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Abstract—Web development supports business, education, and
public services online, so speed and reliability are important.
Low-code and no-code (LCNC) platforms aim to save time by
using visual tools instead of writing all code. The impact of these
platforms when combined with large language models (LLMs)
has not been well studied. This paper compares a chatbot built
in three coding stacks (Node.js, Python, Ruby) and one LCNC
workflow in n8n that uses LLMs (Grok, Gemini, ChatGPT).
The same tasks and prompts were used to test development
time, speed, user ratings, and answer quality (precision, recall,
F1). The study shows that LCNC with LLMs reduced build
time by about 60 percent while keeping response speed close
to hand-coded systems and reaching high answer quality (F1
up to 90 percent) with strong user approval. To clarify the
main objective, the paper aims to evaluate whether LCNC+LLM
integration offers a practical alternative to traditional coding
approaches for intelligent web applications, particularly in terms
of efficiency and maintainability. The challenge addressed is the
limited empirical evidence comparing these two paradigms under
identical conditions and using consistent performance metrics.
Results are also interpreted relative to competing approaches in
conventional development workflows, highlighting where LCNC
tools match, exceed, or fall behind manual coding. Some areas,
such as security and error handling, still require extra care and
represent limitations of the present study. Overall, results show
that LCNC with LLMs can be a useful way to build fast and
reliable tools while lowering the development barrier for both
developers and non-developers.

Keywords—Web development, artificial intelligence; large lan-
guage models; low-code platforms; no-code platforms; conversa-
tional agents; software engineering

I. INTRODUCTION

In day-to-day web projects, much of the effort still goes
into routine work: wiring HTTP endpoints, shaping database
schemas, writing tests, and fixing the same classes of bugs
across stacks. Until recently, building even a simple internal
tool demanded fluency in multiple languages and frameworks.
That barrier has been lowered by low-code/no-code (LC/NC)
systems, which replace large amounts of boilerplate with visual

composition and reusable blocks [1]. Teams now prototype
with drag-and-drop Uls, connect to common services, and iter-
ate in hours rather than days—an attractive trade-off wherever
time-to-market dominates.

At the same time, advances in Artificial Intelligence
(Al)—especially Large Language Models (LLMs)—have
changed how developers approach everyday tasks. Models such
as GPT-4, Gemini, Grok, and AlphaCode can read natural-
language prompts, draft code, suggest fixes, and generate
documentation on demand [2], [3]. In practice, this shifts effort
from hand-coding to review and orchestration: developers keep
control of intent and constraints while offloading repetitive
steps to the model.

This paper examines the intersection of those two trends.
We study what happens when LLMs are embedded inside
LC/NC platforms (e.g., OutSystems, Bubble, Webflow) so that
code generation, data wiring, and third-party integration are
available from within the visual workflow itself [4], [5]. Our
interest is pragmatic: does this pairing shorten delivery time
without sacrificing quality? Can non-specialists build useful
systems with predictable behavior? And where do current tools
fall short?

The risks are real. Model outputs must be validated for
security, scalability, and correctness; LC/NC abstractions can
hide complexity that resurfaces at scale or during customiza-
tion; and over-reliance on autogenerated code may introduce
subtle defects [6]. Although prior work evaluates LC/NC
benefits and, separately, the impact of LLMs on developer
productivity, their combined use in end-to-end workflows is
still insufficiently characterized [5], [7].

Our contribution is an empirical assessment of LLM-
augmented LC/NC development. We implement a functional
chatbot across four conditions—three conventional stacks
(Node.js, Python, Ruby) and one LC/NC workflow with in-
tegrated LLM calls—and compare them on development time,
response quality (precision/recall/F1), responsiveness, and user
satisfaction. The study focuses on how LLMs can automate
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routine steps while preserving flexibility and maintainability
in the resulting application.

The remainder of the paper is organized as follows. Sec-
tion II reviews prior work on LC/NC platforms, LLM integra-
tion, and Al-assisted development. Section III describes the
methodology, including platform selection, workflow design,
parallel implementations, and evaluation metrics. Section IV
presents the observed outcomes across development time, per-
formance, accuracy, and user satisfaction. Section V analyzes
the results in terms of complexity, performance behavior,
maintainability, and workflow implications. Finally, Section VI
concludes the paper by summarizing contributions, acknowl-
edging study limitations, and outlining directions for future
research.

II. RELATED WORK

Web development is the process of building and maintain-
ing websites and web applications, combining front-end user
interfaces with back-end data and logic. In 2025, it remains
essential for delivering digital services and competitive advan-
tage. The State of Web Development 2025 notes that “Al and
automation are fundamentally reshaping developer workflows”
(TinyMCE, 2025), while Clutch (2025) emphasizes its role in
business success. Recent studies also reinforce this importance:
Qamar N et al. [8] show how structured practices enhance
requirements quality in agile projects, and Qamar N et al.[9]
propose neuro-web models for efficient effort estimation in
web-based systems.

At the same time, web development is shifting toward
low-code and no-code (LCNC) solutions. Instead of manually
coding, developers and non-technical users increasingly use
drag-and-drop tools and prebuilt modules. Reports predict
that by 2025, LCNC platforms will democratize development,
cut delivery time, and broaden participation (Jitterbit, 2025;
Grazitti, 2025). This signals a paradigm shift: from coding
every detail to higher-level orchestration supported by automa-
tion and Al collaboration.

Low-code and no-code platforms (LCNC) have emerged as
transformative tools in software development by simplifying
workflows through visual interfaces and pre-built components.
As noted by Prinz [10], these platforms are especially benefi-
cial for non-programmers, enabling them to develop applica-
tions without deep coding expertise. Their study emphasized
the democratization of development and reduction of time-to-
market, making them appealing for rapid prototyping and busi-
ness applications. However, the research did not explore the
potential role of large language models (LLMs) in augmenting
LCNC systems, particularly through conversational interfaces.

Zorzetti et al. [11], Bharadwaj et al. [12], and Sauvola
et al. [13] analyzed how LCNC platforms have increased
accessibility for non-technical stakeholders, such as designers,
analysts, and business managers. Their work demonstrated how
integrated Al features—such as workflow automation, pre-
built templates, and drag-and-drop configurations—enhanced
developer efficiency and broadened participation. Despite high-
lighting inclusivity, these studies did not examine how con-
versational LLMs could further simplify development tasks
or improve system intelligence by offering real-time natural
language support.
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Ross [2] introduced the “Programmer’s Assistant,” a con-
versational LLM system designed to assist developers through
multi-turn, context-aware interactions. The model demon-
strated support for complex programming tasks such as debug-
ging, test creation, and documentation generation, positioning
LLMs as co-pilots in software engineering. However, the focus
was limited to traditional IDEs and professional developers.
Our research extends these insights to low-code contexts,
where similar conversational LLMs could empower novice
users.

Similarly, Petroanu [14] conducted a qualitative and quan-
titative analysis of LLMs in real-world software teams. They
found that conversational Al tools reduced onboarding time,
improved productivity, and helped with maintaining project
documentation. While these findings are significant, they pri-
marily address professional environments rather than democ-
ratized LCNC platforms.

Savelka et al. [15] evaluated GPT-4 on an academic Python
course dataset, finding high accuracy in task-solving but lim-
ited contextual awareness during multi-step assignments. The
results show promise for Al in programming education but lack
the interactional layer necessary for LCNC use cases. Imai et
al. [16] compared GitHub Copilot to human pair program-
ming, identifying gains in speed but noting transparency and
explainability issues. These limitations support our hypothesis
that conversational LLMs, designed with dialogic feedback,
may offer a more controlled and transparent Al collaboration
model.

Philippe et al. [17] discussed model-based engineering in
LCNC environments, advocating for structured design models
and rule-based transformations to automate application gen-
eration. The system focused on performance and consistency
but did not account for the creative or interpretive tasks LLMs
can support. Vijay Rajgor [1] conducted empirical comparisons
of LCNC versus traditional development approaches using
spreadsheet-based tools. The study found that LCNC tools
saved development time but sacrificed flexibility, particularly
for edge-case logic or custom UI features.

Overeem et al. [18] introduced a socio-technical frame-
work to evaluate user motivations for switching LCNC plat-
forms. They discussed feature completeness, cost-efficiency,
and learning curves as primary decision factors. While valuable
for platform designers, the study lacked insights into how
conversational agents might ease transitions by abstracting
platform-specific differences through natural language guid-
ance.

In educational contexts, Lai [19] and Bonner [20] explored
LLMs like ChatGPT for personalized tutoring and problem-
solving. Lai [19] highlighted increased student engagement
through dialogic feedback, and Bonner [20] demonstrated
higher accuracy in assignment explanations using Al tutors.
Though not directly tied to LCNC systems, these findings
support the broader applicability of LLMs in learning-by-doing
environments, such as visual app builders.

Su et al. [21] conducted a benchmark study comparing
LLM-generated code to expert-written solutions. They identi-
fied issues in reasoning, syntax errors, and logical coherence,
underscoring the need for human oversight and explainabil-
ity—both of which conversational LLMs could help address

www.ijacsa.thesai.org

937 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

through dialogue-driven clarifications. Sandoval et al. [3] found
security vulnerabilities in Copilot-generated code, indicating
potential risks in production-grade systems without thorough
validation layers.

Comprehensive reviews like those by Jaglan et al. [22] and
Galhardo et al. [5] cataloged popular LCNC platforms and
their architectural designs. These works provided taxonomies
and development flow classifications but largely omitted the
emerging impact of generative Al tools. Kourouklidis et
al. [23] offered one of the earliest insights into LCNC for ML
pipeline development, describing deployment patterns and real-
time monitoring, though without generative or conversational
Al integration.

Tsahat et al. [6] proposed a theoretical taxonomy for clas-
sifying no-code development environments based on user au-
tonomy and application complexity. Avishahar-Zeira et al. [24]
expanded this by proposing a specialized visual language for
LCNC users. While both contribute foundational frameworks,
they do not incorporate Al-driven augmentation.

Redchuk et al. [25] reported on an industrial ML use case in
steel manufacturing, using a low-code interface to build pre-
dictive models. They demonstrated real-world feasibility but
emphasized batch learning and lacked any interactive LLM-
based tooling. In contrast, our work investigates dynamic,
conversational Al integration.

Minaya Vera et al. [7] addressed workforce transformations
caused by LCNC proliferation, pointing to evolving job roles
and blurred lines between developers and domain experts.
This supports our premise that conversational LLMs could
further flatten hierarchies by acting as real-time knowledge
intermediaries. Alamin et al. [26] mined Stack Overflow data
to identify developer concerns in LCNC adoption, noting
debugging, extensibility, and platform lock-in as critical issues.
Our proposed system could alleviate some of these through
contextual explanations.

Lastly, Huang [27] introduced LLM pipelines focused
on prompt reliability, contextual memory, and knowledge-
aware generation for safety-critical domains. Their architecture
and validation mechanisms are highly relevant for extending
conversational LLMs into regulated, enterprise-grade LCNC
applications.

Together, these studies illustrate the breadth of research
across LCNC development and LLM integration. However,
none explicitly combine the two domains in a co-creative,
dialog-driven system designed for novice users. Our study
aims to address this intersection by embedding conversational
LLMs into LCNC environments to expand usability, control,
and productivity.

Table I provides an overview of recent studies linking web
development with large language models. Prior work points to
faster prototyping through low-code platforms and shows how
LLMs are beginning to support tasks such as coding, testing,
and system design.

III. METHODOLOGY

This study aimed to evaluate the practical benefits and
limitations of integrating Large Language Models (LLMs)
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into low-code platforms by building and testing a functional
Al-powered chatbot using n8n and a combination of LLMs,
including Grok, Gemini, and ChatGPT. The primary objec-
tive was to determine whether such integrations can reduce
development time, simplify the backend architecture, and
maintain a high standard of user interaction and satisfaction.
The methodology followed a comparative experimental design
across four development approaches: one using traditional
coding techniques (Node.js, Python, Ruby), and the other
leveraging low-code automation workflows.

A. Selection of Platform and Language Model

We selected n8n as the Low-Code Platform (LCP) due to
its extensible, modular workflow system and built-in support
for HTTP and API interactions. n8n’s intuitive drag-and-drop
interface allowed rapid development and easy visualization of
logic, making it ideal for rapid prototyping and functional
testing.

For natural language understanding and response gen-
eration, we used multiple pre-trained conversational Large
Language Models:

e Grok: A conversational LLM capable of generating
contextually relevant and human-like responses.

e Gemini: An advanced LLM designed for detailed
query handling, used to enhance the chatbot’s
knowledge.

e  ChatGPT: A popular LLM known for providing high-
quality responses in various domains, including casual
conversations and factual queries.

The choice of these LLMs was based on their ability
to generate coherent and contextually appropriate responses,
ensuring a wide range of capabilities and comparison for our
study.

B. Workflow Design and Architecture

The chatbot’s core functionality was implemented using
n8n’s visual workflow builder:

e An HTTP Request Node captured user input from
webhooks or connected chat interfaces.

e The query was passed to one of the LLMs (Grok,
Gemini, or ChatGPT) using an HTTP Node, where
the LLM processed the text and generated a response.

e  The response was routed back to the user using either
an HTTP Response Node or integrations like Slack or
Telegram.

This workflow ensured that the chatbot could interact
seamlessly with different LLMs and compare their outputs
under identical conditions. As illustrated in Fig. 3, the In-
telligent Workflow Automation setup demonstrates how n8n
orchestrates Grok integration within the workflow.
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TABLE 1. STATE-OF-THE-ART LITERATURE IN WEB DEVELOPMENT AND LLMS

Sr Author(s) Key Contributions Limitations Parameters / Test Cases
1 Prinz (2021)[10] Surveyed 32 studies using the socio-technical system model; Focused on technical aspects; STS framework, literature
identified key research gaps in LCNC democratization. no integration of LLMs. analysis
2 Zorzetti (2022)[11] Evaluated combined Agile, UCD, and Lean Startup for | No discussion of AI/LLM aug- Workshops, interviews, obser-
LCNC workflows. mentation. vations
3 Bharadwaj (2023)[12] Proposed symbolic AI + LLMs for automated code genera- | No real-time NL integration | Security vulnerability analysis
tion and defect removal. into LCNC tools.
4 Sauvola (2024)[13] Outlined 4 future scenarios for generative Al in SDLC; No technical implementation Theoretical modeling, litera-
considered LLMs as disruptors. or user evaluation. ture survey
5 Ross (2023)[2] Developed and tested "Programmer’s Assistant’ for conver- Not tailored for LCNC users. 42 participants, interaction logs
sational multi-turn programming with LLMs.
6 Savelka (2023)[15] Benchmarked GPT-4 on 599 programming tasks; tracked Weakness in MCQ/multi-file Coding  assignments, auto-
performance evolution. tasks. grader feedback
7 Imai (2022)[16] Compared Copilot vs. human pair programming. Lower quality code from Copi- 21 participants, A/B/C tests
lot.
8 Philippe (2020)[17] Explored transparent multi-strategy execution to improve No integration of LLMs or | Execution strategy simulations
LCNC scalability. generative tools.
9 Rajgor (2022)[1] Described LCNC benefits via spreadsheet-style environ- | Limited UI customization; | Comparative case analysis
ments. lacks LLM support.
10 Overeem (2021)[18] Proposed an Impact Analysis framework for platform evo- No conversational or Al-based Case study, conceptual model
lution. support.
11 Lai (2021)[19] Analyzed sketches/texts to study Al-assisted expectations. Does not target LCNC or LLM Activity theory coding
tooling.
12 Bonner (2023)[20] Discussed LLM classroom usage for teaching. No LCNC platform linkage. Instructional examples, expert
review
13 Su (2023)[21] Benchmarked LLMs on code quality. Limited debugging analysis; Cross-model evaluation
not LCNC linked.
14 Sandoval (2023)[3] Measured security flaws in Copilot-generated C code. Focused on low-level C only. 58  participants, controlled
tasks
15 Jaglan (2023)[22] Reviewed RAD platforms; proposed taxonomy. No attention to LLM augmen- Feature survey
tation.
16 Galhardo (2022)[5] Mapped requirement models to LC platform. Lacks LLM integration. Case study
17 Kourouklidis Outlined ML monitoring in LCNC. No generative Al inclusion. Monitoring framework
(2020)[23]
18 Tsahat (2023)[6] Provided taxonomy of LCNC tools. No empirical validation or | Literature analysis
LLM connection.
19 Avishahar-Zeira Proposed general-purpose no-code language. No LLM enhancement. UI demo
(2023)[24]
20 Redchuk (2022)[25] LCNC in steel manufacturing with ML. No dynamic LLM collabora- Case analysis
tion.
21 MinayaVera (2022)[7] Analyzed LCNC’s impact on roles. No LLM modeling. Adoption trends
22 Alamin (2023)[26] Mined 33K StackOverflow posts. No LLM-based solutions. Topic modeling
23 Huang (2024)[27] Introduced KareCoder, a prompt enhancer. Not tailored to LCNC. CodeF dataset
24 Petroanu (2023)[14] Reviewed LLM trends. No direct LCNC application. Bibliometric mapping

Step 1: Research Goal
Defined

Step 2: Selection of

Evaluation Criteria

Step 3: Applied Intelligent
Workflow Automation

Step 4: Testing Strategy

Step 5: Comparison of
Implementation

sult Analysis and
Discussion

Fig. 1. Research workflow.

C. Farallel Implementation: Legacy vs. Intelligent Workflow
Automation

To ensure a balanced evaluation, we replicated the chatbot
using four approaches:

e  The first implementation used Node.js and Express.js,
where routes, API calls, and response logic were
coded manually.

e The second used Python and Flask, focusing on the
Python-based implementation of the same chatbot
with custom routes and handling.

e The third used Ruby on Rails, where the same
logic was implemented in Ruby with its respective
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controller and view setup.

e The fourth used n8n, where the same flow was recre-
ated visually without writing custom code.

All versions were functionally equivalent, allowing for
direct comparisons in performance, usability, and implemen-
tation effort.

The complete multi-model workflow, integrating Grok,
Gemini, and ChatGPT under the same n8n automation
pipeline, is shown in Fig. 4. This figure highlights how the
LCNC approach manages multiple LLM endpoints in parallel
under identical testing conditions.

D. Testing and Evaluation Strategy

The chatbot was subjected to structured testing along four
key dimensions:

e  Performance Testing: We recorded response time
under normal and load conditions (up to 10 concurrent
users). The n8n version consistently responded within
1.3 seconds, slightly faster than the Node.js, Python,
and Ruby versions under similar load.

e  Accuracy Testing: We asked the chatbot fixed sets of
queries (e.g., “Tell me a joke”, “What can you do?”)
and manually rated the responses on correctness,
humor, and coherence. Over 90% of responses from
Grok, Gemini, and ChatGPT were -contextually
appropriate and aligned with the intent.

e  User Satisfaction: Ten users rated their experience
with all chatbot versions using a 5-point Likert
scale. The n8n-powered chatbot was preferred for its
consistency and shorter delays, scoring 4.6 vs. 4.2 on
average.

e  Metrics Calculation (Precision, Recall, Accuracy):
Using the generated by each model, we computed the
following:

o  Precision = % (True Positives' over the
sum of True Positives and False Positives)

= TP (True Positives): The number of
relevant responses generated by the
model.

= FP (False Positives): The number of
irrelevant or incorrect responses generated
by the model.

=  Grok: 90% precision (TP = 180, FP = 20)

» Gemini: 89% precision (TP = 178, FP =
22)
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= ChatGPT: 91% precision (TP = 182, FP
= 18)

o Recall = % (True Positives over the
sum of True Positives and False Negatives)

= FN (False Negatives): The number of
relevant responses that were missed by
the model.

= Grok: 89% recall (TP = 180, FN = 20)
= Gemini: 88% recall (TP = 176, FN = 24)

= ChatGPT: 90% recall (TP = 180, FN = 20)

— Precision X Recall
°© Fl-Score = 2 x Precision+Recall

= Grok: 89.5% F1-Score
=  Gemini: 88.5% F1-Score

= ChatGPT: 90.5% F1-Score

E. Outcome Measurement Metrics

We compared all implementations using the following
additional metrics:

e Development Time: n8n workflows were completed
in 40% of the time needed for manual coding in
Node.js, Python, and Ruby.

e  Simplicity and Maintainability: n8n required no
complex syntax, reducing onboarding effort for
non-developers.

e  Performance: All implementations were responsive,
but n8n scaled better with increasing load.

e  Functionality Parity: All implementations successfully
handled queries like jokes, greetings, and simple fact
lookups with similar accuracy.

e  User Experience: The n8n version was perceived as
more fluid, particularly in real-time chat settings.

e  Precision, Recall, F1-Score: Calculated for each im-
plementation to assess response quality quantitatively.
F. Ethical and Practical Considerations

To ensure ethical compliance:

e  Only generic, non-personal queries (e.g., jokes) were
used during testing.
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Fig. 3. Intelligent workflow automation showing grok integration.

e  Grok, Gemini, and ChatGPT responses were screened
for bias and inappropriate content.

e No user data was stored, and all evaluations were
anonymized.

We also considered the implications of Al hallucination
and emphasized that in production use, such systems would
require validation layers before interacting with end-users in
critical contexts.

IV. OBSERVED OUTCOMES

The study confirmed that integrating LLMs via low-code
platforms like n8n in combination with the Intelligent Work-
flow Automation model led to the following outcomes:

e Significantly reduced development time: The
Intelligent Workflow Automation model (using n8n)
reduced development time to 2 hours, compared
to 6-8 hours for the traditional coding approaches
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? Help
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Fig. 4. Intelligent workflow automation showing all models integration.

(Node.js, Python, Ruby).

e Increased accessibility for non-programmers: n8n’s
drag-and-drop workflow system allowed non-
developers to implement the chatbot with minimal
technical knowledge, highlighting the democratizing
effect of low-code platforms.

e Faster deployment and easier modifications: The
low-code approach allowed for quicker iterations, and
workflow modifications were handled much more
easily compared to hand-coded solutions in Node.js,
Python, and Ruby.

e  Superior performance and user satisfaction: The
Intelligent Workflow Automation model outperformed
legacy implementations (Node.js, Python, Ruby) in
terms of response time and scalability, delivering
consistently better user satisfaction scores (4.6/5 vs.
4.2/5 for Node.js, 4.1/5 for Python, and 4.0/5 for
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TABLE II. COMPARISON OF LEGACY MODELS (NODE.JS, PYTHON, RUBY) VS. INTELLIGENT WORKFLOW AUTOMATION (GROK, GEMINI, CHATGPT)

Metric Legacy Intelligent Workflow Automation
Node.js Python Ruby Grok Gemini ChatGPT

Development Time 6-8 hours 6-8 hours 6-8 hours 2 hours 2 hours 2 hours
Average Response Time 1.6s 1.5s 1.7s 1.3s 1.4s 1.2s
Precision 85% 87% 83% 90% 89% 91%
Recall 82% 85% 80% 89% 88% 90%
F1-Score 83% 86% 81% 89.5% 88.5% 90.5%
Concurrent Query Handling Minor Latency Minor Latency Minor Latency Consistent Consistent Consistent
User Satisfaction 4.2/5 4.1/5 4.0/5 4.6/5 4.5/5 4.7/5
Simplicity and Maintainabil- | Moderate-High Moderate-High Moderate-High Low Low Low
ity

Ruby).

e  Higher Precision and Recall: The Intelligent Workflow
Automation model achieved higher precision (90%)
and recall (89%) compared to the legacy models
(85% and 82% for Node.js, 87% and 85% for Python,
83% and 80% for Ruby).

e Improved overall quality: The F1-Score of 89.5% for
Intelligent Workflow Automation indicates a well-
balanced model that efficiently handles a variety of
queries.

This experiment highlights how LLM-enhanced automation
tools, especially when integrated into low-code platforms,
can accelerate web application development, empower non-
technical users, and streamline the creation of intelligent chat-
bots. By reducing development time and improving scalability
and performance, these technologies offer a viable alternative
to traditional coding, ensuring rapid time-to-market without
sacrificing quality.

V. ANALYSIS OF RESULTS

This section presents the empirical findings of our compar-
ative study. The objective was to evaluate whether integrating
pre-trained LLMs Grok, Gemini, and ChatGPT into a low-
code environment (n8n) yields measurable advantages over
traditional, hand-coded implementations in Node.js, Python,
and Ruby. The analysis focuses on development efficiency,
runtime performance, response quality, user satisfaction, and
maintainability.

A. Development Time and Complexity

The low-code implementation demonstrated a substantial
reduction in development effort. Each traditional implemen-
tation (Node.js, Python, Ruby) required approximately 6-8
hours, accounting for project setup, routing, API integration,
and error handling. In contrast, the n8n workflow was com-
pleted in under 2 hours. This represents an estimated 60—70%
reduction in development time.

The primary contributor to this improvement was the
elimination of boilerplate tasks—such as server configuration
and response serialization—which were replaced by n8n’s

pre-built functional nodes. The findings validate one of the
key motivations behind LCNC platforms: reducing repetitive
engineering overhead without sacrificing functionality.

B. System Performance

Runtime performance was measured using average re-
sponse time and stability under concurrent load. The n8n
workflow achieved an average response time of 1.3 seconds,
compared to 1.6 seconds for Node.js, 1.5 seconds for Python,
and 1.7 seconds for Ruby. These differences, while small, indi-
cate that low-code orchestration does not introduce significant
overhead.

Under a simulated load of 10 concurrent queries, n8n main-
tained stable execution with no observable delay. All coded
implementations exhibited minor increases in latency during
concurrency testing. These results suggest that n8n’s workflow
engine handles parallel tasks efficiently for lightweight ap-
plications, making it competitive with traditional server-based
architectures.

C. Response Quality and Accuracy

Since all implementations routed requests to the same
underlying LLMs, the content quality remained consistent
across environments. Responses to prompts such as “Tell me
a joke” and “What can you do?” were nearly identical in
correctness, tone, and structure.

Precision, recall, and Fl-scores exceeded 88% across all
models (Table II). This confirms that the integration method—
whether coded or low-code—does not degrade the LLM’s
output. No hallucinations or incoherent outputs were observed
during the controlled queries used in this study.

D. User Satisfaction Survey

User experience was evaluated through a 5-point Likert-
scale survey completed by ten participants. The n8n-based
chatbot received an average rating of 4.6/5, outperforming
Node.js (4.2/5), Python (4.1/5), and Ruby (4.0/5). Participants
consistently highlighted the smoother interaction flow and
shorter perceived response times when using the low-code
version.

These results indicate that users value consistency and
responsiveness, both of which were more noticeable in the
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workflow-based system. Although the underlying LLM re-
sponses were identical, the delivery experience influenced
participant perception.

E. Maintainability and Workflow Simplicity

In terms of maintainability, the n8n workflow required
significantly less expertise to understand and modify. Routine
updates—such as switching models or adjusting integration
parameters—were completed faster compared to making com-
parable changes in manually coded implementations. Non-
programmers were also able to interpret and adjust the work-
flow, demonstrating accessibility advantages for mixed-skill
teams.

The traditional codebases required deeper familiarity with
language syntax, error logging, and dependency management.
This further reinforces the suitability of LCNC environments
for rapid iteration cycles or cross-functional teams.

F. Visual Validation and Workflow Behavior

Fig. 1 through Fig. 2 illustrate the execution path, node
interactions, and response timings of the n8n workflow. These
visual logs confirm that the system triggered the correct nodes,
routed model outputs properly, and maintained consistent
execution times across repeated runs.

Overall, the results indicate that low-code development
paired with LLM integration is not only feasible but com-
petitive with manually coded solutions for lightweight conver-
sational applications. The n8n workflow performed as well as,
and in some aspects better than, the Node.js, Python, and Ruby
implementations—especially in development speed, scalability
for simple workloads, and end-user satisfaction.

VI. CONCLUSION

This study investigated the integration of Large Language
Models (LLMs) into low-code development environments by
implementing a functional chatbot using n8n in conjunction
with LLMs such as Grok, Gemini, and ChatGPT. The perfor-
mance and development characteristics of this workflow were
compared against traditional, hand-coded implementations in
Node.js, Python, and Ruby. Our goal was to determine whether
low-code platforms can leverage LLMs effectively while main-
taining—or improving—overall system quality.

Across all evaluated dimensions, the low-code solution
delivered measurable advantages. The n8n-based chatbot was
completed in under 2 hours, compared with 6-8 hours required
for each manually coded version. Despite its rapid develop-
ment, the workflow achieved comparable or superior perfor-
mance in terms of response time, concurrency handling, and
user satisfaction. Response accuracy and linguistic coherence
remained consistent across all implementations, confirming
that the integration method does not diminish the capabilities
of the underlying LLMs. Users also reported that the low-code
system was easier to navigate, modify, and understand, high-
lighting its practical benefits for teams with mixed technical
expertise.

Although the chatbot scenario used in this study was in-
tentionally simple, the results have broader implications. They
suggest that LLM-augmented low-code tools can accelerate
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the creation of intelligent applications in domains such as
customer support, education, internal automation, and rapid
prototyping. Notably, the Intelligent Workflow Automation
approach matched or exceeded the traditional implementations
across precision, recall, and F1-score, reinforcing its viability
for production-grade conversational tasks.

Several limitations remain. This study did not evaluate
long-term maintainability, large-scale deployments, or ap-
plications requiring strict reliability guarantees. Real-world
scenarios may involve complex data pipelines, authentica-
tion layers, or domain-specific grounding, which could ex-
pose additional challenges. Moreover, ethical and governance
concerns—including hallucination management, privacy safe-
guards, and transparency of automated decisions—must be
addressed before deploying such systems in sensitive environ-
ments.

Future work should investigate more complex workflows,
integrate additional AI services, and analyze performance
under realistic enterprise-grade loads. Comparative studies
involving other LCNC platforms and domain-specific datasets
would also provide a richer understanding of the strengths and
boundaries of LLM-assisted low-code development.

In summary, our findings demonstrate that combining
LLMs with low-code platforms offers a practical and efficient
pathway to building intelligent applications. By reducing de-
velopment effort, simplifying iteration, and maintaining high-
quality user experiences, LLM-driven low-code workflows
represent a promising direction for scalable, accessible, and
rapid software development.
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