matrix, where each row 

represents an audio segment and each column represents an 
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extracted feature (RMS, ZCR, Spectral Centroid, Spectral 
Bandwidth, Peak Frequencies, Kurtosis, Skewness).  

● 𝑊 =  𝑤𝑗 : Feature weight vector, with 

∑ 𝑤𝑗  =  1. 

● Threshold 𝜏 for classifying abnormality (e.g., 
0.65). 

3. Steps: 

4. a. Feature Normalization 

For each feature 𝑗: 

𝑟𝑖𝑗  ← 
𝑥𝑖𝑗

√∑  𝑚
𝑖=1 𝑥𝑖𝑗

2

 

5. b. Weight Assignment 

For each 𝑖,  𝑗: 

𝑣𝑖𝑗 ←  𝑤𝑖  ⋅  𝑟𝑖𝑗  

6. c. Determine Ideal and Negative-Ideal Solutions 

For each feature 𝑗: 

𝑣𝑗
+  ←  𝑚𝑎𝑥𝑖  𝑣𝑖𝑗 (best value) 

𝑣𝑗
−  ←  𝑚𝑖𝑛𝑖  𝑣𝑖𝑗 (worst value) 

7. d. Calculate Separation Measures 

For each segment 𝑖: 

𝑆𝑖
+  ←  √∑  

 

𝑗

(𝑣𝑖𝑗  −  𝑣𝑗
+)2 

𝑆𝑖
−  ←  √∑  

 

𝑗

(𝑣𝑖𝑗  −  𝑣𝑗
−)2 

8. e. Compute Closeness Coefficient 

For each segment 𝑖: 

𝐶𝑖  ←  
𝑆𝑖

−

𝑆𝑖
+  +  𝑆𝑖

− 

9. f. Decision Rule 

If 𝐶𝑖  ≥  𝜏 → Potentially Abnormal 

Else → Normal 

10. Output 

11. ● A labeled list of audio segments as Normal or 
Potentially Abnormal for further YOLO spectrogram 
analysis. 

E. Model Training 

The model training stage focuses on configuring and 
optimizing a YOLO-based detection framework for 
spectrogram classification. The training pipeline is 
implemented in a Python-based environment utilizing libraries 
such as PyTorch for deep learning, Librosa for audio 
processing, and OpenCV for image manipulation. YOLOv8 or 
YOLOv9 is selected as the primary detection architecture due 
to its high accuracy, speed, and adaptability for spectrogram-
based object detection. Training involves carefully tuning 
hyperparameters, including the learning rate, batch size, and 
choice of optimizer, to strike a balance between convergence 
speed and model stability. Data augmentation strategies—such 
as time shifting, pitch shifting, and noise injection—are 
employed to improve generalization by simulating real-world 
variations in machine noise. This setup ensures that the trained 
model is both robust to environmental noise and capable of 
detecting subtle fault signatures in spectrogram images. 

Summary: Python (PyTorch, Librosa, OpenCV) → 
YOLOv8/YOLOv9 → Hyperparameters (LR, Batch Size, 
Optimizer) → Augmentation (Time Shift, Pitch Shift, Noise 
Injection) 

F. Decision Fusion (Algorithm Summary) 

The decision fusion stage integrates the outputs of the 
mathematical pre-filter and the YOLO-based AI detection 
system to achieve both computational efficiency and high 
diagnostic accuracy. In this hybrid approach, the mathematical 
pre-filter serves as the first decision layer, quickly analyzing 
extracted features to classify each segment as normal or 
potentially abnormal. Segments identified as normal are 
excluded from further processing, thereby reducing 
unnecessary AI inference. Segments flagged as potentially 
abnormal proceed to the second decision layer, where the 
YOLO model performs detailed spectrogram-based analysis to 
confirm the presence and type of fault. The final decision logic 
operates as follows: if both the mathematical pre-filter and 
YOLO agree, the detection is recorded with high confidence. In 
cases of disagreement, the YOLO output takes precedence as 
the final authority, or the segment is flagged for human expert 
review in critical applications. This two-tiered process 
optimizes fault detection by combining the speed and low 
computational cost of mathematical analysis with the 
robustness and accuracy of deep learning models. 

Summary: Math Pre-filter → If Normal → Skip AI Math 
Pre-filter → If Abnormal → YOLO Analysis → Agreement → 
High Confidence Disagreement → YOLO Output / Human 
Review 

G. Overall Algorithm 

The Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) is employed as a multi-criteria 
decision-making method to classify preprocessed audio 
segments into Normal or Potentially Abnormal categories. This 
classification serves as an efficient first-stage filter, reducing 
computational overhead by identifying only suspicious 
segments for subsequent YOLO-based spectrogram analysis 
(see Algorithm 1).  

1) Mathematical formulation: Let x = [xij] represent the 

decision matrix of dimension m x n, where m denotes the 

number of audio segments and   n = 7 represents the extracted 

features. The TOPSIS algorithm proceeds through the 

following steps: 
Step 1: Feature Normalization 

Each element of the decision matrix is normalized using 
vector normalization to ensure scale independence: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑  𝑚
𝑘=1 𝑥𝑘𝑗

2
, i = 1,2, …,m;  j = 1,2, …,n 

where, rij represents the normalized value of feature j for 
segment i. 

Step 2: Weighted Normalization 

Feature weights w = [w1, w2, …, wn] are applied to the 
normalized matrix, where ∑  𝑛

𝑗=1 𝑤𝑗 = 1: 
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Vij = wj ⋅ rij,  i = 1,2, …, m;  j = 1,2, …, n 

In this study, equal weights () were assigned to all features, 
though domain-specific weights may be applied based on 
feature importance. 

Step 3: Ideal and Negative-Ideal Solutions 

The ideal solution represents the best attribute values 
(characteristic of normal operation), while the negative-ideal 
solution represents the worst values (indicative of abnormal 
behavior): 

𝑣𝑗
+ = 𝑚𝑎𝑥𝑖

 {𝑣𝑖𝑗},𝑣𝑗  = 𝑚𝑖𝑛𝑖{𝑣𝑖𝑗},𝑗 = 1,2, . . . , 𝑛    

Step 4: Separation Measures 

The Euclidean distances from each segment to the ideal and 
negative-ideal solutions are computed: 

𝑆𝑖
+ = √∑ 

𝑛

𝑗=1

(𝑣𝑖𝑗 − 𝑣𝑖
+)2 , 𝑖 = 1,2, . . . , 𝑚 

𝑆𝑖
− = √∑  

𝑛

𝑗=1

(𝑣𝑖𝑗 − 𝑣𝑖
−)2, 𝑖 = 1,2, . . . , 𝑚  

where, 𝑆𝑖
+ measures the distance to the ideal (normal) 

solution and 𝑆𝑖
− measures the distance to the negative-ideal 

(abnormal) solution. 

Step 5: Closeness Coefficient 

The relative closeness to the ideal solution is calculated as: 

𝐶𝑖 =
𝑆𝑖

−

𝑆𝑖
+  +   𝑆𝑖

−
 

 , 0 ≤ 𝐶𝑖 ≤ 1 

A higher value indicates greater proximity to the ideal 
solution (normal behavior), while a lower value suggests 
abnormal characteristics. 

Step 6: Classification Decision Rule 

Segments are classified based on a predefined threshold: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑗 = { 
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙,𝑖𝑓 𝐶𝑖<  𝜏

𝑁𝑜𝑟𝑚𝑎𝑙,                               𝑖𝑓 𝐶𝑖≥ 𝜏} 

In this study, a threshold of 𝜏 = 0.65 was empirically 
determined through cross-validation to balance sensitivity and 
specificity. 

2) Feature vector composition: The feature vector for each 

audio segment comprises seven acoustic descriptors extracted 

from the preprocessed 1 to 2 second windows: 

• Root Mean Square (RMS): Energy content indicator 

• Zero Crossing Rate (ZCR): Frequency domain 
characteristic 

• Spectral Centroid: Center of mass of the spectrum 

• Spectral Bandwidth: Spread of the frequency spectrum 

• Peak Frequencies: Dominant frequency components 

• Kurtosis: Distribution shape measure 

• Skewness: Distribution asymmetry measure 

 

Fig. 2. Overall algorithm pipeline. 

Fig. 2 shows the overall steps that the system is using. 

H. Evaluation Metrics 

1) Precision, recall, and F1-score – fault detection 

accuracy: The accuracy of the fault detection [24] system is 

evaluated using Precision, Recall, and F1-score. Precision 

measures the proportion of correctly identified faults among all 

fault predictions, indicating the system’s ability to minimize 

false positives. Recall quantifies the proportion of actual faults 

correctly detected, representing the system’s sensitivity to 

abnormal conditions. The F1-score, calculated as the harmonic 

mean of Precision and Recall, provides a balanced performance 

measure, especially valuable in industrial contexts where both 

false alarms and missed detections have significant operational 

implications. 

• Precision measures the proportion of correctly identified 
fault cases among all predicted faults: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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• Recall quantifies the proportion of actual faults correctly 
detected: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

• F1-score is the harmonic mean of Precision and Recall, 
balancing false positives and false negatives: 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

2) Mean Average Precision (mAP) – YOLO bounding box 

performance: The localization and classification performance 

of the YOLO model is assessed using Mean Average Precision 

(mAP). This metric computes the average precision across 

multiple intersection-over-union (IoU) thresholds, thereby 

capturing the model’s ability to both accurately localize and 

correctly classify patterns associated with machine faults in 

spectrogram images. Higher mAP values reflect improved 

overall detection quality. 

The mAP mean of AP values calculated over all classes and 
across multiple intersection-over-union (IoU) thresholds: 

𝑚𝐴𝑃 =
1

𝑁
∑  

𝑁

𝑖=1

𝐴𝑃𝑖 

where, N is the number of classes. Higher mAP values 
indicate more accurate localization and classification. 

3) Computation time – speed improvement from pre-

filtering: The computational efficiency is measured by the 

average processing time per audio segment before and after the 

pre-filtering stage. Let Tfull be the average processing time 

without pre-filtering, and Tfilter be the time with pre-filtering 

applied. The percentage improvement in speed is calculated as: 

𝑆𝑝𝑒𝑒𝑑  𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  (%) =
𝑇𝑓𝑢𝑙𝑙 − 𝑇𝑓𝑖𝑙𝑡𝑒𝑟

𝑇𝑓𝑢𝑙𝑙
× 100 

This metric quantifies how much faster the system operates 
when obvious normal data is removed before YOLO inference. 

IV. RESULTS AND DISCUSSION 

A. Experimental Dataset 

The proposed methodology was evaluated on a dataset 
comprising 150 audio segments extracted from industrial 
machinery recordings. Each segment represents a 1.5-second 
window sampled at 22,050 Hz, resulting in 33,075 samples per 
segment. Following preprocessing (WAV conversion, 
amplitude normalization, band-pass filtering, and silence 
removal), seven acoustic features were extracted from each 
segment for TOPSIS analysis. 

B. Feature Extraction Results 

Table I presents a representative sample of extracted 
features from five audio segments, demonstrating the 
variability in acoustic characteristics across normal and 
abnormal operational states. 

As evident from Table I, abnormal segments exhibit 
substantially higher RMS energy (62-68% increase), elevated 
zero crossing rates (approximately 2× higher), and increased 
spectral centroids and bandwidths, indicating broader 
frequency distributions. Furthermore, abnormal segments 
demonstrate positive kurtosis values exceeding 2.5, suggesting 
the presence of impulsive transient characteristics of 
mechanical faults. 

TABLE I.  SAMPLE OF EXTRACTED AUDIO FEATURES FROM PREPROCESSED SEGMENTS 

Segment ID RMS ZCR SC SB PF Kurt. Skew. 

Normal_1 0.301 0.045 1824.3 1256.8 119.8 -0.23 0.08 

Normal_2 0.298 0.042 1798.6 1243.2 121.4 -0.18 -0.05 

Normal_3 0.305 0.048 1856.1 1289.5 118.2 -0.31 0.12 

Abnormal_1 0.487 0.089 2456.7 2103.4 145.6 2.84 0.67 

Abnormal_2 0.502 0.095 2523.9 2187.6 152.3 3.21 0.89 

Note: SC = Spectral Centroid (Hz); SB = Spectral Bandwidth (Hz); PF = Peak Frequencies (Hz); Kurt. = Kurtosis; Skew. = Skewness 

C. TOPSIS Classification Results 

Table II summarizes the TOPSIS classification outcomes 
for the evaluated segments, including separation measures and 
closeness coefficients. 

The results demonstrate a clear separation between normal 
and abnormal segments. Normal segments consistently achieve 
closeness coefficients exceeding 0.81, with a mean of, 
indicating strong proximity to the ideal solution. Conversely, 
abnormal segments yield significantly lower coefficients (), 
reflecting substantial deviation from normal operational 
patterns. 

Fig. 3 presents the distribution of closeness coefficients for 
all 150 segments, demonstrating clear bimodal separation 
between normal and abnormal classifications. The histogram 
shows that normal segments (green bars) cluster around Ci = 
0.847, while abnormal segments (red bars) cluster around Ci = 
0.084. The threshold line at τ = 0.65 effectively separates the 
two distributions with minimal overlap. 

D. Classification Performance Metrics 

Table III presents the overall classification performance 
across the entire dataset of 150 segments. 
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TABLE II.  TOPSIS CLASSIFICATION RESULTS FOR SAMPLE AUDIO 

SEGMENTS 

Segment ID 𝑺𝒊
+ 𝑺𝒊

− 𝑪𝒊  Classification 

Normal_1 0.0234 0.1456 0.8618 Normal 

Normal_2 0.0198 0.1489 0.8826 Normal 

Normal_3 0.0267 0.1421 0.8418 Normal 

Normal_4 0.0251 0.1438 0.8512 Normal 

Normal_5 0.0289 0.1398 0.8287 Normal 

Normal_6 0.0312 0.1376 0.8153 Normal 

Normal_7 0.0223 0.1465 0.8679 Normal 

Normal_8 0.0245 0.1443 0.8548 Normal 

Normal_9 0.0278 0.1411 0.8355 Normal 

Normal_10 0.0301 0.1387 0.8217 Normal 

Abnormal_1 0.1523 0.0165 0.0977 Potentially Abnormal 

Abnormal_2 0.1598 0.0089 0.0527 Potentially Abnormal 

Abnormal_3 0.1467 0.0221 0.1309 Potentially Abnormal 

Abnormal_4 0.1542 0.0146 0.0865 Potentially Abnormal 

Abnormal_5 0.1611 0.0077 0.0456 Potentially Abnormal 

Note: Threshold 𝜏 =  0.65.. Normal segments 𝐶𝑖 ≥ 0.65: ; Abnormal segments:  𝐶𝑖 < 0.65 

 

Fig. 3. Distribution of closeness coefficient. 

TABLE III.  OVERALL CLASSIFICATION PERFORMANCE ACROSS THE 

ENTIRE DATASET 

Metric Value 

Total Segments Analyzed 150 

Normal Classifications 128 (85.3%) 

Potentially Abnormal Classifications 22 (14.7%) 

Mean Closeness Coefficient (Overall) 0.742  0.284 

Mean  (Normal segments) 0.847  0.025 

Mean  (Abnormal segments) 0.084  0.033 

Minimum  (Abnormal) 0.0456 

Maximum  (Normal) 0.8826 

Classification Threshold () 0.650 

Segments Forwarded to YOLO Analysis 22 

Computational Efficiency Gain 85.3% reduction 

V. DISCUSSION 

A. Classification Efficacy 

The TOPSIS algorithm successfully differentiated between 
normal and abnormal audio segments with high confidence. 
The substantial gap between normal (mean) and abnormal 
(mean) closeness coefficients indicates robust discriminative 
capability. The chosen threshold provides an adequate margin 
to minimize false positives while maintaining sensitivity to 
anomalous patterns. 

B. Feature Extraction Results 

Analysis of the weighted normalized matrix reveals that 
spectral features (Spectral Centroid, Spectral Bandwidth, 
andPeak Frequencies) contribute most significantly to the 
separation between classes. Abnormal segments consistently 
exhibited: 

• 35 to 40% higher spectral centroids, indicating 
frequency upshifts. 

• 60 to 75% broader spectral bandwidths, suggesting 
increased frequency dispersion. 

• Positive kurtosis values (>2.5), reflecting impulsive 
transients. 

These observations align with known acoustic signatures of 
mechanical faults, including bearing defects, misalignment, and 
imbalance conditions. 

C. Spectrum Analysis 

Visual inspection of generated spectrograms reveals distinct 
characteristics between operational states. Normal segments 
exhibit stable horizontal frequency bands with minimal 
temporal variation, indicative of steady-state machinery 
operation. In contrast, abnormal segments display frequency 
modulation (wavy patterns) and impulsive transients (vertical 
streaks) that correspond to mechanical irregularities such as 
bearing defects or misalignment. 

 

Fig. 4. Spectrogram comparison. 

Fig. 4 presents representative spectrograms comparing 
normal and abnormal operation. Panel (a) shows a normal 
segment (Ci = 0.862) with stable frequency patterns at the 
fundamental frequency (120 Hz) and harmonics. Panel (b) 
shows an abnormal segment (Ci = 0.098) exhibiting frequency 
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modulation and impulsive transients highlighted by the inferno 
colormap, which are characteristic acoustic signatures of 
mechanical faults. 

D. Computational Efficiency 

A critical advantage of the TOPSIS-based filtering 
approach is computational efficiency. By classifying 85.3% of 
segments as normal, the methodology reduces the number of 
spectrograms requiring generation and YOLO analysis by the 
same proportion. Given that spectrogram generation and deep 
learning inference are computationally expensive operations, 
this reduction translates to: 

• Processing time: Approximately 6.8× faster than full-
dataset YOLO analysis 

• Computational resources: 85% reduction in GPU 
utilization 

• Storage requirements: 85% fewer spectrogram images 
generated 

E. Threshold Sensitivity Analysis 

Table IV presents the impact of threshold variation on 
classification outcomes. 

TABLE IV.  THRESHOLD SENSITIVITY EXPERIMENTS 

Threshold () 
Normal 

(%) 

Abnormal 

(%) 
Efficiency Gain (%) 

0.50 92.0 8.0 92.0 

0.55 89.3 10.7 89.3 

0.60 87.3 12.7 87.3 

0.65 85.3 14.7 85.3 

0.70 81.3 18.7 81.3 

0.75 76.0 24.0 76.0 

0.80 68.7 31.3 68.7 

0.55 89.3 10.7 89.3 

Note: Higher thresholds increase sensitivity, but reduce computational efficiency. Kurtosis; Skew. = 

Skewness 

 

The selected threshold of balance detection sensitivity is 
with computational efficiency. Lower thresholds risk false 
negatives (missed faults), while higher thresholds increase false 
positives (unnecessary YOLO analysis). 

F. Integration with YOLO Pipeline 

The 22 segments classified as "Potentially Abnormal" 
proceed to the spectrogram generation stage, where 640×640-
pixel Mel-spectrograms are created using the inferno colormap. 
These images serve as direct inputs to the YOLO object 
detection model, which performs visual fault identification 
through bounding box regression and classification. 

This two-stage approach (TOPSIS filtering → YOLO 
detection) leverages the strengths of both methodologies: 

• TOPSIS: Rapid statistical screening based on acoustic 
features. 

• YOLO: Deep visual analysis for precise fault 
localization and classification. 

G. Comparative Analysis 

Table V compares the proposed TOPSIS-YOLO pipeline 
with alternative approaches. 

The proposed methodology achieves near-equivalent 
accuracy (93.8% vs. 94.2%) while reducing processing time by 
85%, demonstrating superior computational efficiency without 
sacrificing detection performance. 

TABLE V.  COMPARISON OF FAULT DETECTION APPROACHES 

Approach Processing Time Accuracy 
Computational 

Cost 

YOLO Only  

(All 

Segments) 

Baseline (100%) 94.2% High 

SVM 

Classification 
68% 89.5% Medium 

Random 

Forest 
72% 91.3% Medium 

TOPSIS + 

YOLO 

(Proposed) 

15% 93.8% Low 

Note: Processing time normalized to full YOLO analysis baseline. 

 

H. Limitations and Future Work 

While the TOPSIS-based filtering demonstrates strong 
performance, several limitations warrant consideration: 

• Threshold dependency: Optimal threshold values may 
vary across different machinery types. 

• Feature weighting: Equal weights were used; domain-
specific weighting could improve discrimination. 

• Dataset size: Validation on larger, more diverse datasets 
is recommended. 

Future research directions include adaptive threshold 
optimization through reinforcement learning and multi-class 
TOPSIS extensions for fault type differentiation. 

VI. CONCLUSION 

This study presented a novel hybrid fault detection 
framework that synergistically combines TOPSIS-based 
mathematical filtering with YOLO deep learning for efficient 
audio-based industrial machinery monitoring. The 
experimental evaluation on 150 industrial audio segments 
demonstrated that the TOPSIS pre-filter achieved robust 
discriminative capability, with clear bimodal separation 
between normal (mean Ci = 0.847 ± 0.025) and abnormal (mean 
Ci = 0.084 ± 0.033) segments using a classification threshold of 
τ = 0.65. By successfully identifying 85.3% of segments as 
normal and eliminating unnecessary processing, the hybrid 
system maintained high detection accuracy (93.8%) 
comparable to full-dataset YOLO analysis (94.2%) while 
reducing processing time by 85%, achieving approximately 
6.8× faster performance. The decision fusion logic proved 
effective in handling edge cases, allowing YOLO to override 
false positives and flagging low-confidence detections for 
expert review. Analysis revealed that spectral features (Spectral 
Centroid, Spectral Bandwidth, and Peak Frequencies) 
contributed most significantly to fault discrimination, with 
abnormal segments exhibiting 35-40% higher spectral 
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centroids, 60-75% broader bandwidths, and positive kurtosis 
values exceeding 2.5, aligning with established acoustic 
signatures of mechanical faults. The modular architecture 
provides practical advantages for industrial deployment, 
enabling independent optimization of TOPSIS thresholds and 
YOLO models while maintaining transparency and 
interpretability essential for safety-critical applications. 

While the proposed system demonstrates strong 
performance, several opportunities exist for future 
enhancement. The optimal TOPSIS threshold was empirically 
determined and may require adjustment for different machinery 
types; domain-specific feature weighting could further improve 
discrimination; and validation on larger, more diverse datasets 
is necessary to establish generalizability. Future research 
directions include adaptive threshold optimization through 
reinforcement learning, extension to multi-class fault 
categorization, integration of temporal dependencies through 
recurrent architectures to capture evolving fault signatures, 
exploration of alternative multi-criteria decision-making 
methods (VIKOR, PROMETHEE, fuzzy AHP), and 
incorporation of transfer learning to accelerate deployment 
across diverse industrial settings. Beyond immediate technical 
contributions, this research demonstrates the value of hybrid 
approaches combining classical mathematical methods with 
modern deep learning, challenging the assumption that deep 
learning must be applied uniformly to all data and highlighting 
opportunities for computational efficiency through intelligent 
data triage. The proposed TOPSIS-YOLO framework 
represents a practical, deployment-ready solution that achieves 
the critical balance between diagnostic accuracy and 
operational efficiency, providing a blueprint for scalable 
industrial AI systems. The experimental validation confirms 
readiness for pilot deployment, with future work focusing on 
large-scale field trials, multi-site validation, and extension to 
diverse machinery types to establish this approach as a standard 
solution for audio-based industrial fault detection. 
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