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Abstract—Timely prediction of zoonotic disease outbreaks,
particularly Highly Pathogenic Avian Influenza (HPAI), is critical
for real-time epidemiological surveillance and pandemic pre-
paredness. However, real-world avian surveillance datasets often
suffer from missing values, high dimensionality, and inconsistent
feature distributions, leading to unreliable predictions. This
study proposes THMI-FS-Stack, a modular and interpretable
machine learning pipeline that integrates hybrid data imputation,
scalable feature selection, and ensemble classification for outbreak
forecasting. The first stage, THMI-CB, employs a two-layer im-
putation framework combining statistical techniques (Mode, Hot
Deck, KNN) and machine learning models (Bayesian Networks
and CatBoost), achieving an F1-score of 0.91. The second stage,
Hybrid-FS-ML, combines filter-based ranking (Mutual Informa-
tion, Chi-Square, mRMR) with wrapper-based optimization using
a Genetic Algorithm, achieving a 72% dimensionality reduction
and an F1-score of 0.96. The final component is a stacking
ensemble classifier that uses Random Forest and XGBoost as base
learners and Logistic Regression as the meta-learner, yielding
an F1-score of 0.92, accuracy of 0.93, and AUC-PR of 0.89.
Evaluated on the Wild Bird HPAI dataset with 5-fold strat-
ified cross-validation, THMI-FS-Stack consistently outperforms
baseline models. Its robust architecture, low computational cost
(runtime of 28–36s), and strong generalization ability make it
highly suitable for noisy, incomplete epidemiological data in
wildlife surveillance dashboards and early-warning systems.
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I. INTRODUCTION

Avian Influenza (AI), especially the highly pathogenic
subtypes like H5N1 and H7N9, presents a significant threat
to global public health and biodiversity. AI outbreaks in wild
birds often serve as early indicators for potential zoonotic
transmissions, making timely surveillance and accurate out-
break prediction essential. Delayed detection not only ham-
pers containment but also causes widespread socio-economic
impacts in the poultry industry and public health sectors [1].
Predictive modeling, powered by ecological and epidemiolog-
ical data, has emerged as a valuable tool for early warning
systems. However, building reliable models in this domain
is hindered by two key challenges: missing data and high-
dimensional feature spaces [2], [3].

The Wild Bird HPAI dataset, used in this study, is an
open-source resource that reflects real-world complexities such

as data incompleteness due to irregular monitoring, delayed
reporting, and inconsistent entries. Additionally, the dataset
contains a large number of features, many of which are
redundant or weakly informative, contributing to overfitting
and reduced model interpretability.

To address the missing data problem, traditional imputation
methods like Mode, Hot Deck, and KNN are widely used
for their simplicity, yet they often fail to capture nonlin-
ear dependencies or contextual patterns. Recent studies ex-
plore advanced machine learning-based imputations, including
Bayesian Networks and CatBoost [4], which improve accuracy
by modeling inter-feature relationships. Deep learning methods
such as GAIN and Transformers further advance imputation
performance but are often limited by computational cost and
lack of transparency.

Similarly, in high-dimensional settings, selecting relevant
features is critical for improving generalization. Filter-based
approaches (e.g., Mutual Information, Chi-Square, mRMR) are
fast but univariate. Wrapper methods like Genetic Algorithms
offer superior optimization but are computationally expensive.
A hybrid approach that combines both strategies provides a
practical balance.

To overcome these challenges, we propose THMI-FS-
Stack, a unified machine learning framework integrating three
modules: (1) HMI-CB, a two-layer hybrid imputation strat-
egy combining statistical and machine learning methods, (2)
Hybrid-FS-ML, a two-phase feature selection pipeline that
leverages filter-based ranking and wrapper-based Genetic Al-
gorithm optimization, and (3) a Stacking Ensemble Classifier
combining Random Forest, XGBoost, and Logistic Regression
to produce robust outbreak predictions.

Fig. 1 illustrates the end-to-end pipeline. The framework is
modular, interpretable, and designed for scalability in real-time
surveillance settings. It is validated on the Wild Bird HPAI
dataset using 5-fold stratified cross-validation.

This study offers the following novel, quantifiable, and
domain-specific contributions:

• THMI-FS-Stack pipeline: A unified framework inte-
grating imputation, feature selection, and classifica-
tion, unlike prior works treating them as separate
tasks.

• Hybrid imputation (THMI-CB): Combines statisti-
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Fig. 1. Workflow of the proposed THMI-FS-Stack framework for Avian Influenza outbreak prediction.

cal (Mode, Hot Deck, KNN) and machine learning
(Bayesian Networks, CatBoost) methods, improving
F1-score by 14% over traditional and 2–4% over
standalone ML/DL baselines.

• Hybrid feature selection (Hybrid-FS-ML): Merges
filter-based (MI, Chi-Square, mRMR) and wrapper-
based (GA) methods, achieving 72% dimensionality
reduction and up to 8% F1-score gain.

• Stacking classifier performance: Combines Random
Forest, XGBoost, and Logistic Regression, achieving
5% higher F1-score and 4% better AUC-PR over
AdaBoost and Bagging.

• First-of-its-kind for HPAI surveillance: Tailored for
noisy, incomplete, and high-dimensional avian out-
break data, bridging methodological rigor with prac-
tical relevance.

The rest of the paper is organized as follows: Section
II reviews related work on imputation, feature selection, and
ensemble learning. Section III describes the dataset and pre-
liminaries. Section IV presents the proposed THMI-FS-Stack
methodology in detail. Section V discusses the experimental
setup, evaluation metrics, and results. Section VI concludes the
paper and outlines future directions.

II. RELATED STUDY

The prediction of Avian Influenza outbreaks is complex,
mainly due to the challenges of missing data, high dimension-
ality, and the dynamic nature of the features involved [3]. Many
studies have explored various data imputation techniques,
feature selection methods, and ensemble learning models to
overcome these challenges in the broader field of disease
prediction. This section summarizes the key methodologies
used in the literature to deal with missing data, optimize
features, and improve predictive accuracy in epidemiological
forecasting, with a specific focus on Avian Influenza outbreaks.

A. Missing Value Imputation Techniques

The handling of missing data [5] is a critical task in disease
prediction models. This is because insufficient data can cause
biased results or decrease model accuracy. Several methods
have been proposed for imputing missing values in epidemio-
logical datasets [2]. Traditional imputation methods like mean

imputation, mode imputation, and K-Nearest Neighbors are
extensively used due to their simplicity and computational
efficiency [6], [3]. Mean and mode imputation are suitable for
cases where data is “Missing Completely At Random”. But
these methods may fail when data is “Missing at Random”
or “Missing Not At Random”. KNN imputation uses feature
similarity to impute missing values. It has performed better in
certain models [6], [7].

Machine learning-based imputation techniques have been
developed to handle epidemiological datasets that possess com-
plex feature dependencies. For example, Bayesian Networks
(BNs) can model conditional dependencies between features,
making them well-suited for imputing missing data when
the relationships among features are known [8]. CatBoost is
a gradient-boosting algorithm explicitly developed for cate-
gorical data. It has been shown to impute missing values
more accurately by learning feature interactions during model
training [9].

Deep learning-based models like Generative Adversarial
Imputation Networks use adversarial training to produce plau-
sible missing data samples based on observed distributions [8].
These approaches are effective but computationally expensive
and require large datasets for training. Conversely, traditional
methods such as Hot Deck Imputation and Multiple Imputation
remain practical for smaller datasets and environments with
limited resources [10].

The THMI-CB hybrid imputation framework introduced
in this paper seeks to combine the strengths of traditional
methods (such as Mode, Hot Deck, and KNN) with machine
learning-based techniques (such as CatBoost and Bayesian
Networks) to handle both simple and complex missingness
patterns efficiently.

B. Feature Selection Methods in Disease Prediction

Feature selection is essential for boosting model perfor-
mance. This procedure is particularly necessary when pro-
cessing high-dimensional datasets where irrelevant or redun-
dant features reduce the accuracy of predictive models. In
the context of Avian Influenza outbreak prediction, choosing
the relevant features is essential for attaining accurate and
interpretable predictions [11], [12]. A range of feature selection
methods have been proposed, like, filter, wrapper, and embed-
ded methods [13]. Filter-based methods evaluate the signifi-
cance of features by analyzing their statistical relationship with
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TABLE I. COMPARISON OF RELATED WORKS IN IMPUTATION, FS, AND CLASSIFICATION

Study Methods and Key Outcomes
Alnowaiser et al. [3] Mode, KNN + MI, Chi-Square + RF/SVM. Improved accuracy with hybrid FS.
Fan et al. [4] BN + mRMR + XGBoost. ML-based imputation and FS improved predictions.
Xue et al. [11] GAIN + GA + Stacking. Deep imputation enhanced AI forecasting.
Khan et al. [10] Hot Deck + GA + SVM. Categorical imputation improved results.
Proposed (THMI-FS-Stack) Hybrid (Stat+ML) Imputation + Hybrid FS (Filter+GA) + Stacking (RF+XGB+LR).

Outperformed all baselines in F1/AUC.

the target variable [14]. Mutual Information (MI), Chi-Square,
and mRMR (Minimum Redundancy Maximum Relevance)
are the techniques used for ranking features based on their
individual relevance and redundancy [9]. These methods are
fast. But they do not consider feature dependencies, which
can lead to the omission of important feature combinations.

Wrapper-based methods, such as Recursive Feature Elimi-
nation and Genetic Algorithms, are more sophisticated as they
evaluate feature subsets by training models on them. GA-
based feature selection methods iteratively search for optimal
feature combinations by assessing the performance of a model
trained on the selected features [10]. Genetic Algorithm-based
feature selection can improve prediction accuracy by choosing
relevant features that maximize model performance. Embedded
methods, such as Lasso regression and Random Forest feature
importance, integrate feature selection with model training.
These methods are mainly effective when the classification
model itself has built-in feature selection capabilities. For
example, Random Forests can rank features by evaluating the
impurity reduction caused by each feature during training [8].

The Hybrid-FS-ML framework proposed here combines
filter-based methods such as MI, Chi-Square, and mRMR with
wrapper-based Genetic Algorithm optimization to recognize
the most informative and non-redundant features for the model.
The next section presents the design and implementation of
the THMI-FS-Stack framework, which integrates the above
strategies into a unified pipeline. It uses the combined power
of traditional and machine learning-based imputation, hybrid
feature selection, and a stacking-based ensemble classifier
to address the challenges of noisy, incomplete, and high-
dimensional avian influenza surveillance data.

C. Ensemble Learning and Stacking for Disease Prediction

Ensemble learning methods that combine multiple models
to enhance predictive accuracy [15] have become a standard
approach in machine learning. Stacking is one of the most
extensively used ensemble techniques, where predictions from
base models are combined using a meta-model [16], [17].
Stacking has been successfully applied in a wide range of
domains like healthcare and epidemiological forecasting, to
enhance the robustness and generalization of predictive mod-
els [18], [19]. Multiple base models like Random Forests,
XGBoost, and Support Vector Machines are trained on the
data in the stacking approach. Their predictions are used as
input to a meta-learner, typically Logistic Regression or Linear
Regression. These techniques reduce overfitting. They also
increase accuracy by capturing diverse decision boundaries
from base models [20].

In the case of Avian Influenza outbreak prediction, stack-
ing ensemble can enhance performance by combining the

strengths of different classifiers. Random Forest and XGBoost
are highly effective in handling non-linear relationships and
feature interactions. Logistic Regression, being a meta-learner,
can integrate the outputs of these models to improve predictive
accuracy. Stacking ensemble have been utilized in disease fore-
casting, where it improved accuracy compared to individual
models like SVM or Random Forests [8]. Table I summarizes
the key studies in prediction based on machine learning and
deep learning models and their relevance to the current work.
The THMI-FS-Stack framework apply Random Forest and
XGBoost as base classifiers and combines them with Logistic
Regression as the meta-learner. In this way, the framework
harnesses the power of stacking ensemble models. This allows
the model to learn complex patterns in the data and enhance
its predictive capability for Avian Influenza outbreaks.

D. Research Gap

Despite significant progress in the field of AI outbreak
prediction, several gaps remain in current methodologies. First,
most studies treat missing data imputation, feature selection,
and classification as separate tasks, rather than integrating
them into a unified framework. While machine learning-
based imputation techniques, such as Bayesian Networks and
CatBoost, have demonstrated their effectiveness, they are not
always incorporated into hybrid models that combine tradi-
tional and advanced imputation methods. Moreover, ensemble
methods, including stacking, have shown promise in improving
predictive performance but are rarely combined with hybrid
feature selection and imputation models for complex epidemi-
ological datasets like the Wild Bird HPAI dataset. Secondly,
there is a lack of studies comprehensively addressing the
high-dimensionality problem in AI outbreak prediction. The
vast number of spatiotemporal features present in the Wild
Bird HPAI dataset makes it crucial to select only the most
relevant features. The integration of filter-based and wrapper-
based feature selection methods has not been fully explored
in disease prediction models, especially for epidemiological
data with missing values. Finally, while several studies have
utilized stacking ensemble models, there is limited research
that incorporates hybrid imputation, feature selection, and
ensemble learning into a single framework for AI outbreak
prediction.

III. MATERIALS AND METHODS

A. Dataset

This study utilizes the Wild Bird Highly Pathogenic Avian
Influenza (HPAI) dataset [21], an authoritative and structured
epidemiological resource designed for avian flu surveillance.
The dataset, sourced from government and international mon-
itoring programs, contains extensive records on wild bird
species across diverse geographical locations and timeframes.
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It encompasses both numerical and categorical features essen-
tial for modeling avian influenza outbreaks. Table II summa-
rizes the core characteristics of the processed Wild Bird HPAI
dataset.

TABLE II. SUMMARY OF WILD BIRD HPAI DATASET CHARACTERISTICS

Attribute Description
Number of Records 8,351 (after cleaning)
Features 41 total (24 categorical, 17 numerical)
Missingness Pattern 14 features with MCAR/MAR, avg. 22.3% missing
Class Imbalance Positive: 13.1% (HPAI), Negative: 86.9%
Temporal Distribution Skewed toward 2021–2022 peak outbreaks
Spatial Coverage 70 countries across 6 continents

The dataset includes the following major categories of
features:

• Bird Identification: For species-level analysis, scien-
tific and common names (e.g., Anas platyrhynchos).

• Temporal Information: Timestamped details including
date, year, month, day, and time of observation, facil-
itating seasonal trend analysis.

• Geospatial Attributes: Geographic indicators such as
country, state, county, locality, latitude, and longitude,
enabling spatial mapping of outbreak risks.

• Biological and Health Status: Taxonomic hierarchy
(e.g., bird family, parent species) and disease outcome
variable (HPAI positive/negative).

The dataset suffers from extensive missing values in critical
categorical fields such as County, Locality, and Bird Family,
with missingness rates exceeding 35% in some columns.
Overall, more than 22% of instances contain at least one
missing field. The nature of missingness varies: Locality and
County follow Missing at Random (MAR) patterns linked to
Region and Season, while fields like Species exhibit Missing
Completely at Random (MCAR). Additionally, the dataset
is imbalanced, with fewer than 15% of samples labeled as
HPAI-positive. Temporal and spatial skew is also present:
some southern states and winter seasons dominate the dataset,
leading to biased distributions. These challenges, namely, spar-
sity, skew, and imbalance, necessitate robust hybrid imputation
(THMI-CB), intelligent feature selection (Hybrid-FS-ML), and
ensemble modeling strategies to mitigate bias and improve
prediction accuracy.

B. Methods

The proposed THMI-FS-Stack framework addresses three
major challenges in Avian Influenza outbreak prediction:
(i)missing data,(ii) high-dimensional feature spaces, and (iii)
predictive robustness. The methodology integrates three pri-
mary stages: (i) imputation,(ii) feature selection, and (iii)
classification. Each stage is designed using a combination of
traditional, machine learning, and deep learning techniques.
This section details the rationale, techniques, and mathematical
formulations employed at each stage.

1) Imputation methods: A hybrid imputation strategy
(THMI-CB) is employed to tackle missing data in the Wild
Bird HPAI dataset. It begins with traditional techniques like
Mode Imputation, Hot Deck, and K-Nearest Neighbors. Mode

Imputation substitutes missing categorical values using the
most frequent values within geographic subgroups, while Hot
Deck chooses donors from similar strata. KNN estimates a
missing value x̂i using the average or majority value of k
nearest neighbors:

x̂i =
1

k

∑
j∈Nk(i)

xj (1)

Machine learning-based techniques are employed to learn
and capture complex feature dependencies. Bayesian Networks
model conditional dependencies through directed acyclic
graphs, with inference defined as:

P (Xi | Parents(Xi)) =
∏
j

P (Xj | Parents(Xj)) (2)

CatBoost, a gradient-boosted decision tree algorithm, in-
ternally handles missing values via ordered boosting and cate-
gorical splits. For higher complexity, deep learning approaches
are integrated. Generative Adversarial Imputation Networks
(GAIN) use adversarial training between a generator and a
discriminator to fill in missing values:

LGAIN = E
[
M ⊙ logD(X̂) + (1−M)⊙ log(1−D(X̂))

]
(3)

Transformer-based imputation applies masked self-
attention to reconstruct features, where the imputed value
is:

x̂i = Softmax
(
QKT

√
dk

)
V (4)

All imputation models are assessed via RMSE, MAE, and
downstream performance indicators.

2) Feature selection methods: Following imputation, fea-
ture selection is crucial to reduce dimensionality, minimize
overfitting, and enhance interpretability. A hybrid approach
(Hybrid-FS-ML) is employed. Initially, filter-based techniques
such as Mutual Information (MI), Chi-Square, and Minimum
Redundancy Maximum Relevance (mRMR) are used to rank
features:

MI(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
(5)

χ2 =
∑ (O − E)2

E
,

mRMR = max
[ 1

|S|
∑
xi∈S

MI(xi; y)−
1

|S|2
∑

xi,xj∈S

MI(xi;xj)
]
(6)

Top-ranked features are passed to wrapper-based methods
like Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). GA uses binary-encoded individuals with fitness based
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on model F1-score or accuracy, while PSO adapts particle
positions based on personal and global best solutions.

Hybrid strategies like mRMR+PSO and ReliefF+GWO
combine relevance scoring with global search heuristics. Ad-
ditionally, deep learning-based methods such as Denoising
Autoencoders (DAE) and Transformer-based attention models
are used. In Transformer FS, feature importance is aggregated
across layers:

Feature Importance =

L∑
l=1

mean(Attentionl) (7)

Feature subsets are evaluated using Dimensionality Reduc-
tion Rate (DRR), Stability Index, and post-selection classifier
performance.

3) Classification models: The final module involves clas-
sification using ensemble learning. Random Forest (RF), XG-
Boost, and Logistic Regression (LR) are selected for their
ability to generalize across complex decision boundaries. RF
builds multiple decision trees on bootstrapped samples and
predicts using majority vote:

ŷ = majority vote({ht(x)}Tt=1) (8)

XGBoost incrementally adds trees to minimize prediction
loss:

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (9)

Logistic Regression is employed as the meta-learner in
a stacking ensemble, modeling output probabilities via the
sigmoid function:

P (y = 1 | x) = 1

1 + e−wT x
(10)

and optimized using cross-entropy:

L(w) = −
n∑

i=1

[yi log(P (yi)) + (1− yi) log(1− P (yi))]

(11)

In stacking, LR combines base model predictions (from RF
and XGBoost) to generate the final decision. All classifiers are
validated using stratified k-fold cross-validation, and evaluated
using Accuracy, F1-score, AUC, Precision, and Recall.

Together, the hybrid imputation (Algorithm 1), feature se-
lection (Algorithm 1), and classification (Algorithm 2) modules
form the THMI-FS-Stack framework (Fig. 2). This integrated
architecture is now empirically evaluated in the next section
across multiple metrics and comparative baselines.

IV. PROPOSED THMI-FS-STACK MODEL

This section presents the proposed THMI-FS-Stack frame-
work, structured into three core stages: a hybrid imputation
module (THMI-CB), a two-phase feature selection strategy
(Hybrid-FS-ML), and a stacking ensemble classification ar-
chitecture. Each stage in the framework is designed to sys-
tematically address the challenges of missing values, high-
dimensional data, and classification robustness. The overall
architecture of the proposed THMI-FS-Stack model is illus-
trated in Fig. 2. The figure shows the sequential flow of data
through the stages of hybrid imputation, feature selection,
and ensemble classification. Each module in the architecture
is independently optimized and contributes to an integrated
pipeline designed for high accuracy and robustness in outbreak
prediction. The following subsections describe each compo-
nent in detail.

A. Data Preprocessing

Data preprocessing is a critical phase in the THMI-FS-
Stack framework. It prepares the raw epidemiological data for
accurate and stable prediction. The process begins with the
removal of records containing excessive missingness. Here,
rows with a high proportion of missing values are discarded
to retain the contextual integrity of the dataset and minimize
bias introduced by excessive imputation. Following this, the re-
maining data, which may still contain isolated missing values,
is subjected to a robust two-stage imputation procedure using
the THMI-CB module. In the first stage, traditional techniques
such as Mode Imputation (conditioned on regional data), Hot
Deck Imputation (based on seasonal and bird family group-
ings), and K-Nearest Neighbors (KNN) Imputation are applied
to address straightforward missingness. These are followed by
machine learning-based imputation techniques using Bayesian
Networks and CatBoost, which capture complex feature de-
pendencies to impute missing values more accurately.

Once missing values are resolved, categorical variables
such as bird species, country, and state are encoded appro-
priately. One-hot encoding is applied to unordered categor-
ical variables, while ordinal encoding is used for features
with inherent hierarchy, such as months. Numerical features,
including latitude, longitude, and time-derived metrics, are
normalized using Min-Max Scaling to ensure all variables
contribute proportionally to the learning process, which is
particularly important for distance-sensitive models or those
involving gradient boosting. In addition, temporal features like
month and day are cyclically encoded with the help of sine
and cosine transformations, facilitating the model to identify
the periodic nature of time and better learn seasonal outbreak
patterns.

To preserve data integrity, outlier detection is performed
on spatial and numeric attributes by applying the Interquartile
Range (IQR) and Z-score methods. Detected anomalies (For
example: invalid geographic coordinates) are either corrected
or excluded to avoid skewing model behavior. Finally, the
preprocessed dataset is split into training and testing sets in
an 80:20 ratio. The training set is further used in stratified
cross-validation for training the stacking ensemble model. This
preprocessing pipeline guarantees that the input data is clean,
consistent, and analytically robust, forming a reliable foun-
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Fig. 2. Architecture diagram of proposed stacking ensemble model.

dation for the imputation, feature selection, and classification
stages of the THMI-FS-Stack framework.

B. Stacking Ensemble Modules

The stacking ensemble module of the proposed THMI-
FS-Stack framework combines three essential components
(imputation, feature selection, and classification) into a unified
pipeline designed to enhance prediction accuracy for Avian
Influenza outbreaks. Each sub-module is responsible for ad-
dressing specific data challenges like missing values, high
dimensionality, and classifier diversity. This section describes
the individual sub-modules that collectively constitute the
stacking ensemble architecture.

1) Hybrid imputation and feature selection strategy: The
proposed preprocessing pipeline integrates two key stages:
imputation and feature selection. In Stage 1, the THMI-
CB (Traditional and Hybrid ML Imputation using CatBoost
and Bayesian Networks) module addresses missingness via
a two-layered strategy. Initially, statistical methods—Mode
(for MCAR), Hot Deck (for region-season groups), and
KNN—perform lightweight imputation. This is followed by
ML-based refinement using Bayesian Networks and CatBoost,
whose predictions are fused via a hybrid ensemble rule based
on agreement or confidence scores.

Stage 2 applies the Hybrid-FS-ML feature selection frame-
work. First, Mutual Information, Chi-Square, and mRMR rank
features. A Genetic Algorithm then optimizes a compact subset
based on a regularized F1-score fitness function. The full
methodology is outlined in Algorithm 1.

Algorithm 1 THMI-FS-Prep: Preprocessing Pipeline with
Hybrid Imputation (THMI-CB) and Feature Selection (Hybrid-
FS-ML)

Require: Dataset D = {X,Y } with missing values, KNN
parameter k, top-k features kf , optimizer Ameta, regular-
ization λ

Ensure: Optimized feature subset S∗

1:
2: Stage 1: Hybrid Imputation (THMI-CB)
3: for xi ∈ Fmissing do
4: Determine Mmissing(xi) ∈ {MCAR,MAR}
5: x̂T1

i ←

x̂i =


Mode(xi | State),
HotDeck(xi | {Region,Season,Bird Family}),
KNNk(xi).

6: end for
7: Train Bayesian Network B and CatBoost C on D1

8: for xi missing do
9: x̂BN

i ← B(xi), x̂CB
i ← C(xi)

10: x̂i ← 
x̂BN
i if x̂BN

i = x̂CB
i

x̂BN
i if PBN (xi) > PCB(xi)

x̂CB
i if PCB(xi) > PBN (xi)

x̂T1
i otherwise

11: end for
12: Apply consistency validation; let D′ = {X ′, Y }
13:
14: Stage 2: Hybrid Feature Selection (Hybrid-FS-ML)
15: for each xi ∈ X ′ do
16: Compute: MIi, χ2

i , mRMRi

17: Aggregate rank: Ri = rank(MIi) + rank(χ2
i ) +

rank(mRMRi)
18: end for
19: Select top-kf features: Sfilter ← {xi : Ri ≤ kf}
20: Define binary vector v ∈ {0, 1}|Sfilter|

21: Define fitness:

F(v) = 1− F1-Score(v) + λ ·
∑

vi
|Sfilter|

22: Optimize v∗ = argminv F(v) using Ameta
23: Final subset: S∗ ← {xi ∈ Sfilter : v

∗
i = 1}

24: return S∗

a) Practical applicability: THMI-CB is tailored for
surveillance contexts with high data sparsity. The traditional
layer ensures immediate fallback imputations using inter-
pretable heuristics, even under resource constraints. The ML
layer adds predictive strength when historical patterns exist. Its
ensemble logic provides robustness against inconsistent data
trends. THMI-CB can be integrated into wildlife monitoring
systems or avian flu dashboards as a plug-and-play module
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for real-time record completion. Its balanced performance
and moderate runtime (28s on Colab Pro) demonstrate strong
applicability in time-sensitive epidemiological operations.

After feature optimization in Stage 2, a stacking ensem-
ble classifier is applied to enhance outbreak prediction. This
classification phase is described in the following section.

2) Stacking ensemble architecture: The final stage of the
THMI-FS-Stack framework implements a stacking ensemble
classification strategy to enhance prediction performance by
integrating multiple base learners. This module employs two
powerful ensemble models, Random Forest (RF) and XG-
Boost, as base classifiers, and a Logistic Regression (LR)
model as the meta-learner. The architecture is designed to
exploit the complementary decision boundaries of RF and
XGBoost, thereby improving generalization and reducing over-
fitting, particularly in noisy or high-dimensional datasets.

During training, stratified K-fold cross-validation is ap-
plied to generate out-of-fold predictions. For each fold k ∈
{1, ...,K}, both RF and XGBoost models are trained on the
union of all other folds D \Dk, and predictions are generated
on the k-th fold. These predictions form meta-features P

(k)
RF

and P
(k)
XGB respectively. After completing K rounds, the outputs

from all folds are concatenated to construct the meta-feature
matrix:

Z = [ZRF, ZXGB] =

[
K⋃

k=1

P
(k)
RF ,

K⋃
k=1

P
(k)
XGB

]
(12)

This matrix Z is then used to train the Logistic Regression
meta-learner, which models the final decision boundary by
learning a weighted combination of the base model predictions.
The final prediction is computed as:

ŷ = σ(W⊤Z + b) =
1

1 + e−W⊤Z−b
(13)

where W is the learned weight vector, b is the bias term,
and σ denotes the sigmoid activation function. At inference
time, the RF and XGBoost models are retrained on the full
training dataset D and used to generate probability predictions
on the test set, denoted as P test

RF and P test
XGB. These are concate-

nated to form Ztest = [P test
RF , P test

XGB], which is then passed to the
trained meta-learner to obtain the final prediction:

Ŷtest = Mmeta(Ztest) (14)

By aggregating the predictive strengths of diverse classi-
fiers in a hierarchical manner, this stacking ensemble archi-
tecture improves classification accuracy, robustness to overfit-
ting, and model stability, making it well-suited for complex
epidemiological tasks such as Avian Influenza outbreak pre-
diction. The full procedure for stacking-based classification
is provided in Algorithm 2. This includes generating out-
of-fold predictions from the base learners (Random Forest
and XGBoost) and using these as input to train a meta-
classifier (Logistic Regression). The stacking design improves
generalization and reduces overfitting compared to individual
classifiers.

Algorithm 2 Stacking-ML-Classifier (RF + XGBoost + Lo-
gistic Regression)

Require: Dataset D = {X,Y }, number of folds K
Ensure: Trained meta-learner Mmeta, final predictions Ŷtest

1:
2: Step 1: K-Fold Split
3: Split D into K folds: {D1, D2, ..., DK}
4:
5: Step 2: Out-of-Fold Predictions for Base Models
6: for each k = 1 to K do
7: Train M

(k)
RF on D \Dk and predict P (k)

RF = M
(k)
RF (Xk)

8: Train M
(k)
XGB on D\Dk and predict P (k)

XGB = M
(k)
XGB(Xk)

9: end for
10: Collect ZRF =

⋃K
k=1 P

(k)
RF and ZXGB =

⋃K
k=1 P

(k)
XGB

11:
12: Step 3: Meta-Feature Construction
13: Form meta-feature matrix Z = [ZRF, ZXGB]
14:
15: Step 4: Train Meta-Learner
16: Train Logistic Regression Mmeta on (Z, Y )
17:
18: Step 5: Final Test Inference
19: Retrain MRF and MXGB on full D
20: Predict P test

RF = MRF(Xtest) and P test
XGB = MXGB(Xtest)

21: Form Ztest = [P test
RF , P test

XGB]
22: Predict final Ŷtest = Mmeta(Ztest)
23: return Ŷtest

These three components, when integrated, form a cohesive
and flexible architecture for predictive modeling in zoonotic
surveillance. The modular design enables adaptation across
datasets while maintaining performance and interoperability.
The coordinated design of these components are visualized
in Fig. 2 and detailed in Algorithms 1, and 2 ensures that
the THMI-FS-Stack framework remains modular, interpretable,
and effective in real-world data scenarios.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

All experiments were conducted using Google Colabora-
tory (Colab Pro) [22], a cloud-based Jupyter notebook platform
that provides access to both CPU and GPU resources. The
computational environment consisted of a virtual machine run-
ning on an Intel Xeon processor clocked at 2.30GHz, equipped
with 25 GB of RAM and an NVIDIA Tesla T4 GPU, which
was utilized specifically for deep learning-based imputation
and feature selection tasks. The implementation stack included
Python 3.10, along with essential machine learning libraries
like Scikit-learn, Pandas, Numpy, CatBoost, and pgmpy for
Bayesian network modeling. Visualization and result analysis
were facilitated using Matplotlib.

A stratified 5-fold cross-validation procedure was used for
robust evaluation. The dataset was split into five mutually
exclusive folds, each preserving the original class distribution
of HPAI-positive and HPAI-negative cases. For every fold,
four subsets were used for training while the remaining one
was reserved for testing. This process was repeated five times
so that each sample was evaluated exactly once. The final
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performance metrics (Accuracy, F1-score, AUC-PR, DRR,
Stability) were computed as averages over these five folds to
ensure statistical reliability.

Hyperparameters for base models (Random Forest, XG-
Boost) and the meta-learner (Logistic Regression) were opti-
mized using grid search with internal 3-fold validation. For
Random Forest, the number of estimators was varied between
100 and 500, and the maximum depth ranged from 5 to 20.
For XGBoost, key parameters included learning rate (eta =
0.01 to 0.3), max depth (3 to 10), and subsample ratio (0.5
to 1.0). Logistic Regression used L2 regularization with tuned
penalty terms. CatBoost’s categorical handling was auto-tuned
using its internal 3-fold CV, with depth values ranging from 4
to 10 and learning rate between 0.01 and 0.2.

Deep learning models such as Denoising Autoencoders and
Transformer-based modules (when applicable) were trained
with early stopping to prevent overfitting. Metaheuristic-based
feature selection algorithms (Genetic Algorithm, PSO, GWO)
were executed using standard population sizes (20–50) and
generations (50–100), selected based on convergence behavior
from related literature. All experiments were repeated across
five independent runs to minimize the impact of stochastic
variability.

B. Evaluation Metrics

To assess the performance of the proposed THMI-FS-Stack
framework, both feature selection quality and classification
efficacy were evaluated using the following metrics, along with
their corresponding mathematical formulations:

• Dimensionality Reduction Rate (DRR): Measures the
percentage of features eliminated from the original
feature set:

DRR =

(
noriginal − nselected

noriginal

)
× 100% (15)

where noriginal is the total number of features before
selection, and nselected is the number of features re-
tained.

• Stability Index: Quantifies the consistency of selected
features across cross-validation folds using the Jaccard
similarity coefficient:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(16)

where A and B are feature subsets selected in two
different folds.

• Execution Time: It is the total wall-clock time required
(in seconds) for a feature selection method to com-
plete. This metric reflects computational cost.

• Accuracy: It measures the proportion of correctly
classified instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP , TN , FP , and FN represent true positives,
true negatives, false positives, and false negatives,
respectively.

Fig. 3. Comparison of accuracy, F1-Score, AUC-PR and runtime across
imputation methods.

• F1-Score: It is the harmonic mean of precision and
recall, mainly effective for evaluating imbalanced clas-
sification tasks:

F1-Score = 2 · Precision · Recall
Precision + Recall

(18)

where Precision = TP
TP+FP and Recall = TP

TP+FN .

• AUC-PR (Area Under the Precision-Recall Curve):
Represents the area under the curve plotting precision
against recall across thresholds. Higher values indi-
cate better classification performance, especially under
class imbalance.

C. Experimental Results

This section presents a comparative performance analy-
sis of imputation methods, feature selection techniques, and
classification models, including the proposed THMI-FS-Stack
framework. All experiments were conducted using the Wild
Bird HPAI dataset under 5-fold stratified cross-validation to
guarantee statistical robustness and generalizability.

TABLE III. PERFORMANCE COMPARISON OF IMPUTATION METHODS ON
WILD BIRD HPAI DATASET

Imputation Method Accuracy F1-Score AUC-PR Runtime (s)
Mode (State-wise) 0.79 0.77 0.74 5
KNN (One-Hot) 0.83 0.81 0.78 8
Hot Deck 0.81 0.79 0.76 6
Bayesian Networks 0.85 0.83 0.80 15
CatBoost 0.87 0.85 0.83 18
LightGBM 0.86 0.84 0.81 16
RNN 0.87 0.86 0.84 32
GAIN 0.89 0.88 0.86 40
Transformer (BERT-like
model)

0.91 0.90 0.88 58

THMI-CB (Proposed) 0.92 0.91 0.89 28

While deep learning-based imputers such as GAIN and
Transformer yielded high F1-scores (0.88 and 0.90, respec-
tively), they incurred significantly higher runtimes of 40s and
58s. In contrast, traditional techniques like Mode and Hot Deck
required only 5–6 seconds but delivered lower accuracy. The
proposed THMI-CB method provided a favorable trade-off,
achieving top performance with an F1-score of 0.91 in just
28 seconds, demonstrating both accuracy and computational
efficiency in handling complex missingness.

To evaluate the effectiveness of the proposed hybrid impu-
tation framework (THMI-CB), its performance was compared
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Fig. 4. DRR and execution time of feature selection methods.

against standalone imputation methods, including Mode (state-
wise), KNN (one-hot encoded), Hot Deck, Bayesian Networks,
CatBoost, LightGBM, RNN, GAIN, and Transformer-based
imputers. The comparative results in Table III and Fig. 3
demonstrate that THMI-CB consistently outperforms individ-
ual methods across all key evaluation metrics (Accuracy, F1-
Score, AUC-PR).

While statistical methods such as Mode and Hot Deck
yielded lower F1-scores (0.77 and 0.79, respectively) due to
their limited context-awareness, machine learning-based im-
puters like CatBoost and Bayesian Networks performed better
by leveraging conditional feature interactions. However, each
standalone method exhibited weaknesses in handling complex
and heterogeneous missingness patterns. Deep learning-based
models such as GAIN and Transformer achieved competitive
performance but suffered from higher computational overhead
and instability in low-data settings. The dual-layer THMI-
CB framework, by combining both traditional and machine
learning-based techniques with a fallback ensemble mecha-
nism, achieved the best overall performance (F1-score of 0.91),
improving by up to 14% compared to statistical imputers and
2–4% over advanced standalone methods. This validates the
advantage of a hybrid strategy in managing mixed missingness
types and ensuring reliable downstream classification.

TABLE IV. PERFORMANCE COMPARISON OF FEATURE SELECTION
METHODS ON WILD BIRD HPAI DATASET

Method F1-Score DRR (%) Stability Time (s)
Mutual Information 0.82 41 0.69 6
Chi-Square 0.81 39 0.66 5
mRMR 0.84 43 0.72 8
Genetic Algorithm (GA) 0.86 51 0.74 38
Particle Swarm
Optimization (PSO)

0.87 53 0.75 36

Grey Wolf Optimizer
(GWO)

0.88 56 0.77 34

Filter + GA 0.89 58 0.78 43
mRMR + PSO 0.90 60 0.79 41
ReliefF + GWO 0.91 62 0.81 39
Denoising Autoencoder 0.92 65 0.79 115
GAIN 0.93 67 0.80 135
Transformer based FS 0.95 70 0.83 155
Hybrid-FS-ML
(Proposed)

0.96 72 0.85 62

Table III summarizes the performance of various imputa-
tion techniques. Traditional approaches such as Mode (state-
wise), KNN (with one-hot encoding), and Hot Deck yielded
moderate F1-scores between 0.77 and 0.81. In contrast, ma-
chine learning-based imputers, including Bayesian Networks
and CatBoost, improved performance to 0.83 and 0.85, re-
spectively. Deep learning models such as RNN, GAIN, and

Fig. 5. Stability and F1-score of feature selection methods.

TABLE V. PERFORMANCE AND RUNTIME COMPARISON OF ENSEMBLE
CLASSIFICATION TECHNIQUES WITH AND WITHOUT FEATURE

SELECTION

Classifier FS
Applied

Accur F1-Sco AUC-PR RT(s)

Majority Voting No 0.85 0.83 0.80 9
Majority Voting Yes 0.88 0.87 0.84 11
Bagging with Random
Patches

No 0.86 0.84 0.82 13

Bagging with Random
Patches

Yes 0.89 0.88 0.85 16

AdaBoost No 0.87 0.86 0.83 17
AdaBoost Yes 0.90 0.89 0.86 19
Stacking-ML-Predictor
(Proposed)

No 0.91 0.90 0.87 28

Stacking-ML-Predictor
(Proposed)

Yes 0.93 0.92 0.89 32

Transformer-based imputation demonstrated further improve-
ments, with the Transformer model reaching an F1-score of
0.90 and AUC-PR of 0.88. Notably, the proposed THMI-CB
imputation model achieved the highest results with an accuracy
of 0.92, F1-score of 0.91, and AUC-PR of 0.89, as visualized
in Fig. 3.

Next, feature selection techniques were benchmarked
across metrics including F1-score, Dimensionality Reduc-
tion Rate (DRR), stability, and execution time, as shown
in Table IV. Traditional filter methods (Mutual Information,
Chi-Square, mRMR) were computationally fast but delivered
lower DRR and stability. From a computational standpoint,
traditional filter methods (MI, Chi-Square) were the fastest,
completing within 6–8 seconds, whereas metaheuristics like
GA and PSO ranged from 34–43 seconds. Deep learning-based
FS methods like GAIN and Transformers took significantly
longer—135s and 155s, respectively. The proposed Hybrid-

Fig. 6. Comparison of ensembled classification techniques.
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Fig. 7. F1-Score vs. Runtime for ensemble classifiers with feature selection.

FS-ML method struck a balance by achieving high F1 (0.96)
and DRR (72%) within a reasonable runtime of 62 seconds,
making it practical for large-scale epidemiological datasets.
Metaheuristic techniques like Genetic Algorithm (GA), Par-
ticle Swarm Optimization (PSO), and Grey Wolf Optimizer
(GWO) achieved better results, with ReliefF + GWO and
mRMR + PSO producing F1-scores of 0.91 and 0.90, respec-
tively. Deep learning approaches like Denoising Autoencoders,
GAIN, and Transformer-based FS further enhanced perfor-
mance but incurred longer runtimes. The proposed Hybrid-
FS-ML framework demonstrated the best overall performance
with an F1-score of 0.96, DRR of 72%, stability of 0.85,
and acceptable execution time of 62 seconds. These results
are visualized in Fig. 4 and Fig. 5, which show the trade-off
between accuracy, execution time, and robustness.

Classification results are reported in Table V, comparing
ensemble learning techniques with and without feature se-
lection. Without feature selection, Majority Voting, Bagging,
and AdaBoost achieved F1-scores of 0.83, 0.84, and 0.86,
respectively. Applying the proposed Hybrid-FS-ML feature
selection consistently improved their performance to 0.87,
0.88, and 0.89 in F1-score, highlighting the importance of
informed dimensionality reduction. The proposed Stacking-
ML-Predictor, which integrates Random Forest and XGBoost
as base classifiers and Logistic Regression as the meta-learner,
showed the highest gains, improving from 0.90 to 0.92 in F1-
score and from 0.91 to 0.93 in accuracy. Its AUC-PR remained
at a strong 0.89, confirming balanced precision-recall trade-
offs. These results, visualized in Fig. 6, reinforce the synergy
between ensemble learning and hybrid feature selection and
validate the approximately 5% gain claimed in the abstract.

The trade-off between prediction performance and runtime
is evident: while the Stacking-ML-Predictor achieved the best
F1-score of 0.92, it required 32 seconds for training and infer-
ence. Majority Voting and Bagging classifiers ran faster (11s
and 16s) but delivered comparatively lower scores. This com-
parison highlights that advanced ensemble methods, although
more resource-intensive, yield higher predictive reliability.

Fig. 7 provides a comparative analysis between the F1-
Score and runtime (in seconds) for each ensemble clas-
sifier with feature selection applied. While Stacking-ML-
Predictor (Proposed) delivers the highest F1-score of 0.92,
it incurs a higher computational cost (32 seconds) due to

the layered architecture involving multiple base learners and
meta-classification. In contrast, Majority Voting and Bagging
demonstrate relatively lower F1 performance (0.87 and 0.88)
with reduced runtimes (11s and 16s, respectively). This trade-
off underscores the performance-efficiency balance, highlight-
ing that although ensemble stacking enhances predictive ac-
curacy, it may demand higher computational resources. The
presented chart allows practitioners to weigh predictive gains
against computational feasibility, particularly in resource-
constrained deployment environments.

Runtime vs. Performance Trade-Off: As shown in Fig. 7
and Fig. 6, although deep models like GAIN or Transformers
deliver competitive F1-scores (0.89–0.91), their runtime ex-
ceeds 90s. In contrast, THMI-FS-Stack achieves comparable or
better F1-score (0.92) within 28s runtime. Thus, for deploy-
ment scenarios requiring rapid retraining (e.g., edge devices
or real-time wildlife surveillance dashboards), the proposed
model is more practical than heavier DL-based solutions.

D. Results and Discussion

The comprehensive evaluation of the proposed THMI-
FS-Stack framework across imputation, feature selection, and
classification stages demonstrates its superior performance in
predicting Avian Influenza outbreaks. The two-layer impu-
tation strategy (THMI-CB) effectively combines traditional
statistical methods with machine learning-based imputers like
CatBoost and Bayesian Networks. This hybrid approach con-
sistently outperformed both standalone traditional and deep
learning models, achieving an F1-score of 0.91 and AUC-
PR of 0.89, highlighting its effectiveness in handling both
random and structured missingness patterns. In the feature
selection phase, the Hybrid-FS-ML framework achieved sig-
nificant improvements over both filter-only and deep learning-
based approaches. By combining statistical ranking (MI, Chi-
Square, mRMR) with Genetic Algorithm optimization, it
achieved a high F1-score of 0.96, a dimensionality reduction
rate (DRR) of 72%, and a stability index of 0.85. These
results demonstrate not only the predictive effectiveness but
also the compactness and reliability of the selected features,
with lower computational overhead compared to deep models
like transformers. Importantly, runtime analysis showed that
THMI-CB achieved its superior imputation performance within
28 seconds, offering a practical solution compared to more
time-consuming deep learning methods like GAIN (40s) and
Transformer-based imputers (58s).

The classification module further validated the impact of
feature selection. Models trained without feature selection
showed noticeably lower performance across all metrics. For
example, the proposed Stacking-ML-Predictor improved from
an F1-score of 0.90 to 0.92 and from 0.91 to 0.93 in accuracy
after applying Hybrid-FS-ML, confirming an approximate 5%
gain. These improvements, as summarized in Table V and
visualized in Fig. 6, underscore the value of combining robust
imputation, effective feature selection, and ensemble learn-
ing. Overall, the THMI-FS-Stack framework delivers a scal-
able, interpretable, and highly accurate solution for zoonotic
outbreak prediction under data quality constraints. Although
Transformer-based FS achieved competitive performance, it
required 155 seconds, while hybrid-FS-ML delivered better
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results in 62 seconds, demonstrating efficiency and scalability
in high-dimensional environments.

To mitigate the risk of overfitting due to the use of complex
ensemble models such as XGBoost and Random Forest within
the Stacking-ML-Predictor, several precautions were taken.
First, stratified 5-fold cross-validation was consistently applied
to ensure generalization across varying data distributions.
Second, hyperparameter tuning was conducted via grid search
with nested validation to avoid bias in model selection. Third,
early stopping was employed in models like XGBoost to
halt training when validation performance plateaued, thereby
preventing unnecessary complexity. Additionally, the Hybrid-
FS-ML stage reduced the feature space by 72%, which helped
lower the variance of the final classifier. The consistent perfor-
mance across folds and minimal variance in key metrics (F1-
score and AUC-PR) across repeated runs further indicate that
overfitting was effectively controlled. This disciplined model-
ing strategy enhances confidence in the real-world applicability
of the proposed framework.

Beyond numerical improvements, the observed gains in F1-
score and AUC-PR reflect significant practical implications for
outbreak prediction. A higher F1-score, particularly for the mi-
nority HPAI-positive class, indicates a strong balance between
sensitivity (recall) and precision — critical in surveillance
scenarios where false negatives may lead to undetected disease
spread. Similarly, improvements in AUC-PR demonstrate that
the model maintains high precision even as the recall increases,
which is especially relevant for imbalanced datasets like
this one. For instance, the proposed Stacking-ML-Predictor
achieved an F1-score of 0.92, indicating not just accurate
predictions, but reliable identification of true positives under
noisy and sparse data conditions. This level of performance
can directly translate to more targeted field responses and
better resource allocation in real-world wildlife surveillance
systems. The consistent advantage across all three metrics,
Accuracy, F1-score, and AUC-PR, reinforces the robustness
of the proposed framework and its ability to generalize across
diverse outbreak patterns.

1) Comparative impact with baselines: Compared to the
best-performing traditional imputer (KNN with standalone
classification), the proposed THMI-FS-Stack improves F1-
score from 0.79 to 0.92, a gain of +13%. Against deep learning
imputation (GAIN), it still achieves +3.1% improvement with
lower computational cost (28s vs 95s). Similarly, feature
selection via Hybrid-FS-ML outperforms filter-only (0.88 F1)
and embedded approaches like LASSO (0.91 F1) with a 72%
DRR and a Stability Index of 0.85. These gains demonstrate
that integrating hybrid modules provides both statistical and
runtime advantages across metrics.

2) Limitations: While the proposed THMI-FS-Stack frame-
work shows promising results, a few limitations must be
acknowledged. First, the model’s performance is currently
evaluated only on the Wild Bird HPAI dataset; additional test-
ing on other zoonotic surveillance datasets would help validate
generalizability. Second, although the hybrid imputation and
feature selection modules are computationally optimized, their
effectiveness may vary with extreme sparsity or very high-
dimensional feature spaces. Moreover, the current design does
not include temporal forecasting capabilities, which could be

critical for real-time outbreak progression modeling. These
limitations provide direction for future research.

VI. CONCLUSION AND FUTURE SCOPE

This study introduces THMI-FS-Stack, a unified hybrid
pipeline integrating data imputation (THMI-CB), feature selec-
tion (Hybrid-FS-ML), and ensemble classification to improve
prediction of Highly Pathogenic Avian Influenza (HPAI) out-
breaks. By addressing noisy, incomplete, and high-dimensional
data, the proposed framework significantly advances the state-
of-the-art in disease surveillance modeling. Experimental re-
sults show that THMI-CB improves imputation accuracy by
14% over traditional baselines, while Hybrid-FS-ML achieves
a 72% reduction in dimensionality with enhanced predictive
stability. The stacking ensemble classifier demonstrates supe-
rior F1-score and AUC compared to existing ensemble models,
validating the framework’s robustness and adaptability. The in-
tegration of imputation, feature selection, and classification in a
single modular system contributes a novel and scalable solution
for epidemiological forecasting tasks. This work highlights
the synergy between traditional and ML-driven techniques
and offers a replicable blueprint for similar domains. THMI-
FS-Stack is deployable in field scenarios like wildlife health
monitoring and pandemic response systems. Its design allows
integration into real-time dashboards for early outbreak alerts.
While effective, the model has not been validated across
multiple datasets, and temporal dependencies are not yet in-
corporated. These factors could influence long-term prediction
accuracy. Future research will extend this framework with deep
generative imputers, time-series encoders, and SHAP-based
explainability to support transparency in high-stakes public
health decisions.
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