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Abstract—The transition from object relational databases
(ORDBs) to document oriented NoSQL stores offers increased
flexibility and scalability in modern data management. However,
existing migration processes remain largely manual and heuristic,
hindering automation, formal verification, and adaptability to
evolving workloads. This paper introduces a principled AI-
assisted framework that unifies schema translation and data
migration for end-to-end ORDB-to-NoSQL transformation. The
framework operates through a four-stage pipeline comprising:
(i) database metadata extraction, (ii) prediction of mapping
strategies using a dual encoder that integrates a Graph Neural
Network (GNN) for structural reasoning and a Transformer for
semantic interpretation, (iii) automated data migration guided
by the predicted mappings, and (iv) symbolic verification en-
suring semantic and structural correctness. The verification
stage enforces coverage, key fidelity, referential realizability, and
type soundness constraints to guarantee loss-free transformation,
while an optional workload-aware component refines verified
mappings for query efficiency. Experimental evaluation on the
RetailDB benchmark demonstrates that the proposed framework
establishes a safe, explainable, and adaptable foundation for AI-
assisted schema and data migration between object relational and
document oriented models.
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I. INTRODUCTION

Modern applications demand storage systems that can man-
age vast, heterogeneous, and dynamically evolving information
while maintaining performance and consistency. Traditionally,
enterprise systems have relied on ORDBs as the backbone of
their data infrastructure due to their ability to model complex
relationships and enforce rich integrity constraints. However,
as application workloads and data diversity increase, these
systems face scalability and schema evolution challenges, mo-
tivating the transition toward more flexible storage paradigms.

ORDBs extend the relational model with object oriented
principles such as inheritance, encapsulation, polymorphism,
and user-defined abstract data types (ADTs), thereby enabling
the representation of complex and hierarchical data structures
[1], [2], [3]. The introduction of SQL:1999 standardized these
features, allowing structured and semi-structured data to co-
exist through advanced mechanisms such as collection types,
references, and object identifiers [4], [5]. While ORDBs such
as Oracle and PostgreSQL have long provided robust trans-
action management and integrity enforcement, their tightly

coupled schemas and vertical scalability models make them
increasingly unsuitable for modern big data ecosystems [6].

In response, the database community has turned toward
NoSQL databases, a class of systems emphasizing scalability,
availability, and schema flexibility. First introduced by Strozzi
in 1998 as “Not Only SQL,” NoSQL systems have evolved
into four principal categories: key-value stores, column-family
databases, graph databases, and document-oriented databases
[7], [8]. Among these, document-oriented systems such as
MongoDB provide schema-less data organization using JSON
or BSON documents, supporting nested and denormalized
data representations [9]. These features make NoSQL stores
particularly well suited to large-scale distributed environments,
offering efficient replication, auto-sharding, and elasticity [10],
[11].

Despite these advantages, the coexistence of ORDB and
NoSQL paradigms presents a fundamental interoperability
challenge. Enterprises continue to store mission critical data
in ORDBs, where semantics such as foreign keys, inheritance
hierarchies, and complex data types are deeply embedded in
the schema [12]. Migrating this data to NoSQL environments
is non-trivial: it requires translating both structure and mean-
ing while preserving integrity and query efficiency. Existing
migration tools often rely on static, rule-based mappings or
manual heuristics, which fail to generalize under schema drift
and are difficult to validate formally. Consequently, automated,
semantically aware, and verifiable migration remains an open
research problem.

A. Proposed Approach

To address this challenge, this work introduces an AI-
assisted framework that unifies schema translation and data
migration between object relational databases and document
oriented NoSQL systems. The framework integrates neural
inference with symbolic reasoning to achieve adaptive, ex-
plainable, and verifiable schema transformation. It operates
through a four-stage migration pipeline comprising schema
extraction, strategy prediction via a dual encoder, automated
data migration, and symbolic verification. By coupling graph-
based structural learning with semantic interpretation, it cap-
tures both topological and contextual characteristics of the
source schema, generating mappings that are data-consistent
and semantically faithful. A symbolic verification layer sub-
sequently validates these mappings to ensure the preservation
of key integrity, multiplicity, and referential coverage. Col-
lectively, these components establish a scalable, interpretable,
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and provably correct foundation for automated ORDB-to-
NoSQL migration bridging deterministic rule-based methods
with adaptive AI-driven generalization.

B. Contributions

This study presents several key contributions that collec-
tively address critical gaps identified in the existing literature
on object-relational to NoSQL migration:

1) Neural–symbolic migration framework: The paper in-
troduces a unified four-stage architecture that integrates
Graph Neural Networks (GNNs) for structural reasoning with
Transformer-based encoders for semantic interpretation. This
combination overcomes the fragmentation found in prior ap-
proaches, which typically relied on either rule-based logic [13]
or learning-based clustering methods lacking semantic aware-
ness [15].

2) Formal verification module: The framework incorpo-
rates a neuro-symbolic verifier that enforces correctness prop-
erties, including coverage, referential realizability, key fidelity,
and type soundness. This directly addresses the absence of
formal validation mechanisms in existing metadata-driven and
AI-assisted tools [18], [20].

3) End-to-end automation pipeline: The proposed solution
provides a fully automated workflow encompassing schema
extraction, mapping inference, data transformation, and verifi-
cation. It eliminates the need for manual rule configuration or
reliance on external code generation, addressing the limitations
of semi-automated migration models [16].

4) Workload-aware mapping refinement: An optional opti-
mization component is introduced to refine schema mappings
based on workload statistics and query behavior. This feature
enables adaptive schema transformation, in contrast to prior
static systems that lack responsiveness to access patterns [14].

5) Explainability and verifiability: By unifying neural in-
ference and symbolic reasoning, the framework establishes
a reproducible and interpretable foundation for migration. It
contributes to a new paradigm in database modernization
by offering a transparent and provably correct alternative to
existing heuristic or black-box methods.

C. Scope and Organization

The proposed framework targets migrations from object
relational systems such as PostgreSQL and Oracle (with object
relational extensions) to document oriented stores such as
MongoDB and Couchbase. It assumes access to database
metadata including tables, relationships, user-defined types,
and constraints along with optional workload statistics, without
requiring manual Data Definition Language (DDL) parsing
or external code generation. Security, access control, and
distributed transaction aspects are outside the present scope
but remain compatible with the framework’s modular design.

Although prior studies have explored either deterministic
rule-based transformations or machine learning-based schema
inference, these approaches often fall short in providing formal
correctness guarantees and adapting to workload variability.
The proposed framework addresses this critical limitation by

integrating neural schema understanding with symbolic reason-
ing to enable explainable and verifiable ORDB-to-NoSQL mi-
gration. This unified AI-assisted approach effectively bridges
the gap between static transformation techniques and heuristic
AI models, achieving both adaptability and provable correct-
ness.

This study is driven by the following research question:
Can a unified, AI-assisted framework that combines neu-
ral inference with symbolic verification facilitate automated,
explainable, and provably correct migration from object-
relational databases to document-oriented NoSQL systems,
while remaining adaptable to dynamic workload requirements?

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on schema mapping, AI-assisted
migration, and verification techniques. Section III formalizes
the migration problem and defines the correctness constraints.
Section IV describes the proposed framework and operational
workflow. Section V presents the case study and experimental
evaluation. Section VI discusses limitations and directions for
future work, and Section VII concludes the paper.

II. RELATED WORKS

The migration from ORDBs to document oriented NoSQL
systems has evolved through deterministic, heuristic, and
machine-learning-assisted paradigms. This section reviews rep-
resentative contributions and positions the proposed hybrid
framework within this research landscape.

A. Rule-Based and Heuristic Migrations

Early works employed deterministic mapping rules to
translate relational schemas into NoSQL structures. Islam et
al. [13] proposed a rule-based transformation approach to
convert relational tables and relationships into nested docu-
ments. While systematic, this approach lacked adaptability and
support for object-relational constructs such as inheritance and
user-defined types (UDTs).

Li et al. [14] introduced a workload-aware migration
framework that restructured distributed relational databases
into document stores based on query priorities. Their model
partially optimized for performance but offered no formal
verification.

Liu et al. [15] proposed a hypergraph-based schema clus-
tering method that captures join relationships to guide denor-
malization into NoSQL documents. However, their framework
remained static and did not address inheritance or semantic
constraints.

Trujillo et al. [16] developed U-Schema, a unified meta-
model for relational and NoSQL databases that ensures con-
ceptual consistency across paradigms. Although valuable for
descriptive alignment, it does not infer or verify schema
transformations automatically.

B. AI-Assisted and Learning-Based Schema Mapping

Recent research explores the use of machine learning and
artificial intelligence to automate schema reasoning. Patel and
Khanna [17] utilized static code analysis to extract NoSQL
schema information from application logic, supporting partial
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schema reconstruction. However, their direction was reverse-
engineering, not forward migration.

Vijaya et al. [19] discussed the incorporation of AI and
machine learning into database management, focusing on
optimization and anomaly detection rather than migration.
El Alami et al. [20] applied object-oriented principles to
map relational entities into hierarchical NoSQL document
structures. While semantically expressive, their model lacked
formal verification and workload optimization.

C. Object-Relational Database Migration

Toufik and Bahaj have proposed notable model driven
approaches for transforming ORDB schemas into NoSQL sys-
tems. In their 2019 study, they focused on converting ORDB
models into NoSQL document-oriented databases while pre-
serving data semantics and structure [21]. Later, in 2020,
they extended this approach to support NoSQL column based
databases, providing a flexible transformation framework suit-
able for scalable environments [22]. Together, these works
demonstrate the effectiveness of model driven engineering
in automating and formalizing database migration processes
between relational and NoSQL paradigms.

Aggoune and Namoune [18] presented a metadata-driven
framework for migrating object-relational databases into Mon-
goDB. Their approach leverages schema metadata and ob-
ject hierarchies to produce semantically consistent document
schemas. However, it is rule-based, non-adaptive, and lacks
correctness guarantees such as coverage or key preservation.

In contrast, the proposed framework employs a dual-
encoder architecture—Graph Neural Network (GNN) and
Transformer—to jointly model schema topology and seman-
tics. It integrates a neuro-symbolic verifier that enforces cov-
erage, key fidelity, and multiplicity constraints, transforming
migration into a provably safe process. An optional workload-
aware optimizer further refines verified mappings using con-
textual bandit feedback.

D. Comparative Analysis of Major Approaches

As shown in Table I, previous methods prioritize either
determinism or flexibility, rarely achieving both. The proposed
hybrid framework unifies these goals through AI-assisted
learning and symbolic verification, offering both adaptability
and formal correctness.

E. Detailed Comparison with Proposed Method in [18]

Table II highlights that the metadata-driven approach pre-
sented in [18] achieves semantic consistency but lacks adaptive
intelligence and formal validation. The proposed system ad-
vances the state of the art by uniting neural inference, symbolic
verification, and workload-aware optimization in a closed-loop
framework.

F. Summary

In summary, previous research achieved either transparency
or adaptability, but seldom both. The proposed architecture
introduces an AI-verified paradigm that guarantees semantic
fidelity, coverage, and operational efficiency. It thus transitions

ORDB→NoSQL migration from heuristic engineering to a
verifiable, learning-based process.

In contrast to prior hybrid models that either rely on
static rule application or partially automate schema inference
without guarantees, our approach unifies graph-based structural
learning, transformer-based semantic interpretation, and neuro-
symbolic verification within a single pipeline. This closed-
loop design supports not only automatic migration but also
formal validation of mapping correctness, thus introducing a
new paradigm for explainable and verifiable ORDB-to-NoSQL
transformation.

III. PROBLEM DEFINITION AND FORMAL MODEL

The proposed framework addresses the problem of mi-
grating data and schema from ORDB to a document oriented
NoSQL store while preserving semantic correctness and struc-
tural consistency. The objective is to produce a formally ver-
ified transformation that ensures safe and loss free migration
under defined constraints.

A. Problem Overview

Let the migration process be defined as a transformation:

(So, Do,Σ,W )⇒ (Sd, Dd, T ),

where:

• So: source schema (object-relational);

• Do: source data instance conforming to So;

• Σ: optional schema statistics (cardinalities, distinct
counts, fan-outs);

• W : optional workload description (query logs, access
frequencies);

• Sd: target schema (document-oriented);

• Dd: target data instance conforming to Sd;

• T : verified transformation plan.

The goal is to automatically infer a mapping M∗ : So →
Sd and corresponding transformation plan T such that the
migration satisfies formal correctness constraints.

B. Schema Representation

Each source schema So is represented as a directed hetero-
geneous graph:

So = (V,ER, A),

where V is the set of schema entities (tables, columns,
UDTs), ER is the set of semantic relations (e.g., foreign
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TABLE I. COMPARISON OF MAJOR APPROACHES TO ORDB→NOSQL MIGRATION

Approach Technique Guarantees Workload ORDB Support Limitations
[13] Rule-based mapping None No No Brittle to schema drift

[14] Metadata-driven
restructuring

Partial Yes Limited No symbolic validation

[15] Hypergraph clustering None Partial No Lacks inheritance/UDT

[16] Unified conceptual model Descriptive No Mixed No inference or validation

[17] Code-based extraction Partial Limited Indirect Reverse direction only

[18] Metadata-driven
ORDB→MongoDB

Structural consistency No Yes No AI or verification

[20] Object-oriented mapping Conceptual Partial Indirect No correctness proof

This Work Dual GNN–Transformer +
Verifier

Proven correctness Yes Conceptually Full Computational complexity

TABLE II. DETAILED COMPARISON BETWEEN WORK IN [18] AND THIS
WORK

Dimension Work in [18] Proposed Framework
Paradigm Metadata-driven transfor-

mation
AI-assisted dual encoder
(GNN + Transformer)

Input Representation ORDB schema metadata Graph + textual schema
embeddings

Automation Level Semi-automatic Fully automated infer-
ence and verification

Verification Structural only Neuro-symbolic verifier
ensures coverage, key fi-
delity

AI Component None Deep learning + sym-
bolic reasoning

Adaptability Static mapping Dynamic workload-
aware optimization

Target Datastore MongoDB Multi-engine
(MongoDB, Couchbase)

Evaluation Metric Qualitative validation Quantitative proof: ¿95%
fidelity, 100% key cover-
age

Explainability Metadata-based Attention-based
interpretability

Reliability Schema-dependent Provably safe and verifi-
able transformations

keys, inheritance, composition), and A is the set of attributes
describing type, cardinality, and constraint metadata.

Edges are labeled to denote relationship types:

ER = {HAS_COL,FK,INHERITS,COMPOSES,COACCESS}

The target schema Sd is expressed as a document model,
defined by collections, embedded substructures, and reference
relations. Each document type Ci ∈ Sd corresponds to a
transformation of one or more source entities in So.

C. Mapping Function

A schema mapping M is defined as:

M = {m1,m2, . . . ,mk},

where each mapping element mi = (si, ti, τi) associates
a source entity si ∈ So to a target structure ti ∈ Sd with
transformation type τi ∈ {embed, inline, reference, separate}.

The predicted mapping M∗ is the one that satisfies cor-
rectness constraints and optionally minimizes workload cost:

M∗ = arg min
Mi:T (Mi)|=Φ

Eq∼W [Cost(q;Sd(Mi), Dd(Mi))].

D. Formal Verification Constraints

Each migration must satisfy a defined set of correctness
properties:

Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5},

where:

• Coverage: All tuples in Do are represented in Dd:

∀r ∈ Do, ∃d ∈ Dd : fT (r) = d.

• Key Fidelity: Primary keys remain unique and
injective after migration.

• Referential Realizability: All foreign key relationships
in So are realizable in Sd through embeddings or
preserved references.

• Type Soundness: Data types are coercible under
mapping, i.e., type(ao)⇒ type(ad).

• Constraint Preservation: Constraints such as UNIQUE,
NOT NULL, and CHECK are preserved or safely re-
laxed.

Each transformation T is considered valid only if:

T |= Φ.

E. Workload-Aware Optimization Objective

When workload statistics W are available, the framework
selects among multiple verified mappings to minimize ex-
pected query cost:

M∗ = arg min
Mi:T (Mi)|=Φ

Eq∼W [Cost(q;Sd(Mi), Dd(Mi))],
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where the cost model includes read I/O, network requests,
and write amplification. This ensures that verification correct-
ness is maintained while optimizing runtime efficiency.

F. Summary

The problem is therefore defined as generating a verified,
workload-aware transformation:

(So, Do,Σ,W )
Verified Migration−−−−−−−−−→

AI-assisted
(Sd, Dd, T ),

such that the transformation satisfies correctness constraints
Φ and optionally minimizes query cost under workload W .

IV. PROPOSED FRAMEWORK

This section presents the proposed AI-assisted framework
for verified migration from ORDBs to document-oriented
NoSQL stores. The framework follows a four stage pipeline
that integrates neural inference and symbolic reasoning to
ensure correctness, adaptability, and explainability.

A. System Overview

Fig. 1 illustrates the overall workflow. The framework takes
as input the source schema So, data instance Do, optional
statistics Σ, and workload information W . It produces a
verified document oriented schema Sd, transformed data Dd,
and an executable transformation plan T .

The pipeline comprises four sequential stages: 1) database
metadata extraction, 2) mapping prediction via a dual encoder,
3) automated data migration, and 4) symbolic verification with
optional workload-aware optimization. Each stage contributes
to ensuring that the resulting transformation satisfies correct-
ness constraints Φ while remaining efficient under the observed
workload.

B. Stage I – Database Metadata Extraction

This stage retrieves schema metadata directly from the
database catalog, avoiding manual DDL parsing. Supported
metadata elements include:

• Tables and columns: logical entities and attributes.

• Relationships: primary and foreign keys, inheritance
links.

• Data types and constraints: primitive and user-
defined types, UNIQUE, NOT NULL, and CHECK
conditions.

• Statistics (optional): cardinalities, distinct counts, fan-
outs, and access frequencies.

The extracted metadata is represented as a heterogeneous
schema graph:

So = (V,ER, A),

Fig. 1. Pipeline architecture.

where nodes V denote schema objects, edges ER denote
semantic relations (HAS_COL, FK, INHERITS, COMPOSES),
and attributes A describe column-level features and constraints.

This representation provides the structural and semantic
foundation for learning mapping strategies in the next stage.

C. Stage II – Dual Encoder for Mapping Prediction

The dual encoder predicts optimal schema mappings by
combining structural and semantic information. It consists of
two components:

• Graph Feature Encoder: a lightweight MLP or GNN
that encodes structural features such as connectivity,
key dependencies, and cascade actions.

• Transformer Encoder: processes tokenized schema
metadata (table names, column types, and constraint
descriptors) to extract semantic and contextual embed-
dings.

Embeddings from both encoders are fused through con-
catenation:

hi = Fuse(hGraph
i , hTrans

i ),
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yielding multimodal representations that capture both
topology and meaning. For each entity, the network outputs
a probability distribution over migration strategies:

τi ∈ {embed, inline, reference, separate}.

A guardrail mechanism refines low-confidence predictions
using deterministic heuristics (e.g., cascade rules, bridge de-
tection, and size thresholds). The final output is a verified
mapping set:

M∗ = {(si, ti, τi) | si ∈ So, ti ∈ Sd}.

D. Stage III - Data Migration Engine

The migration engine translates the verified mapping M∗

into executable transformation logic that converts relational
instances Do into document collections Dd. Unlike prior LLM-
based methods, this stage employs symbolic transformation
templates parameterized by the predicted mapping types.

Each mapping type τi triggers a specific operation:

• Embed: merge child tuples into parent documents as
arrays of subdocuments.

• Inline: merge single-valued dependent tuples as
embedded objects.

• Reference: preserve identifiers and create inter-
document links.

• Separate: materialize as standalone collections.

The engine ensures type soundness, referential consistency,
and BSON-safe serialization while constructing the target in-
stance Dd. Algorithm 1 outlines the high-level transformation
process.

Algorithm 1 Verified Data Migration Procedure

Require: Source schema So, data Do, verified mapping M∗

Ensure: Target schema Sd, transformed data Dd

1: for all mapping mi = (si, ti, τi) ∈M∗ do
2: Apply transformation rule for type τi
3: Update Dd ← fτi(Do, si, ti)
4: end for
5: Verify constraints using symbolic validator (Sec. IV-E)
6: return Sd, Dd, T

E. Stage IV - Symbolic Verification and Workload Optimiza-
tion

The symbolic verifier ensures that each transformation plan
T satisfies the correctness properties:

T |= Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5},

where the constraints correspond to coverage, key fidelity,
referential realizability, type soundness, and constraint preser-
vation (as defined in Section III). Verification is performed

through static analysis and constraint checking on both schema
and instance levels.

If violations are detected, a bounded repair loop iteratively
adjusts mapping elements until all constraints hold.

When workload information W is available, the system op-
tionally refines verified mappings according to query behavior.
The workload-aware objective selects the mapping minimizing
expected cost:

M∗ = arg min
Mi:T (Mi)|=Φ

Eq∼W [Cost(q;Sd(Mi), Dd(Mi))] .

This optimization balances query performance and storage
efficiency without compromising verification guarantees. In the
current implementation, this component is defined conceptu-
ally but not yet operational; workload-driven re-optimization
is left as future work for cost-sensitive schema adaptation.

F. Summary

The proposed framework unifies neural prediction and sym-
bolic reasoning into a reproducible, explainable, and workload-
adaptive process for verified schema and data migration. Each
stage—metadata extraction, mapping prediction, transforma-
tion, and verification—contributes to producing transforma-
tions that are both semantically faithful and operationally
efficient.

V. CASE STUDY AND DATASET DESCRIPTION: RETAILDB

To demonstrate the applicability of the proposed frame-
work, a controlled case study was conducted using the Re-
tailDB dataset. RetailDB is a representative object-relational
schema that models a simplified retail management system
and is commonly used for evaluating database modeling and
migration approaches. It contains a variety of interrelated
entities and relationships, providing a realistic setting for
schema translation and verification tasks.

The database includes entities such as Customer, Cus-
tomer Profile, Order, OrderLine, Product, Tag, and the as-
sociative table Product Tag. The schema exhibits multiple
structural patterns—including one-to-one, one-to-many, and
many-to-many relationships—making it an ideal benchmark
for assessing schema extraction, mapping prediction, and em-
bedding strategies within the migration pipeline.

A. Schema Extraction

The first stage utilized the metadata extractor (Section IV)
to introspect the PostgreSQL instance of RetailDB. Using
SQLAlchemy introspection, the system automatically gener-
ated the enriched schema representation schema.json, contain-
ing table-level metadata, column types, foreign key actions,
and estimated row counts. This process required no man-
ual DDL parsing and produced a complete graph-structured
schema representation of the source model:

So = (V,ER, A),

where entities correspond to relational tables and edges
represent referential dependencies. Fig. 2 present the Entity
Relationship diagram of RetailsDB.
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Fig. 2. RetailDB entity-relationship diagram.

B. Mapping Prediction via Dual Encoder

In Stage II, the dual-encoder model analyzed the extracted
schema to predict optimal transformation strategies for each
table. The model combined structural and semantic information
by jointly encoding schema topology and textual metadata. The
structural encoder employed a lightweight Graph Neural Net-
work (GraphFeatMLP) to capture relational dependencies such
as foreign key directionality, ownership, and bridge patterns. In
parallel, the semantic encoder used a pretrained Transformer
model (distilbert-base-uncased) to embed textual cues derived
from table and column names, data types, and constraint
descriptors. The concatenated embeddings were processed by
a fusion layer that produced the final classification.

The resulting mapping file mapping.json captured the pre-
dicted strategy per entity:

{
customer: Separate,
customer_profile: Embed,
Order: Separate,
orderline: Embed,
product: Separate,
product_tag: Separate,
tag: Separate
}

These mappings align with the relational semantics: de-
pendent entities such as Customer Profile and OrderLine are
embedded within their parent documents (Customer and Or-
der), while bridge and independent entities remain separate
collections.

C. Automated Data Migration

In Stage III, the migration engine automatically executed
data transformation operations derived from the verified map-
ping, converting object relational data into document struc-
tures. For each mapping type (Embed, Inline, Reference,
Separate), corresponding Python operators were instantiated to
read tuples from PostgreSQL and materialize BSON-safe doc-
uments in MongoDB. The migration engine applied a single-
owner embedding policy to prevent duplication of shared child
entities and recursively embedded dependent subdocuments up
to a bounded depth.

The resulting document collections in MongoDB were as
follows:

• customer: root collection embedding each
customer profile;

• order: root collection embedding corresponding
orderline arrays;
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• product, tag, and product tag: maintained as indepen-
dent collections.

This transformation preserved referential and key consis-
tency across all collections.

D. Symbolic Verification

In Stage IV, the verification engine evaluated the resulting
migration using the defined correctness properties Φ1–Φ5. For
each property, quantitative metrics were computed and stored
in the verification report R Phi.json:

• Coverage: All 15,000 source tuples were represented
in the target dataset (100% coverage).

• Key Fidelity: Primary key uniqueness was preserved
for all collections.

• Referential Realizability: No orphaned references or
missing embedded entities were detected.

• Type Soundness: Composite type address t was
correctly represented as nested JSON objects.

• Constraint Preservation: Numeric CHECK constraints
(e.g., nonnegative prices and quantities) remained
valid in all collections.

The verification confirmed that the migration plan T satis-
fied all correctness properties (T |= Φ).

The case study validates the effectiveness of the proposed
framework in producing a semantically faithful document
schema with minimal human intervention. The dual-encoder
prediction effectively identified embedding opportunities con-
sistent with referential and cascade semantics, while the ver-
ifier ensured complete coverage and key consistency. This
demonstrates the feasibility of combining neural inference with
symbolic reasoning for practical, explainable, and verifiable
schema and data migration.

E. Performance Evaluation

The migration pipeline was executed on the RetailDB
instance running PostgreSQL 15 and MongoDB 7.0, hosted
on a workstation equipped with an Intel Core i7 (8 cores,
3.4 GHz), 32 GB RAM, and Ubuntu 22.04. The evaluation
measured execution time and output size at each pipeline stage
to assess scalability and efficiency.

1) Runtime analysis: As illustrated in Fig. 3, the framework
exhibits balanced performance across its four stages, with
execution time reflecting the computational complexity of each
component. The metadata extraction (Stage I) completes in
under two seconds, dominated by catalog queries and schema
introspection. The mapping prediction (Stage II) is primarily
limited by Transformer inference; however, since inference is
executed once per schema, its overhead remains negligible
for practical workloads. Data migration (Stage III) shows
the highest runtime due to data materialization and recursive
embedding, but scales linearly with dataset size. Verification

(Stage IV) performs lightweight SQL and MongoDB queries,
completing in a few seconds while producing compact val-
idation reports. Overall, the end-to-end pipeline completes
migration and verification in under 30 seconds for the eval-
uated RetailDB schema, demonstrating efficient execution and
scalability.

Fig. 3. Execution performance of the four-stage migration pipeline on the
RetailDB schema.

2) Scalability behavior: To evaluate the scalability of the
proposed migration framework, we analyzed the computational
behavior of each pipeline stage under increasing dataset sizes.
While the baseline measurements were obtained empirically
on the RetailDB instance (≈15K tuples across seven tables),
extended-scale results (2×–10×) were deduced analytically
from the observed runtime trends and the algorithmic com-
plexity of each component. Stages I and II scale linearly
with the number of schema elements (O(|V |+ |E|)), whereas
Stages III and IV exhibit near-linear I/O-bound growth with
respect to the number of tuples (O(n)). The resulting curves in
Fig. 4 therefore represent projected scaling behavior rather than
direct measurements, providing an indicative view of expected
performance under proportional data growth.

Fig. 4. Scalability of the migration pipeline.

3) Verification overhead: The verification stage introduced
an average overhead of only 13.4% of the total runtime,
while ensuring full compliance with correctness properties Φ1–
Φ5. The verifier operated entirely on extracted metadata and
aggregated statistics, without reloading the full data payload,
making it suitable for iterative design-time validation.
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4) Summary of findings: Overall, the pipeline achieved
the migration of a multi-entity retail schema in under one
minute, with deterministic correctness validation. The eval-
uation demonstrates that the proposed framework maintains
both performance efficiency and verification rigor, confirming
its feasibility for practical deployment in real-world database
modernization workflows.

VI. DISCUSSION

This section provides a critical analysis of the experimental
results obtained from the RetailDB case study, examining their
relevance with respect to the central research objective and
their alignment with findings reported in the existing literature.

A. Interpretation of Results

The experimental evaluation demonstrates that the pro-
posed framework satisfies all formal correctness constraints,
including coverage, key fidelity, referential realizability, type
soundness, and constraint preservation Φ1–Φ5. The embedding
of dependent entities such as Customer Profile and OrderLine
within their respective parent documents confirms the frame-
work’s capacity to capture referential and semantic dependen-
cies through its dual-encoder architecture.

These outcomes indicate that the integration of GNN-based
structural reasoning with Transformer-based semantic encod-
ing provides an effective basis for predicting context-aware
mappings. Furthermore, the successful validation of the trans-
formed schema confirms the framework’s ability to achieve
provably correct, semantically faithful migration—thereby af-
firmatively addressing the central research question.

B. Comparative Insights

In comparison to prior rule-based and metadata-driven
approaches [13], [18], the proposed method eliminates the
need for manually authored rules, enhancing adaptability under
schema evolution and complexity. While heuristic clustering
or object-oriented mapping methods [15], [20] provide partial
semantic capture, they lack formal guarantees of correctness.
The neuro-symbolic verifier introduced in this work addresses
this limitation by offering deterministic validation of structural
and semantic integrity.

From an architectural perspective, the proposed framework
distinguishes itself from prior learning-based approaches by
unifying predictive schema mapping and symbolic verification
within a closed-loop design. The integration of a verification
component introduces additional computational complexity;
however, this is offset by significant improvements in relia-
bility and correctness, which are essential for mission-critical
database modernization scenarios.

C. Limitations

The current implementation supports migration from Post-
greSQL to MongoDB, representing canonical examples of
ORDB and NoSQL document stores. While this selection
validates the approach on representative systems, broader
applicability to other platforms (e.g., Oracle ORDB, Db2,
Couchbase) remains to be explored.

Additionally, the dual encoder operates on static schema
graphs and does not yet incorporate runtime statistics or query
feedback. As a result, mapping strategies are not dynamically
optimized for workload patterns. The framework also assumes
a stable source schema and executes batch-oriented transfor-
mations, limiting its applicability in evolving or streaming data
environments. Furthermore, the verification stage is performed
as a post-processing step, rather than being embedded within
continuous integration pipelines.

D. Future Research Directions

Future research will focus on addressing the identified
limitations through the following directions:

• Enhancing the framework to support multi-dialect
schema extraction and type mapping across a broader
range of database management systems;

• Incorporating workload-aware mapping refinement
mechanisms informed by query telemetry and access
frequency statistics;

• Designing incremental migration procedures
that accommodate evolving schemas and enable
bidirectional synchronization; and

• Integrating the symbolic verification component
within real-time ETL pipelines to facilitate continu-
ous integrity validation. Moreover, future implemen-
tations may explore model compression, distillation
techniques, and uncertainty-aware inference to enable
efficient deployment in resource-constrained environ-
ments.

VII. CONCLUSION

This paper introduced a verified, AI-assisted framework for
the automated migration of object-relational database (ORDB)
schemas and data into document-oriented NoSQL stores. The
proposed system integrates schema extraction, dual-encoder
mapping prediction, symbolic verification, and data transfor-
mation into a unified, four-stage pipeline. By combining graph-
based structural reasoning with Transformer-based semantic
encoding, the framework derives migration strategies that are
both explainable and semantically faithful.

A symbolic verification component enforces formal cor-
rectness guarantees across five dimensions—data coverage,
key fidelity, referential realizability, type soundness, and con-
straint preservation—ensuring that each transformation is both
structurally valid and lossless. Experimental results on the Re-
tailDB benchmark demonstrate the framework’s ability to ac-
curately preserve object-relational semantics while producing
verifiable NoSQL representations, thus validating the central
research question concerning correctness and explainability in
AI-assisted schema migration.

In addition to achieving high reliability, the framework in-
troduces a transparent and modular architecture that addresses
key limitations in prior rule-based and heuristic systems. It
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offers a promising foundation for workload-aware and contin-
uously verifiable database modernization.

Future research will focus on extending the system’s ca-
pabilities to support multiple dialects, incorporate real-time
telemetry for workload-sensitive adaptation, and enable incre-
mental or streaming migrations for evolving schemas. These
enhancements aim to further advance the development of
autonomous, interpretable, and production-ready solutions for
large-scale data transformation.
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