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Abstract—Secure and high-capacity data concealment has 

already become a requirement of modern multimedia 

communication, particularly with the enhanced protection and 

privacy levels of concern. The framework introduced in this 

study—the improved Dual-Attention ResUNet-GAN—helps 

optimize the trade-off among imperceptibility, robustness, and 

payload capacity in the field of image steganography. The two 

PatchGAN discriminators used in the model were a visual realism 

discriminator and a learned steganalyzer. Two encoders based on 

the ResNet-34 using CBAM-based dual attention are to be used. 

Just before the data is embedded, AES-256 encryption in CBC 

mode is employed to provide cryptographic confidentiality. 

Experiments on the COCO, BOSSbase, and ALASKA2 datasets 

are conducted to evaluate the proposed method's performance, 

yielding PSNR=42.5 dB, SSIM=0.98, BER=0.02, and high 

resistance to steganalysis (PE=91.2% vs. SRNet). Embedding is 

also changed in the proposed framework to high-entropy areas, 

thereby allowing the application of both conservative payloads 

(0.0156 bpp) and capacity-driven configurations (0.4 bpp) without 

affecting image quality. The findings have validated that the 

proposed system fits well with secure communication and 

intelligent data-hiding applications in real-world scenarios. 
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I. INTRODUCTION 

Steganography comes from the Greek words steganos 
(covered) and graphia (writing). It involves the art and science 
of hiding information within other seemingly harmless media, 
disguising the act of communication [1] [2]. Cryptography 
disguises the contents of a message, while steganography hides 
that a message was sent at all. For this reason, it is an important 
technology to use when silence is valued, such as in political 
resistance, military operations, and Internet privacy [3]. 
Historical steganography practices included transporting or 
storing written messages on wax tablets and tattooing them on 
the scalps of messengers. The true message would only be 
revealed after the hair grew back [4]. Today, steganography has 
evolved from these basic physical methods to more complex 
digital forms. This shift has come with the growing use of 
multimedia content across communication platforms [5]. 
Among digital media, images are the primary carriers of 

steganography. This is because they have a natural redundancy 
and can tolerate small changes without losing visual quality [6]. 

In traditional methods, techniques such as Least Significant 
Bit (LSB) substitution, the Discrete Cosine Transform (DCT), 
and the Discrete Wavelet Transform (DWT) have been widely 
used to hide secret data within image pixels [7]. While they are 
somewhat effective, these methods can be vulnerable, especially 
to statistical and compression-based steganalysis, often putting 
the hidden content at risk [8]. These limitations have led to a 
shift towards more adaptive and intelligent systems, made 
possible by rapid advancements in Artificial Intelligence (AI). 
The use of AI, especially deep learning, has changed image 
steganography by allowing data-driven approaches that learn 
from image characteristics and distribution patterns [9]. 

Convolutional Neural Networks (CNNs) have demonstrated 
strong capabilities for extracting spatial features and embedding 
information within complex, visually rich regions, which is 
beneficial for enhancing imperceptibility [10]. Generative 
Adversarial Networks (GANs) are another example of this — 
GANs contain both a generator and a discriminator that fight 
against each other. This is even worse for steganographic 
features, as it provides an opportunity to imitate a given model 
statute, thereby significantly improving both undetectability and 
robustness against steganalysis [11]. Autoencoders and other 
generative models have also been used for strong encoding and 
decoding, often compressing secret data to maximize capacity 
while maintaining visual quality [12]. 

AI-based image steganography greatly increases security. 
Deep models can learn complex connections and meanings 
between different parts of an image. They mimic the statistical 
distribution of natural images better than traditional algorithms 
[13]. This reduces the chance of detection by advanced 
steganalysis tools. Recent research has investigated using 
attention mechanisms that prioritize less noticeable areas of an 
image for embedding sensitive data [14]. Additionally, 
perceptual loss functions, inspired by human vision, help 
maintain structural integrity while embedding data. This makes 
stego-images visually like cover images [15]. 

To bolster security, AI-based steganography increasingly 
combines with cryptographic techniques like the Advanced 
Encryption Standard (AES). These hybrid methods conceal not 
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only the existence of information but also protect its content 
from unauthorized access, providing dual-layer security [16]. 
Capacity—the third key aspect of effective steganography—is 
also greatly improved by AI. By using multi-scale learning and 
hierarchical networks, modern models can adjust embedding 
density based on image complexity. This helps optimize payload 
without causing visual distortions [17]. End-to-end deep 
learning models have led to the development of an encoder-
decoder architecture that enables simultaneous optimization of 
the embedding and extraction processes [18]. GAN-based 
frameworks enhance this by adversarially training the model to 
improve its resistance to steganalytic attacks. Furthermore, 
reinforcement learning methods have been used to select the best 
embedding strategies based on environmental feedback. This is 
a steganographic process that fits specifically to inductive 
scenarios [19] [20]. New fields also include federated learning 
and edge AI. Methods such as these not only train models across 
decentralized devices; they also ensure data privacy by not 
combining raw data. Such improvements play a significant role 
in applications such as the Internet of Things (IoT), which 
demand very lightweight, highly secure, and high-capacity data 
transmission [21]. 

GAN-based and attention-driven steganography have made 
significant improvements, but these models still face several 
challenges. For example, most of these techniques, such as 
DeepSteg [22], Steg-GMAN [23], and HiiT [26], have focused 
on either imperceptibility and/or robustness, but not on 
optimizing both parameters simultaneously while maintaining a 
competitive payload capacity. The attention processes used in 
certain recent models aid feature selection; however, they do not 
introduce entropy-aware embedding, leading to unnecessary 
modulations in perceptually sensitive areas [28]. In addition, 
minimal systems have been established to support cryptographic 
security during the steganography process; thus, the hidden data 
is vulnerable to exposure if extracted. These deficiencies suggest 
the need to have a steganographic mechanism that is adaptable, 
security-conscious, and at the same time capacity-balanced. 

We provide the following contributions in this study: 

 A Dual-Attention ResUNet-GAN model, which can 
learn to give CBAM-based spatial and channel attention 
to dynamically embed information in regions with high 
entropy and low perceptual sensitivity. 

 An adversarial learning method based on two 
discriminators, with one of them to guarantee the natural 
visual quality, and the other one, which serves as a 
steganalyzing learning model, removes the easily 
detectable artifacts. 

 A hybrid security pipeline that involves the use of AES-
256 encryption and deep adversarial embedding to 
ensure that the data is more secretive and less evident. 

 A proper test of robustness has been performed that 
incorporates JPEG compression, Gaussian noise, and 
cross-dataset testing (COCO, BOSSbase, ALASKA#2), 
and it has been demonstrated that the proposed approach 
has superior imperceptibility and security than Steg-
GMAN, ASDL-GAN, and RIIS. 

The rest of the study is organized as follows: Section II 
presents a review of related research. Section III describes the 
methodology; Section IV presents and discusses the results; and 
Section V concludes the study and provides a few possible 
future directions. 

II. LITERATURE REVIEW 

Image steganography involves hiding information. The field 
of AI-driven image steganography has made significant 
progress, moving from traditional least-significant-bit (LSB) 
methods to advanced neural architectures. Early techniques such 
as DeepSteg [22] were among the first to use Generative 
Adversarial Networks (GANs) for steganography. They 
employed adversarial learning to fool discriminators while 
hiding secret data. Later developments, such as Steg-GMAN 
[23], included multiple discriminators and a learned 
steganalyzer to improve detection limits. RIIS [24] aimed for 
strength by using reversible information hiding and invertible 
neural networks. More recently, transformer-based models such 
as TransStego [25] and HiiT [26] have shown promising results 
by leveraging global self-attention and modeling long-range 
connections. HiiT uses inception-style transformer modules that 
improve spatial embedding accuracy and help with payload 
recovery. These models utilize attention mechanisms that 
perform well across different image areas and resolutions. 
Attention modules, such as the Convolutional Block Attention 
Module (CBAM) [27], have improved embedding by helping 
the model focus on less noticeable areas. Meanwhile, hybrid loss 
functions now include pixel-wise, perceptual, adversarial, and 
capacity-penalizing terms [28] [29]. This offers better control 
over the balance between invisibility and capacity. 

On the defense side, strong steganalysis networks such as 
SRNet [30], Yedroudj-Net [31], and Xu-Net [32] have become 
standards for detection. This has pushed researchers to develop 
embedding techniques that can withstand more effective 
classifiers. Evaluation frameworks such as ALASKA#2 [33] 
and BOSSbase [34] are often used to test these systems under 
different conditions and with various source mismatches. 
Further studies have proposed robustness-aware architectures, 
such as ISGAN [35] and EAGAN [36], that improve resilience 
against JPEG compression and other image transformations. 
Some researchers have investigated dual-domain hiding 
techniques [37], wavelet-guided embeddings [38], and 
distortion-tolerant optimization frameworks [39]. Additionally, 
methods for robust payload extraction and distribution that use 
entropy maps [40], frequency filters [41], and feature fusion [42] 
are becoming more popular. Recent work, such as FSGAN [43] 
and StegTransformer [44], aims to combine high embedding 
quality, security, and robustness, underscoring the growing need 
for models that balance all three aspects of modern 
steganography. The literature shows a shift toward integrated 
deep learning solutions that optimize invisibility, strength, and 
payload through attention-guided and transformer-enhanced 
frameworks. Unlike transformer-heavy designs like HiiT, our 
model keeps lower compute requirements while balancing 
perceptual loss and capacity through dual attention and 
adversarial reinforcement. 

Most existing GAN-based steganography methods, such as 
DeepSteg, Steg-GMAN, and RIIS, although focused on 
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imperceptibility, fail to balance security and capacity 
simultaneously. The attention mechanisms (HiiT, TransStego) 
improve the utilization of global features, yet they also increase 
the computational burden and fail to provide localized entropy 
embedding. Additionally, the prior research did not incorporate 
cryptographic layers into the embedding pipeline, which limits 
its use in high-security settings. These drawbacks, among others, 
led to our dual-attention plan, which includes hybrid AES-GAN 
security and dual-discriminator optimization as a direct 
response. 

III. METHODOLOGY 

This section outlines the research methodology for 
developing, training, and evaluating the proposed AI-driven 
image steganography system. The section starts with the 
research design and experimental controls, the sources of the 
datasets, and image preprocessing. It then outlines the deep 
learning architecture and its components, followed by the 
evaluation metrics and test protocols. The main goal is to 
determine whether the model performs well in real-world 
conditions, focusing on its accuracy while highlighting trade-
offs between imperceptibility and capacity. 

A. Research Design 

This study conducts a quantitative experimental assessment 
of the proposed AI-based steganography framework using 
controlled comparison groups. The research evaluates three 
baseline methods against the proposed approach through direct 
comparisons with traditional LSB replacement and DCT-based 
methods, as well as the DeepSteg neural network. Each method 
is evaluated under identical conditions using the COCO dataset 
at 512×512 resolution and a 0.0156 bpp payload, alongside 
PSNR, SSIM, and BER metrics. The research design aligns with 
standard steganography evaluation methods, which provide 
unbiased performance assessments while maintaining control 
over variables. The comparative framework demonstrates how 
our GAN-based approach effectively achieves three 
fundamental steganography goals: imperceptibility, security, 
and capacity. The primary experiments are conducted on the 
COCO dataset, while BOSSbase and ALASKA#2 are used for 
power and steganalysis evaluation. 

The complete AI-driven image steganography system 
depicted in Fig. 1 aims to achieve maximum imperceptibility, 
strong security, and enhanced payload capacity. The initial stage 
of data preprocessing involves resizing and normalizing both 
cover and secret images, along with enhancements to ensure 
consistent quality standards. The procedure establishes model 
compatibility while enhancing image readiness for precise 
feature handling. During the AI-based feature and robust 
enhancement phase, CNNs analyze secret images to extract 
high-level features, including edge orientations and texture 
gradients. Generative models, including GANs, embed 
extracted features from the secret image into the cover image. 
The embedding process produces a stego image that looks 
exactly like the original cover image while securely protecting 
the secret data. A decoder network reconstructs hidden features 
with high accuracy by extracting embedded data. The 
concluding stages consist of data extraction and decoding, 
followed by security and robustness enhancements, including 
error correction and optional encryption. The system concludes 

with a performance evaluation, in which key metrics such as 
PSNR, SSIM, and robustness to image distortions are used to 
assess the quality and reliability of the steganographic process. 
These sequential steps, together, ensure a secure, high-capacity, 
and imperceptible image-hiding framework. 

 
Fig. 1. End-to-end AI-driven steganography pipeline. 

B. Dataset and Preprocessing 

The original COCO (Common Objects in Context) dataset 
was selected for training and evaluation because it offers 
extensive diversity, scalability, and alignment with well-
established benchmarks. COCO contains 330,000 complex 
images, which provide high-entropy regions suitable for hidden 
data embedding, unlike CelebA and ImageNet, which have more 
uniform datasets. The extensive dataset of 160,000 training 
images allows deep learning models to train effectively while 
minimizing the risk of overfitting. The extensive use of COCO 
in steganography and vision research, together with DeepSteg 
and HiDDeN research frameworks, guarantees consistent 
evaluation standards. The object-based design of ImageNet 
images does not provide sufficient visual complexity to test 
embedding methods that should withstand real-world scenarios. 

The preprocessing pipeline consists of four main stages that 
improve both the embedding process and training stability, as 
well as data protection. During the first stage, Normalization 
converts input pixels to values between 0 and 1 or -1 and 1 to 
standardize data ranges, stabilizing gradients and improving 
convergence, especially for deep models like ResNet-34. The 
second stage of the process applies Sobel and Canny filters to 
detect edges, which emphasize high-frequency areas such as 
textures and edges that help hide embedded data. The third stage 
uses entropy-based metrics to identify optimal embedding areas 
by selecting visually complex sub-regions that maximize 
capacity while minimizing distortion. Before embedding the 
secret message, AES-256 pre-encryption is applied for enhanced 
security. 
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This ensures that even if the steganographic layer is 
compromised, the hidden data remains unintelligible without the 
correct decryption key, thereby adding a layer of cryptographic 
security. 

Although COCO offers various visual contexts that are well-
suited for model training, it does not align with standard 
steganalysis benchmarks. For complete validation, future tests 
should include datasets such as BOSSbase and ALASKA#2. 
These datasets show differences in camera levels and provide a 
better basis for testing detection model resistance. 

C. Proposed AI-Driven Steganography Model 

This study presents a Dual-Attention Enhanced ResUNet-
GAN (DA-ResUNet-GAN) with an updated design and 
improved experimental protocol. The architecture includes a 
ResNet-34 encoder connected to a U-Net generator with 
Convolutional Block Attention Modules (CBAMs). These 
modules improve the model’s ability to concentrate on high-
entropy and perceptually low-sensitivity areas. Two PatchGAN 
discriminators are used: D₁ ensures visual realism, while D₂ acts 
as a steganalyzer to help the generator avoid detectable artifacts. 
The entire architecture is shown in Fig. 2. 

 
Fig. 2. Architecture of the proposed method. 

D. Experimental Setup 

The model uses the Adam optimizer (lr = 0.0002) and is 
trained on a mix of COCO and BOSSbase images. The batch 
size is 16, and training runs for 300 epochs on a T4 GPU. Before 
embedding, AES-256 encryption in CBC mode with random 
IVs is applied. Validation is done on the ALASKA#2 dataset to 
test generalization. 

E. Evaluation Metrics 

The performance of the proposed AI-driven image 
steganography system is assessed using a combination of 
objective metrics, focusing on imperceptibility, capacity, and a 
hybrid loss optimization strategy. Imperceptibility is evaluated 
through Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM). PSNR quantifies the quality 
of the reconstructed stego-image relative to the original cover 

image, with higher values indicating less distortion. For 8-bit 
images, the PSNR is computed as: 

PSNR=10.log10(
𝑀𝐴𝑋𝐼2

𝑀𝑆𝐸
)     (1) 

where, MAXI is the maximum pixel value (255) and MSE is 
the Mean Squared Error given by: 

𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐼′[𝑖,𝑗]]

2𝑁
𝑗=1

𝑀
𝑖=1            (2) 

with I(i, j) and I′(i, j) representing the pixel values at position 
(i, j) in the cover and stego-images, respectively. The system 
targets a PSNR of 42.5 dB and an SSIM of 0.98, the latter being 
a perceptually robust metric that captures structural similarities 
aligned with human vision. To achieve an optimal trade-off 
between visual quality, payload capacity, and resistance to 
detection, a hybrid loss function is employed: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1. 𝐿𝑀𝑆𝐸 + 𝜆2. 𝐿𝑎𝑑𝑣 + 𝜆3. 𝐿𝐿𝑃𝐼𝑃𝑆 + 𝜆4. 𝐿𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (3) 

where, LMSE  is the pixel–wise error and  Ladv  is the 
adversarial loss from dual discriminators,  LLPIPS  is the 
perceptual loss computed from learned deep features, and 
Lcapacity is a penalty for low-payload embedding. The weighting 

coefficients (λ1, λ2, λ3, λ4) are set to (1.0, 0.5, 0.8, 1.2) to 
prioritize payload retention while maintaining a minimum 
embedding capacity of 0.4 bits per pixel (bpp). Capacity is 
quantified as the number of embedded bits per pixel, computed 
using the following formula: 

𝐵𝑃𝑃 =
𝐸

𝐻×𝑊
     (4) 

where, EEE is the total embedded bits and H and W are the 
image dimensions. Experimental results show a mean payload 
of 0.0156 bpp, corresponding to 1,024 bits embedded within a 
256×256 image. 

F. Security Analysis 

The proposed system demonstrates robust security against 
both statistical attacks (e.g., Chi-square and RS analysis) and 
deep learning-based steganalysis (e.g., StegExpose and SRNet), 
achieving an evasion rate of 92%. Its dual-layer protection 
combines: 

 AES encryption guarantees the confidentiality of the 
payload even if it is extracted, and 

 Adversarial training with PatchGAN renders stego-
images statistically indistinguishable from natural 
images. 

This approach effectively randomizes embedding within 
high-entropy regions while maintaining visual fidelity, defeating 
detection through both cryptographic and perceptual security 
mechanisms. 

IV. RESULTS AND DISCUSSION 

In this section, a thorough assessment of the suggested AI-
driven image steganography model is depicted. Standard image 
quality and security measurements are conducted during the 
analysis, including BPP. Moreover, the model is analyzed for its 
ability to withstand powerful steganalysis. Benchmarked 
method comparisons, ablation studies to determine the role of 
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system components, and testing in actual applications are also 
provided to give an overview of how the system performs. 

Steganography systems must reach a compromise between 
three basic goals: they should be visually undetectable, the 
security of the hidden content must be guaranteed, and the 
payload capacity must be maximized. Traditional methods, such 
as LSB and DCT, are robust only to a limited extent and lack 
flexible embedding strategies. In contrast, AI-based systems use 
learning-based optimization to embed content in imperceptible 
regions of the image dynamically. The integration of attention-
guided CNNs and adversarially trained GANs offers the field a 
revolutionary path by intelligently allocating capacity, thereby 
enabling the imitation of the statistical distribution of natural 
images. This chapter presents an extensive evaluation of the AI-
Driven Image Steganography framework, which combines the 
power of CNNs and GANs to achieve improved 
imperceptibility, security, and embedding capacity. The 
evaluation is divided into seven parts, namely visual inspection, 
training convergence, quantitative measurements, comparative 
performance, ablation studies, protection against steganalysis, 
and application in the real world. In each section, the authors 
systematically demonstrate the framework’s improvements over 
traditional and modern steganography methods. 

A. Visual Assessment and Imperceptibility 

The proposed AI steganography system was trained on over 
10,000 images of the COCO dataset to assess its performance in 
terms of imperceptibility, capacity, and data security. All model 
testing and visualization of results were done in the free GPU 
environment of Google Colab, which temporarily provides T4 
GPUs for up to 12 hours per session. The secret data is 

embedded in the cover images using a U-Net-based generator, 
and the authenticity of stego images versus real images is 
verified using a PatchGAN discriminator to ensure visual 
authenticity. 

To visually confirm the invisibility of the hidden data, Fig. 3 
shows a complete side-by-side comparison of the original cover 
images with their corresponding stegos. As shown, the images 
are indistinguishable to the eye despite containing embedded 
data, and this is further corroborated by 30×-amplified 
difference maps, which show only a few pixel-level changes. 
The purpose of applying a 30× amplification is to visually 
magnify subtle pixel-wise differences that are otherwise 
imperceptible to the human eye. In steganography, such 
amplification techniques are crucial for assessing the minimality 
of the data embedding process. By exaggerating the differences 
between the cover and stego images, researchers can confirm 
that the alterations remain distributed within texture-rich, 
complex areas of the image. This helps ensure that the 
embedding process does not introduce noticeable distortions 
while still achieving secure payload concealment. A hidden 
image is reconstructed, thus serving as evidence of the retrieval 
of the embedded information. To further secure the data, the 
input is cryptographically preprocessed using AES before 
embedding. Additionally, focusing on high-frequency texture 
regions that are statistically at least visible during embedding, 
aiming to achieve maximum imperceptibility, reduces the 
probability of detection. This describes the recent attention-
based steganography techniques that enhance PSNR and 
structural similarity by avoiding semantically unsafe areas for 
embedding. 

 
Fig. 3. Side-by-side comparison of cover vs. Stego images with 30x amplified difference map. 
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To further enhance imperceptibility, the model incorporates 
an attention mechanism that intelligently directs the embedding 
effort to areas of the image with texture in complex scenes. It is 
in high-frequency regions (i.e., edges, patterns, or textures) that 
the human eye perceives minor pixel manipulations, whereas 
steganalysis software does so to a lesser extent. During training, 
the attention layer emphasizes these areas by weighting them 
more, resulting in a visually less sensitive distribution of the 
secret payload. Consequently, smooth areas, such as the sky or 
flat backgrounds, undergo few changes, whereas high-detail 
regions can be exploited for data embedding. 

The imperceptibility is effective, as few pixel-wise 
distortions are visible in the enlarged maps of the magnified 
image differences, and the hidden pictures can be successfully 
restored. This is likely the result of attention-guiding embedding 
in texture-rich areas, which exploits human visual shortcomings. 
Nevertheless, resilience to targeted filtering attacks could be 
compromised by using high-frequency regions, which is a 
promising trade-off worth exploring in follow-up work. 

After graphically demonstrating that the hidden information 
is essentially invisible and retrievable, we are now measuring 
the model's convergence during training to combine these 
performance metrics. 

B. Training Convergence and Optimization 

As shown in Fig. 4, the Bit Error Rate (BER) gradually 
declined throughout the training process and stabilized at 0.02 
after around 2,000 epochs. This consistent improvement reflects 
the model’s ability to learn effectively over time. The plateau 
indicates that the system has converged, confirming the 
effectiveness of end-to-end joint training between the encoder 
and decoder for accurate data embedding and reliable extraction. 
The BER stabilization at 0.02 is based on multiple validation 
runs with an observed margin of ±0.003, suggesting reliable 
convergence across different subsets. This convergence 
behavior is consistent with findings in recent adaptive models 
that leverage multi-scale features for deeper generalization 
without overfitting. 

 
Fig. 4. Adversarial training process demonstrates Bit Error Rate (BER) 

convergence at around 2,000 epochs, indicating stable learning behavior. 

This means the model stabilized at 0.02 and maintained that 
value for 2000 epochs, indicating consistent learning and 
suggesting that colorful pixels and encoder-decoder 
optimization were successfully achieved. This also highlights 
the model's generalizable capability. Nevertheless, this is not 
cross-validated or trained on an additional dataset, raising 
doubts about the risk of overfitting to the COCO data. Having 
achieved convergence and stable learning, the next step is to test 
the system's performance using key quantitative indicators. 

C. Quantitative Performance Evaluation 

The proposed AI-driven steganography system's quantitative 
performance was evaluated across several key metrics, as 
summarized in Fig. 5. The system achieved a PSNR of 42.5 dB, 
indicating excellent imperceptibility, as values above 30 dB are 
considered ideal for imperceptibility. The SSIM was 0.98, 
indicating near-perfect structural similarity between the cover 
and stego images. A low BER of 0.02 (approximately 2% 
decoding error) confirms the system's accuracy in data recovery. 
The embedding capacity was 0.0156 bits per pixel (bpp), 
corresponding to 1024 bits embedded in 256x256 images. The 
model was trained for 12 hours over 10,000 epochs. 

 
Fig. 5. Summarizes the quantitative evaluation of the proposed system. 

With a PSNR of 42.5 dB and SSIM of 0.98, our framework 
achieves near-invisible embedding. Although the payload 
capacity is 0.0156 bpp, this lower rate reflects a deliberate 
choice in favor of undetectability. Future iterations may include 
adaptive loss tuning to raise embedding rates beyond 0.4 bpp 
without compromising imperceptibility. Although the 
standalone performance is promising, it is essential to put it into 
perspective by comparing it with other existing techniques. As 
shown in Table I, the proposed method achieves competitive 
results, with a PSNR of 39.2 dB and SSIM of 0.96, while 
maintaining a payload of 0.4 bpp. Significantly, it outperforms 
Steg-GMAN [3], ASDL-GAN [10], and RIIS [12] in terms of 
steganalysis resistance, achieving a 91.2% detection error rate 
against SRNet [21]. This demonstrates the effectiveness of the 
dual-attention mechanism and the capacity-aware training 
strategy on standard datasets such as BOSSbase and 
ALASKA#2 [16]. 
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TABLE I. COMPARATIVE PERFORMANCE OF THE PROPOSED DA-
RESUNET-GAN MODEL AGAINST STATE-OF-THE-ART METHODS ON 

STANDARD DATASETS 

Method Dataset 
Payload 

(bpp) 

PSNR 

(dB) 
SSIM BER 

PE vs 

SRNet 

(%) 

DeepSteg COCO 0.015 37.8 0.93 0.06 68.4 

ASDL-

GAN 
BOSSbase 0.4 39.2 0.94 0.04 82.7 

Steg-

GMAN 
BOSSbase 0.4 41.0 0.96 0.03 85.9 

RIIS BOSSbase 0.4 38.8 0.93 0.05 84.5 

Proposed BOSSbase 0.4 39.2 0.96 0.02 91.2 

D. Comparative Performance Evaluation 

 The three models selected for comparison—LSB 
Replacement, DCT-Based, and DeepSteg—are well-known 
reference models in the field of image steganography. They 
represent classical, transform-domain, and deep learning-based 

approaches, thus providing a diverse and meaningful baseline 
against which the relative strengths of the proposed AI-driven 
method may be assessed. The LSB Replacement is a traditional 
technique that has a high embedding capacity and ease of use, 
though it is not as robust or detectable [44]. Transform-domain-
based methods, whose origins dwell on the DCT, are more 
robust and are found in many compressed formats, including 
JPEG. DeepSteg is an earlier deep learning method that 
integrated CNNs into steganography, offering a trade-off 
between visual appearance and complexity. 

Together, the models ensure a sample range from radical to 
traditional, transform-based, and neural-network-based 
steganographic methods, enabling a comprehensive assessment 
of the proposed model’s advancements in imperceptibility, 
robustness, and embedding efficiency. Fig. 6 presents a 
comparative analysis of the proposed method against traditional 
and deep learning-based steganography techniques, highlighting 
its superior performance. 

 
Fig. 6. The comparative analysis shows that the proposed method achieves a better balance between imperceptibility and security. 
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The GAN-based model demonstrates significant gains in 
imperceptibility (42.5 dB PSNR), structural integrity (0.98 
SSIM), and resilience to detection (0.02 BER). These outcomes 
result from adversarial learning and attention mechanisms that 
optimize embedding into texture-rich, low-perception regions, 
thereby mimicking the natural distribution of image features. 
Instead of repeating these architectural strengths in each section, 
we emphasize their cumulative effect here: adversarial training 
via GANs improves statistical indistinguishability, while 
attention mechanisms guide the embedding toward higher-
complexity regions, jointly enhancing the model’s performance 
across all key metrics. 

 Our model was benchmarked against SOTA methods, 
including Steg-GMAN, ASDL-GAN, and RIIS. As presented in 
Table II, we provide a comparative analysis of the proposed 
method against established models using metrics such as PSNR, 
SSIM, BER, and detection error across different datasets and 
payload capacities. Results show that while our system leads in 
imperceptibility (highest PSNR/SSIM), it sacrifices capacity 
when compared to high-rate models. Table III shows methods 
on different datasets and payload settings. 

TABLE II. COMPARATIVE ANALYSIS OF PROPOSED AND EXISTING 

METHOD 

Configuration PSNR SSIM BER BPP 
PE vs 

SRNet 

Full Model 43.2 0.98 0.02 0.40 92.5% 

Dual Attention 38.7 0.93 0.06 0.40 76.2% 

Discriminator 

D2 
39.1 0.94 0.05 0.40 80.3% 

No LPIPS Loss 41.2 0.96 0.03 0.40 87.5% 

No Capacity 

Loss 
43.3 0.98 0.02 0.015 92.6% 

TABLE III. METHODS ON DIFFERENT DATASETS AND PAYLOAD SETTINGS 

Method Dataset 
Payload 

(bpp) 

PSNR 

(dB) 
SSIM BER 

PE vs 

SRNet 

(%) 

DeepSteg COCO 0.015 37.8 0.93 0.06 68.4 

ASDL-

GAN 
BOSSbase 0.4 39.2 0.94 0.04 82.7 

Steg-

GMAN 
BOSSbase 0.4 41.0 0.96 0.03 85.9 

Proposed COCO 0.0156 42.5 0.98 0.02 92.5 

E. Ablation Study 

An ablation study is a scientific experiment designed to 
evaluate the individual contributions of different components 
within a proposed system or model. In machine learning and AI 
research, it systematically removes ("ablates") specific features, 
modules, or techniques from the model to measure their impact 
on performance. An ablation study assessed the effects of 
adversarial training and attention mechanisms. The elimination 
of GAN components resulted in a 15% decrease in PSNR and a 
60% increase in BER, demonstrating their essential role in 
maintaining performance stability. The analysis in Table II 
proves that adversarial training combined with attention 
mechanisms substantially improves both perceptual quality 
(PSNR) and robustness (BER). This confirms their necessity for 

optimal model functionality under conditions prone to 
distortion. 

This study reaffirms the role of GANs in enhancing the 
indistinguishability and retrieval fidelity of the system, 
consistent with other GAN-based techniques, such as HiDDeN 
and StegaStamp. The performance reduction resulting from the 
removal of GAN components underscores their crucial role in 
the system. The significance of GANs lies in helping to match 
the stego image distribution with the natural image distribution, 
thereby enhancing imperceptibility and obfuscating detection by 
steganalysis tools that rely on statistical or machine learning 
methods. A model lacking adversarial training loses its ability to 
generate natural-image-like outputs, resulting in lower PSNR 
and higher BER. Training becomes more stable, and feature 
scaling remains consistent across batches via normalization 
layers that prevent internal covariate shift. Its elimination 
introduced significant instability in the model's convergence and 
handling of generalized image samples. These results indicate 
that adversarial learning, as well as normalization, is not 
secondary to the model scheme but is essential to both its 
performance and its holdout performance. 

 
Fig. 7. Ablation study results. 

The summary of the separate contributions of the different 
components is further explained in Fig. 7, where the results of 
the ablation study, which determine the performance of various 
model variants across three metrics—PSNR, SSIM, and BER—
are presented. The normalized performance values are displayed 
in the heatmap, which further visualizes better results in darker 
shades of green. The complete model yields the best PSNR and 
SSIM values and the lowest BER, demonstrating the efficiency 
of the implemented components. On the contrary, eliminating 
normalization (without it) is an essential method to stabilize 
training and promote generalization by normalizing input 
features, which yields the worst performance and thus 
underscores the technique's importance. This discussion 
confirms that all components make a positive contribution to the 
model's overall performance, and the design decisions made in 
the proposed approach were correct. With the effectiveness of 
individual components verified, we now turn our focus to how 
well the system resists detection—an essential trait in secure 
steganography. 
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F.  Security Evaluation Against Steganalysis 

To assess the reliability and safety of the proposed 
steganographic system, a set of detailed experiments was 
conducted using the two most powerful steganalysis tools: 
StegExpose and Xu-Net. StegExpose uses mathematical 
operations to identify hidden. Fig. 8 shows the ROC curves for 
Xu-Net and StegExpose evaluations, demonstrating high true 
negative rates and low false positive rates. We evaluated security 
performance using deep steganalysis tools. When tested with 
SRNet trained on BOSSbase and Xu-Net on COCO, the model 
yielded a minimum PE of 92.5%, with ROC-AUC scores of 0.91 
and 0.94, respectively. These metrics affirm the model’s ability 
to resist both classical and AI-based detection techniques. 

 
Fig. 8. ROC curve showing Xu-Net (AUC ≈ 0.94) and StegExpose (AUC ≈ 

0.91), demonstrating high evasion capability of the proposed model. 

The StegaStamp and Crypto-Stego models have shown 
similar progress through methods such as adversarial training 
and cryptographic tools. 

 
Fig. 9. Steganalysis resistance comparison. 

As shown in Fig. 9, our model is better at evading detection 
by both classic and advanced steganalysis methods than other 
models. It is understandable that the high evasion rate (92 
per cent) of the model based on the steganalysis detector, i.e., 
StegExpose and Xu-Net, is due to two design factors: attention-
guided embedding and the use of GANs in ordering evasion 
training. 

The attention mechanisms can be used to localize high-
frequency textures during the embedding process, and high-
frequency regions are more naturally varied in terms of pixels 
and therefore tend to cover statistical anomalies introduced by 
data embedding. In the meantime, adversarial training motivates 
the generator to produce stego images from the desired 
distribution, which is based on the distribution of real pictures, 
thereby suppressing the patterns that steganalysis tools 
commonly use. With Xu-Net, where deep neural features read 
the input to detect spatial inconsistencies, the constraints 
generated by the GAN discriminator prompt the encoder to 
discover subtle, naturalistic changes. 

Such synergistic techniques make it significantly more 
difficult to distinguish between clean and stego images with both 
statistical and deep-learning-based steganalyzers. This 
effectiveness is visually confirmed in Fig. 8, where the ROC 
curves for Xu-Net and StegExpose illustrate high evasion rates 
with AUC scores of approximately 0.94 and 0.91, respectively. 
To close the gap between research and practice, we evaluate the 
proposed system to determine how it would work in real-world 
scenarios. 

G. Robustness Analysis 

We examined the real-world usability by testing the model 
with JPEG compression and Gaussian noise. Table IV 
summarizes the distortion-specific performance, including 
constituent PSNR, SSIM, and BER, for the visual "degradation 
profile" under particular conditions. The model still performed 
under QF=75 and σ=0.1, suggesting some robustness in lossy 
environments. 

TABLE IV. PERFORMANCE OF THE PROPOSED METHOD UNDER VARIOUS 

IMAGE DISTORTIONS (COMPRESSION AND NOISE) 

Distortion PSNR (dB) SSIM BER 

None 39.2 0.96 0.02 

JPEG (QF=95) 36.9 0.91 0.04 

JPEG (QF=90) 34.8 0.87 0.07 

JPEG (QF=75) 30.5 0.81 0.13 

Gaussian (σ=0.01) 38.5 0.93 0.03 

Gaussian (σ=0.1) 32.6 0.86 0.10 

V. CONCLUSION 

This study presents an improved deep learning 
steganographic system that includes dual-attention modules, 
dual PatchGAN discriminators, and AES-256 encryption to 
integrate three aspects, viz. imperceptibility, robustness, and 
data. The proposed Dual-Attention ResUNet-GAN achieved a 
high visual fidelity score of 42.5 dB PSNR and 0.98 SSIM, and 
a Bit Error Rate of 0.02, which is below 0.1. The dual-
discriminator approach has worked wonders in steganalysis 
resistance, achieving over 91% evasion against SRNet and Xu-
Net. Concurrently, JPEG compression and Gaussian noise tests 
have demonstrated that the model has some practical strength. 
Invisibility now defines the embedding rate at 0.0156 bpp, 
which will be the subject of future research to understand 
adaptive optimization schemes that can increase the payload 
capacity to over 0.4 bpp while maintaining visual quality. 
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Our study has also been limited by excessive reliance on the 
COCO dataset. Therefore, subsequent tests will involve cross-
dataset validation using BOSSbase and ALASKA#2 to ensure 
that the findings are generalized across datasets. We offer an 
efficient and reliable foundation for safe multimedia 
communication. It brings attention-guided embedding, 
cryptographic preprocessing, and adversarial learning together 
in this manner and thereby demonstrates that steganography can 
be freely applied across a wide range of applications, such as 
IoT, where the encircling is safe, picture relay that preserves 
confidentiality, and current smart data-hiding to systems. 
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