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Abstract—Stroke detection from computed tomography (CT)
images is an important research direction in computer vision.
However, prior studies often use different preprocessing steps,
model configurations, and evaluation protocols, making it difficult
to compare results or assess architectural reliability. This paper
presents an exploratory benchmark that evaluates representative
convolutional neural networks (CNNs) and vision transformer
(ViT) models under a unified experimental setting for binary
stroke classification. STROKECT-BENCH is introduced as a stan-
dardized framework in which five CNNs and four transformer-
based models are trained on the Brain Stroke CT Image dataset
(1,551 normal and 950 stroke images) using identical preprocess-
ing, augmentation, optimization parameters, and performance
metrics. The results show that transformer models, particularly
PVT-Small and Swin Transformer, achieve the highest accuracy
and AUC, while EfficientNetB0 provides a strong balance between
accuracy and computational efficiency. As an exploratory study,
the findings aim to establish reliable baselines rather than clinical
validation. STROKECT-BENCH offers a consistent evaluation
reference for future work involving patient-level datasets, external
validation, and multimodal stroke-analysis approaches.
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I. INTRODUCTION

Stroke is one of the leading causes of mortality and long-
term disability worldwide, affecting millions of people each
year and imposing a substantial socioeconomic burden on
health systems and families [1]. Clinically, strokes are broadly
classified as ischemic, due to occlusion of cerebral blood
vessels, or hemorrhagic, due to vessel rupture [2]. Rapid and
accurate diagnosis guides life-saving interventions and strongly
influences patient outcome.

Computed Tomography (CT) is the primary modality for
emergency stroke imaging [3], because it is fast, widely
available, and able to distinguish hemorrhagic from ischemic
events. However, visual interpretation of CT remains time-
consuming and can be subject to inter-reader variability and
low sensitivity in subtle cases.

Recent advances in artificial intelligence, and in particular
deep learning [4]-[6], provide powerful tools to automatically
extract complex imaging patterns that are difficult to quantify
by eye [7]. Convolutional neural networks (CNNs) have been
shown to perform well on many medical imaging tasks, includ-
ing lesion detection and segmentation [8], and deep learning

models have even been used to predict final infarct lesions
from baseline imaging in stroke cohorts [9], [10]. At the same
time, attention-based Vision Transformer (ViT) architectures
have begun to appear in medical imaging literature [11], [12]
because they capture global contextual information and, in
several instances, offer competitive or superior performance
to CNNs. Recent surveys and comparative reviews discuss
both the opportunities and the open challenges of applying
transformers to medical images [13], [14].

Despite these advances, a clear research gap remains: the
stroke imaging literature lacks a systematic, fair benchmark
that compares lightweight and mid-range CNNs against con-
temporary transformer variants specifically on brain CT stroke
classification. Many prior works focus on single architectures
or small combinations of models, vary preprocessing and
evaluation protocols, or address MRI rather than CT [15], [16]
making head-to-head comparisons difficult. To address these
gaps, this study asks three linked research questions: first, how
do a set of representative CNN architectures Residual Network
with 50 layers (ResNet50), Efficient Convolutional Neural
Network Base model BO (EfficientNetB0), Densely Connected
Convolutional Network with 121 layers (DenseNet121), Visual
Geometry Group—16 layers (VGG16), Mobile Neural Network
Version 2 (MobileNetV2) perform on a brain CT stroke
classification task, second, how do a group of transformer-
based models Shifted Window Transformer (Swin), Vision
Transformer (ViT), Data-efficient Image Transformer (DeiT),
Pyramid Vision Transformer (PVT-Small) compare to those,
and third, which model families and specific architectures
provide robust, practical baselines that can be used in future
extensions such as multimodal fusion or clinical decision-
support pipelines.

To summarize, this study provides three main contribu-
tions. First, it introduces STROKECT-BENCH, a unified and
reproducible benchmark that evaluates five CNN and four
Transformer architectures on a publicly available brain CT
dataset (1,551 normal and 950 stroke images) from the Kaggle
repository [17], using fully standardized preprocessing and
transfer-learning protocols. Second, it offers a comprehensive
comparative analysis across clinically relevant evaluation met-
rics—including accuracy, precision, sensitivity, specificity, F1-
score, and AUC—to characterize the strengths and weaknesses
of each model family. Third, it identifies the most effective
architectures within both CNN and Transformer groups, estab-
lishing consistent baselines for future research. It is important
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to emphasize that this work is exploratory and focuses on
methodological benchmarking rather than clinical validation.

The remainder of this paper is organized as follows.
Section II reviews prior work in CT-based stroke detection
and the emergence of Transformer models in medical imaging.
Section III describes the dataset, preprocessing pipeline, and
the proposed methodological framework. Section IV details
the evaluation metrics, experimental settings, model implemen-
tations, and the comparative results of all CNN and Trans-
former architectures. Section V discusses the implications of
the findings, their limitations, and their relation to existing
literature. Finally, Section VI concludes the paper and outlines
future directions for extending STROKECT-BENCH toward
clinically validated and multimodal stroke-diagnosis systems.

II. RELATED WORK

Over recent years, convolutional neural networks (CNNs)
have dominated medical image classification tasks, especially
in CT-based stroke detection [18], due to their capacity for
hierarchical feature extraction. More recently, vision trans-
former variants have been proposed to capture long-range de-
pendencies and global context in medical images, though their
adoption in brain CT stroke classification is still emerging. In
such a competitive field, it is crucial to examine how previous
works using the same CT dataset have selected architectures,
what performance they achieved, and what methodological
gaps exist.

A. CNN-Based Models

In an article published in 2025 [19], the researchers trained
a CNN architecture on the brain stroke CT dataset, achieving
a validation accuracy of 97.2%, with precision and recall near
96%. They employed interpretability tools such as LIME and
saliency maps to enhance model transparency. The limitation
lies in the reliance solely on CNNs and the drop in general-
ization accuracy on external data.

While the researchers of [20] compared pretrained CNNgs,
including ResNet50, DenseNet201, MobileNetV2, and Xcep-
tion, on the same dataset. The study achieved a top accuracy of
97.93% using MobileNetV?2 with Linear Discriminant Analysis
and Support Vector Classifier. However, the hybrid nature of
the pipeline prevents a fully end-to-end comparison.

Another study proposed an ensemble CNN architecture
named ENSNET on the same dataset, achieving a slight
performance gain but at the expense of higher computational
complexity [21].

B. Transformer-Based Models

Transformer-based architectures have shown growing
promise in medical imaging, though fewer have been applied to
stroke classification from CT scans. A 2025 study presented a
hybrid ViT+VGG16 framework on the same dataset, achieving
an outstanding accuracy of 99.6% [22]. While the performance
was remarkable, the hybrid design prevents isolating the con-
tribution of each model and raises concerns regarding potential
overfitting.

In study [23], the authors proposed a transformer-based
multi-task network for CT brain lesion segmentation and stroke
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onset age estimation, achieving an AUC of approximately
0.933. Although not directly comparable due to task differ-
ences, it highlights the growing role of transformers in CT
imaging tasks.

In study [24], the authors proposed a hybrid diagnosis
strategy that fuses the ViT and VGGI16. Starting with the
brain stroke CT dataset, the authors applied extensive aug-
mentation to increase each class to about 20,000 images. The
hybrid ViT-VGG16 model reached an accuracy of 99.6%,
demonstrating a precision of 1.00 for normal samples and
0.98 for stroke cases, along with a recall of 0.99 for normal
and 1.00 for stroke, resulting in an overall Fl-score of 0.99.
However, the study’s limitations include the lack of external
validation, increased computational cost from integrating CNN
and transformer layers, and dependence on single-modality CT
image data.

Collectively, prior work confirms the dominance of CNNs
in CT-based stroke detection and the emerging importance of
transformers. Yet, most studies either combine hybrid struc-
tures or use inconsistent preprocessing, creating a need for
standardized evaluation across both families. Therefore, this
study systematically compares CNN architectures (ResNet50,
EfficientNetBO, DenseNet121, VGG16, MobileNetV2) and
transformer models (Swin, ViT, DeiT, PVT-Small) using iden-
tical preprocessing and training pipelines to fill this method-
ological gap. Table I presents an overview of the represented
studies that employed the brain stroke CT image dataset
from Kaggle [17]. It highlights the key algorithms, achieved
accuracies, and noted limitations of each work.

III. METHODOLOGY

This study adopts a systematic methodology to classify
brain CT scans into normal and stroke categories. The work-
flow begins with dataset preparation and preprocessing, fol-
lowed by feature extraction through deep learning architec-
tures, and finally, model training and evaluation. The overall
methodological pipeline is illustrated in Fig. 1.

A. Dataset

The dataset employed in this study was obtained from
Kaggle [17]. It contains a total of 2,501 CT scans, with 1,551
images representing normal cases and 950 images representing
stroke cases, as represented in Fig. 2. The dataset provides a
reasonably balanced foundation for binary classification tasks
and has been widely used as a benchmark for stroke detection
research.

B. Preprocessing

To ensure consistency across all experiments, the images
were preprocessed in several steps. First, all CT scans were re-
sized to 224 x 224 pixels, which aligns with the standard input
size of most pretrained deep learning models. Normalization
was applied to reduce variations across scans. Furthermore,
data augmentation techniques were employed to increase data
diversity and reduce overfitting. These included random rota-
tions, horizontal and vertical flips, brightness adjustments, and
Gaussian noise. The preprocessing ensured that the models
learned robust features representative of real-world clinical
conditions.
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TABLE I. SUMMARY OF RECENT STUDIES UTILIZING THE BRAIN STROKE CT IMAGE DATASET

Ref No. (Year) Algorithms / Models Applied

Reported Accuracy

Limitations

[19] (2025) Custom CNN (3 conv + dense) 97.2%

[20] (2025) ResNet50, DenseNet201, MobileNetV2,  97.93%
Xception

[21] (2024) ENSNET (ensemble of CNNs)

[22] (2025)
[23] (2023)
[24] (2025)

Hybrid ViT + VGG16 99.6%
AUC =~ 0.933

Dataset with augmentation to ~20k per  99.6%
class; ViIT-VGG16 hybrid

Transformer multi-task model

Improved over baselines

Limited generalization, only CNNs

Hybrid feature-classifier setup & not end-to-end

High computational cost
Fusion complicates analysis & possible overfitting
Different task. Segmentation not classification

Lacks external validation and heavy due to hybrid architecture com-
putation

Preprocessing
* Normalization.
« Resizing
* Augmentation
J

[— 1

CNN-Based Models

Transformer-Based
Models

* ResNet50

* EfficientNetBo * Swin
= DenseNeti21 * ViT
* VGG16 * DeiT

* MobileNet ¢ PVT-Small

Models Evaluation

« Accuracy
* Precision

* Recall
« Specificity.
* F1-Score

Identifying Best
Performing Model(s)
(CNN & Transformer)

Fig. 1. Proposed methodology framework.

= Mormal Stroke

Fig. 2. Distribution of the brain stroke CT image dataset.

C. Feature Extraction

Feature extraction was conducted using transfer learning.
Each selected CNN and transformer model was initialized with

pretrained ImageNet weights and subsequently fine-tuned on
the CT dataset. The general methodology can be mathemati-
cally expressed as in Eq. (1):

Y= f((b(ﬁ& apre); atask) (D

Where z represents the input CT image, ¢(-) denotes the
feature extractor initialized with pretrained parameters O,
f() is the classifier fine-tuned with task-specific parameters
Ok, and y is the predicted class (normal or stroke). This ap-
proach enables the models to leverage low-level visual features
learned from large-scale datasets while adapting higher-level
representations for the medical imaging task.

D. Applied Models

To comprehensively evaluate performance, two categories
of models were applied: convolutional neural networks (CNNs)
and vision transformers (ViTs). CNNs continue to be the
benchmark in medical image analysis because of their strong
capability to capture spatial features, whereas transformers
offer complementary advantages through global feature extrac-
tion. The rationale for model selection is summarized in Table
II.

1) Convolutional Neural Networks (CNNs): CNNs are
widely used in medical image analysis because of their excep-
tional ability to capture spatial hierarchies and patterns within
pixel data. In this study, five CNN architectures were applied:
ResNet50, EfficientNetB0, DenseNet121, VGG16, and Mo-
bileNetV2. ResNet50 was chosen as a baseline because of its
deep residual connections, which alleviate vanishing gradients
in deeper networks. EfficientNetBO represents a lightweight
yet effective architecture that balances accuracy and efficiency.
DenseNet121 leverages dense connectivity patterns that en-
courage feature reuse, which has shown strong performance
in medical imaging tasks. VGG16 was included as a classical
baseline, despite being relatively heavier, to provide a point of
comparison with modern CNNs. And lastly, MobileNetV2 was
applied as a lightweight alternative optimized for efficiency in
low-resource environments.

2) Vision Transformers (ViTs): Transformers have recently
gained traction in computer vision due to their ability to cap-
ture global dependencies across an image. For medical imag-
ing tasks such as CT stroke detection, transformers provide
complementary representational power compared to CNNs.
Four transformer-based architectures were evaluated: Swin
Transformer, ViT, DeiT and PVT-Small. The Swin Transformer
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TABLE II. APPLIED MODELS, THEIR TYPES, AND REASONS FOR SELECTION

Model Type Typical Use Reason for Selection

ResNet50 CNN CT/X-ray analysis Strong baseline, balanced depth & accuracy
EfficientNetBO CNN CT, ultrasound, retinal images Lightweight, efficient, good accuracy

DenseNet121 CNN CT/MRI brain, chest X-ray Good feature reuse, widely used in medical tasks
VGG16 CNN CT/MRI brain, lung CT Classical baseline, easy comparison

MobileNetV2 CNN Low-resource CT classification Very lightweight, efficiency benchmark

Swin Transformer Transformer Brain CT, histopathology Hierarchical transformer, strong medical imaging baseline
ViT Transformer CT/MRI Simple and flexible baseline

DeiT (Tiny/Small) Transformer CT/MRI small datasets Data-efficient, lightweight

PVT-Small Transformer CT/X-ray classification Pyramid structure, efficient alternative to Swin

was selected for its hierarchical representation and window-
based self-attention mechanism, which make it well suited for
medical imaging tasks. ViT was included as it represents one
of the baseline and most widely adopted vision transformer
architectures, directly applying the transformer encoder to
image patches. DeiT was incorporated because of its efficiency
on smaller datasets, making it a practical option for medical
applications with limited labeled data. Finally, PVT-Small
was chosen as a lightweight alternative that captures multi-
scale features through its pyramid structure while remaining
computationally efficient.

IV. EVALUATION AND EXPERIMENT RESULTS

This section presents the evaluation strategy and experi-
mental setup used to assess the performance of the proposed
methodology. It begins by defining the evaluation criteria,
followed by the hyperparameter configuration for training the
models, and finally, the presentation of experimental results.

A. Evaluation Criteria

To ensure comprehensive performance assessment, several
standard classification metrics were applied [25]. Given the
medical context, sensitivity and specificity are of particular
importance since false negatives (undiagnosed strokes) and
false positives (misdiagnosed normal scans) have significant
clinical implications. The metrics used are defined in the
following Eq. (2-7).

Accuracy = TP+ TN 2
TP+TN+ FP+ FN

Precision = TijkiPFP (3)

Recall (Sensitivity) = TPF+7PFN 4

Specificity = % (5)

2 x Precision x Recall
Fl1- = 6
score Precision + Recall ©)

1
AUC = / TPR(FPR) d(FPR) ©)
0

Where TP denotes the True Positives, representing cor-
rectly identified stroke cases, and T'N denotes the True Neg-
atives, referring to correctly identified normal cases. F'P rep-
resents the False Positives, which are normal cases incorrectly
classified as stroke, while F'IN represents the False Negatives,
which are stroke cases missed by the model. Additionally,
T PR refers to the True Positive Rate, indicating the proportion
of actual stroke cases correctly detected, and F'PR refers to
the False Positive Rate, representing the proportion of normal
cases incorrectly classified as stroke.

B. Experimental Setup

The experiments were conducted on a high-performance
workstation equipped with dual Intel processors operating at
2.0 GHz, 96 GB of RAM, and a 64-bit operating system.
All computations were executed using CPU-only processing,
as no dedicated GPU was utilized. This configuration pro-
vided sufficient computational capacity to train and evaluate
all convolutional and transformer-based models efficiently.
The implementation was carried out in Python 3.11 using
the TensorFlow, Keras, and PyTorch frameworks for model
construction, optimization, and performance assessment.

The brain stroke CT image dataset was divided into 80%
training and 20% validation subsets to ensure consistent eval-
uation across all models. Transfer learning with pretrained
ImageNet weights was applied to initialize both CNN and
Transformer architectures, followed by fine-tuning on the CT
dataset to adapt the representations to the domain-specific
features of stroke lesions. The training process employed the
Adam optimizer (Learning rate = 1 x 10~%) with weight
decay and an adaptive learning rate scheduler to enhance
convergence stability. Early stopping was also implemented
to prevent overfitting and ensure generalization. All CT scans
were resized to 224 x 224 pixels, normalized to the [0, 1]
range, and converted from grayscale to RGB to match the input
requirements of pretrained networks. Both CNN and Trans-
former models were trained under identical preprocessing,
batch size (32), and hyperparameter configurations to ensure
a fair and reproducible benchmark. Despite relying solely on
CPU computation, stable convergence was achieved through
optimized data loading and fine-tuned training parameters.

The Transformer-based models including Swin Trans-
former, DeiT, ViT, and PVT-Small were implemented using the
timm library and initialized with ImageNet-pretrained weights
for enhanced feature extraction. A fully connected classifica-
tion head with two output neurons (Stroke and Normal) and
a Softmax activation was appended for final prediction. All
models were trained for 100 epochs using the Adam optimizer
(Learning rate = 1 x 10~%) and CrossEntropyLoss, ensuring
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consistent experimental conditions across architectures. The
detailed hyperparameter configurations for both CNN and
Transformer models are summarized in Table III.

TABLE III. HYPERPARAMETER CONFIGURATION

Parameter CNN Models Transformer Models
Input image size 224 x224 224 x224
Batch size 32 32
Optimizer Adam Adam
Learning rate 1x 107 1x107%

Loss function
Epochs
Validation split
Augmentation
Activation
Dropout rate

Binary Cross-Entropy
100 (with early stopping)
0.2

Cross-Entropy
100 (with early stopping)
0.2

Resize, Normalize
Softmax (output)

Resize, Normalize
ReLU (hidden), Sigmoid (output)
0.3

C. Experimental Results

This section presents and discusses the experimental results
obtained from both the CNN and Transformer families of
models applied to the brain stroke CT image dataset. All
models were trained and validated under identical preprocess-
ing and parameter configurations to ensure a fair comparison.
The evaluation employed six clinically meaningful metrics:
Accuracy, Precision, Recall (Sensitivity), Specificity, F1-score,
and Area Under the Receiver Operating Characteristic Curve
(AUO).

1) CNN-based architecture results: The CNN family in-
cluded MobileNetV2, EfficientNetB0O, DenseNet121, VGG16,
and ResNet50. Among them, DenseNet121 achieved the high-
est accuracy of 0.9840, supported by a strong precision of
0.9742, recall of 0.9844, and an AUC of 0.9993, indicating
exceptional discriminatory capability. Its dense connectivity
enabled effective gradient flow and superior generalization
across CT image variations. VGG16 also performed competi-
tively, achieving an accuracy of 0.9760 and an AUC of 0.9967,
reflecting its deep hierarchical feature extraction despite higher
computational cost. EfficientNetB0, designed through com-
pound scaling, delivered balanced accuracy (0.9440) with
remarkable computational efficiency, confirming its suitabil-
ity for real-time or resource-limited clinical settings. Con-
versely, MobileNetV2 and ResNet50 recorded lower accuracies
(0.8660 and 0.8800, respectively), attributed to their lighter
architectures and limited depth relative to complex brain CT
patterns. Nevertheless, their AUC values above 0.92 show that
both models still maintain reliable stroke-normal differentia-
tion.

Overall, CNN results suggest that deeper and better-
connected feature extraction backbones (DenseNet, Efficient-
Net and VGG16) significantly enhance classification robust-
ness compared with compact CNNs. Table IV represents a
summary of the CNN-based models’ performance achieved on
the brain stroke CT image dataset.

TABLE IV. PERFORMANCE OF CNN-BASED MODELS

Model Acc. Prec. Rec. Spec. F1 AUC
MobileNetV2 0.866 0.870 0.766 0.929 0.814 0.921
EfficientNetBO 0.944 0.927 0.927 0.955 0.927 0.991
DenseNet121 0.984 0.974 0.984 0.984 0.979 0.999
VGG16 0.976 0.979 0.958 0.987 0.968 0.997
ResNet50 0.880 0.875 0.802 0.929 0.837 0.945

Vol. 16, No. 11, 2025

2) Transformer-based architecture results: The second
group involved the ViT, Swin Transformer, DeiT, and PVT-
Small, each leveraging attention mechanisms to capture global
dependencies across the CT scans. Among all tested archi-
tectures, PVT-Small attained the highest overall performance
with an accuracy of 0.9940, Fl-score of 0.9917, and AUC
of 0.9996. Its pyramid structure effectively captured multi-
scale lesion patterns while maintaining computational effi-
ciency. Swin Transformer and DeiT followed closely, each
reaching 0.9900 accuracy and near-perfect AUC values (0.9998
and 0.9994, respectively). Their hierarchical window-based
attention (Swin) and data-efficient pretraining (DeiT) proved
highly beneficial for small medical datasets. The ViT model
achieved a strong accuracy of 0.9601 with an AUC of 0.9815,
demonstrating that even the vanilla transformer framework
can effectively generalize to stroke CT detection. However,
its slightly lower performance relative to Swin and PVT-
Small suggests that localized attention and hierarchical token
representation improve spatial sensitivity in medical images.

The obtained results, summarized in Table V, demonstrate
that transformer-based models outperform CNNs overall in
both accuracy and consistency.

TABLE V. PERFORMANCE OF TRANSFORMER-BASED MODELS

Model Acc. Prec. Rec. Spec. F1 AUC
Swin 0.990 0.985 0.990 0.990 0.987 0.9998
DeiT 0.990 0.990 0.984 0.994 0.987 0.9994
ViT 0.960 0.943 0.943 0.969 0.943 0.982

PVT-Small 0.994 0.994 0.989 0.997 0.992 0.9996

D. Comparative Results

Comparing both model groups, transformer-based archi-
tectures consistently outperformed CNNs across all evalua-
tion metrics, especially in AUC and Fl-score, demonstrating
greater sensitivity to stroke regions and fewer false negatives.
Their superiority stems from the ability to capture global
contextual features, which is vital for identifying subtle stroke
patterns across CT slices. However, CNNs like EfficientNetB0
remain valuable for real-time clinical use, offering a balanced
trade-off between accuracy and computational efficiency.

These findings validate the benchmarking approach
adopted in this study and guide future work toward hybrid
fusion models combining the strengths of DenseNetl121, Ef-
ficientNetB0O, Swin Transformer, and PVT-Small. Table VI
summarizes the comparative results, while Fig. 5 visualizes the
accuracy, Fl-score, and AUC of all evaluated architectures.

As shown, PVT-Small, Swin Transformer, and DeiT
achieved near-perfect AUC values, consistently outperforming
CNN models such as DenseNetl21 and VGG16. These high
AUC scores reflect the models’ ability to separate stroke
from normal cases with minimal overlap and do not, on
their own, indicate overfitting, as the results were obtained
on a held-out validation set using identical preprocessing
across all architectures. The ROC curves in Fig. 3 and Fig. 4
further highlight the strong discriminative capabilities observed
in both model families, with transformer-based architectures
demonstrating superior feature representation and more stable
decision boundaries.
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TABLE VI. COMPARATIVE PERFORMANCE OF CNN AND TRANSFORMER

MODELS
Model Accuracy  Precision  Recall Specificity ~ F1-score AUC
ResNet50 0.8800 0.8750 0.8021 0.9286 0.8370 0.9445
EfficientNetBO 0.9440 0.9271 0.9271 0.9545 0.9271 0.9905
DenseNet121 0.9840 0.9742 0.9844 0.9838 0.9793 0.9993
VGG16 0.9760 0.9787 0.9583 0.9870 0.9684 0.9967
MobileNetV2 0.8660 0.8698 0.7656 0.9286 0.8144 0.9206
Swin Transformer 0.9900 0.9846 0.9897 0.9902 0.9871 0.9998
ViT 0.9601 0.9425 0.9425 0.9694 0.9425 0.9815
DeiT 0.9900 0.9895 0.9843 0.9935 0.9869 0.9994
PVT-Small 0.9940 0.9944 0.9890 0.9969 0.9917 0.9996

CNN Models ROC Curve
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Fig. 3. ROC curve for CNN-based models.
Transformer Models ROC Curve
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Fig. 4. ROC curve for transformer-based models.

V. DISCUSSION

This study marks a major improvement over earlier works
using the same brain stroke CT image dataset for stroke
detection. Previous CNN-based studies, including those by
Ferdous et al. [21] and Elsayed et al. [22], achieved accuracies
between 94% and 97% with EfficientNet and hybrid CNNs
but showed limited generalization. Likewise, Abdi et al. [19]
and Diker et al. [20] reported moderate gains yet strug-
gled with model interpretability and detecting small lesions.
Transformer-based work by Marcus et al. [23] demonstrated
strong contextual learning through attention mechanisms but
lacked broad architectural comparison.

Vol. 16, No. 11, 2025

In contrast, this research benchmarked five CNNs (VGG16,
ResNet50, DenseNetl121, EfficientNetBO, and MobileNetV2)
and four Vision Transformers (Swin Transformer, ViT, DeiT,
and PVT-Small) under identical conditions. PVT-Small, Swin,
and DeiT achieved over 99% accuracy and near-perfect AUC,
surpassing all prior results, while DenseNet121 led CNNs with
98.4% accuracy. These outcomes establish a new benchmark,
underscoring Transformers’ growing advantage in medical CT
interpretation.

It is essential to clearly outline the limitations of this
study to provide an accurate interpretation of the results and
avoid overstating their generalizability. First, the experiments
were conducted using a single publicly available dataset,
which may not fully represent the diversity of real-world
clinical populations. Second, the analysis was exploratory and
restricted to image-level benchmarks without patient-level or
multi-center validation, limiting clinical applicability. Finally,
although identical preprocessing and hyperparameters were
applied across all architectures, the study did not incorporate
statistical significance testing or repeated trials.

Acknowledging these constraints ensures transparency and
helps readers appropriately contextualize the findings while
guiding future work toward more robust, clinically validated
evaluations. Moreover, the insights gained from this bench-
mark provide a foundation for exploring fusion-based ap-
proaches that integrate the complementary strengths of high-
performing CNN and Transformer models to further enhance
stroke-classification performance.

VI. CONCLUSION AND FUTURE WORK

This study presented an exploratory comparative evaluation
of representative convolutional neural networks and vision
transformer architectures for stroke classification using the
brain stroke CT image dataset under a fully standardized
experimental pipeline.

Experimental findings revealed that, among CNN-based
models, DenseNet121, VGG16, and EfficientNetBO achieved
the highest overall performance, with DenseNet121 leading
in accuracy and AUC. Within the Transformer family, PVT-
Small, Swin Transformer, and DeiT exhibited superior results,
reflecting their enhanced capacity to model long-range depen-
dencies and capture subtle spatial features in CT scans.

Compared to prior studies utilizing the same dataset, the
proposed models demonstrated clear improvements across all
major evaluation metrics, thereby establishing a new bench-
mark for stroke classification tasks. The achieved perfor-
mance highlights the reliability of modern lightweight archi-
tectures—both CNNs and Transformers—within standardized
experimental settings, even when trained under constrained
computational resources.

For future work, the strongest models from each fam-
ily—such as DenseNet121, EfficientNetBO, PVT-Small, Swin
Transformer, and DeiT—could be combined within a fusion
framework to leverage their complementary representational
strengths. Such hybrid approaches may improve robustness
and generalization while reducing the limitations of individual
architectures. Extending the evaluation to larger and more
diverse datasets, incorporating patient-level or multi-center val-
idation, and integrating interpretability techniques will provide
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Fig. 5. Performance comparison of CNN and transformer models on the brain stroke CT dataset.

a more comprehensive assessment and better support future
translation toward practical clinical use.
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