(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 11, 2025

Integrating Large Language Models with Deep
Reinforcement Learning for Portfolio Optimization

Renad Alsweed, Mohammed Alsuhaibani
Department of Computer Science-College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Abstract—This paper explores the application of Deep Rein-
forcement Learning (DRL) and Large Language Models (LLMs)
to portfolio optimization, a critical financial task requiring
strategies to balance risk and return in volatile markets. Tra-
ditional models often struggle with the complexity of financial
markets, whereas Reinforcement Learning (RL) provides end-to-
end frameworks for learning optimal, dynamic trading policies
through sequential decision-making and trial-and-error interac-
tions. The study examines key DRL algorithms, including Q-
learning, Deep Q-Networks (DQN), Proximal Policy Optimization
(PPO), and Twin-Delayed Deep Deterministic Policy Gradient
(TD3), emphasizing their strengths in dynamic asset allocation.
Crucial components of financial RL systems are discussed, such
as state representations, reward function designs, its algorithms,
and main approaches. Furthermore, the survey investigates how
LLMs enhance decision-making by analyzing unstructured data
(like news and social media) for sentiment and risk assessment,
often integrating these insights to augment state representations
or guide reward shaping within DRL frameworks.
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I. INTRODUCTION

Portfolio management is a crucial aspect of finance, re-
quiring that investors monitor market dynamics and make in-
formed decisions to periodically allocate their portfolios across
multiple assets. The goal is to gain profits while maintaining
the investment portfolio’s stability. Adjusting funds between
long and short positions is particularly important as it directly
impacts both profit and risk under varying market conditions.
Long positions involve buying assets with the expectation of
price increases, whereas short positions involve selling bor-
rowed assets to repurchase them at a lower price. In a volatile
market, reallocating funds from long to short positions can help
hedge against potential losses. This dynamic adjustment helps
maintain a balanced portfolio, mitigating risks while seizing
opportunities during market downturns and upswings. Margin
trading allows traders to borrow funds from a broker to trade
financial assets, enabling them to leverage their positions and
potentially amplify their returns. However, both long and short
positions come with increased risk, as losses are magnified and
can exceed the original investment.

The volatility of financial markets still poses a signifi-
cant challenge, making it difficult for static trading strategies
to maintain a long-term competitive advantage. Traditional
quantitative models can struggle to fully capture the complex
interplay of diverse factors.

Reinforcement learning (RL) emerged as a transformative
approach for financial trading, enabling dynamic strategy op-
timization in complex markets [1]. Driven by the alignment

between the sequential decision-making process of trading and
the learning process of RL [2], it provides algorithms that adapt
and optimize trading strategies based on sequential decisions
[1]. Unlike traditional rule-based systems, RL models can
navigate complex market environments, continuously updating
their strategies to maximize returns.

The RL agent can learn optimal policies by interacting with
the environment, continuously updating its policy to maximize
returns. Deep Reinforcement Learning (DRL) leverages deep
neural networks to approximate value functions and policies,
making RL scalable and efficient in complex tasks [1]. The
reward function in RL can be designed to encourage both
profitability and stability, including a profit-based reward, a
balance stability penalty, and a transaction cost penalty [1]. RL
agent’s portfolio allocation dynamics reveal its ability to adjust
asset weights over time, increasing exposure to stable assets
during high volatility and balancing for diversification [3]. Yet,
frequent adjustments of portfolio ratios can introduce higher
volatility and lower returns, making portfolios unstable and
unbalanced. Also, designing a reward function that accurately
accounts for the different factors influencing the entire stock
market can be difficult [2].

Large Language Models (LLMs) are trained on massive
and diverse datasets, enabling them to understand instructions
and perform a wide range of tasks with zero-shot or few-
shot learning capabilities. Their ability to process complex
natural language inputs allows them to interpret, generate, and
summarize financial information efficiently.

In the financial domain, LLMs are increasingly applied
to automate report and workflow generation, forecast market
trends, perform entity recognition and sentiment analysis, and
provide personalized financial advice or question-answering
services. In trading, LLMs can analyze unstructured data
sources such as news articles, social media sentiment, and
earnings reports to extract market signals and support strategy
development. They can assist in generating trading insights,
detecting anomalies, or summarizing market movements in real
time. Some advanced implementations even combine LLMs
with quantitative models or reinforcement learning agents
to enhance decision-making and risk management. Beyond
analytics, LLMs offer enhanced reasoning, interactivity, and in-
tegration capabilities. They provide interpretable explanations
for their outputs, increasing transparency and user trust. Their
conversational design allows traders and analysts to iteratively
refine queries and receive contextualized insights. Moreover,
LLMs can seamlessly integrate with trading platforms, APIs,
and financial databases using techniques such as Retrieval-
Augmented Generation (RAG) to deliver comprehensive anal-
yses and support intelligent, data-driven trading decisions [2].

www.ijacsa.thesai.org

872 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

This survey aims to explore the application DRL and
LLMs in portfolio optimization. It reviews how RL methods
adapt strategies to maximize returns and manage risk in
volatile financial markets, integrating diverse and dynamic data
sources. Additionally, it examines how LLMs can enhance
decision-making through financial text analysis, and sentiment
extraction. The survey also covers key algorithms, reward
functions, prompting techniques and evaluation metrics, while
comparing the strengths and limitations of different models.

II. RESEARCH OBIJECTIVES AND MAIN QUESTIONS

The aim of this study is to examine the role of diverse
data sources, review DRL algorithms and reward functions, and
identify evaluation metrics in the context of DRL-based portfo-
lio optimization. It also seeks to compare existing approaches
and highlight the challenges and limitations of applying DRL
methods in real-world financial markets. The following section
outlines the specific research objectives and questions that
guide this survey.

e To examine existing diverse data sources and their
roles in enhancing DRL-based portfolio methods.

o RQI: What are the existing data sources used
within DRL for the portfolio optimization
problem?

o RQ2: How do diverse data sources contribute
to improving the effectiveness of DRL-based
portfolio strategies?

e To review DRL algorithms used in the literature.

o RQ3: What types of algorithms are most
effective for this task?

e To review reward functions used in the literature.

o RQ4: How do different reward function
designs influence portfolio performance and
risk management?

e To identify evaluation metrics commonly used and
compare existing studies.

o RQ6: What evaluation metrics are commonly
used to assess DRL-based portfolio models?

o RQ7: How do variations in data sources,
reward functions and algorithms affect
measurable outcomes in the literature?

e To identify challenges and limitations in existing
DRL-LLM approaches for portfolio optimization.

o RQ8: How LLM has been integrated with a
DRL methods?
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o RQ9: What challenges and limitations exist in
applying DRL-LLM approaches to real-world
financial markets?

I1II. METHODOLOGY

To fulfill the main objectives and address the research
questions introduced in Section II, which define the scope of
this review, we follow a systematic methodology presented
in this Section III-A specifies the eligibility criteria, Section
III-B details the search approach, Section III-C covers the
selection process for studies, and Section III-D provides the
data extraction process.

A. Eligibility Criteria

The eligibility criteria were defined in alignment with the
objectives and guiding questions presented in II. Studies falling
within the scope of this work, particularly those focusing on
the stock portfolios, were considered for inclusion. The specific
criteria used to determine study eligibility are detailed below:

e  Studies address all essential components, including its
data source, the algorithm used, the reward function
and algorithm evaluation.

e  Studies written in English.

e  Studies published in scholarly peer-reviewed journals.

The following exclusion criteria were applied to remove
papers from this review:

e  Review papers.

e Studies that didn’t address all essential components
mentioned in inclusion criteria.

e  Studies written in non-English.

e  Studies, thesis and dissertation that are not published
in scholarly peer-reviewed journals.

B. Search Strategy

The method for study retrieval has two primary phases.
First, We have identified the primary keywords to be employed
in the search process as follows:

e  “deep reinforcement learning” AND (“single stock
trading” OR “portfolio”) AND “stock” AND (“large
language” OR “LLM”)

Subsequently, we utilized several databases, including
Word of Science, ACM, ACL Antholog, ScienceDirect,
Springer, IEEE, and MDPI, Google Scholar, arXiv to achieve
thorough coverage of the relevant literature.
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C. Study Selection Strategy

This review follows a study selection strategy based primar-
ily on the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [4], which provide
researchers with a framework for conducting high-quality
reviews. The PRISMA-based selection process, summarized in
Algorithm 1, is organized into three main levels: identification,
screening, and inclusion. This algorithm outlines the automated
and manual steps followed to retrieve, filter, and finalize the
studies included in this review. Each level is described in detail
in the following subsections.

1) Identification level: 915 papers were collected based on
the method described in Section III-B. 30 have been eliminated
due to duplication which come from two main reasons. First,
authors may publish their papers within multiple journals as
well as that journals may found in multiple indexers. Second,
portfolio keywords are used interchangeably in many cases,
hence same paper appears multiple times within different
searches. After de-duplication only 885 papers are moved to
next level.

2) Screening level: We have followed the next three steps
within this level.

a) Automated screening by eligibility criteria: Due to
large number of studies, we started with removing studies
that doesn’t match some of eligibility criteria before manual
screening. Eliminated papers were either a non-english papers,
and non-indexed papers in our listed databases, specifically
filtering out from google scholar, as well as review and
unpublished thesis and dissertations. Following this process
204 study has been kept.

b) Manual screening by title and abstract: This process
involved excluding papers that were outside the scope of this
review by examining their titles and abstracts. Papers that did
not match the keywords defined in the search strategy were
also removed. Following this screening, a total of 12 papers
were retained for further analysis.

¢) Manual screening by eligibility criteria: This stage
involves assessing the eligibility criteria, where only papers
that meet the predefined inclusion criteria are manually re-
tained. Consequently, papers that satisfy the exclusion criteria
described in Section III-A are removed from the review. With
finalizing screening process we found all 12 papers categorized
as eligible.

3) Inclusion level: This stage comprises all papers that
passed the screening process. Based on the screening results,
a total of 12 papers were selected for inclusion in this review
and were organized using Notion software.

D. Data Extraction Strategy

In this phase, we systematically extracted key points es-
sential for addressing our research questions and achieving
a comprehensive understanding. These points were organized
and recorded in an Notion databases, facilitating efficient data
management and retrieval for each paper.
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Algorithm 1: Systematic Paper Selection and Screen-
ing Workflow

Input: Search keywords: “deep reinforcement
learning”, “portfolio”, “LLM”, “stock”
Output: Final list of included papers

1 Step 1: Retrieval

2 Query databases (WoS, ACM, IEEE, Springer, MDPI,
ScienceDirect, arXiv, Google Scholar);

3 Merge results, standardize columns, and convert to
lowercase;

4 Step 2: Deduplication

s Group by title; retain longest metadata and first
DOI/URL;

6 Remove duplicates;

7 Step 3: Automated Filtering

8 Discard if: non-English, non-indexed, or labeled as
review/thesis/unpublished;

9 Step 4: Topic Relevance

10 Tag each paper for keywords (LLM, DRL,
Portfolio, Stock);

11 Keep only papers satisfying all four tags;

12 Step 5: Manual Validation

13 Verify each remaining paper against inclusion criteria
and scope;

14 Remove inconsistent ones;

15 Step 6: Data Extraction

16 Extract metadata (title, algorithm, dataset, reward,
results);

17 Export the final list for synthesis;

IV. LITERATURE REVIEW

Reinforcement learning (RL) is a machine learning ap-
proach where an agent learns to make sequential decisions
by interacting with an environment, aiming to maximize cu-
mulative rewards [1], [5]. This interaction is often framed
as a Markov Decision Process (MDP), defined by a tuple
of components (S,A,P or T,R,y). In an MDP, States (S)
represent different configurations of the environment that the
agent observes at each time step. Actions (A) define the
possible decisions or actions the agent can take to interact
with the environment. There is a Transition Probability (P)
which indicates the probability of transitioning from one state
to another given a specific action. The Reward Function (R)
provides feedback on the outcome of actions, helping the
agent learn which decisions yield high or low rewards. The
objective of an RL agent is to discover an optimal policy, a
mapping from states to actions that maximizes the expected
cumulative reward over time [1]. This section demonstrates
different designs of the Markov Decision Process components
introduced earlier as well as value and policy designs.

A. Reward Function

The design of the reward function is crucial as it guides
the agent’s learning process towards desired outcomes, such
as maximizing profit, managing risk, or aligning with market
signals [1], [5]. Different frameworks utilize distinct reward
mechanisms depending on their specific objectives.
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1) Multi-objective reward: The reward function can be de-
signed to balance profit-seeking, stability, and cost minimiza-
tion by considering transaction costs at once. To accomplish
this design, three components need to be combined in one
equation. Profit-based reward, which is based on the net change
in the agent’s account balance, including both the value of held
shares (unrealized gains) and cash from sold shares (realized
gains). Balance stability penalty a penalty that is applied based
on the deviation from the initial balance to discourage large
swings and reward more stable account values. Transaction
cost penalty, which is a penalty proportional to the trade
amount to simulate real-world transaction fees and incentivize
minimizing unnecessary trades [1].

2) Profit maximization: In another approach for portfolio
management using PPO, the immediate reward is defined as
the logarithmic portfolio return [3], as shown in Eq. (1).

ey

Tnt1 = log <w H)

where wy, is the current portfolio weights, S,, is current
adjusted closing prices, and S, 41 is the next day adjusted
closing prices

Alternatively, the relative return can be used to calculate
logarithmic portfolio return as Eq. (2) shows.

Tn+1 = log(l + Rn—i—l) (2)
where R,,;; is the relative return.

3) Percent change in the portfolio value: To avoid arbitrary
effects based on starting cash and value-at-risk, all agents start
with zero dollars (and may spend negative) and a fixed offset
is added to all portfolio value calculations to keep the percent
changes on a similar scale. This is calculated every time the
agent takes an action [5].

4) Risk-adjusted return: Sharpe ratio measures the excess
return obtained for every unit of risk. The portfolio generates
higher returns in proportion to the level of risk assumed when
the SR value is higher [2] such in Eq. (3).

R, — Ry

Op

SR = 3)

where R, is the return of portfoliom, Ry is the risk-free
rate and o, is standard deviation of the portfolio’s excess
return.

In the FLAG-TRADER framework, the immediate reward
is defined based on the daily change in the Sharpe ratio.
Specifically, the reward R(st, at) at state st after taking action
at is calculated as SR; — SR;_1, where SR; is the Sharpe
ratio at day t, computed using the historical Profit and Loss
(PnL) data up to that time [6].

The reward function in [7] evaluates how good a trading
decision is by looking at how much the total portfolio value
changes after making a trade. It rewards actions that increase
the portfolio’s value and penalizes those that decrease it. To
make the measure realistic, it subtracts small trading costs
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(0.1% of the trade value) every time a buy or sell occurs,
and it also includes a penalty if the portfolio experiences a
drawdown, meaning a drop from a previous high. Eq. (4) shows
the followed formula.

re = ((Phanee1) — (P ne) — cr) — dy (4)

where p is the closing price, n is number of shares owned, c
is transactional cost, and d is the drawdown penalty.

5) Strategy ranking reward: In a multi-strategy switching
model, an agent selects among different trading strategies. The
reward value is determined by the ranking of the chosen strat-
egy. The strategy ranked first receives a reward of 1, and the
rewards for other strategies decrease sequentially. The ranking
is calculated based on a composite score over time, which
includes metrics like Sharpe ratio, maximum drawdown, total
return rate, annualized return rate, and annualized volatility,
weighted appropriately [8].

6) Trend-heuristic reward: Incorporates trend heuristics
into reward function. This trend-heuristic reward function is
designed to make the agent sensitive to stock price movements,
thereby influencing the RL algorithm’s optimization objective.
Its purpose is to enhance profitability by aligning the agent’s
policy with observed price trends [9] as illustrated in Eq. (5).

ry =In (g x allvt) +w x a 1]0.5; 9] %)

where p, is the transaction cost, a;—; is the action taken
by agent, v; price relative vector, w is weight of portfolio
potential, 0.5 is the constant cash bias, and g; is the trend
heuristic.

7) Sector performance reward: When designing this return
function by [10], two key considerations are taken into account.
First, to enhance predictions of sector performance changes on
current trading days, a cross-entropy structure is incorporated
into the denominator. Second, the output is multiplied by the
actual percentage change in the numerator to reward substantial
shifts in sectors. This approach aims to promote sector rota-
tion while maintaining accuracy in forecasting performance
changes. Eq. (6) shows the formula.

s - pctChg’
Tj/n — pm p tg'm (6)
(p5, — petChg;,)? +1

where p;  represents the output of the graph layer, while
pctChgfn is the price change for sectors.

8) Sector profit maximization reward: The reward here is
defined based on the closing and opening prices of a sector on
trading day t. It utilizes a softmax function to determine the
rewards for different sectors, where higher rewards are given to
the sector that exhibits the most significant increase in closing
prices compared to opening prices. This structure is designed
to inform a portfolio management strategy that involves buying
at the opening and selling at the close of each trading day [10]
as shown in Eq. (7).

t t
rt = SoftMax (c(; g C’") )

G
0] Om
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where cf the closing price and o} is the opening price.

B. Algorithms

Reinforcement Learning (RL) agents learn to make se-
quential decisions through trial and error, aiming to maximize
their expected cumulative rewards in an environment. This
learning process fundamentally involves maintaining a balance
between exploration (trying new actions to discover potentially
better strategies) and exploitation (using the current best known
policy). RL algorithms are often broadly categorized based
on what they learn: a value function, a policy function, or a
combination of both.

1) Value-based methods: Value functions are central to
reinforcement learning, estimating the expected cumulative
rewards associated with states or state-action pairs, and guid-
ing the agent in making decisions that maximize long-term
rewards.

e  State Value Function (V(s)): Calculates the expected
return when starting from a specific state (s) and
following a given policy (7).

e Action-State Value Function (Q(s,a)): Represents
the expected return of taking a specific action (a) in a
particular state (s) and subsequently following policy
().

Value-based methods focus on learning the value of states
or state-action pairs. The agent’s policy is then typically
derived from this learned value function, often by choosing
the action that is estimated to yield the highest future reward
(a greedy policy).

Q-learning is a foundational value-based algorithm de-
scribed as an experimental approach to optimizing action
selection. It is off-policy, greedy, and model-free. The agent
iteratively estimates the Q-function by optimizing a version
of the Bellman equation, representing the expected sum of
immediate and discounted future rewards from taking an action
and following the current policy [5].

Deep Q-Network (DQN) is a significant variant that
uses deep neural networks to approximate the Q-function
(Qx(s,a)). This allows DQN to handle complex, high-
dimensional state and action spaces. DQN employs techniques
like experience replay and fixed Q-targets to improve stability
during learning [8].

2) Policy-based methods: Policies are functions that deter-
mine the agent’s action based on the current state. Policy-based
methods directly learn and optimize a policy function without
necessarily explicitly learning a value function. Policies can be
deterministic, where the network outputs a single action for a
given state. Or stochastic, outputting a probability distribution
over possible actions for a given state. Stochastic policies are
typical for environments with discrete action spaces, where the
network outputs probabilities for each action. For environments
with continuous action spaces, the policy network typically
outputs continuous values representing the action [9].

Policy gradient methods are a class of RL algorithms
that directly optimize the parameters of the policy function.
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They adjust parameters in the direction of the gradient of the
expected cumulative reward [9].

3) Actor-critic methods (Hybrid): Actor-Critic methods
combine the strengths of both value-based and policy-based
approaches. They typically consist of two components: an
“actor” which is a policy network that selects actions, and
a “critic” which is a value function network that estimates the
value of states or state-action pairs . The critic’s value estimates
are used to evaluate the actor’s chosen actions and guide the
actor’s policy update [6].

The critic learns a value function (either state-value or
action-value) to evaluate the actor’s policy. This evaluation,
often in the form of an advantage estimate (how much better
the taken action was compared to the expected value of the
state), is used to update the actor’s policy parameters [6].

Proximal Policy Optimization (PPO) is a widely used
policy optimization algorithm and a type of policy gradient
method. It is known for its stability and efficiency. PPO sta-
bilizes learning by clipping the probability ratios between the
new and old policies, preventing large, destabilizing updates.
PPO is specifically noted as being effective for continuous
action spaces. PPO is used as the core RL algorithm in several
frameworks [1], [11], [12], [3], [6].

Twin-Delayed Deep Deterministic Policy Gradient (TD3)
[5] utilized the Twin Delayed Deep Deterministic Policy Gradi-
ent (TD3) algorithm as the foundation for their strategic market
agent. TD3 extends the Deep Deterministic Policy Gradient
(DDPG) framework, which enables learning in continuous
state and action spaces through an actor—critic architecture. The
actor network deterministically maps each state to an action,
while the critic network evaluates their expected return. TD3
enhances this approach by employing two critic networks to
counteract Q-value overestimation and by delaying policy up-
dates, leading to more stable and reliable learning performance.

C. Approaches

A basic workflow of reinforcement learning for portfolio
trading begins with the agent observing the environment state,
which typically includes market data and, in many cases,
sentiment information extracted from news using an LLM
model or API. The agent also tracks its internal state, such as
cash balance, portfolio holdings, or net worth. This internal
information can be utilized for reward calculation, portfo-
lio evaluation, and ensuring only valid actions are taken. It
can also be combined with the environment state to apply
the agent’s policy to select an action, which may involve
buying, selling, holding, or rebalancing portfolio weights.
The environment then updates according to the new market
conditions, and the agent receives a reward signal that reflects
one or more of the portfolio optimization objectives, such
as profit maximization, risk minimization, and transactional
cost reduction. This reward guides the agent in updating its
policy, forming a continuous cycle of state observation, action
execution, and policy refinement.

Following this workflow, multiple papers have been con-
tributed by employing different LLM models, prompting LLM
in various techniques, to find different sentiment types, such as
plural sentiment or stock recommendations, risk assessment,
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TABLE I. KEY DRL COMPONENTS FOR PORTFOLIO OPTIMIZATION

Vol. 16, No. 11, 2025

Paper  Algorithm Agent State Environment State (dataset) Action
[1] PPO Cash balance, Shares quantity or  Price data, Volume, Weighted signed scoring of plural senti-  Trading signal, Trade proportion
Net worth based on trading setting ments (News headlines) [Last 5 states] (balance/share) adjusted by 0.1 of
(portfolio or SST), Cost basis sentiment score
[2] A2C long/short positions, Cash balance, Close price data, Macroeconomic indicator, Microeconomic  Share quantity rebalancing for each
Shares quantity indicator, Technical indicators, Distinct signed scoring of  position separately
market trends (News)
[3] PPO Cash balance, Portfolio Weights Weighted signed scoring of plural sentiments (News) Portfolio weights rebalancing
[5] TD3 Shares quantity Limit order book snapshots, News, Synthetic social media  Share quantity rebalancing,
posts Weighted signed scoring of plural
sentiments
[6] PPO Cash balance, Shares quantity, Net ~ Price data, Volume, Net value, Sentiments (external tool)  Trading signal
value [Last 10 trajectories]
71 PPO - Price data, adjusted close price, MACD, MACD signal line,  Share quantity rebalancing
MACD histogram, CCI, RSI ADX, News headlines embed-
ding
[8] - Cash balance and other account  Interstice relation of price data, News headlines Strategy selection
data
[9] Classical direct policy - State Representation using: Price data, ¢, Technical indicators ~ Portfolio weights rebalancing (in-
gradient algorithm (Zopens Zhigh» Zcloses Zadjcloses 2d5» 2d10> Zd15, Zd15,  cluding cash)
2420, 2d20> 2d25, 2d30), News headlines [Last state]
[10] Modified DPG/policy gra- - Sector Features obtained from: Price data, Volume, trad- Sector trend prediction
dient ing amount, turnover rate, rise and fall range, rolling
price/earnings ratio, price/book ratio, rolling price/sales ratio,
and rolling price/cash ratio [30 day window]
Classical stochastic policy - Predicted Sector trend, Distinct signed scoring of sentiment  Portfolio weights Allocation
gradient (News), Stocks relationships within sector [last state]
[11] PPO - Technical indicators (MACD, RSI, Bollinger Bands, ADX,  Weights of RAG knowledge source
VWMA, ATR), Distinct signed scoring of plural sentiments  summing to one, Trading signals
(News headlines, Financial Articles, Social media posts) [Last dervien by Sentiment score for
state] equally weighted portfolio
[12] PPO Portfolio Weights Distinct positive scoring of stock recommendation (News),  Portfolio weights rebalancing ad-
Distinct positive scoring of risk assessment (News) justed by recommendation score
[13] PPO - Price data, Technical indicators, Distinct positive Trading -

Score(Distinct positive scoring of plural sentiments (news),

adjusted close percentages)

etc. The extracted sentiment is then utilized to adjust the
reward, action, or guide the policy learning by adjusting the ad-
vantage function, which is part of the PPO objective function.
Few studies have made adjustments to state representation,
either by learning the state representation or by rule-based
modifications.

One example of basic flow is [1], where extracted senti-
ment integrated into the algorithm’s state observations, action
adjustments, and reward calculations. The study in [1] presents
two setting of problem that single stock trading (SST) and
portfolio trading. A modification on reward represented at
Section IV-Al was done adding sentiment-based reward to
encourage trades that follow market sentiment alongside with
volatility adjustment which reduces sentiment-based reward
when prices are unstable. One additional component of reward
is added for portfolio settings which is portfolio net worth
change. As the name suggest it calculated by summing the
value of all stocks held and cash balance. The influence
on action is done with simple calculation, modifying trade
proportion (balance/share) by 0.1 of sentiment score. Table
I shows key DRL components for portfolio optimization.

Another study by [3] following the basic flow has applied
LLaMA 3.3 trained on an extensive collection of earnings

reports, market commentaries, and analyst insights, enabling
it to differentiate between neutral reporting, speculative view-
points, and sentiment-influenced market trends. This model
has been fine-tuned for financial text analysis to extract daily
financial news sentiment. Market sentiment has been part of
state representation and the advantage function of PPO model.
The study has illustrated that integrating market sentiment can
enhance adaptability and robustness in portfolio optimization.

The study in [13] introduces a Market-Cap Stratified Subset
(MCSS) strategy that is which groups stocks by market capi-
talization into small, mid and big. Allowing different impact of
sentiment score on different groups, due to different sensitivity
to sentiment for each group, especially as smaller stocks tend
to react more strongly. In addition, they introduced Market-
Aware Module that modify the observed state in rule-based
way. It checks whether short-term price movements align or
conflict with sentiment signals producing trading score which
fed later into the RL model.

The study in [12] uses the risk assessment scores generated
by the LLMs like DeepSeek V3, Qwen 2.5, and Llama 3.3,
to adjust the trajectory returns in the Conditional Value-at-
Risk (CVaR) extended objective formalized by [14]. The CVaR
objective is a risk-sensitive constrained optimization problem
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in reinforcement learning, aiming to maximize expected return
while penalizing high-loss trajectories by keeping the policy’s
CVaR below a specified threshold. CVaR itself is a risk
measure that estimates the expected loss of a portfolio given
that the loss is greater than the Value-at-Risk (VaR) threshold.
The importance of CVaR is that it goes further than VaR by
calculating the average loss in the worst « portion of outcomes.

In addition to risk-sensitivity contribution, [12] had con-
tributed by modifying the model action with generated trade
recommendation signals from financial news using the same
LLM models.

The study [8] suggests a method for dynamic strategy
switching based on large language models, GPT-4 in particular,
to adapt market changes. [8] has utilized a financial concept
named asset pricing model that is a framework that links asset
risk to expected return. The model have been formulated as in

Eq. (8).

Rt:at+ft'6t (8)

Where «; is the Local Data Model which mines the in-
trinsic information specifically their linear relationship. While
B¢ represents yields of Global Algorithm Trade Model which
select the corresponding trading strategy. f; component rep-
resents the strategy selection made by the algorithm model at
time t. R; is the final return of a stock at time t.

The model f; applies reinforcement learning principles
on LLM prompting by processing historical data features,
executing the selected strategy, calculating ranking reward as
explained in section IV-AS5, and iterating after each strat-
egy selection action, thereby enabling adaptive multi-strategy
switching in environments where conventional RL methods
would demand extensive retraining and hyperparameter tuning
across different datasets. To achieve this, the prompt is struc-
tured into modular components that are role definition, Few-
Shot examples, strategy description, and output formulation via
the Chain-of-Thought approach, guiding the LLM to reason
analytically through data trend analysis, strategy selection ra-
tionale, and strategy critique, while also outputting the chosen
strategy in JSON format.

The study [6] proposed an advanced approach using
an LLM-based actor—critic architecture. In their design, the
layers of the SmolLM2-135M-Instruct model were divided
into frozen and trainable layers. The trainable layers were
optimized through reinforcement learning fine-tuning, where
reward signals guided their learning. This setup allows the
model to retain broad language comprehension while effi-
ciently adapting to financial decision-making tasks with low
computational cost.

Additionally, a policy MLP network and a value MLP
network were incorporated, both leveraging the output of the
trainable layers for domain-specific learning. Unlike conven-
tional integrations of RL with LLM, the model in [6] was
directly prompted to generate trading actions.

The study [7] have proposed using Partially Observable
Markov Decision Process (POMDP) with stock trading. Which
2 additional elements above regular MDO, that are observation
(£2) and conditional observation probability (O). In POMDP,
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the agent receives an observation with o € € that depends on
st4+1 and a; , with probability O(o; | st41, at). In this paper
[7] FinBERT was used to extract embedding mean from news
headlines combined with market data creating an observation
vector. A PPO architecture were modified to contain LSTM
layers alongside the casual MLP layers for both actor and critic
heads.

A study that focus on sector rotation and multi-RL was
proposed by [10]. Sector rotation is a macro-level portfolio
strategy, where investment shifts between sectors and capital
allocation is managed across sector distributions rather than
individual stocks. The approach employs a two-layer Markov
Decision Process (MDP) framework. The first layer uses a
multi-agent reinforcement learning model to capture sector
trend dynamics from time-series data that taken from raw stock
data and transformed to sector data. The second layer focuses
on portfolio management, integrating multiple sources such
as time-series data for all stocks, outputs from the first layer,
sentiment insights from news analyzed with large language
models, and sector-level stock relationships extracted through
graph convolution. By fusing these diverse inputs, the model
produces the final portfolio decisions.

The study [2] introduced an adaptive and explain-
able framework that integrates Large Language Models
(LLMs) with Reinforcement Learning (RL) to enable dynamic
long—short position adjustments in response to evolving market
conditions. This approach overcomes the limitations of tradi-
tional margin-trading systems, in which the long—short ratio
is predetermined and remains static throughout the trading
period, by allowing periodic and adaptive reallocation. The
proposed framework comprises two primary components. The
first is the Explainable Market Forecasting/Reasoning Pipeline,
which employs LLMs to determine optimal adjustment ratios
every k steps. The LLM utilizes two specialized prompt
pipelines, one tailored for macroeconomic indicator time Series
and another for firm-specific news. The second component
is the Portfolio Reallocation Stage, which employs a pre-
trained RL agent to rebalance the portfolio by reallocating
funds between long and short positions in order to achieve the
updated ratio. After the reallocation, the RL agent continues
its trading operations using the adjusted portfolio for the next
k steps. In addition to predicting adjustment ratios and near-
term trends, this approach offers explicit reasoning and clear
insights that improve portfolio decision-making.

The study [11] proposed a novel framework that builds
on the capabilities of LLaMA 2 and enhances it through
an advanced fine-tuning approach called Retrieval-Augmented
Generation (RAG). This method integrates multiple knowledge
sources to enrich model outputs with current, domain-specific
information, thereby reducing hallucinations and improving
accuracy. Furthermore, the language model was refined us-
ing reinforcement learning (RL) feedback, where the LLM’s
generated sentiment scores were evaluated against market
returns. These evaluations were incorporated into a reward
function within a PPO-based RL structure, guiding the model’s
optimization and enabling adaptive weighting across the K
knowledge sources in the RAG module.

The study in [5] presents an attempt that the first of its kind
based on researcher believes to asses market manipulation,
pump-and-dump schemes specifically, through LLM-generated
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text within a realistic financial market simulation. They have
shown how the RL agent learns to enhance its reward by
deliberately influencing market sentiment by its posts. The
experiment have been conducted in an offline simulated en-
vironment to ensure ethical integrity. The isolated offline feed
is mainly generated by replaying historical order data to be
feed to Analyst prompt posts and Trader prompt posts. To
model how traders respond to language-based manipulation, a
sentiment-driven trading agent is introduced that analyze the
sentiment of social media feed using RoBERTa model and
computes weighted sentiment score as its trading indicator.
In the other hand, RL trader is used to influence on the
sentiment-based agent. While it takes order streams to make
its trading action and sentiment action. It optionally generate
social media posts reflecting its sentiments which then are
visible to the sentiment agent. The RL agent structure is based
on Twin Delayed Deep Deterministic Policy Gradient (TD3)
that employ three fully connected layers with normalization,
and the actor uses an LSTM-based embedding of sequential
observations.

D. Evaluation Metrics

A robust evaluation of quantitative trading strategies re-
quires the use of diverse metrics spanning profitability, risk,
and risk-adjusted returns. These metrics are crucial for assess-
ing performance and ensuring that algorithms meet investment
objectives, which typically center on maximizing return while
maintaining portfolio stability. The metrics utilized across
the papers can be generally categorized into Risk-Adjusted
Performance, Return, Risk and Volatility, and other specialized
metrics. Evaluation often prioritizes Cumulative Return (CR)
and Sharpe Ratio (SR) for assessing long-term gains and risk-
adjusted returns.

1) Risk-adjusted performance metrics: It provide a more
comprehensive assessment of a strategy’s efficacy than ab-
solute returns by relating the gains achieved to the level of
risk undertaken. The Sharpe Ratio (SR) is the most frequently
cited metric across the papers, appearing in nine papers. It is
a critical financial metric that assesses the risk-adjusted return
of an investment or portfolio. SR has been explained in Eq.

(3).

2) Return metrics: It quantify the absolute profitability or
monetary gain generated by a trading strategy over a specific
period. Cumulative Return (CR) is a key performance indicator
that measures the total value change of an investment over
time. It is typically expressed as the overall percentage gain
or loss of a portfolio over a specified period. Eq. (9) show how
to measure CR.

_ Pend - PO
CR = 2 ©)

where P represents the portfolio value.

The Annualized Rate of Return (ARR), or Annualized
Return (AR), represents the average rate of return for a
managed portfolio over a full year of trading days. It is derived
from the daily returns average over the investment period,
adjusted to a yearly scale based on 252 trading days. Eq. (10)
show how to measure ARR.
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Total net profit/Number of years

ARR = (10)

Initial investment

3) Risk and volatility metrics: are essential for quantifying
the instability and maximum potential downside of a trading
strategy. Maximum Drawdown (MDD), sometimes referred to
as Maximum Pullback (MPB), quantifies the largest single
drop in an asset’s value from its highest peak to its lowest
trough over a specific period. It serves as a crucial indicator
of portfolio risk. Eq. (11) show how to measure MDD.

MDD = max Yok~ Vieows (11
‘/peak

Annualized Volatility (AV) quantifies the return fluctuations
of a portfolio. Eq. (12) show how to measure AV.

AV = DV x /252. (12)

where DV is standard deviation of daily returns adjusted
to an annual scale by the square root of 252.

V. FINDINGS AND DISCUSSION

This section synthesizes insights from the reviewed stud-
ies, emphasizing how Deep Reinforcement Learning (DRL)
and Large Language Models (LLMs) contribute to portfolio
optimization.

A. Algorithmic Trends and Performance

Across the 12 studies reviewed, Proximal Policy Optimiza-
tion (PPO) emerged as the most frequently used algorithm due
to its training stability and effectiveness in continuous control
problems. PPO-based models demonstrated robust adaptability
to market fluctuations and achieved high risk-adjusted returns,
with Sharpe Ratios (SR) ranging from 1.46 to 3.34 across
various datasets. TD3, modified DPG/policy gradient, and
hybrid actor—critic methods were less common but effective
in handling continuous action spaces and noisy financial envi-
ronments.

B. Reward Function Design

Reward function formulation remains a decisive factor
influencing portfolio behavior and risk sensitivity. Studies
using risk-adjusted metrics, such as the Sharpe Ratio or Con-
ditional Value-at-Risk (CVaR), encouraged smoother trading
behavior and improved robustness in volatile markets. In
contrast, heuristic and trend-based rewards. On the other hand,
Sector-level or ranking rewards extend learning to macro or
multi-strategy settings but increase model complexity. Overall,
effective reward design depends on balancing interpretability,
stability, and economic realism while mitigating overfitting to
short-term or sentiment-driven fluctuations.
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TABLE II. EXPERIMENTAL RESULTS OF REVIEWED STUDIES, SHOWING THEIR BEST EXPERIMENT RESULT

Paper  Experimental Setup Index / Fund Date Period 1 SR 1 CR TARR | MDD | AV

[1] GPT LEXCX 16/11/2023 to 10/11/2024 1 Year 0.4201
[2] GPT-40; Firm news; Takes DIIA 512020 to 4/2024 4 Years 1.314 1.508 2.4385

20% of trend prediction
[3] LLaMA 3.3 GOOGL, MSFT, META 1/2013 to 1/2020 7 Years 1.90 - 0.302 -0.138 0.112
[6] SmolLM2-135M-Instruct INJ 1/7/2020 to 6/5/2021 1.2 Year 3.344 33.724 - 9.320 17.174
[7] FinBERT 30 of DJIA, GOOGL, NVDA, 1/1/2016 to 24/1/2020 4 Years 1.46 1.3439

AMZN

[8] GPT-4 NASDAQ 12/2010 to 1/2022 12 Years 1.482 - 0.136 -0.06 0.092
[9] FinGPT DIIA 1/2000 to 12/2022 22 Years - - 33.45 25.33 0.234
[10] gpt-4o-turbo NASDAQ, NYSE 2011 to 2023 13 Years 1.744 - 0.25 - 1.084
[11] LLaMA 2; Bullish market S&P 500 1/1/2021 to 31/12/2021 1 Year 2.3557 03393 0.3450 0.1464 -0.0781
[12] DeepSeek V3; 10% LLM in-  NASDAQ-100 2013 to 2023 10 Years - 2.1

fluence
[13] DeepSeek-R1 7B S&P 500 1999 to 2023 24 Years 3.1

C. Integration of Large Language Models

LLMs play a complementary yet transformative role in
portfolio optimization. Their integration primarily occurs in
multiple forms. One is sentiment Integration by extracting
sentiment from news or social media to augment state rep-
resentation, guide reward shaping, or produce direct trading
actions. Another form of integration is using LLM within
actor-critic networks. Studies show that incorporating LLM-
derived signals improves adaptability and interpretability. For
instance, [3] and [12] demonstrated how LLM-based senti-
ment and risk assessments enhance DRL’s responsiveness to
macroeconomic shifts. However, over-dependence on textual
inputs can introduce bias and instability, especially when news
sources are inconsistent or temporally lagged.

D. Data Sources and Environment Complexity

The reviewed studies use diverse data sources, including
price data, technical indicators, macroeconomic indicators, and
unstructured text from financial news. Combining structured
(numerical) and unstructured (textual) data consistently im-
proved model generalization and return stability. For example,
models combining price data and sentiment, such in [11] study,
achieved higher SR and lower maximum drawdown (MDD).
Nevertheless, few studies explicitly address non-stationarity
or market regime shifts, which remain critical challenges for
DRL-based approaches.

E. Comparative Results

Table II summarizes the quantitative results across studies.
Sharpe Ratios ranged between 0.42 and 3.34, and Cumulative
Returns (CR) reached up to 33.7%, indicating substantial im-
provements compared to traditional benchmarks. A study that
integrates LLMs with PPO as its network achieved the highest
SR values, meaning employing LLM as a core component
ensures an accurate understanding of market dynamics and
sentiments, which ultimately enhances performance, regardless
of the fact that the LLM model utilized, SmolLM2, is a
lightweight LLM model compared to others. In other hand,
DeepSeek-R1 demonstrated one of the strongest results 3.1 in

SR. Both SmolLM2 and DeepSeek-R1 underscore the benefits
of fine-tuned, lightweight LLMs in trading contexts.

F. Challenges and Limitations

Despite notable advances, several challenges persist. One
is Reward design sensitivity; minor adjustments can desta-
bilize learning, especially under sparse or delayed rewards.
Another is Computational cost; combining DRL with LLM
fine-tuning increases training overhead. Also, Overfitting and
limited generalization, many models are trained and tested on
specific indices (e.g., NASDAQ, S&P 500) or narrow time
horizons, making them vulnerable to overfitting. Explainability
and interpretability, although LLMs improve textual reasoning,
both DRL and LLM components remain largely black-box
systems.

VI. CONCLUSION

This survey demonstrated the transformative role of Deep
Reinforcement Learning (DRL), particularly in conjunction
with Large Language Models (LLMs), in addressing the chal-
lenges of dynamic portfolio optimization. PPO emerged as
the most widely adopted and stable DRL algorithm, proving
effective in continuous control environments and achieving
robust, high risk-adjusted returns (Sharpe Ratios up to 3.34).
The design of the reward function is a critical factor, with
risk-adjusted metrics like the Sharpe Ratio and Conditional
Value-at-Risk (CVaR) encouraging smoother and more stable
portfolio behavior in volatile markets. The integration of LLMs
significantly enhances these models by extracting market senti-
ment, risk assessments, and trading insights from unstructured
text data, thereby improving adaptability and interpretability.
Combining structured (price and technical indicators) and
unstructured (textual) data sources consistently leads to better
model generalization and return stability. Nonetheless, the field
still contends with significant challenges: the sensitivity of
reward function design, high computational costs associated
with fine-tuning LLMs alongside DRL, the risk of overfitting
to narrow time horizons, and the persistent issue of limited
explainability in these black-box systems. Future research must
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prioritize solutions for non-stationarity and market regime
shifts to enhance the long-term competitive advantage of DRL-
LLM approaches in real-world financial markets
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