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Abstract—Secure and high-capacity data concealment has
already become a requirement of modern multimedia
communication, particularly with the enhanced protection and
privacy levels of concern. The framework introduced in this
study—the improved Dual-Attention ResUNet-GAN—helps
optimize the trade-off among imperceptibility, robustness, and
payload capacity in the field of image steganography. The two
PatchGAN discriminators used in the model were a visual realism
discriminator and a learned steganalyzer. Two encoders based on
the ResNet-34 using CBAM-based dual attention are to be used.
Just before the data is embedded, AES-256 encryption in CBC
mode is employed to provide cryptographic confidentiality.
Experiments on the COCO, BOSSbase, and ALASKAZ2 datasets
are conducted to evaluate the proposed method's performance,
yielding PSNR=42.5 dB, SSIM=0.98, BER=0.02, and high
resistance to steganalysis (PE=91.2% vs. SRNet). Embedding is
also changed in the proposed framework to high-entropy areas,
thereby allowing the application of both conservative payloads
(0.0156 bpp) and capacity-driven configurations (0.4 bpp) without
affecting image quality. The findings have validated that the
proposed system fits well with secure communication and
intelligent data-hiding applications in real-world scenarios.

Keywords—Image steganography; Generative Adversarial
Networks (GANs); payload capacity; steganalysis robustness;
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l. INTRODUCTION

Steganography comes from the Greek words steganos
(covered) and graphia (writing). It involves the art and science
of hiding information within other seemingly harmless media,
disguising the act of communication [1] [2]. Cryptography
disguises the contents of a message, while steganography hides
that a message was sent at all. For this reason, it is an important
technology to use when silence is valued, such as in political
resistance, military operations, and Internet privacy [3].
Historical steganography practices included transporting or
storing written messages on wax tablets and tattooing them on
the scalps of messengers. The true message would only be
revealed after the hair grew back [4]. Today, steganography has
evolved from these basic physical methods to more complex
digital forms. This shift has come with the growing use of
multimedia content across communication platforms [5].
Among digital media, images are the primary carriers of
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steganography. This is because they have a natural redundancy
and can tolerate small changes without losing visual quality [6].

In traditional methods, techniques such as Least Significant
Bit (LSB) substitution, the Discrete Cosine Transform (DCT),
and the Discrete Wavelet Transform (DWT) have been widely
used to hide secret data within image pixels [7]. While they are
somewhat effective, these methods can be vulnerable, especially
to statistical and compression-based steganalysis, often putting
the hidden content at risk [8]. These limitations have led to a
shift towards more adaptive and intelligent systems, made
possible by rapid advancements in Acrtificial Intelligence (Al).
The use of Al, especially deep learning, has changed image
steganography by allowing data-driven approaches that learn
from image characteristics and distribution patterns [9].

Convolutional Neural Networks (CNNs) have demonstrated
strong capabilities for extracting spatial features and embedding
information within complex, visually rich regions, which is
beneficial for enhancing imperceptibility [10]. Generative
Adversarial Networks (GANSs) are another example of this —
GANSs contain both a generator and a discriminator that fight
against each other. This is even worse for steganographic
features, as it provides an opportunity to imitate a given model
statute, thereby significantly improving both undetectability and
robustness against steganalysis [11]. Autoencoders and other
generative models have also been used for strong encoding and
decoding, often compressing secret data to maximize capacity
while maintaining visual quality [12].

Al-based image steganography greatly increases security.
Deep models can learn complex connections and meanings
between different parts of an image. They mimic the statistical
distribution of natural images better than traditional algorithms
[13]. This reduces the chance of detection by advanced
steganalysis tools. Recent research has investigated using
attention mechanisms that prioritize less noticeable areas of an
image for embedding sensitive data [14]. Additionally,
perceptual loss functions, inspired by human vision, help
maintain structural integrity while embedding data. This makes
stego-images visually like cover images [15].

To bolster security, Al-based steganography increasingly
combines with cryptographic techniques like the Advanced
Encryption Standard (AES). These hybrid methods conceal not
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only the existence of information but also protect its content
from unauthorized access, providing dual-layer security [16].
Capacity—the third key aspect of effective steganography—is
also greatly improved by Al. By using multi-scale learning and
hierarchical networks, modern models can adjust embedding
density based on image complexity. This helps optimize payload
without causing visual distortions [17]. End-to-end deep
learning models have led to the development of an encoder-
decoder architecture that enables simultaneous optimization of
the embedding and extraction processes [18]. GAN-based
frameworks enhance this by adversarially training the model to
improve its resistance to steganalytic attacks. Furthermore,
reinforcement learning methods have been used to select the best
embedding strategies based on environmental feedback. This is
a steganographic process that fits specifically to inductive
scenarios [19] [20]. New fields also include federated learning
and edge Al. Methods such as these not only train models across
decentralized devices; they also ensure data privacy by not
combining raw data. Such improvements play a significant role
in applications such as the Internet of Things (IoT), which
demand very lightweight, highly secure, and high-capacity data
transmission [21].

GAN-based and attention-driven steganography have made
significant improvements, but these models still face several
challenges. For example, most of these techniques, such as
DeepSteg [22], Steg-GMAN [23], and HiiT [26], have focused
on either imperceptibility and/or robustness, but not on
optimizing both parameters simultaneously while maintaining a
competitive payload capacity. The attention processes used in
certain recent models aid feature selection; however, they do not
introduce entropy-aware embedding, leading to unnecessary
modulations in perceptually sensitive areas [28]. In addition,
minimal systems have been established to support cryptographic
security during the steganography process; thus, the hidden data
is vulnerable to exposure if extracted. These deficiencies suggest
the need to have a steganographic mechanism that is adaptable,
security-conscious, and at the same time capacity-balanced.

We provide the following contributions in this study:

e A Dual-Attention ResUNet-GAN model, which can
learn to give CBAM-based spatial and channel attention
to dynamically embed information in regions with high
entropy and low perceptual sensitivity.

e An adversarial learning method based on two
discriminators, with one of them to guarantee the natural
visual quality, and the other one, which serves as a
steganalyzing learning model, removes the easily
detectable artifacts.

e A hybrid security pipeline that involves the use of AES-
256 encryption and deep adversarial embedding to
ensure that the data is more secretive and less evident.

e A proper test of robustness has been performed that
incorporates JPEG compression, Gaussian noise, and
cross-dataset testing (COCO, BOSShase, ALASKA#2),
and it has been demonstrated that the proposed approach
has superior imperceptibility and security than Steg-
GMAN, ASDL-GAN, and RIIS.
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The rest of the study is organized as follows: Section 1l
presents a review of related research. Section Il describes the
methodology; Section IV presents and discusses the results; and
Section V concludes the study and provides a few possible
future directions.

Il.  LITERATURE REVIEW

Image steganography involves hiding information. The field
of Al-driven image steganography has made significant
progress, moving from traditional least-significant-bit (LSB)
methods to advanced neural architectures. Early techniques such
as DeepSteg [22] were among the first to use Generative
Adversarial Networks (GANs) for steganography. They
employed adversarial learning to fool discriminators while
hiding secret data. Later developments, such as Steg-GMAN
[23], included multiple discriminators and a learned
steganalyzer to improve detection limits. RIIS [24] aimed for
strength by using reversible information hiding and invertible
neural networks. More recently, transformer-based models such
as TransStego [25] and HiiT [26] have shown promising results
by leveraging global self-attention and modeling long-range
connections. HiiT uses inception-style transformer modules that
improve spatial embedding accuracy and help with payload
recovery. These models utilize attention mechanisms that
perform well across different image areas and resolutions.
Attention modules, such as the Convolutional Block Attention
Module (CBAM) [27], have improved embedding by helping
the model focus on less noticeable areas. Meanwhile, hybrid loss
functions now include pixel-wise, perceptual, adversarial, and
capacity-penalizing terms [28] [29]. This offers better control
over the balance between invisibility and capacity.

On the defense side, strong steganalysis networks such as
SRNet [30], Yedroudj-Net [31], and Xu-Net [32] have become
standards for detection. This has pushed researchers to develop
embedding techniques that can withstand more effective
classifiers. Evaluation frameworks such as ALASKA#2 [33]
and BOSShase [34] are often used to test these systems under
different conditions and with various source mismatches.
Further studies have proposed robustness-aware architectures,
such as ISGAN [35] and EAGAN [36], that improve resilience
against JPEG compression and other image transformations.
Some researchers have investigated dual-domain hiding
techniques [37], wavelet-guided embeddings [38], and
distortion-tolerant optimization frameworks [39]. Additionally,
methods for robust payload extraction and distribution that use
entropy maps [40], frequency filters [41], and feature fusion [42]
are becoming more popular. Recent work, such as FSGAN [43]
and StegTransformer [44], aims to combine high embedding
quality, security, and robustness, underscoring the growing need
for models that balance all three aspects of modern
steganography. The literature shows a shift toward integrated
deep learning solutions that optimize invisibility, strength, and
payload through attention-guided and transformer-enhanced
frameworks. Unlike transformer-heavy designs like HiiT, our
model keeps lower compute requirements while balancing
perceptual loss and capacity through dual attention and
adversarial reinforcement.

Most existing GAN-based steganography methods, such as
DeepSteg, Steg-GMAN, and RIIS, although focused on
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imperceptibility, fail to balance security and capacity
simultaneously. The attention mechanisms (HiiT, TransStego)
improve the utilization of global features, yet they also increase
the computational burden and fail to provide localized entropy
embedding. Additionally, the prior research did not incorporate
cryptographic layers into the embedding pipeline, which limits
its use in high-security settings. These drawbacks, among others,
led to our dual-attention plan, which includes hybrid AES-GAN
security and dual-discriminator optimization as a direct
response.

I1l. METHODOLOGY

This section outlines the research methodology for
developing, training, and evaluating the proposed Al-driven
image steganography system. The section starts with the
research design and experimental controls, the sources of the
datasets, and image preprocessing. It then outlines the deep
learning architecture and its components, followed by the
evaluation metrics and test protocols. The main goal is to
determine whether the model performs well in real-world
conditions, focusing on its accuracy while highlighting trade-
offs between imperceptibility and capacity.

A. Research Design

This study conducts a quantitative experimental assessment
of the proposed Al-based steganography framework using
controlled comparison groups. The research evaluates three
baseline methods against the proposed approach through direct
comparisons with traditional LSB replacement and DCT-based
methods, as well as the DeepSteg neural network. Each method
is evaluated under identical conditions using the COCO dataset
at 512x512 resolution and a 0.0156 bpp payload, alongside
PSNR, SSIM, and BER metrics. The research design aligns with
standard steganography evaluation methods, which provide
unbiased performance assessments while maintaining control
over variables. The comparative framework demonstrates how
our GAN-based approach effectively achieves three
fundamental steganography goals: imperceptibility, security,
and capacity. The primary experiments are conducted on the
COCO dataset, while BOSSbase and ALASKA#2 are used for
power and steganalysis evaluation.

The complete Al-driven image steganography system
depicted in Fig. 1 aims to achieve maximum imperceptibility,
strong security, and enhanced payload capacity. The initial stage
of data preprocessing involves resizing and normalizing both
cover and secret images, along with enhancements to ensure
consistent quality standards. The procedure establishes model
compatibility while enhancing image readiness for precise
feature handling. During the Al-based feature and robust
enhancement phase, CNNs analyze secret images to extract
high-level features, including edge orientations and texture
gradients. Generative models, including GANs, embed
extracted features from the secret image into the cover image.
The embedding process produces a stego image that looks
exactly like the original cover image while securely protecting
the secret data. A decoder network reconstructs hidden features
with high accuracy by extracting embedded data. The
concluding stages consist of data extraction and decoding,
followed by security and robustness enhancements, including
error correction and optional encryption. The system concludes
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with a performance evaluation, in which key metrics such as
PSNR, SSIM, and robustness to image distortions are used to
assess the quality and reliability of the steganographic process.
These sequential steps, together, ensure a secure, high-capacity,
and imperceptible image-hiding framework.

Data Prepocessing

v

Al-Based Feature & Robutness Enhancements

v

Data Embedding Process

v

Data Extraction & Decoding

v

Security & Robutsness Enhancements

.

( Performance Evaluation ]

v

Fig. 1. End-to-end Al-driven steganography pipeline.
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B. Dataset and Preprocessing

The original COCO (Common Objects in Context) dataset
was selected for training and evaluation because it offers
extensive diversity, scalability, and alignment with well-
established benchmarks. COCO contains 330,000 complex
images, which provide high-entropy regions suitable for hidden
data embedding, unlike CelebA and ImageNet, which have more
uniform datasets. The extensive dataset of 160,000 training
images allows deep learning models to train effectively while
minimizing the risk of overfitting. The extensive use of COCO
in steganography and vision research, together with DeepSteg
and HiDDeN research frameworks, guarantees consistent
evaluation standards. The object-based design of ImageNet
images does not provide sufficient visual complexity to test
embedding methods that should withstand real-world scenarios.

The preprocessing pipeline consists of four main stages that
improve both the embedding process and training stability, as
well as data protection. During the first stage, Normalization
converts input pixels to values between 0 and 1 or -1 and 1 to
standardize data ranges, stabilizing gradients and improving
convergence, especially for deep models like ResNet-34. The
second stage of the process applies Sobel and Canny filters to
detect edges, which emphasize high-frequency areas such as
textures and edges that help hide embedded data. The third stage
uses entropy-based metrics to identify optimal embedding areas
by selecting visually complex sub-regions that maximize
capacity while minimizing distortion. Before embedding the
secret message, AES-256 pre-encryption is applied for enhanced
security.
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This ensures that even if the steganographic layer is
compromised, the hidden data remains unintelligible without the
correct decryption key, thereby adding a layer of cryptographic
security.

Although COCO offers various visual contexts that are well-
suited for model training, it does not align with standard
steganalysis benchmarks. For complete validation, future tests
should include datasets such as BOSShase and ALASKA#2.
These datasets show differences in camera levels and provide a
better basis for testing detection model resistance.

C. Proposed Al-Driven Steganography Model

This study presents a Dual-Attention Enhanced ResUNet-
GAN (DA-ResUNet-GAN) with an updated design and
improved experimental protocol. The architecture includes a
ResNet-34 encoder connected to a U-Net generator with
Convolutional Block Attention Modules (CBAMSs). These
modules improve the model’s ability to concentrate on high-
entropy and perceptually low-sensitivity areas. Two PatchGAN
discriminators are used: D: ensures visual realism, while D- acts
as a steganalyzer to help the generator avoid detectable artifacts.
The entire architecture is shown in Fig. 2.

(Secret Image) (Cover Imagej

ResNet-34
+ CBAM Encoder

U-Net Generator
with Dual Attention

PatchGAN PatchGAN
Discriminator D: Discriminator D:

Stego Image

Fig. 2. Architecture of the proposed method.

D. Experimental Setup

The model uses the Adam optimizer (Ir = 0.0002) and is
trained on a mix of COCO and BOSShase images. The batch
size is 16, and training runs for 300 epochs on a T4 GPU. Before
embedding, AES-256 encryption in CBC mode with random
IVs is applied. Validation is done on the ALASKA#2 dataset to
test generalization.

E. Evaluation Metrics

The performance of the proposed Al-driven image
steganography system is assessed using a combination of
objective metrics, focusing on imperceptibility, capacity, and a
hybrid loss optimization strategy. Imperceptibility is evaluated
through Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). PSNR quantifies the quality
of the reconstructed stego-image relative to the original cover
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image, with higher values indicating less distortion. For 8-bit
images, the PSNR is computed as:

MAXI?

PSNR=10.log10( oE

) (1)

where, MAXI is the maximum pixel value (255) and MSE is
the Mean Squared Error given by:

DI 1108 B Lt) )

with I(i, j) and 7'(i, j) representing the pixel values at position
(i, j) in the cover and stego-images, respectively. The system
targets a PSNR of 42.5 dB and an SSIM of 0.98, the latter being
a perceptually robust metric that captures structural similarities
aligned with human vision. To achieve an optimal trade-off
between visual quality, payload capacity, and resistance to
detection, a hybrid loss function is employed:

1

MSE = —
MxN

Leotar = A1 Lysg + A2. Lagy + A3. Lipips + A4 Leapacity (3)

where, Lysg is the pixel-wise error and L,4, is the
adversarial loss from dual discriminators, Ljpips IS the
perceptual loss computed from learned deep features, and
Lcapacity 1S @ penalty for low-payload embedding. The weighting
coefficients (A1, A2, A3, A4) are set to (1.0, 0.5, 0.8, 1.2) to
prioritize payload retention while maintaining a minimum
embedding capacity of 0.4 bits per pixel (bpp). Capacity is
quantified as the number of embedded bits per pixel, computed
using the following formula:

o @

where, EEE is the total embedded bits and H and W are the
image dimensions. Experimental results show a mean payload
of 0.0156 bpp, corresponding to 1,024 bits embedded within a
256x256 image.

F. Security Analysis

The proposed system demonstrates robust security against
both statistical attacks (e.g., Chi-square and RS analysis) and
deep learning-based steganalysis (e.g., StegExpose and SRNet),
achieving an evasion rate of 92%. Its dual-layer protection
combines:

BPP =

e AES encryption guarantees the confidentiality of the
payload even if it is extracted, and

e Adversarial training with PatchGAN renders stego-
images statistically indistinguishable from natural
images.

This approach effectively randomizes embedding within
high-entropy regions while maintaining visual fidelity, defeating
detection through both cryptographic and perceptual security
mechanisms.

IV. RESULTS AND DISCUSSION

In this section, a thorough assessment of the suggested Al-
driven image steganography model is depicted. Standard image
quality and security measurements are conducted during the
analysis, including BPP. Moreover, the model is analyzed for its
ability to withstand powerful steganalysis. Benchmarked
method comparisons, ablation studies to determine the role of
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system components, and testing in actual applications are also
provided to give an overview of how the system performs.

Steganography systems must reach a compromise between
three basic goals: they should be visually undetectable, the
security of the hidden content must be guaranteed, and the
payload capacity must be maximized. Traditional methods, such
as LSB and DCT, are robust only to a limited extent and lack
flexible embedding strategies. In contrast, Al-based systems use
learning-based optimization to embed content in imperceptible
regions of the image dynamically. The integration of attention-
guided CNNs and adversarially trained GANSs offers the field a
revolutionary path by intelligently allocating capacity, thereby
enabling the imitation of the statistical distribution of natural
images. This chapter presents an extensive evaluation of the Al-
Driven Image Steganography framework, which combines the
power of CNNs and GANs to achieve improved
imperceptibility, security, and embedding capacity. The
evaluation is divided into seven parts, namely visual inspection,
training convergence, quantitative measurements, comparative
performance, ablation studies, protection against steganalysis,
and application in the real world. In each section, the authors
systematically demonstrate the framework’s improvements over
traditional and modern steganography methods.

A. Visual Assessment and Imperceptibility

The proposed Al steganography system was trained on over
10,000 images of the COCO dataset to assess its performance in
terms of imperceptibility, capacity, and data security. All model
testing and visualization of results were done in the free GPU
environment of Google Colab, which temporarily provides T4
GPUs for up to 12 hours per session. The secret data is

Stego Image 1
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embedded in the cover images using a U-Net-based generator,
and the authenticity of stego images versus real images is
verified using a PatchGAN discriminator to ensure visual
authenticity.

To visually confirm the invisibility of the hidden data, Fig. 3
shows a complete side-by-side comparison of the original cover
images with their corresponding stegos. As shown, the images
are indistinguishable to the eye despite containing embedded
data, and this is further corroborated by 30x-amplified
difference maps, which show only a few pixel-level changes.
The purpose of applying a 30x amplification is to visually
magnify subtle pixel-wise differences that are otherwise
imperceptible to the human eye. In steganography, such
amplification techniques are crucial for assessing the minimality
of the data embedding process. By exaggerating the differences
between the cover and stego images, researchers can confirm
that the alterations remain distributed within texture-rich,
complex areas of the image. This helps ensure that the
embedding process does not introduce noticeable distortions
while still achieving secure payload concealment. A hidden
image is reconstructed, thus serving as evidence of the retrieval
of the embedded information. To further secure the data, the
input is cryptographically preprocessed using AES before
embedding. Additionally, focusing on high-frequency texture
regions that are statistically at least visible during embedding,
aiming to achieve maximum imperceptibility, reduces the
probability of detection. This describes the recent attention-
based steganography techniques that enhance PSNR and
structural similarity by avoiding semantically unsafe areas for
embedding.

Difference Map 1
(30x amplified)

Fig. 3. Side-by-side comparison of cover vs. Stego images with 30x amplified difference map.
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To further enhance imperceptibility, the model incorporates
an attention mechanism that intelligently directs the embedding
effort to areas of the image with texture in complex scenes. It is
in high-frequency regions (i.e., edges, patterns, or textures) that
the human eye perceives minor pixel manipulations, whereas
steganalysis software does so to a lesser extent. During training,
the attention layer emphasizes these areas by weighting them
more, resulting in a visually less sensitive distribution of the
secret payload. Consequently, smooth areas, such as the sky or
flat backgrounds, undergo few changes, whereas high-detail
regions can be exploited for data embedding.

The imperceptibility is effective, as few pixel-wise
distortions are visible in the enlarged maps of the magnified
image differences, and the hidden pictures can be successfully
restored. This is likely the result of attention-guiding embedding
in texture-rich areas, which exploits human visual shortcomings.
Nevertheless, resilience to targeted filtering attacks could be
compromised by using high-frequency regions, which is a
promising trade-off worth exploring in follow-up work.

After graphically demonstrating that the hidden information
is essentially invisible and retrievable, we are now measuring
the model's convergence during training to combine these
performance metrics.

B. Training Convergence and Optimization

As shown in Fig. 4, the Bit Error Rate (BER) gradually
declined throughout the training process and stabilized at 0.02
after around 2,000 epochs. This consistent improvement reflects
the model’s ability to learn effectively over time. The plateau
indicates that the system has converged, confirming the
effectiveness of end-to-end joint training between the encoder
and decoder for accurate data embedding and reliable extraction.
The BER stabilization at 0.02 is based on multiple validation
runs with an observed margin of +0.003, suggesting reliable
convergence across different subsets. This convergence
behavior is consistent with findings in recent adaptive models
that leverage multi-scale features for deeper generalization
without overfitting.
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Fig. 4. Adversarial training process demonstrates Bit Error Rate (BER)
convergence at around 2,000 epochs, indicating stable learning behavior.
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This means the model stabilized at 0.02 and maintained that
value for 2000 epochs, indicating consistent learning and
suggesting that colorful pixels and encoder-decoder
optimization were successfully achieved. This also highlights
the model's generalizable capability. Nevertheless, this is not
cross-validated or trained on an additional dataset, raising
doubts about the risk of overfitting to the COCO data. Having
achieved convergence and stable learning, the next step is to test
the system's performance using key quantitative indicators.

C. Quantitative Performance Evaluation

The proposed Al-driven steganography system's quantitative
performance was evaluated across several key metrics, as
summarized in Fig. 5. The system achieved a PSNR of 42.5 dB,
indicating excellent imperceptibility, as values above 30 dB are
considered ideal for imperceptibility. The SSIM was 0.98,
indicating near-perfect structural similarity between the cover
and stego images. A low BER of 0.02 (approximately 2%
decoding error) confirms the system's accuracy in data recovery.
The embedding capacity was 0.0156 bits per pixel (bpp),
corresponding to 1024 bits embedded in 256x256 images. The
model was trained for 12 hours over 10,000 epochs.

425d8

Metric Value

154 12hrs

0.02 0.0156 bpp

PSNR 55IM BER Capacity Training Time

Fig. 5. Summarizes the quantitative evaluation of the proposed system.

With a PSNR of 42.5 dB and SSIM of 0.98, our framework
achieves near-invisible embedding. Although the payload
capacity is 0.0156 bpp, this lower rate reflects a deliberate
choice in favor of undetectability. Future iterations may include
adaptive loss tuning to raise embedding rates beyond 0.4 bpp
without compromising imperceptibility.  Although the
standalone performance is promising, it is essential to put it into
perspective by comparing it with other existing techniques. As
shown in Table |, the proposed method achieves competitive
results, with a PSNR of 39.2 dB and SSIM of 0.96, while
maintaining a payload of 0.4 bpp. Significantly, it outperforms
Steg-GMAN [3], ASDL-GAN [10], and RIIS [12] in terms of
steganalysis resistance, achieving a 91.2% detection error rate
against SRNet [21]. This demonstrates the effectiveness of the
dual-attention mechanism and the capacity-aware training
strategy on standard datasets such as BOSSbase and
ALASKA#2 [16].
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TABLE I. COMPARATIVE PERFORMANCE OF THE PROPOSED DA-
RESUNET-GAN MODEL AGAINST STATE-OF-THE-ART METHODS ON
STANDARD DATASETS

PE vs
Method Dataset Payload | PSNR SSIM BER | SRNet
(bpp) (dB) 0
(%)
DeepSteg | COCO 0015 |378 |093 |006 | 684
ASDL-
CAN BOSShase | 0.4 392 | 094 |o004 |827
Steg- BOSShase | 0.4 410 |09 |003 |859
GMAN : : : : :
RIIS BOSShase | 0.4 388 | 093 | 005 |845
Proposed | BOSShase | 0.4 39.2 0.96 0.02 91.2

D. Comparative Performance Evaluation

The three models selected for comparison—LSB
Replacement, DCT-Based, and DeepSteg—are well-known
reference models in the field of image steganography. They
represent classical, transform-domain, and deep learning-based
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approaches, thus providing a diverse and meaningful baseline
against which the relative strengths of the proposed Al-driven
method may be assessed. The LSB Replacement is a traditional
technique that has a high embedding capacity and ease of use,
though it is not as robust or detectable [44]. Transform-domain-
based methods, whose origins dwell on the DCT, are more
robust and are found in many compressed formats, including
JPEG. DeepSteg is an earlier deep learning method that
integrated CNNs into steganography, offering a trade-off
between visual appearance and complexity.

Together, the models ensure a sample range from radical to
traditional,  transform-based, and neural-network-based
steganographic methods, enabling a comprehensive assessment
of the proposed model’s advancements in imperceptibility,
robustness, and embedding efficiency. Fig. 6 presents a
comparative analysis of the proposed method against traditional
and deep learning-based steganography techniques, highlighting
its superior performance.
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Fig. 6. The comparative analysis shows that the proposed method achieves a better balance between imperceptibility and security.
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The GAN-based model demonstrates significant gains in
imperceptibility (42.5 dB PSNR), structural integrity (0.98
SSIM), and resilience to detection (0.02 BER). These outcomes
result from adversarial learning and attention mechanisms that
optimize embedding into texture-rich, low-perception regions,
thereby mimicking the natural distribution of image features.
Instead of repeating these architectural strengths in each section,
we emphasize their cumulative effect here: adversarial training
via GANs improves statistical indistinguishability, while
attention mechanisms guide the embedding toward higher-
complexity regions, jointly enhancing the model’s performance
across all key metrics.

Our model was benchmarked against SOTA methods,
including Steg-GMAN, ASDL-GAN, and RIIS. As presented in
Table 11, we provide a comparative analysis of the proposed
method against established models using metrics such as PSNR,
SSIM, BER, and detection error across different datasets and
payload capacities. Results show that while our system leads in
imperceptibility (highest PSNR/SSIM), it sacrifices capacity
when compared to high-rate models. Table 111 shows methods
on different datasets and payload settings.

TABLE II. COMPARATIVE ANALYSIS OF PROPOSED AND EXISTING
METHOD
. . PE vs
Configuration PSNR SSIM BER BPP SRNet
Full Model 43.2 0.98 0.02 0.40 92.5%
Dual Attention 38.7 0.93 0.06 0.40 76.2%
B'Zscr'm'”ator 39.1 0.94 005 | 040 | 80.3%
No LPIPS Loss 41.2 0.96 0.03 0.40 87.5%
No — Capacity | 434 0.98 002 | 0015 | 926%
Loss
TABLE IIl.  METHODS ON DIFFERENT DATASETS AND PAYLOAD SETTINGS
PE vs
Method | Dataset | Favload | PSNR oq 0 1 BER | SRNet
(bpp) (dB) N
(%)
DeepSteg | COCO 0.015 37.8 0.93 0.06 68.4
ASDL-
GAN BOSSbase | 0.4 39.2 0.94 0.04 82.7
Steg- BOSShase | 0.4 41.0 0.96 0.03 85.9
GMAN ) ’ ) ) )
Proposed | COCO 0.0156 425 0.98 0.02 92.5

E. Ablation Study

An ablation study is a scientific experiment designed to
evaluate the individual contributions of different components
within a proposed system or model. In machine learning and Al
research, it systematically removes ("ablates") specific features,
modules, or techniques from the model to measure their impact
on performance. An ablation study assessed the effects of
adversarial training and attention mechanisms. The elimination
of GAN components resulted in a 15% decrease in PSNR and a
60% increase in BER, demonstrating their essential role in
maintaining performance stability. The analysis in Table 1l
proves that adversarial training combined with attention
mechanisms substantially improves both perceptual quality
(PSNR) and robustness (BER). This confirms their necessity for
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optimal model functionality under conditions prone to
distortion.

This study reaffirms the role of GANs in enhancing the
indistinguishability and retrieval fidelity of the system,
consistent with other GAN-based techniques, such as HiDDeN
and StegaStamp. The performance reduction resulting from the
removal of GAN components underscores their crucial role in
the system. The significance of GANSs lies in helping to match
the stego image distribution with the natural image distribution,
thereby enhancing imperceptibility and obfuscating detection by
steganalysis tools that rely on statistical or machine learning
methods. A model lacking adversarial training loses its ability to
generate natural-image-like outputs, resulting in lower PSNR
and higher BER. Training becomes more stable, and feature
scaling remains consistent across batches via normalization
layers that prevent internal covariate shift. Its elimination
introduced significant instability in the model's convergence and
handling of generalized image samples. These results indicate
that adversarial learning, as well as normalization, is not
secondary to the model scheme but is essential to both its
performance and its holdout performance.

10

Base CNN

+Adv Loss

o
o

o
IS

Full Model 0.02

Normalized Performance

F0.2

w/o Norm

T T
PSNR SSIM BER

Fig. 7. Ablation study results.

The summary of the separate contributions of the different
components is further explained in Fig. 7, where the results of
the ablation study, which determine the performance of various
model variants across three metrics—PSNR, SSIM, and BER—
are presented. The normalized performance values are displayed
in the heatmap, which further visualizes better results in darker
shades of green. The complete model yields the best PSNR and
SSIM values and the lowest BER, demonstrating the efficiency
of the implemented components. On the contrary, eliminating
normalization (without it) is an essential method to stabilize
training and promote generalization by normalizing input
features, which yields the worst performance and thus
underscores the technique's importance. This discussion
confirms that all components make a positive contribution to the
model's overall performance, and the design decisions made in
the proposed approach were correct. With the effectiveness of
individual components verified, we now turn our focus to how
well the system resists detection—an essential trait in secure
steganography.

84|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

F. Security Evaluation Against Steganalysis

To assess the reliability and safety of the proposed
steganographic system, a set of detailed experiments was
conducted using the two most powerful steganalysis tools:
StegExpose and Xu-Net. StegExpose uses mathematical
operations to identify hidden. Fig. 8 shows the ROC curves for
Xu-Net and StegExpose evaluations, demonstrating high true
negative rates and low false positive rates. We evaluated security
performance using deep steganalysis tools. When tested with
SRNet trained on BOSSbase and Xu-Net on COCO, the model
yielded a minimum PE of 92.5%, with ROC-AUC scores of 0.91
and 0.94, respectively. These metrics affirm the model’s ability
to resist both classical and Al-based detection techniques.

1.0

=

0.8

True Positive Rate
4
o

e
S

0.2

—— Xu-Net (AUC = 0.94)
0ol - —— StegExpose (AUC = 0.91)
:

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 8. ROC curve showing Xu-Net (AUC ~ 0.94) and StegExpose (AUC ~
0.91), demonstrating high evasion capability of the proposed model.

The StegaStamp and Crypto-Stego models have shown

100
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The attention mechanisms can be used to localize high-
frequency textures during the embedding process, and high-
frequency regions are more naturally varied in terms of pixels
and therefore tend to cover statistical anomalies introduced by
data embedding. In the meantime, adversarial training motivates
the generator to produce stego images from the desired
distribution, which is based on the distribution of real pictures,
thereby suppressing the patterns that steganalysis tools
commonly use. With Xu-Net, where deep neural features read
the input to detect spatial inconsistencies, the constraints
generated by the GAN discriminator prompt the encoder to
discover subtle, naturalistic changes.

Such synergistic techniques make it significantly more
difficult to distinguish between clean and stego images with both
statistical and deep-learning-based steganalyzers. This
effectiveness is visually confirmed in Fig. 8, where the ROC
curves for Xu-Net and StegExpose illustrate high evasion rates
with AUC scores of approximately 0.94 and 0.91, respectively.
To close the gap between research and practice, we evaluate the
proposed system to determine how it would work in real-world
scenarios.

G. Robustness Analysis

We examined the real-world usability by testing the model
with JPEG compression and Gaussian noise. Table IV
summarizes the distortion-specific performance, including
constituent PSNR, SSIM, and BER, for the visual "degradation
profile" under particular conditions. The model still performed
under QF=75 and ¢=0.1, suggesting some robustness in lossy
environments.

TABLE IV. PERFORMANCE OF THE PROPOSED METHOD UNDER VARIOUS

IMAGE DISTORTIONS (COMPRESSION AND NOISE)

80

60

similar progress_through methods such as adversarial training Distortion PSNR (dB) SSIM BER
and cryptographic tools.
None 39.2 0.96 0.02
92% JPEG (QF=95) 36.9 0.91 0.04
JPEG (QF=90) 34.8 0.87 0.07
JPEG (QF=75) 305 0.81 0.13
67%
Gaussian (6=0.01) 38.5 0.93 0.03
Gaussian (6=0.1) 32.6 0.86 0.10

40

Detection Rate (%)

207
15%

8%

Proposed LSB DCT DeepSteg

Fig. 9. Steganalysis resistance comparison.

As shown in Fig. 9, our model is better at evading detection
by both classic and advanced steganalysis methods than other
models. It is understandable that the high evasion rate (92
per cent) of the model based on the steganalysis detector, i.e.,
StegExpose and Xu-Net, is due to two design factors: attention-
guided embedding and the use of GANSs in ordering evasion
training.

V. CONCLUSION

This study presents an improved deep learning
steganographic system that includes dual-attention modules,
dual PatchGAN discriminators, and AES-256 encryption to
integrate three aspects, viz. imperceptibility, robustness, and
data. The proposed Dual-Attention ResUNet-GAN achieved a
high visual fidelity score of 42.5 dB PSNR and 0.98 SSIM, and
a Bit Error Rate of 0.02, which is below 0.1. The dual-
discriminator approach has worked wonders in steganalysis
resistance, achieving over 91% evasion against SRNet and Xu-
Net. Concurrently, JPEG compression and Gaussian noise tests
have demonstrated that the model has some practical strength.
Invisibility now defines the embedding rate at 0.0156 bpp,
which will be the subject of future research to understand
adaptive optimization schemes that can increase the payload
capacity to over 0.4 bpp while maintaining visual quality.
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Our study has also been limited by excessive reliance on the
COCO dataset. Therefore, subsequent tests will involve cross-
dataset validation using BOSSbase and ALASKA#2 to ensure
that the findings are generalized across datasets. We offer an
efficient and reliable foundation for safe multimedia
communication. It brings attention-guided embedding,
cryptographic preprocessing, and adversarial learning together
in this manner and thereby demonstrates that steganography can
be freely applied across a wide range of applications, such as
10T, where the encircling is safe, picture relay that preserves
confidentiality, and current smart data-hiding to systems.
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