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Abstract—Traceability in food supply chains is crucial for
ensuring safety, enabling effective quality control, and maintain-
ing consumer trust. However, traditional paper-based or digital
tracking systems often prove too slow and opaque during food
safety incidents or investigations into fraud. To address these
limitations, this paper presents a modular Web3 architecture
that integrates Ethereum blockchain smart contracts, Internet of
Things (IoT) sensors, and machine learning (ML) to achieve end-
to-end traceability and sustainability in agrifood supply chains,
and to support auditable, partially automated decision-making.
The system design separates concerns into layers: an on-chain
layer of Ethereum smart contracts for tamper-proof event logging
and automated business logic, and an off-chain layer for secure
storage of detailed sensor data and documents, linked by crypto-
graphic hashes to ensure data provenance. Low-cost IoT sensors
are deployed from farm to distributor, continuously monitoring
environmental conditions (temperature, humidity, geolocation)
and uploading signed, time-stamped summaries to the blockchain.
In addition, ML models perform predictive quality control by
estimating expected conditions, detecting anomalies, and scoring
the conformity of product batches, which enables smart contracts
to automatically trigger state transitions (acceptance or dispute
escrow of shipments) based on real-time data. Using Ethereum
smart contracts, a prototype that manages the life cycle of a
specific food product was implemented, and two cases (confor-
mant vs non-conformant shipments) were studied to demonstrate
how cryptographically verifiable data and events make decisions
transparent and trustworthy.
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I. INTRODUCTION

Ensuring end-to-end traceability of food products has
become a strategic priority in modern supply chains. Over
the past two decades, high-profile food safety incidents and
fraud scandals have exposed significant weaknesses in existing
tracking systems. For instance, an E. coli outbreak in spinach
in 2006 took nearly two weeks to trace back to its source,
and Europe’s 2013 horse-meat scandal saw mislabeled meat
adulterate more than 1,000 tons of food [22]. Such delays and
opacity in tracking contaminated or fraudulent products can
lead to prolonged public health risks, economic losses, and
loss of consumer confidence [19].

Nevertheless, implementing robust traceability in the food
supply chain (FSC) [11] faces multiple challenges due to the
complexity of food supply networks, which involve numerous
stages such as production, processing, transport, and distri-
bution, and a wide range of actors operating across different
locations. Traditional tracking systems (based on paper records

or isolated databases) [8], [9] often cannot cope with this com-
plexity. These legacy systems tend to be unreliable, opaque,
and slow to react during crises.

At the same time, recent advances in digital technologies
have opened new possibilities for real-time traceability. Sen-
sors and IoT devices allow continuous monitoring of prod-
ucts and conditions throughout their life cycle. In parallel,
blockchain technology has emerged as a promising tool to
enhance trust and data integrity in multi-party processes. By
providing a decentralized ledger [1], [21], blockchain can
ensure that records of food origin and handling are immutable
and verifiable by all FSC stakeholders.

Related works and commercial projects highlight the poten-
tial of blockchain [6] to improve transparency and traceability.
For example, Walmart adopted a blockchain-based food trace-
ability system (IBM Food Trust) and reduced the time required
to trace a package of mangoes from 7 days to 2.2 seconds
[2], demonstrating much faster recall capability. In addition,
IoT sensors and radio-frequency identification (RFID) tags are
used to automatically collect large amounts of data on product
location and condition (temperature, humidity, etc.) at each
stage of the FSC.

A number of prototypes and systems have been developed
that combine blockchain and IoT for food traceability, covering
products from fresh produce and meat to dairy and halal foods.
These implementations show that hybrid blockchain–IoT so-
lutions can address many limitations of traditional systems
and increase the resilience of agri-food supply chains [5],
[10], [4], [3]. They enable recalls by instantly identifying
affected lots and enhance consumer trust by allowing end-to-
end verification of a product’s history.

Despite this progress, significant limitations remain. Most
blockchain traceability projects to date use permissioned (pri-
vate) blockchains or closed consortia, which, while improving
accountability among known parties, do not fully leverage the
openness and interoperability of public networks. Moreover,
current solutions often focus on data logging and traceability
but do not aim to automate decision-making or financial trans-
actions based on that data [21]. Integrating smart contracts that
execute business logic (such as payment settlements or quality
compliance checks) in response to sensor data is a relatively
unexplored frontier. In addition, the use of machine learning
(ML) for predictive analytics in this context has been limited.
Advanced analytics could predict quality issues or detect subtle
anomalies, turning raw sensor streams into actionable insights,
but few existing food blockchain systems incorporate an AI-
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driven decision support layer [25], [20]. Therefore, there is
a need for a new architecture that brings together blockchain
(for data integrity and decentralized trust), IoT (for real-time
data acquisition), and ML (for intelligent automation) into one
unified framework.

In this work, a novel modular Web3 architecture is pre-
sented, this architecture integrates Ethereum blockchain smart
contracts, IoT instrumentation, and ML analytics to deliver
end-to-end traceability and automated quality control in food
supply chains. The approach is designed to be open and
extensible, using the public Ethereum network to ensure trans-
parency across organizations while carefully addressing per-
formance and privacy concerns. The architecture introduces a
clear separation of concerns: the blockchain layer handles data
provenance and event orchestration (with minimal data on-
chain), the off-chain layer handles data storage and processing,
and the IoT layer interfaces with the physical world.

The remainder of this paper is organized as follows:
1) related work on blockchain-based food traceability, IoT
sensing, and machine learning for food quality prediction is
reviewed; 2) the proposed modular Web3 architecture and its
main components, including the blockchain layer, IoT layer,
hybrid data management, and ML analytics, are described;
3) the prototype implementation and experimental results on
conformant and non-conformant lot scenarios are presented;
4) the advantages, limitations, and adoption challenges of the
approach are discussed; and 5) the paper is concluded with an
outline of directions for future work.

II. RELATED WORK

Research and industry initiatives have increasingly ex-
plored the use of blockchain technology within supply chain
management. The early implementations often relied on per-
missioned blockchain platforms and focused on improving
traceability within a known set of stakeholders. Feng Tian
(2017), for example, proposed a food traceability system that
tightly integrated the Hazard Analysis and Critical Control
Points (HACCP) food safety methodology with a blockchain-
backed database (BigchainDB) and IoT sensing [15]. This
system recorded critical control point data (temperature at
certain processing steps) on a distributed ledger, leveraging
BigchainDB’s high transaction throughput while preserving
data integrity. Tian’s work demonstrated that even a private
or hybrid blockchain could enhance trust in food safety man-
agement by providing an immutable log of monitoring data.

Another notable effort is the MultiChain WSC (Wine
Supply Chain) project [17], which implemented end-to-end
wine traceability using a private blockchain (the MultiChain
framework). In this system, five main actors (grape grower,
winemaker, wholesaler, bottler, distributor) participated, but
only a subset were authorized as blockchain “miners” to
validate transactions. This selective validation mechanism il-
lustrates a typical consortium blockchain approach, where
read/write permissions are restricted according to governance
rules. MultiChain WSC used structured data streams on-chain
to log each batch of wine and its transformations, achieving
fine-grained traceability for specific products.

The commercial sector has also produced blockchain-based
traceability platforms. One pioneering example is AgriDigital

[12], an Australian agri-tech startup founded in 2015 that
built a comprehensive platform for managing grain supply
chain transactions using blockchain and cloud infrastructure.
AgriDigital enables farmers, grain elevators, brokers, and
end-buyers to trade and settle agricultural commodities with
transparent, verifiable tracking of each delivery. In December
2016, AgriDigital conducted the world’s first-ever sale of
wheat via blockchain, executing a full end-to-end transaction
between a farmer, a storage silo, and a buyer without traditional
bank intermediaries. This milestone demonstrated blockchain’s
capability to handle not only traceability but also financial
settlement in supply chain operations.

Other agricultural supply chains have adopted
blockchain–IoT solutions. Ferrández-Pastor et al. (2022)
[18] developed an industrial hemp traceability model
that combines IoT sensors and blockchain to cope with
the regulatory complexity of hemp production. Their system
deploys sensors in the field (monitoring temperature, humidity,
GPS location, etc.) and feeds this data to a permissioned
blockchain (Hyperledger Fabric, as part of IBM Food Trust).
Only authorized actors (farmers, processors, distributors)
can submit or validate transactions. A user interface allows
stakeholders to input or view data at each stage, while
the blockchain backbone (Hyperledger) guarantees data
immutability and security. The authors focused on designing
the system under Hyperledger Fabric’s model, demonstrating
how a private blockchain can be tailored for a specific
agri-food context to enhance transparency and data integrity
in real time.

Large multinational companies have also actively explored
blockchain for food safety and provenance. Walmart’s pork and
mango pilots with IBM in 2017–2018, which evolved into the
IBM Food Trust network, are landmark case studies. Using
a distributed ledger (built on Hyperledger Fabric), Walmart
was able to trace sliced mangoes back to their farm of
origin in just 2.2 seconds [2], compared to nearly a week
using traditional methods. Following these projects, Walmart
mandated suppliers of certain products to join its blockchain
system, indicating strong industry validation of the technol-
ogy’s value by improving supply chain visibility. At the same
time, other retailers and food companies (such as Carrefour
with its blockchain food labels, and Alibaba’s projects for
food imports) have reported improvements in consumer trust
and efficiency by using distributed ledgers to share traceability
data among producers, inspectors, and consumers.

Additionally, academic studies have examined the role
of blockchain in supply chains, such as the systematic lit-
erature review by Casino et al. (2022) [5], which surveyed
dozens of blockchain-based traceability implementations and
concluded that many projects remain in prototype stages, often
using permissioned blockchains with limited scope. On the
other hand, Montecchi et al. (2019) [10] reviewed practices,
challenges, and opportunities in blockchain and supply chain
management, concluding that while blockchain can enhance
transparency and tracking, organizations face technical inte-
gration challenges and must address issues like data privacy
and interoperability. Similarly, Kumar et al. (2020) [4] asked
whether blockchain is a “silver bullet” for supply chain man-
agement, identifying technical challenges such as scalability
and the need for better integration with Internet-of-Things
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sensors and enterprise systems. These analyses suggest that
even though the potential of blockchain is widely recognized,
comprehensive frameworks that integrate blockchain with IoT
and analytics are still emerging [23].

Many research papers address machine learning and analyt-
ics to predict food safety risks or to verify product information.
For instance, Thota et al. (2020) [13] applied multi-source deep
learning for food package verification (detecting mismatches
between labels and contents), and Nogales et al. (2020) [14]
used neural networks to predict the likelihood of food safety
alerts from historical data. Kollia et al. (2021) [16] proposed an
“intelligent food supply chain” employing AI to optimize vari-
ous processes. While these studies did not involve blockchain,
they highlight the growing role of predictive algorithms in
managing quality and safety [7]. In the context of IoT-based
cold chain monitoring, researchers have also tried combining
sensor networks with ML [24]. For example, one experiment
deployed IoT sensors (temperature, humidity, gas) and fed-
erated learning algorithms to classify the freshness of street-
vended foods. These efforts show that ML can extract valuable
insights (such as freshness or spoilage indicators) from sensor
data. However, integrating such ML-driven insights into an
auditable, trustworthy framework (like a blockchain-backed
system) remains nascent. Most blockchain traceability systems
still rely on predefined rules or human inspection for decision-
making, rather than automated predictive analytics.

Prior work has laid important groundwork by demonstrat-
ing blockchain-based traceability and IoT-based monitoring
in food supply chains, and by exploring AI techniques for
food quality prediction. Yet, a gap remains in combining these
elements into a unified architecture. This work differentiates
itself by using a public blockchain (Ethereum) for openness,
by implementing a smart-contract-controlled state machine that
links evidence to financial outcomes, and by integrating an
ML layer for predictive quality control. To our knowledge,
this is one of the first end-to-end systems that not only
records supply chain data on a blockchain but also automates
operational decisions (such as payment or rejection of goods)
based on real-time IoT data analytics. Additionally, our design
emphasizes modularity and reusability, aiming to serve as a
reference model for similar traceability challenges.

III. METHODOLOGY: A MODULAR WEB3 TRACEABILITY
ARCHITECTURE

A. Architecture Overview and Design Principles

The proposed approach follows a modular architecture
that segregates functionalities into distinct layers, ensuring
scalability, maintainability, and a clear separation of concerns.
At a high level, the system consists of (1) an IoT sensing
layer deployed in the physical supply chain, (2) an off-chain
data management layer for processing and storing detailed
records, (3) an on-chain blockchain layer (Ethereum smart
contracts) that anchors critical events and enforces business
logic, and an analytics layer employing machine learning for
predictive analysis and decision support. Fig. 1 illustrates these
components and their interactions in the context of a typical
farm-to-client supply chain segment.

The use of the Ethereum public blockchain as the backbone
for trust and data integrity is a fundamental design choice. By

Fig. 1. End-to-end blockchain–IoT architecture for food supply traceability.

leveraging Ethereum, the designed system inherits a decen-
tralized and permissionless security model: no single party
controls the ledger, and tampering with recorded events is
computationally infeasible. This choice aligns with our goal of
openness (any stakeholder or regulator can verify records) and
longevity (public blockchains tend to be highly fault tolerant
and continuously maintained by a global community).

To accommodate Ethereum’s constraints (notably trans-
action costs and throughput limits), a hybrid on-chain/off-
chain model is designed in such a way that only essential
metadata and cryptographic commitments are stored on-chain,
while bulk sensor readings and documents reside off-chain in a
secure repository. In this way, the integrity and non-repudiation
of all data (via on-chain hashes) are ensured without incurring
excessive gas costs or bloating the blockchain. The on-chain
records act as an immutable “ledger of hashes” that attest to
the existence, timestamp, and origin of each piece of evidence,
whereas the off-chain storage holds the full content accessible
to authorized parties.

Another key principle is modularity in the smart contract
design. Two complementary smart contracts are implemented,
each handling a different aspect of the system’s logic. The first
is the Data Collection Contract (DCC), which is responsible
for registering IoT devices and anchoring the sensor data they
produce. The second is the Commercial Relationship Contract
(CRC), which encapsulates the business logic of a supply
agreement (for example, the sale of a batch of produce) as
a finite state machine with transitions based on data-driven
conditions. By splitting functionality this way, the separation
of concerns is achieved: the DCC focuses on data provenance
(ensuring that all sensor inputs are recorded and tied to their
source), while the CRC focuses on transactional logic between
parties (ensuring that payment or acceptance of goods is
contingent on the satisfaction of specified criteria).

This modular approach not only improves clarity but also
enhances security, since each contract is simpler and can be
audited or updated independently if needed.

Fig. 2 and 3 emphasize the modular decomposition, high-
lighting that each functional unit (data collection, commercial
logic, analytics, etc.) can be developed and evolved somewhat
independently. This modularity also facilitates reuse: for in-
stance, the Data Collection Contract could be reused across
different types of supply chains or integrated with additional
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Fig. 2. Modular bi-lateral chain architecture.

sensor types with minimal changes to the blockchain layer.

B. Data and Business Logic Ethereum Smart Contracts Layer

At the core of the traceability system is an Ethereum-based
smart contract layer that provides a trustworthy, automated
ledger of events. Two families of smart contracts are deployed
to orchestrate the lifecycle of a shipment or lot:

1) Data Collection Contract (DCC): This contract serves
as a tamper-proof registry for sensor data related to a particular
lot (or a group of lots). When an IoT sensor node collects
data (temperature readings over a certain time window), these
readings are first aggregated and signed off-chain. The DCC
allows authorized entities (the farmer or a designated data
aggregator) to record a signed summary of the sensor data
on the blockchain. Specifically, the DCC records (see Fig. 4).

• The unique identity of each sensor or device that
will report data (bound to an owner or role, such as
“Farm #7 – Sensor A”). Only registered device IDs
can submit data, enforcing source authenticity.

• Calibration windows for sensors, to ensure that data
is only accepted when the device is within its valid
calibration period (this helps maintain data quality).

• Data collection windows or batch identifiers, defining
time intervals or phases of the supply chain (farm
storage, transport leg 1, processing facility) during
which data is collected for a specific lot.

• The hashed summary of sensor data for each window,
along with a digital signature from the data aggregator.
In practice, the raw sensor readings (which may be
numerous) are kept off-chain, but a cryptographic
digest (a Merkle root or SHA-256 hash of all readings
in that batch) is computed as a compact representation.
This digest, along with metadata (“Lot #123, Window
1, Sensor A stats”), is stored in the DCC. The contract
thereby anchors an immutable proof that a set of
readings was observed, without revealing the raw data
on-chain.

• Any anomaly flags or statistics associated with that
window’s data. For instance, the off-chain aggregator
includes in the summary the minimum, maximum, and
mean of the temperature during transport, as well as a
boolean flag indicating if any reading exceeded a crit-
ical threshold. These summary statistics are recorded

to provide a quick on-chain insight into data quality,
and they are signed to prevent tampering.

The DCC essentially functions as a public audit trail of
sensor inputs. Each submission to the DCC emits a blockchain
event (for transparency) and updates the state to reflect that “for
Lot X, during time window Y, sensor Z reported data with
hash H at time T.” Because all entries are timestamped and
cryptographically linked to the raw data, any future verification
can confirm if the data has been altered or if a sensor reported
plausibly. The DCC by itself does not make judgments about
the data; it simply secures it and makes it available for the
business logic to reference.

2) Commercial Relationship Contract (CRC): This con-
tract encodes the business transaction between supply chain
parties (for example, a farmer selling a batch of produce to
a processor). The CRC is implemented as a contractual state
machine that progresses through defined states based on events
and conditions (see Fig. 5):

• States include OPEN (create an order to buy a lot),
IN TRANSIT (goods have been dispatched and are
en route), RECEIVED (goods arrived at destina-
tion, pending acceptance), VERIFIED and SETTLED
(buyer accepts the goods, triggering settlement), and
DISPUTED (buyer raises a dispute, triggering an
escrow or arbitration process). There may also be an
AUTOSETTLED sub-state to indicate that the contract
self-executed settlement because all conditions were
met without intervention.

• The CRC holds the payment escrow for the transaction
(the buyer’s payment is locked in the contract upon
creation). It defines rules for releasing or refunding
that payment depending on the state transitions. This
ensures that financial exchanges are tightly coupled to
traceability evidence.

• Crucially, transitions between states can be made
conditional on data anchored by the DCC or other
evidence. For example, the CRC might have a function
markReceived() that the buyer (or an automated agent)
can call to move from Delivered to Accepted, but
only if certain conditions are satisfied: passRate ≥
threshold AND docsComplete = true. These condi-
tions can be evaluated by checking the on-chain data
references.

◦ passRate ≥ threshold is required; passRate
is defined as the ratio of correct readings
by IoT sensors during a specific window
for a specific lot. The correctness of the
readings is determined by pretrained machine
learning models. The data hash for the
transport window is present in the DCC,
and no anomaly flag was raised (or the ML
conformity score is above a threshold).

◦ docsComplete could require that the hash
of a quality certificate or regulatory document
has been submitted to the blockchain (perhaps
via another function of the CRC or a document
registry contract).
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◦ If conditions are met, the contract
automatically executes the acceptance:
marking the state as Accepted and releasing
payment to the seller (minus any escrow fees).

◦ If there is a discrepancy – for example, the
seller disputes the rejection – either party can
invoke openDispute(), which moves the
contract to the DISPUTED state. In Dispute,
the funds might remain locked or go into a
separate escrow, and an arbitrator or predefined
oracle could be involved to resolve the issue.

The CRC thereby couples cryptographic evidence with
financial logic. It ensures that objective data (temperature
log, presence of certifications) directly influences the outcome
(payment or penalty), rather than relying solely on after-the-
fact human judgment. Of course, if automatic criteria are not
clear-cut, the contract can still allow human intervention (for
example, an inspector can examine off-chain data and then
call an approve() function). But importantly, the blockchain
provides an immutable record of all such events (deliveries,
acceptances, rejections, disputes), with timestamps and respon-
sible identities.

Both the DCC and CRC are written in Solidity (for
Ethereum) and designed to be general templates that can be
reused for different commodities or supply chain relationships.
They incorporate role-based access control: only the desig-
nated “producer” role can submit certain data, only the “buyer”
can call accept/reject, etc. Identities are managed via Ethereum
addresses (public keys).

To preserve privacy on a public blockchain, pseudonymous
identifiers are used to avoid any personal or sensitive data
on-chain. For instance, lots and users are referred to by IDs
or hashes rather than names, and even location data is not
posted in plaintext on-chain. The on-chain events contain only
minimal information, such as a lot ID, an event type, a hash
or root of the relevant data, a pointer to off-chain storage, a
timestamp, and the signer’s identity (address). This minimal
disclosure ensures that while anyone can see that “Lot #ABC
was rejected at time X for reason Y (hashed) by party Z,”
they cannot derive the sensitive details (like exact temperature
values or the names of the parties) without proper authorization
to view off-chain content.

C. Hybrid On-Chain/Off-Chain Data Management

One of the novel aspects of the architecture is the hybrid
data management strategy, which balances transparency with
efficiency and privacy. The blockchain (on-chain) ledger acts as
a public, tamper-proof journal of essential events and evidence
hashes, while the off-chain storage serves as a secure document
repository for full data records. The interface between off-
chain and on-chain components is carefully designed to ensure
they remain cryptographically linked.

1) On-chain: As described, the blockchain stores event
metadata and hashes. Key on-chain data includes:

• Lot identifiers and key lifecycle events (creation, ship-
ment dispatch, receipt, etc.), each recorded as an event

Fig. 3. Detailed IoT–Blockchain–ML module design.

in the CRC. This provides a time-ordered trail of what
happened to each lot, immutable and timestamped.

• Pseudonymized participant identifiers (representing,
for example, the farmer, logistics provider, processor).
These allow the system to show which role took
which action without exposing personal or sensitive
information.

• Hashes of sensor data summaries (from DCC) and
hashes of document bundles (submitted to CRC or
a document contract). These are the integrity an-
chors: by storing a cryptographic hash of a data item
on Ethereum, any tampering with the off-chain data
can be detected (the hash would mismatch). Storing
Merkle roots when dealing with many data points
allows efficient aggregation. For example, if a sensor
reports 1000 readings in a journey, instead of storing
1000 hashes, a single Merkle root representing all
readings is stored. Similarly, a batch of multiple docu-
ments (certificates, bills of lading, inspection reports)
can be represented by one root hash.

• Minimal descriptive tags (non-sensitive) such as data
type indicators (“temp humidity summary”), version
numbers, or references to standards. These help in
interpreting the hashes. For instance, a hash might
be tagged as “calibrationCertHash” vs. “transportData-
Hash” to indicate what evidence it corresponds to.

The on-chain content is kept lean to adhere to the prin-
ciple of parsimony: nothing extraneous (no large data, no
personal info, no redundant records) is stored. This minimizes
blockchain storage costs and avoids performance issues. Be-
cause each on-chain entry is immutable and time-stamped, an
instant public audit of the “skeleton” of the supply chain events
is guaranteed. At any time, an auditor or stakeholder can query
the blockchain for a given lot ID and retrieve the sequence of
events (Lot 123: created by X at time t0, shipped at t1, sensor
data hash H1 at t2, received by Y at t3, anomaly flag raised,
dispute opened at t4, etc.). This timeline is trustlessly verifiable
and cannot be altered retroactively. If a dispute arises or a recall
is needed, this immediate single source of truth is invaluable.

2) Off-Chain: The off-chain layer is where the detailed data
resides. The off-chain storage is implemented as a secure cloud
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database (in the prototype, a combination of a cloud file storage
for raw files and a database for structured sensor logs). In a
production deployment, the off-chain repository contains:

a) Sensor data logs: All the raw reading data collected
by IoT devices, stored both in raw form and in processed
aggregates. For example, actual temperature readings are
stored every minute during transit, as well as any computed
aggregates (such as daily averages) used to form the anchored
summary. Keeping raw data is important for forensic analysis
or re-processing with improved algorithms.

b) Operational and regulatory documents: Calibration
certificates for sensors, safety certificates, quality inspection
reports, photos of the cargo, shipping manifests, delivery
receipts, etc. These are typically PDF or image files. Each such
document is hashed, and the hash is placed on-chain via the
DCC when the document becomes available. The actual file is
stored off-chain and can be fetched for viewing by those with
permission.

c) Quality control logs: Records of any automated or
manual quality checks performed, including which parameters
or thresholds were applied and what results were obtained.
For instance, if the ML module PassRate ratio of the lot is
92% at delivery, this score and the reasoning (which sensor
or parameter influenced it) can be recorded. Storing these off-
chain allows later auditing of why a decision was made.

d) Index and versioning: The repository indexes data
by lot, time, and source, enabling quick lookup (“retrieve all
data for Lot #123”). If a document is updated or a data entry
corrected (which might happen if, say, an initial upload was
wrong but later amended with proper authorization), version-
ing preserves past versions for audit without compromising
integrity. The hash on-chain can either reference the latest
version, or each version can be hashed and chained.

Off-chain storage is effectively the source of truth for
content, while the on-chain ledger serves as the source of
proof of integrity. To tightly bind them, every item stored off-
chain gets a cryptographic fingerprint (hash) that is placed on-
chain. This one-to-one linkage (or one-to-many in the case of
Merkle trees) means that if anyone were to alter or fake an off-
chain record, the discrepancy would be immediately detectable
by recomputing the hash and comparing it to the blockchain
entry. In the prototype, this verification is automated, since an
auditor module can fetch a document or data log, hash it, and
confirm the hash matches the blockchain, thereby validating
authenticity and that the data has not been changed since
submission.

In this way, an equilibrium among transparency, perfor-
mance, and privacy is achieved. The blockchain provides
public auditability and immutability (satisfying transparency
and trust), while the heavy lifting of data storage and retrieval
is done off-chain (ensuring operational efficiency and scalabil-
ity). Sensitive details remain protected behind access controls
off-chain (addressing privacy), yet the integrity chain (hash
linking) means even those who cannot see the data can trust
that it hasn’t been maliciously modified. This approach follows
the emerging best practice in enterprise blockchain use: keep
the ledger lean (for integrity and coordination) and manage
data off-ledger in a controlled environment, using the ledger
as a fingerprint register.

D. IoT Sensing and Data Ingestion Layer

The IoT layer is the interface to the physical world, captur-
ing real-time data about the food products and their environ-
ment. A network of low-cost IoT sensor nodes is implemented
at strategic points in the supply chain, from the farm through
transportation and into storage at the processing facility. The
choice of hardware and sensors prioritized affordability, ease of
deployment, and sufficient accuracy for food safety parameters.

Each IoT node in the prototype consists of an ESP8266-
class microcontroller (a cheap Wi-Fi-enabled microcontroller)
connected to environmental sensors (for temperature and hu-
midity), and optionally a GPS module for location data. The
ESP8266 was chosen for its low cost (on the order of $5)
and built-in wireless connectivity, which makes it feasible to
deploy many units across a supply chain without significant
expense. A DHT22 humidity/temperature sensor and BMP280
barometric sensors for capturing climate conditions are used,
covering the typical range and accuracy needed for produce
monitoring (temperature accuracy ±0.5°C, humidity ±2% RH).
In addition, nodes can interface with other sensors like light
or gas (CO2/O2) if needed, and the architecture can accom-
modate any sensor that provides digital readings. Each device
has a unique ID that is registered in the blockchain (via the
DCC) along with the identity of its owner or manager. This
binding ensures accountability – data from a sensor can be
traced to the party responsible for that segment of the chain.
It also enables role-based permissions: for instance, only the
owner’s private key (or an authorized delegate) can sign the
data from that sensor, preventing spoofing.

1) Data capture and aggregation: The IoT nodes con-
tinuously collect measurements (one reading per minute).
Rather than transmit every raw reading to the blockchain
(which would be infeasible due to volume and cost), an edge
aggregation strategy is employed, so the device (or a local
gateway or cloud service) aggregates readings over a defined
time window – for example, computing hourly or per-transport-
trip summaries. In this implementation, the sensors send their
raw readings via MQTT to a lightweight serverless processing
pipeline (implemented with ThingSpeak server). This pipeline
is event-driven, so when a new batch of data is available or a
shipment status changes, it triggers data consolidation.

During aggregation, relevant summary statistics are com-
puted, such as minimum, maximum, average temperature in
the window, cumulative time out of safe range, and standard
deviation, etc. Also, initial anomaly checks are performed, for
instance, flagging if any reading exceeds a threshold. Simple
rules or z-score-based outlier detection can be applied at this
stage. The result is a compact summary of the window’s data,
including any flags (anomaly flag = true if an out-of-range
incident occurred). Then, a structured data object containing
these stats, the timeframe, the device ID, and the lot ID is
created.

2) Digital signing: The aggregated data summary is then
digitally signed by the responsible party’s private key (or
by a device key). In the prototype, the aggregation service
signs the summary using an Ethereum account associated with
the data provider. This signature is critical for security – it
proves that the data came from a legitimate source (and not an
attacker injecting false data). Since the public key is known
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Fig. 4. DCC contract state diagram.

on-chain (the device was registered in DCC), others can verify
the signature. The signed summary is then hashed (or its
Merkle root computed if it’s complex data) and prepared for
blockchain submission.

3) Anchoring data on-chain: The final step is to send
a transaction to the Data Collection Contract on Ethereum.
The transaction includes the device ID, the time window, the
computed hash (and any metadata like anomaly flags), and the
signature. When this transaction is mined into the blockchain,
the DCC emits an event logging the submission. At this point,
the sensor data summary is irrevocably anchored on-chain,
with a timestamp and signer identity. The actual summary data
and raw readings remain off-chain (they have been stored in
the cloud DB), but anyone with access can later retrieve them
and recompute the hash to verify integrity.

4) Hardware reliability and calibration: Given the critical
role of sensors, measures to ensure data quality from IoT
devices were implemented. Before deployment, each sensor
was calibrated, and its calibration certificate’s hash was stored
(so that later on, one can verify that the device was certified
at a certain accuracy). The system also supports periodic
calibration events (a sensor might need recalibration every 6
months), which would be recorded. If a sensor’s calibration
expires, the DCC can reject new data from it until re-certified.
Also, basic fault tolerance is handled: if a sensor fails or sends

obviously erroneous data, the anomaly flags will catch it, and
that data can be marked as invalid. Redundant sensors can be
deployed (two per shipment) to provide backup data for critical
parameters.

The IoT layer instrumentalizes the supply chain with
continuous data. By deploying inexpensive sensors, opaque
segments (like the inside of a truck or a storage facility) are
turned into sources of real-time information. The implemented
data pipeline – from sensor to cloud aggregator to blockchain
– was able to operate in near-real time. In the prototype,
data from sensors was posted to the blockchain within a
few seconds to a minute of being recorded (depending on
blockchain transaction times). This is sufficient for many
use cases, as quality issues like temperature abuse typically
happen over hours. However, the system could be tuned for
faster response if sub-second reaction was needed for certain
applications.

E. Machine Learning Analytics for Predictive Quality Control

A distinguishing feature of the system is the integration of
a machine learning (ML) layer that works in tandem with the
IoT and blockchain components to provide predictive analytics
and automated decision support. The goal of this ML layer is to
enhance the raw sensor data with intelligence – detecting subtle
patterns, predicting outcomes, and assessing conformity to
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Fig. 5. CRC contract state diagram.
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quality standards – which can then inform the smart contracts
(CRC) on-chain.

1) Roles of ML in the architecture: ML models were
incorporated for three main tasks: (1) sensor data estimation
and anomaly detection, (2) PassRate ratio conformity, and
(3) decision automation. These correspond to increasingly
advanced analyses:

a) Estimation and anomaly detection: Using historical
data and contextual features, predict expected sensor readings
and flag deviations. For example, given the time of day,
ambient weather, and previous readings, predict what the
temperature in a truck should be – if the actual reading diverges
significantly, it might indicate a sensor fault. An ML model
can learn typical patterns and provide a more robust anomaly
flag than a static threshold. Anomaly flags computed by ML
complement the simple threshold checks in the IoT layer.

b) PassRate ratio conformity: This is a predictive qual-
ity ratio for the produced lot, indicating the likelihood that
it meets quality/safety criteria at the end of the chain. The
ML model considers the entire sensor history (and potentially
external factors like weather or transport duration) to output
a ratio (0 to 100%) or classification (conformant vs non-
conformant). For example, if a product was kept consistently
in ideal conditions, the ratio will be high, and if there were
temperature excursions or delays, the ratio drops. This essen-
tially automates a pre-inspection, so it predicts if the lot will
pass quality control or if it’s at risk.

c) Decision automation: The outputs of the above
models feed into a decision logic (some of which is encoded
on-chain). For instance, if the conformity ratio is above a
threshold and all required documents are present, the contract
can auto-accept the delivery and trigger payment (this is
termed AutoSettlement). If the score is low or anomalies were
detected, the contract might automatically trigger a hold or re-
quire manual review (possibly entering a Dispute state). Thus,
ML enables a shift from reactive to proactive management –
catching issues early and handling many routine cases without
manual intervention.

2) Model development and OFF-CHAIN ML GATE: A
dataset containing time-series of temperature and humidity
from a specific location (Casablanca, Morocco) was used to
train several regression models, including:

• M1: predicts temperature based on the time of year
and a given humidity,

• M2: predicts humidity based on the time of year and
a given temperature,

• M3/M4: predict temperature and humidity at a given
time of year.

These models are trained offline on historical data and
are used at run time as part of an OFF-CHAIN ML GATE
that transforms raw sensor readings into a compact confor-
mity indicator (PassRate) and associated anomaly flags. The
operation of this gate is illustrated conceptually in Fig. 6.
For each lot and each monitoring window (for example, a
transport leg or storage phase), the corresponding temperature
and humidity readings are grouped into an ordered time series

and preprocessed to handle missing values and obvious sensor
glitches.

At run time, models M1–M4 are applied to these time
series to produce expected values x̂t for each observed reading
xt. For each time step t in the monitoring window, the
deviation |xt− x̂t| is computed and compared to a tolerance ϵ,
and the measured value is also checked against regulatory or
contractual bounds [xmin, xmax] appropriate for the product. A
reading is classified as conformant (“pass”) if both conditions
are satisfied (small prediction error and within the allowed
range), and as non-conformant (“fail”) otherwise. After all N
readings in the window have been evaluated, the PassRate is
computed as:

PassRate =
Npass

N
,

where Npass is the number of pass readings.

In addition to PassRate, summary statistics (minimum,
maximum, mean) and a boolean anomaly flag indicating
whether any severe violation occurred are produced. These out-
puts, together with the hash of the underlying raw data batch,
form the OFF-CHAIN ML GATE summary for that window.
The summary is stored off-chain, and its cryptographic hash,
PassRate value, and anomaly flag are anchored on-chain via
the Data Collection Contract (DCC) so that the Commercial
Relationship Contract (CRC) can reference them at decision
time.

When a lot reaches a decision point (for example, at
delivery), the CRC reads the latest available summary for
the relevant window. Automatic acceptance is authorized if
PassRate ≥ τ for a predefined threshold τ and if no anomalies
or missing documents are indicated. In this case, the CRC
transitions to an accepting state and releases payment. If the
threshold condition is not satisfied or an anomaly is present, the
contract remains in a hold or disputed state, and the detailed
off-chain records can be inspected by the parties or by an
external auditor. In the prototype, the threshold is set to 0.8
(80%).

The following table summarizes the best results obtained
after training the models using multiple ML algorithms; see
Table I:

TABLE I. PERFORMANCE COMPARISON OF MODELS FOR DIFFERENT
CASES

Case Target Model MAE RMSE R2

M1 temperature MLP small 1.6217 2.0908 0.8462
M2 humidity SVR RBF 6.5615 9.3837 0.6789
M3 temperature GradientBoosting 1.8683 2.4381 0.7909
M4 humidity SVR RBF 7.4696 10.8154 0.5734

The verification process and ML outcomes are summarized
in Fig. 6.

Instead of only collecting and displaying data, the system
triggers autonomous decisions based on these ML outputs. The
threshold and model parameters can be adjusted according to
risk tolerance. During development, care was taken to ensure
that the contract does not blindly follow ML outputs; for
example, if a required document hash is missing, the contract
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Fig. 6. Verification process and ML outcomes.

does not auto-settle even if the PassRate is high. Thus, the
ML layer provides predictive quality control that works hand-
in-hand with IoT data collection and blockchain enforcement,
augmenting but not overriding fundamental checks.

IV. EXPERIMENTAL RESULTS AND PROTOTYPE
VALIDATION

To validate the proposed architecture, a full end-to-end
prototype was developed and tested under realistic conditions.
The system integrates IoT hardware, a cloud-based back end,
and Ethereum smart contracts deployed on a local test network,
enabling the simulation of a complete food supply chain
transaction. Scenario-based experiments were subsequently
conducted to evaluate traceability, automation, and the integrity
of the system’s outputs.

1) Prototype setup: A supply chain scenario with two
primary actors – a producer (farmer) and a buyer (processor)
– engaged in a transaction of a food product (a lot of fresh
vegetables) has been configured. The IoT network consisted of
four ESP8266-based sensor nodes; two of them were installed
at the farm (monitoring storage conditions pre-shipment) and
two in the delivery truck (monitoring conditions during transit).
Each node recorded temperature and humidity every minute
and was connected via Wi-Fi to an internet gateway in order
to transmit data to an IoT cloud service (ThingSpeak was used
as the cloud server) in near real-time.

On the blockchain side, the smart contracts have been
deployed on the Ganache local blockchain. Ganache is an
Ethereum blockchain simulator. The deployed smart contracts

were the Data Collection Contract (DCC) and Commercial
Relationship Contract (CRC). The farmer’s account was set
as the data provider (authorized to post sensor data and
documents), and the buyer’s account was set with the right to
accept or dispute. A payment amount (simulated in test Ether)
was escrowed in the CRC to mimic the financial transactions.

Also, a simple web page for visualization and manual
interactions in order to display its incoming sensor readings
in real-time has been developed to show the state of the
smart contracts, and allow the user (playing the role of buyer,
farmer, or arbitrator) to manually trigger certain events (like
markShipped() or raise a dispute) if needed. The pages polled
the Ethereum network for new events and also fetched data
from off-chain storage when requested (for instance, to display
the full temperature log of a trip when an arbitrator clicks a
particular button).

2) Traceability and data integrity: First, a verification
process was conducted to ensure that the system provided con-
tinuous traceability of the lot’s condition and movements. As
the shipment left the farm, an “Expedition” event was recorded
on-chain (through the CRC, marking that the goods were
shipped). The sensor nodes in the truck immediately began
sending data, at the same time, the cloud aggregator created
its first summary after 60 minutes of transit and invoked the
DCC, resulting in a DataAnchored event on Ethereum for “Lot-
TEST-123-Window 01” with the hash of that data. As the truck
arrived at the processor, another “markReceived()” event was
logged by the CRC (triggered by the buyer’s app scanning a
QR code on delivery, in the simulation). The second window
of sensor data (covering the latter half of transit and unloading)
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was then summarized and anchored on-chain. Finally, the
buyer performing a quick inspection and then either accepting
or rejecting the lot depending on the scenario was simulated
(see Fig. 5). During this process, end-to-end traceability was
demonstrated, every key step in the lot’s journey was recorded
immutably on the blockchain (with timestamps and responsible
identities), and every data artifact (sensor readings summary,
certificate, etc.) was linked via hashes, so that any independent
auditor or arbitrator could reconstruct the entire chain of
custody by following the blockchain trail and pulling the
evidence from off-chain storage. A verification of the data
item’s hash took milliseconds, and any alteration of data (a
try to modify a sensor summary file by a small amount) led
to a hash mismatch, which immediately indicated tampering.

3) Machine learning outcomes: The ML models were
integrated into the pipeline after each reading was pulled. The
real sensor data from the farm storage and the truck were
fed into the models. In the normal scenario, the temperature
remained within 4–8°C and humidity within 70–90% (suitable
for the concerned products), which the ML model correctly
recognized as normal. It output a conformity ratio of 0.95
at the end of transit, indicating high confidence that the lot is
good. In the anomalous scenario (detailed next), a period where
the temperature rose to 15°C for 1 hour was introduced. The
ML anomaly detection flagged this deviation (the predicted
temp vs actual diverged significantly), and the conformity
score dropped to 0.4 (indicating likely non-conformity).
These scores were packaged into the final data summary and
anchored. The CRC read the score and, according to the preset
threshold (0.8), automatically took different actions in the two
scenarios:

• In the normal case, after receiving the delivery and
the final data hash, the CRC saw score=0.95, no
anomalies, all documents present, and immediately
executed the AutoSettlement transition, as a result,
an on-chain event AutoSettled was emitted, indicating
that the contract released payment to the farmer. The
buyer’s interface showed “auto-accepted. PaymentRe-
leased”. The entire process required no manual deci-
sion, and both parties could verify why by checking
the blockchain, one sees the data hash and can retrieve
the underlying report, which shows all conditions
green. This showcases the power of smart contract
automation informed by ML.

• In the anomaly case, when the delivery was
markReceived(), the CRC noted score=0.4 or
anomalyFlag=true. The buyer could open a
DisputeOpened event, which froze the payment and
alerted the farmer that a problem had been detected,
and both parties could open the off-chain sensor log
(via the hash) to see the temperature spike – which
confirmed a breach of contract terms (temperature out
of range). In a real setting, they might then formally
reject or negotiate a solution. The main point is that
the system proactively caught the issue and preserved
evidence. Because of the cryptographically linked
data, the farmer could not contest the truth of the
temperature records (they were signed by the devices
and anchored). And therefore, a dispute resolution
is greatly simplified; it revolves around interpreting

the data (which is trusted), rather than arguing about
facts.

4) Scenario analysis: Two contrasted scenarios as de-
scribed in Fig. 7, were effectively tested:

a) Conformant lot scenario: All conditions were kept
within agreed ranges, and all required documents (sensor
calibration cert, farm origination cert, etc.) were provided. As a
result, the system produced a verifiable trace for each step, the
ML score was high, and the smart contract auto-settled. The
final outcome was a successfully completed transaction with
both parties confident in the result. Notably, the time from
delivery to payment release was near-instant (just the time to
mine a block after delivery), much faster than a typical manual
inspection and payment cycle. This indicates efficiency gains
for stakeholders.

b) Non-conformant lot scenario: One condition (tem-
perature) went out of range for a while, simulating a partial
failure or sensor failure. A missing document was also tested
by omitting the cleaning certificate for the transport container.
The ML flagged the temperature anomaly, giving a low confor-
mity passRate. Additionally, the smart contract logic detected
the missing document hash (it expected a cleaningCertHash
to be present, which it wasn’t). Either of these alone would
trigger a hold. In the test, both occurred, so the outcome
was clearly not to auto-accept. The contract gave the buyer
the opportunity to open a dispute. In a real-world sense, this
corresponds to quarantining the batch for further inspection.
The traceability system here provided forensic detail: via the
blockchain, one could see an event DisputeOpened by Buyer
at 10:05, reason: temp anomaly” (the reason can be encoded
as an event parameter or inferred from data). The buyer and
farmer could use the off-chain data repository to dig deeper
(e.g. check exactly when and where the temperature rose, see if
any handling mistakes happened). Ultimately, the batch would
likely be rejected or downgraded in this scenario. The system
ensured that this decision was backed by objective, tamper-
proof evidence, reducing potential conflicts. The presence of a
trusted data trail helps avoid the “blame game” – it’s clear if
a logistics provider’s truck lost cooling at a specific time, for
example, focusing accountability appropriately.

After running these scenarios, an audit trail reconstruc-
tion was performed as a final validation. The role of an
external auditor was simulated (with access permissions). A
reconstruction of the full story was then performed using
the available on-chain and off-chain records. By querying
the Ethereum logs for the lot’s ID, all on-chain events were
obtained: creation, dispatch, data anchors, receipt, and out-
come (settled or disputed). Each event had references (IDs,
hashes). Then each hash’s corresponding content from the off-
chain storage was fetched: the sensor data summaries (which
included ML results), the actual sensor time-series, and the
documents. A verification process was conducted to ensure
that each hash matched and each digital signature was valid.
This process allowed us to verify compliance with every
contractual condition, which traced “who did what and when”
with precision (Farmer submitted data at time X, system auto-
settled at time Y, etc.). The chain of custody from farm to
processor was unbroken and cryptographically verifiable end-
to-end. This level of auditability is a marked improvement
over traditional systems, where auditors must trust paper logs
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Fig. 7. Outcome workflow for compliant vs. Non-compliant lots.

or disparate databases that could be incomplete or altered. It
also illustrates how the design achieves explicable decisions:
even the automated actions were explainable by linking to
specific data points (e.g., “auto-settlement occurred because all
required criteria, as documented in hash H, were satisfied”).

The experimental validation of the prototype demonstrates
that the integrated blockchain-IoT-ML architecture functions
as intended: it provides real-time traceability, enforces data-
driven smart contract logic, and handles both nominal and
off-nominal scenarios by either streamlining the workflow (for
conformant lots) or flagging issues (for non-conformant ones).
Improved efficiency (instantaneous settlement vs. potential
delays) and improved trust through transparency (immutable
evidence replacing he-said/she-said) were observed.

V. DISCUSSION

A. Advantages and Novelty

The proposed system offers several notable benefits over
traditional systems and even over earlier blockchain or IoT-
only solutions, Improved Transparency and Trust, The use

of a public blockchain (Ethereum) as the foundational ledger
ensures that no single party can modify or hide any important
information. This decentralization is crucial in multi-player
supply chains where trust may not be present. All stakeholders
(from farmers to retailers to regulators) can have access to
an identical, tamper-proof record of key supply chain events,
which improves trust in the data.

1) Data integrity and provenance: The hybrid approach of
anchoring means that every piece of data (sensor readings,
certificates, etc.) has a cryptographic provenance which is a
strong defense against fraud. For instance, any attempt to
change a food safety certificate or manipulate temperature
records leads to hash mismatch.

2) Automation and efficiency: The synergy between smart
contracts, sensor data and ML allows a degree of process
automation that is novel in this domain. Routine operations
like shipment acceptance and payment release can be executed
automatically if some conditions are verified, which reduces
administrative paperwork and speeds up the supply chain.

3) Accountability and auditability: Every action on-chain
is linked to a cryptographic identity (linked to an organization
or individual) and timestamped. This level of accountability
(“who did what, when”) is enhanced compared to centralized
databases where logs can sometimes be edited or lost.

4) Modularity and extensibility: The proposed model is
reusable and can be extended to different supply chains or to
incorporate additional technologies. For example, the IoT layer
could be expanded to include new sensors (GPS trackers for
real-time location, imaging devices for visual quality checks,
etc.).

B. Limitations and Mitigation Strategies

Despite its benefits, the system has certain limitations and
challenges that need to be addressed:

1) Blockchain throughput and cost: In high-volume food
supply chains, directly writing everything to the Ethereum
mainnet could become costly and slow, since thousands of
events occur daily, which significantly increase fees (gas costs)
per transaction. In order to mitigate this issue, the system
anchors data at a coarse granularity (per batch per phase
rather than per sensor reading) and stores only hashes (small
payloads). In this way the number of transactions and data
size are reduced. On the other hand, only critical events and
summaries are on-chain. This “selective anchoring” is the
important identified mitigation.

2) Data privacy and confidentiality: While the system
avoids putting sensitive details on-chain, the presence of cer-
tain events or hash values can reveal some information. For
example, if a dispute event is visible on a public ledger, com-
petitors might infer that a problem occurred with a shipment
between certain parties. To mitigate this issue, pseudonymiza-
tion is applied (using IDs instead of real names), and sensitive
reasons are not revealed explicitly on-chain. Also, all actual
content remains off-chain protected by access controls.

3) IoT device reliability and security: The maxim “garbage
in, garbage out” applies – if IoT sensors report incorrect
data (due to malfunction or tampering), the blockchain will
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faithfully record bad data, and smart contracts might act on it.
Blockchain doesn’t guarantee data accuracy at the source. The
model mitigates this risk through multiple actions:

a) Calibration and validation: Ensuring devices are
calibrated and periodically checked mitigates systematic er-
rors, and every calibration is anchored on-chain to increase
confidence.

b) Anomaly detection (ML and rules): The ML layer
and simple thresholds catch many outliers. If a sensor sud-
denly gives an extreme reading, the system flags it. Also, the
verification process reveals important information about the
quality of the collected data.

c) Edge computing and fail-safes: The approach relies
on connectivity for data to be anchored. If a connection is lost
for a long time, data might not get anchored promptly. This
issue is mitigated by local storage on devices and backfilling
once online. One could also incorporate mesh networks or
alternative communications like LoRaWAN for remote areas.

4) Adoption and ecosystem challenges: A technical system
is only as good as its adoption by stakeholders. Implementing
this in an actual food supply chain means aligning multiple
independent parties to use the platform and trust its outcomes.
There could be resistance due to cost, complexity, or fear of
data sharing. This is a limitation beyond technology; it involves
governance, and possibly regulatory push:

• Start with pilot programs in a controlled environment
(a single company’s supply network or an industry
consortium like Walmart did with IBM) to demon-
strate value.

• Education and training are important so the users trust
the system. The system can be designed with user-
friendly interfaces (mobile apps for farmers to see
their data).

• Regulatory alignment: Regulations are very important
to push stakeholders to adopt such technologies.

• The architecture can also integrate with existing sys-
tems via APIs, it doesn’t require ripping out the
existing databases. For instance, if a company already
has an ERP system logging batches, that system can
feed into the blockchain layer through an adapter.

5) Sustainability considerations: While this work is moti-
vated partly by sustainability (reducing waste through better
monitoring, etc.), one might point out that blockchains (espe-
cially proof-of-work ones) have high energy use. Ethereum has
transitioned to proof-of-stake (as of 2022), drastically cutting
energy usage.

VI. CONCLUSION

In this paper, a comprehensive Web3-based architecture for
end-to-end food supply chain traceability, integrating Ethereum
blockchain smart contracts, IoT sensor networks, and machine
learning analytics into a unified system is presented. Through
the design and prototyping of this architecture, it has been
demonstrated how combining these technologies can overcome
many limitations of traditional traceability methods and add

novel capabilities for data-driven decision-making in supply
chain operations.

The system achieves real-time, auditable traceability by
anchoring key supply chain events and sensor data on a public
blockchain, ensuring the integrity, transparency, and tamper-
resistance of records. At the same time, it preserves practical
efficiency and confidentiality by keeping detailed data off-
chain under secure management, linking the two realms with
cryptographic hashes to guarantee provenance. It separates the
business logic into a modular Ethereum smart contract (DCC)
for sensor data and a CRC embodying a contractual state
machine, which allowed for coupling evidence with actions
(such as payment settlement) in a flexible manner.

By deploying low-cost IoT sensors across the supply chain,
from farms to transport to storage, the system provides more
visibility into environmental conditions that affect product
quality and safety. The IoT layer feeds a continuous stream
of data into the traceability records, enabling stakeholders to
monitor conditions in real-time. The integration of an ML
analytics layer introduces predictive and diagnostic intelligence
in addition to detecting anomalies and predicting conformity
to quality standards, effectively functioning as a virtual quality
inspector that works in tandem with the physical sensors.

The findings have several implications for the future of
supply chain management:

1) Enhancing food safety and quality: With end-to-end
traceability and real-time monitoring, issues can be identified
and addressed much faster than before, preventing contami-
nated or spoiled products from ever reaching consumers.

2) Building consumer trust: The ability to provide verifi-
able proof of a product’s journey (including compliance with
temperature controls, organic certifications, etc.) can boost
consumer confidence.

3) Operational efficiency and automation: Automating
routine checks and settlements can reduce transaction friction
in supply chains, shortening payment cycles and reducing the
manual workload on logistics and quality control personnel.

4) Generalizability: While the model focused on the
food/agriculture domain, the architecture is applicable to any
supply chain where traceability, authenticity, and condition
monitoring are important (pharmaceuticals, chemicals, high-
value electronics, etc.). The modular design means it can be
adapted with minimal changes.
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