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Abstract—Binary face templates are an appealing alternative
to floating-point embeddings for face verification in resource-
constrained environments because they enable constant-time
Hamming matching with minimal storage and input/output (I/O).
This paper studies the bit-level behavior of hashes obtained by
principal component analysis followed by iterative quantization
(PCA–ITQ) at L∈{32, 64, 128} derived from a frozen lightweight
face encoder. Using subject-disjoint splits on the MORPH longi-
tudinal dataset and an eyeglasses stress protocol on CelebA, the
analysis quantifies 1) bit balance and entropy, 2) within-identity
bit stability via per-bit flip rates, and 3) verification performance
at low false-accept rates in Hamming space. On MORPH, 64-bit
PCA–ITQ codes achieve an area under the receiver operating
characteristic curve (AUC) of 0.9978 and a true positive rate
(TPR) of 96.5% at a false positive rate (FPR) of 1%, compared to
99.1% at 128 bits, while halving the template length; 32-bit codes
remain feasible but drop to 85.7% at the same operating point
and are more sensitive to nuisance variation. Across both datasets,
codes are near-balanced and mostly stable, yet a small minority
of bit positions accounts for most flips under the eyeglasses
attribute. In this regime, 64-bit hashes offer a favorable size–
accuracy trade-off, whereas 128-bit hashes approximate float-
embedding behavior and 32-bit hashes require redundancy or
additional robustness mechanisms. All evaluations use fixed seeds
and subject-disjoint splits; thresholds are selected on validation
and held fixed on test to reflect deployment conditions.

Keywords—Binary face templates; face verification; hamming
distance; PCA-ITQ; bit stability; eyeglasses attribute; resource-
constrained verification; MORPH; CelebA

I. INTRODUCTION

Compact binary face templates are attractive substitutes
for floating-point embeddings because they enable determin-
istic Hamming matching with minimal storage and band-
width. A widely used route—principal component analysis
followed by an orthogonal rotation and element-wise sign
(PCA–ITQ)—yields short codes while keeping the mapping
deterministic and easy to deploy [1]. Yet shortening the code
(e.g., to 32–128 bits) raises questions that are under-reported
in biometric verification: How balanced and informative are
individual bit positions? and which bits are stable within an
identity under common nuisance factors?

Most hashing work emphasizes retrieval metrics or ranking
quality [2], [3], [4], [5]; however, privacy-preserving verifica-
tion is ultimately governed by bit-level behavior—entropy, bal-
ance, and within-identity flip-rates—which determines feasible
operating thresholds. Furthermore, the renewability/diversity
requirements for protected templates [6], [7] benefit from
knowing where instability concentrates so that mitigation (e.g.,
masking) can be targeted rather than uniform.

Problem setting and datasets. Using the MORPH longi-
tudinal database as the primary benchmark and CelebA for
attribute-conditioned stress tests (eyeglasses) [9], [10], this
study examines binary templates produced from a single frozen
mobile-class encoder after standard five-point alignment and
PCA–ITQ binarization to L ∈ {32, 64, 128}. The analysis
covers: 1) distributional properties of individual bits (balance,
entropy) as a function of L; 2) within-identity flip-rates; and 3)
localization of instability under attribute change (eyeglasses)
and its impact on ROC-level operating points in Hamming
space.

Novelty relative to prior PCA–ITQ and hashing work.
Previous work on PCA–ITQ and deep hashing has mostly
reported aggregate retrieval or verification metrics at the code
level, such as mean average precision, AUC, or Equal Error
Rate (EER) [1], [2], [3], [4], [5]. In contrast, the present
study is explicitly designed as a bit-level analysis of binary
face templates under resource constraints. The key distinctive
elements are:

• a systematic characterization of per-bit balance, en-
tropy, and within-identity stability for 32/64/128-bit
PCA–ITQ templates, with the upstream encoder and
alignment pipeline held fixed;

• an attribute-localized stress protocol on CelebA that
isolates the effect of eyeglasses on per-bit flip-rates
and relates the induced instability to low-FAR operat-
ing points;

• an operational mapping from observed bit statistics
to hash-length choices and threshold selection for
privacy-preserving verification in smart-card or em-
bedded settings.

These aspects complement earlier work on mobile-class
CNNs and binary hashes for smart-card-constrained authenti-
cation [11], ageing drift in binary templates [15], and targeted
parity mechanisms for unstable bits [18], by focusing specifi-
cally on how bit-level statistics shape feasible operating points
for short hashes.

The main contributions can be summarized as follows:

• Bit-level characterization across code lengths. Bit bal-
ance, entropy, and within-identity stability are quan-
tified for L∈{32, 64, 128} and related to verification
performance on MORPH, revealing a favorable size–
accuracy frontier at 64 bits.

• Attribute-localized stress test. An eyeglasses protocol
on CelebA shows that degradation is concentrated in
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a minority of bit positions, rather than uniformly dis-
tributed, which supports targeted mitigation strategies.

• Operational guidance grounded in measurements. The
measured flip-rate profiles are mapped to threshold
selection at low false-accept rates and to practical
recommendations on hash length, enrollment redun-
dancy, and template renewability in privacy-preserving
systems, in line with ISO/IEC 24745 [6].

II. RELATED WORK

1) Alignment and deep embeddings: Modern face verifi-
cation maps aligned crops to ℓ2–normalized embeddings via
frozen encoders; robust alignment is a prerequisite to stabilize
downstream representations. The experiments adopt the widely
used Multitask Cascaded Convolutional Networks (MTCNN)
detector with five-point similarity alignment to produce canon-
icalized inputs [8].

2) Hashing and binary codes: Hashing for visual de-
scriptors spans randomized families such as locality-sensitive
hashing (LSH) and SimHash [2], [12], spectral/graph con-
structions [3], and deep supervised variants (e.g., DPSH,
HashNet) [4], [5], with broader overviews in recent sur-
veys [19]. For deployment-constrained verification, determin-
istic and lightweight transforms are attractive. PCA followed
by Iterative Quantization (ITQ) [1] minimizes quantization
error under an orthogonal rotation prior to sign binarization,
yielding short codes amenable to constant-time Hamming
scoring. Beyond classical PCA–ITQ, hybrid quantum PCA
methods have been explored to accelerate face verification
pipelines [21], and fairness-aware binary descriptors have been
proposed for face presentation attack detection using local
binary patterns [22]. This paper uses PCA–ITQ specifically to
study how code length (L∈{32, 64, 128}) interacts with per-
bit balance and stability when the upstream encoder is held
fixed. The analysis also builds on a prior benchmark of PCA–
ITQ binary templates under embedded constraints by the same
authors, which established protocol and topline baselines; here
the focus is shifted to per-bit balance/stability and attribute-
localized robustness [11].

3) Multimodal biometric fusion: Convolutional neural net-
work (CNN)-driven multimodal fusion of face, fingerprint
[20], and voice has become increasingly common to enhance
robustness under occlusion or sensor variability [23], [24],
[25]. Although the present study remains unimodal (face only),
the findings on bit stability and attribute-specific drift help
clarify how individual face templates might contribute within
a larger fusion framework.

4) Protected biometric templates: Template-protection
standards emphasize irreversibility, renewability, and unlink-
ability [6]. Cancelable-biometrics schemes implement param-
eterized transforms so compromised templates can be reissued
without reacquisition [7]. Template interfaces are often kept
conservative to limit oracle leakage, and renewability/diversity
are handled via cancelable transforms [6], [7]. These works
motivate compact binary representations and conservative in-
terfaces, but typically report aggregate ROC/EER at the code
level rather than analyzing statistics of individual bit positions.
Recent system-level studies on deep learning-based multi-
factor authentication and ISO/IEC-compliant match-on-card

face verification further illustrate how compact templates and
conservative interfaces can be combined in practice [17], [16].

5) Bit-level behavior: Despite the prevalence of binary
hashing, systematic measurements of bit balance, within-
identity flip rates, and attribute-localized instability (e.g., eye-
glasses) remain scarce in the above literatures [2], [3], [4],
[5], [6], [7]. Our study targets this gap by quantifying per-bit
statistics across L∈{32, 64, 128} and relating them directly to
operating-point selection in Hamming space.

6) Datasets and protocol: Following established practice,
we use MORPH as the primary benchmark for verification
under longitudinal variability [9] and CelebA for attribute-
conditioned stress tests (eyeglasses) [10], with a unified
MTCNN alignment pipeline [8]. This setup isolates bit-level
phenomena independently of classifier tuning.

7) Positioning: Relative to prior art, we keep the encoder
and binarizer fixed (single frozen encoder + PCA–ITQ) and
move the analytical lens from aggregate ROC summaries to
per-bit statistics and their operational consequences—precisely
the level that governs hash-length choice, threshold setting,
and renewal/diversity policies in protected template deploy-
ments [6], [7].

III. METHODS

A. Data and Splits

1) MORPH (primary): Subject–disjoint splits are formed
with identities reserved for threshold selection (validation)
and final reporting (test) on longitudinal images [9]. No
identity appears in more than one partition.

2) CelebA (eyeglasses stress): Using the official attribute
annotations [10], the protocol constructs per–identity pairs that
differ only in the Eyeglasses attribute (present vs. absent).
CelebA identities used for stress testing are disjoint from
MORPH identities.

B. Preprocessing and Embeddings

Aligned face crops are produced via standard
five–landmark similarity alignment. Aligned images are
passed through a frozen encoder to obtain ℓ2–normalized
float embeddings. No fine–tuning or test-time augmentation
is used. This protocol fixes upstream variability so that
downstream analyses isolate bit–level phenomena. The
alignment/embedding/hashing setup follows a previously
reported benchmark by the same authors and is kept frozen
here [11].

C. Binarization: PCA–ITQ

Given an encoder output f ∈Rdenc , we compute

x = (f − µ)WPCA ∈ RL,

z = xR,

b = sign(z) ∈ {−1,+1}L, L ∈ {32, 64, 128},
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where WPCA retains the top-L principal components fitted
on training identities only, and R is the orthogonal rotation
learned by Iterative Quantization (ITQ) to minimize ∥B −
XR∥2F subject to R⊤R = I with B∈{−1,+1}N×L [1]. We
map {−1,+1}→{0, 1} and pack bits MSB–first. PCA fitting
and ITQ initialization use fixed random seeds.

D. Mathematical Formulation and Decision Metrics

1) Hamming scoring and decision: Let benr,bprb ∈
{0, 1}L be enrolled and probe codes. The Hamming distance
is

DH(benr,bprb) =

L∑
k=1

[
benr,k ⊕ bprb,k

]
. (1)

A verifier with threshold τ accepts iff DH ≤ τ .

a) Operating characteristics: Let P+ and P− be sets
of genuine and impostor pairs. Then

TPR(τ) = Pr
[
DH ≤ τ

∣∣P+
]
, (2)

FPR(τ) = Pr
[
DH ≤ τ

∣∣P−], (3)
FNR(τ) = 1− TPR(τ). (4)

The receiver operating characteristic (ROC) traces
(FPR(τ),TPR(τ)); the Equal Error Rate (EER) satisfies
FPR(τ⋆) ≈ FNR(τ⋆). We also report TPR@FPR = α (e.g.,
α = 1%).

b) Bit balance and entropy: For bit k,

mk =
1

N

N∑
n=1

bnk, pk = 1+mk

2 , (5)

Hk = −pk log2 pk − (1− pk) log2(1− pk). (6)

Well-behaved codes have mk≈0 and Hk≈1 bit.

c) Within–identity stability and eyeglasses sensitivity:
For same-identity pairs S, the per-bit flip-rate is

ϕk =
1

|S|
∑

(i,j)∈S

⊮
[
bik ̸= bjk

]
. (7)

On CelebA, compute ϕ
(glass)
k on cross-condition pairs (with

vs. without eyeglasses) and ϕ
(ctrl)
k on same-condition pairs.

The difference ∆ϕk = ϕ
(glass)
k − ϕ

(ctrl)
k localizes eyeglasses-

induced instability.

E. Eyeglasses Stress Protocol (CelebA)

For identities with both conditions, cross–condition
pairs are formed to isolate attribute-induced instability and
same–condition controls are used to factor out identity/time
variance. We compare the distributions of {ϕ(glass)

k } and
{ϕ(ctrl)

k } and quantify their impact on ROC/EER at each L.

Input: MORPH (train/val/test), CelebA (eyeglasses splits);
L∈{32, 64, 128}; optional instability quota q (masking)

Output: Bit statistics and verification metrics (ROC/AUC, EER,
TPR@FPR=1%)

1: Initialize µ, WPCA (top L), ITQ rotation R (fixed seeds)
2: Fit PCA–ITQ on MORPH train; learn R by ITQ [1]
3: for each L ∈ {32, 64, 128} do
4: Validation (MORPH): binarize; sweep τ ; record τ⋆ (AUC/EER)
5: Bit statistics (MORPH): compute mk , Hk , and flip-rate ϕk

6: Eyeglasses (CelebA): cross- vs same-condition; compute ϕ
(glass)
k ,

ϕ
(ctrl)
k , ∆ϕk

7: if masking enabled then
8: rank by instability; define mask M (top-q%); re-estimate τ⋆mask on

M
9: end if

10: Test (MORPH): evaluate baseline (and masked) with frozen thresholds

11: Report (CelebA): summarize {ϕ(glass)
k } vs {ϕ(ctrl)

k } and relate to
MORPH operating points

12: end for

Fig. 1. Protocol for bit-level analysis and verification.

TABLE I. MORPH: EFFECT OF BIT LENGTH L (PCA-ITQ)

L (bits) AUC EER (%) TPR@1% (%) TPR@0.1% (%)

128 0.9994 0.90 99.13 96.64
64 0.9978 2.04 96.52 88.96
32 0.9887 5.17 85.68 49.02

F. Scoring and Operating Points

For each L∈{32, 64, 128} a single threshold τ is set on the
MORPH validation ROC and then applied unchanged to the
MORPH test split. CelebA is used to report bit-level stability
and to assess how eyeglasses-conditioned instability correlates
with shifts in operating points (thresholds remain those fixed
on MORPH validation).

G. Reproducibility and Privacy Context

All random choices (PCA/ITQ seeds, pair sampling) are
fixed; identities are disjoint across train/validation/test; and
CelebA attribute pairing follows the official annotations [10].
The discussion touches on renewability and diversity of tem-
plates in the sense of ISO/IEC 24745 [6], [7], but deliberately
excludes transport or on-card API details from this short paper.

The complete protocol, including training of PCA–ITQ,
threshold calibration, bit-statistics computation, and CelebA
stress testing, is summarized in Fig. 1.

IV. RESULTS

All evaluations follow Section III. Thresholds are selected
on MORPH validation and held fixed for the corresponding
test reports unless stated otherwise. When shown, confidence
intervals are nonparametric (percentile; 10,000 bootstrap re-
samples).

A. Hash Length vs. Verification on MORPH

Takeaway. A 64-bit template offers a strong size–accuracy
trade-off: near-saturated AUC with ∼2× smaller footprint
than 128-bit, at a modest cost at FPR= 0.1%. The 32-bit
regime substantially narrows the genuine–impostor margin.
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Fig. 2. MORPH ROC at L∈{32, 64, 128} (PCA–ITQ). Global view
complements the low-FAR zoom in Fig. 3.

Fig. 3. MORPH ROC zoomed to FPR ≤ 1% for L∈{32, 64, 128}
(PCA–ITQ). The 64-bit code retains most of the 128-bit low-FPR advantage;

32-bit degrades at strict FPR.

Fig. 2 shows the global ROC curves on MORPH for L ∈
{32, 64, 128}, while Fig. 3 zooms into the low-FAR region
(FPR ≤ 1%) that is most relevant for deployment. Overall,
these results indicate that moving from 128 to 64 bits yields a
nearly two-fold reduction in template size with only a modest
drop in low-FAR performance (about 2.6 percentage points at
FPR=0.1%), whereas the transition from 64 to 32 bits incurs

TABLE II. BIT STATISTICS AND OPERATING THRESHOLDS ON MORPH.
MEAN BALANCE IS THE ONES RATIO; STABILITY IS MEAN WITHIN-ID

AGREEMENT

L Mean balance Mean stability τEER EER (%) τ1% / TPR@1%

32 0.5016 0.876 5 41.19 3 / 17.65
64 0.5011 0.868 15 16.66 13 / 63.88
128 0.5003 0.860 37 5.33 35 / 91.66

Fig. 4. MORPH (32-bit): Genuine vs. hardest impostor with τEER and τ1%.
Shows margin compression relative to 64-bit (Fig. 5).

Fig. 5. MORPH (64-bit): Hamming distributions for genuine vs. hardest
impostor with τEER and τ1% marked. Visualizes the margin underlying

Table II.

a much sharper loss (around 39.9 percentage points at the
same operating point). This pattern is consistent with previous
observations that excessively short binary codes compress both
intra-class and inter-class variation [1], [11], and it provides
concrete bounds for deployments that must trade memory and
I/O against verification accuracy.

B. Bit Balance, Stability, and Operating Points

Observation. Codes remain well balanced (≈0.5) across
L; stability declines only mildly with longer codes. Operating
points are governed by the shift of genuine mass relative to
hardest impostors (Fig. 5).

C. CelebA Stress Tests and Alignment Effects

1) Eyeglasses Paired stability and localization: Finding.
Eyeglasses increase flip-rates modestly on average (Table IV),
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TABLE III. CELEBA (UNALIGNED VS. ALIGNED): MEAN STABILITY,
EER, AND TPR@1%. ALIGNMENT YIELDS A SMALL BUT CONSISTENT

BENEFIT AT 64 BITS

Setting L Stability EER TPR@1%

Unaligned 32 0.889 0.220 0.472
Unaligned 64 0.846 0.209 0.582
Unaligned 128 0.799 0.274 0.455
Aligned 32 0.893 0.264 0.408
Aligned 64 0.856 0.196 0.591
Aligned 128 0.804 0.259 0.555

TABLE IV. CELEBA (ALIGNED): PAIRED WITHIN-ID STABILITY WITH
EYEGLASSES OFF/ON; ∆ SHOWS THE MEAN DIFFERENCE WITH 95% CI

L Off On ∆ (95% CI) τ1% TPR@1% τEER/EER

32 0.899 0.887 +0.012 [+0.0026,+0.0214] 4 0.269 8 / 0.382
64 0.870 0.854 +0.016 [+0.0096,+0.0228] 15 0.326 21 / 0.302

128 0.819 0.815 +0.004 [–0.0015,+0.0097] 40 0.288 48 / 0.386

Fig. 6. CelebA (aligned): Per-bit stability (mean ±95% CI) with eyeglasses
off vs. on. Instability is concentrated in a minority of positions.

but the effect is localized (Fig. 6), supporting targeted mitiga-
tion.

V. DISCUSSION

A. From Bit Statistics to Operating Points

The measurements link per–bit behavior to verification
outcomes in a simple margin model. Let D−

H denote impos-
tor Hamming distance and D+

H genuine Hamming distance.
For random, independent codes with mean balance ≈ 0.5,
D−

H ∼Binom(L, 0.5), so E[D−
H ]=L/2 and sd(D−

H)=
√
L/2.

Genuine distance can be written D+
H =

∑L
k=1 Xk with Xk ∼

Bernoulli(ϕk), where ϕk is the within–ID flip–rate of bit k.
Thus

E[D+
H ] =

∑
k

ϕk, sd(D+
H) =

√∑
k

ϕk(1− ϕk).

Separation at a fixed FAR is governed by the gap ∆ =
E[D−

H ] − E[D+
H ] relative to the spreads. Increasing L moves

both means apart, but also increases impostor concentration

(∝
√
L). Empirically, (Table II) higher L reduces EER because

the impostor distribution tightens, whereas too small L (32 b)
narrows ∆ sharply and hurts low-FAR TPR. This explains why
64 b sits on a favorable size–accuracy frontier on MORPH
(Table I) and why 128 b minimizes EER when footprint is less
constrained. Compared to the benchmark-level study in [11],
which contrasted different mobile-class encoders and hash
lengths primarily via aggregate ROC and EER metrics, the
present analysis exposes how a small subset of unstable bits
dominates the degradation when codes are shortened. This
observation aligns with the ageing-drift patterns reported for
binary templates in [15], and it provides the statistical rationale
for targeted error-correction schemes such as the unstable-bit
Reed–Solomon approach in [18]. In contrast to general surveys
on biometric hashing and template protection [19], [13], [14],
the current work quantifies the bit-level conditions under which
short codes (32–64 bits) remain viable in privacy-preserving,
decision-only settings.

B. Attribute Localization and Alignment

Eyeglasses increase mean flip-rates only modestly (Ta-
ble IV) but the effect is concentrated in a minority of positions
(Fig. 6). This structured instability validates the premise of
targeted mitigation. Alignment yields a small but consistent
benefit at 64 b (Table III), suggesting that canonicalization re-
duces attribute spillover into otherwise stable positions—useful
when parity budgets are tight.

C. Practical Guidance for Deployment

• Code length: Use L=64 as a default when template
footprint and I/O are constrained; choose L=128 when
minimizing EER is paramount and memory allows.

• Enrollment: Prefer n≥3 enrollment samples to stabi-
lize estimates and reduce variance of genuine compar-
isons.

• Mitigation: Avoid large masks: small quotas may help
at lenient thresholds, but aggressive masking collapses
discrimination at low FAR.

• Thresholds: Calibrate a single τ per L on validation
and freeze it for test to maintain reproducibility and
operational simplicity.

D. Security and Privacy Considerations

The present study focuses on representation and decision
statistics, not protocol hardening. That said, compact binary
templates with near-balanced bits limit leakage from simple
score-based queries. Refreshing the unstable-bit set U en-
ables diversification and renewability in the spirit of template
protection standards [6], while preserving unlinkability when
identifiers are rotated. A thorough adversarial analysis (e.g.,
score-oracle exploitation, side-channel I/O) is orthogonal and
left to the companion system paper.

E. Limitations and External Validity

The upstream encoder is intentionally fixed and the analysis
focuses on MORPH (longitudinal) and CelebA (eyeglasses)
to isolate bit-level effects. Outcomes may differ with other
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encoders, demographics, or attributes (e.g., occlusions beyond
glasses). CelebA attribute labels carry annotation noise; never-
theless, the localization effect is strong enough to survive that
noise. Finally, parity was explored on short Reed–Solomon
(RS) designs over a small unstable window; other lightweight
constructions may offer different trade-offs.

F. Implications and Next Steps

Bit-level analysis is actionable: 1) it explains the observed
hash-length trade-off through a margin lens, 2) it shows that in-
stability is structured, not uniform, and 3) it motivates localized
robustness that preserves discrimination. Potential next steps
include extending attribute stress beyond eyeglasses, learning
encoder-aware rotations that explicitly balance stability and
entropy at target L, and evaluating parity/masking under formal
privacy budgets and attack models.

Bottom line. Binary codes from a fixed encoder are already
well balanced and mostly stable; the errors that matter come
from a small, identifiable subset of bits. Masking discards
signal and saturates quickly. For constrained deployments, 64 b
with n≥3 enrollment samples is a principled operating point;
128 b is the accuracy ceiling when resources permit.

VI. CONCLUSION

This paper analyzes binary face templates produced by
PCA–ITQ from a fixed, mobile-class encoder across hash
lengths L ∈ {32, 64, 128}, linking per-bit statistics to verifica-
tion behavior. Empirically, codes are near-balanced and mostly
stable; the residual errors are driven by a small, identifiable
subset of positions whose flip-rates rise under attribute change
(eyeglasses). This structure explains the observed hash-length
trade-off on MORPH and CelebA: 64 bits sit on a favorable
size–accuracy frontier, while 128 bits minimize EER when
footprint allows; 32 bits generally require redundancy.

Simple masking removes both noise and identity signal and
saturates, especially at strict FPR.

• Guidance: For constrained deployments, use L=64
with n≥3 enrollment samples; prefer L=128 when
accuracy dominates. Monitor per-bit flip profiles to
refresh the unstable set and preserve renewability.

• Limitations and outlook: The study fixes the encoder
and focuses on MORPH (longitudinal) and CelebA
(eyeglasses). Extending to additional attributes and
demographics, learning rotations that trade entropy
for stability at target L, and formalizing adversar-
ial/privacy analyses are promising next steps. We
release manifests and pairing lists to support repro-
ducibility and independent verification.
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