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Abstract—Urban air pollution is a growing public-health
challenge in African cities, yet traditional monitoring stations are
sparse and expensive. The paper presents CleanCity IoT, a
deployed, low-cost, vehicle-mounted air-quality platform that
combines IoT sensors, GSM connectivity, cloud aggregation, and
machine learning to produce near-real-time exposure maps and 2-
hour forecasts for multiple pollutants. Each device integrates low-
cost sensors for PM2.5, PM10, NO:, Os, SOz, and CO:, alongside
temperature and humidity. Measurements are geotagged and
transmitted over mobile networks form vehicles to a cloud
backend, where data are validated, stored, and visualized through
a user-friendly dashboard that also issues automated alerts and
periodic reports. Using a dataset collected in Kigali and secondary
cities via routine vehicular routes, the paper introduces the
training of a multivariate time-series model to forecast short-
horizon pollutant levels, supporting proactive health guidance and
regulatory action. The system reports a performance in terms of
latency, uptime, coverage, and data quality, and evaluate forecast
accuracy using MAE/RMSE/MAPE and event-oriented metrics
for spike prediction. Results indicate that CleanCity IoT provides
reliable, scalable, and cost-effective urban air-quality intelligence,
closing key gaps in spatiotemporal coverage while enabling citizen
access, policy support, and social impact. The platform
demonstrates a practical blueprint for African cities to
operationalize air-quality intelligence using existing mobile
infrastructure and locally developed technology.

Keywords—CleanCity IoT; air quality; mobile sensing;
multivariate forecasting; spike detection

I INTRODUCTION

Urban air pollution has emerged as one of the fastest-
growing environmental and public-health threats in African
cities such as Kigali, Rwanda, driven by rapid urbanization,
motorization,and industrial expansion [ 1][2]. The World Health
Organization(WHO) reports that airpollution causes over seven
million premature deaths annually, while nearly 90% of the
global population is exposed to pollutant concentrations
exceeding recommended limits. In many low- and middle-
income countries, fine particulate matter (PMz.s and PM.o) and
gaseous pollutants such as nitrogen dioxide (NO:), sulfur
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dioxide (SO2), ozone (Os), and carbon dioxide (COz) remain
poorly monitored, limiting the capacity for evidence-based
policymaking and citizen awareness [3]. Recent environmental
assessments in Kigali have revealed that PM2.s concentrations
during peak hours often surpass 50 pg/m?, nearly double the
WHO 24-hour guideline, highlighting an urgent need for high-
resolution, real-time monitoring systems [4].

Conventional air-quality monitoring infrastructures, which
depend on fixed high-precision stations, provide accurate but
spatially limited data. Their high installation and maintenance
costs prevent widespread deployment across large or
topographically diverse urban areas. Consequently, most
African citiesrely on sparse or intermittent measurements that
fail to capture micro-scale variations and short-term pollution
spikes. In response, researchers have turned to low-cost Internet
of Things (IoT)-based sensing networks that offer dense,
distributed data acquisition at a fraction of the traditional cost
[4], [S]. Among the most effective configurations are vehicle-
mounted sensor systems, which leverage the mobility of public-
service vehicles, taxis, and buses to achieve city-wide spatial
coverage without constructing new fixed stations [5] [6] [7].

Earlier studies such as [8] on affordable vehicle-mounted
monitoring, [9] on IoT devices for municipal vehicles, and [6]
on bus-based monitoring platforms have demonstrated the
technical feasibility of mobile air-quality mapping and
visualization. These systems collect particulate and gaseous
pollutants while traversing city corridors, producing near-real-
time datasets for spatial pattern analysis. However, most prior
implementations primarily focused on measurement and
visualization, offering limited integration of predictive
analytics, alert systems, and policy-support mechanisms—
features crucial for proactive environmental management,
especially in data-scarce regions.

Building upon these efforts, this study introduces CleanCity
IoT, alow-cost, scalable, and mobile air-quality monitoring and
forecasting platform developed at the University of Rwanda in
collaboration with national and regional partners. Each
CleanCity loT unit integrates low-cost sensors for PMz.s, PMio,
NOz, SOz, Os, and CO-, along with temperature and humidity
modules, controlled by an ESP32 microcontroller equipped with
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GSM connectivity. The devices are mounted on moving
vehicles, enabling spatially continuous air-quality sampling
across Kigali and secondary cities. Data are transmitted via
mobile networks to a cloud server (ThingSpeak), where they are
cleaned, stored, and visualized through a real-time web
dashboard featuring pollution heat maps, alert notifications, and
automated reporting tools. Fig. 1 illustrates the overall
CleanCity IoT ecosystem, including its sensing,
communication, and analytics layers.

A distinctive feature of CleanCity [oT is the inclusionof a
machine-learning forecasting module that predicts pollutant
levelsup to two hours ahead based on multivariate time-series
data. This capability enables early warnings and supports
informed interventions by environmental authorities, health
agencies, and city planners. Furthermore, by making air-quality
information publicly accessible through a user-friendly
dashboard, the system strengthens community engagement and
promotes citizen science, aligning with Rwanda’s Smart-City
and environmental-sustainability initiatives.

The proposed study builds upon the foundational work by
[10], [11], who developed an IoT-edge-based prototype for
detecting transportation-related pollution spikes in Kigali. Their
system demonstrated the feasibility of using low-cost IoT
networks for real-time air-quality monitoring in urban transport
corridors. However, while the earlier prototype focused
primarily on localized pollution detection and data transmission
through edge networks, the present research extends this
framework into a fully integrated CleanCity loT system that
includes mobile GSM-based data collection, cloud dashboard
visualization, and machine-learning-driven forecasting. Thus,
this study represents both continuation and enhancement of the
ACEIoT initiative’s earlier work, translating edge-level
monitoring into a scalable, citizen-centered solution for smart
urban management.

A. Contributions
The key contributions of this work are as follows:

e Design and deployment of a vehicle-mounted IoT device
integrating multi-pollutant gas and particulate sensors
with GSM-based real-time communication.

e Implementation of a cloud-hosted dashboard providing
visualization, alerting, and reporting functionalities for
stakeholders.

e Development of a multivariate machine-learning model
for two-hour-ahead pollutant prediction, supporting
proactive urban-health responses.

e Field validation of the system in Kigali and secondary
cities, demonstrating low-cost scalability, data
reliability, and practical usability.

e Promotion of local innovation and social impact,
reinforcing Rwanda’s vision for smart and sustainable
urban management.

Through these contributions, CleanCity IoT establishes a
practical, home-grown framework for real-time, predictive, and
socially inclusive air-quality intelligence applicable to cities
across Africa.
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B. Paper Organization

The remainder of this paperis structured as follows: Section
II reviews related work on mobile air-quality sensing and
forecasting techniques. Section III describes the system design,
algorithm construction and hardware implementation. Section
IV presents data-processing and machine-learning
methodologies. Section V discusses experimental results and
performance evaluation, and Section VI concludes with key
findings and future research directions.

II. RELATED WORK

A. Conventional and Fixed-Station Monitoring

Traditional air-quality surveillance depends on reference-
grade analyzersthat provide highly accurate but spatially limited
data. These stations, typically operated by environmental
agencies, can cost more than USD 50,000 per unit, with
significant yearly maintenance expenses [8]. Such systems
monitor only a few fixed locations, resulting in low spatial
coverage that fails to capture localized variations in pollutants
caused by traffic density, topography, or industrial activities.
While essential for calibration and regulatory baselines, fixed
networks are financially unsustainable for widespread
deployment in developing countries.

B. Emergence of Low-Cost loT Sensor Networks

Advances in sensor miniaturization, embedded
microcontrollers, and cloud connectivity have led to low-cost
IoT-based monitoring systems [12], [13]. These frameworks
employ microcontrollers such as Arduino or ESP32 and
communication technologies including Wi-Fi, GSM, or LoRa to
transmit environmental data in real time. Gubbi et al. (2013)
outlined a scalable IoT architecture for smart environments that
has since inspired numerous urban-sensing deployments.
Although low-cost sensors are less accurate than reference
analyzers, they enable dense spatial coverage, data fusion, and
temporal tracking when coupled with calibration algorithms or
machine learning [5], [14].

C. Mobile and Vehicle-Mounted Sensing Approaches

To improve spatial resolution, several researchers have
adopted mobile sensing using vehicles as carriers. The paper
[12] designed an affordable vehicle-mounted system for
dynamic air-quality mapping. In the papers [6] implemented a
bus-based monitoring platform integrated with cloud
dashboards for real-time visualization. The paper [9] deployed
IoT modules onmunicipally governed vehicles to track NO: and
particulate matter across city zones. The paper in [7] proposed a
vehicular sensor network architecture for real-time pollution
analysis, while the paper [15] validated low-cost mobile sensors
for hyperlocal monitoring in London.
These projects proved the feasibility of vehicular IoT systems,
but most emphasized data collection and visualization, with
limited inclusion of predictive analytics, alerts, or decision-
support tools.

A recent Rwandan contribution in the paper [10] introduced
an IoT-edge-based system for detecting transportation pollution
spikesusing embedded edge computing. Their implementation
at the Africa Centre of Excellence in Internet of Things
(ACEIoT) validated the use of localized edge devices for
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vehicular pollution tracking. Building on this foundation, the
current CleanCity IoT framework enhances mobility,
scalability, and predictive intelligence through GSM-based data
transmission and cloud-integrated analytics.

D. Cloud-Based Data Aggregation and Visualization

Cloud computing has become central to IoT ecosystems for
environmental data management. Platforms such as
ThingSpeak, AWS IoT Core, and Azure loT Hub support data
ingestion, storage, and visualization in real time [1], [6], [13],
[14],[16],[17]. The papers [2],[18] [6] demonstrated city-wide
dashboardsfor pollutant tracking, and [ 7] discussed open-source
architectures for mobile-data integration with geographic
information systems. Nevertheless, most cloud-based
implementations stop at visualization, lacking automated
alerting, policy analytics, and citizen-accessible interfaces key
enablers for social impact.

E. Machine-Learning Forecasting for Air Quality

Accurate short-term forecasting of air pollutants enables
preventive interventions. Statistical models such as ARIMA and
VAR have been widely used for one-step-ahead predictions, but
deep-leaming approaches now dominate multivariate time-
series forecasting [ 19]. LSTM and GRU networks, as explored
in paper [20] outperform linear models in capturing nonlinear
temporal dependencies of PM..s and NO: concentrations.
Despite these advances, few studies integrate such predictive
analytics directly into mobile, low-cost IoT frameworks,
particularly within African contexts where both connectivity and
calibration data are limited.

Quantitatively, low-cost sensor units in these studies ranged
from USD 150-300 pernode, achieved spatial resolutions up to

TABLEI.
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100m, and showed meandeviations of=10-20% compared with
reference instruments [6], [7], [12]. Such performance is
adequate for mapping and trend detection but insufficient for
health-critical forecasting without data calibration and model
correction.

F. Research Gap and Motivation

Despite the progress summarized above, major limitations
persist:

e Lack of integrated forecasting and alerting modules
within mobile IoT systems.

e Absence of region-specific deployments in sub-Saharan
Africa using GSM infrastructure for scalable
connectivity.

e Minimal incorporation of citizen-accessible dashboards
and community engagement mechanisms.

The CleanCity IoT platform directly addresses these
challenges by combining multi-pollutant Io T sensing, GSM data
transmission, cloud-based visualization, and machine-learning-
driven forecasting. The project exemplifies a locally developed,
cost-effective  solution advancing both environmental
intelligence and social awareness.

The reviewed literature highlights a steady evolution from
fixed-station monitoring toward loT-enabled, mobile, and data-
driven frameworks as shown in Table I. However, none fully
integrate predictive analytics, social accessibility, and regional
scalability within a single platform. Section III therefore
presents the system design and implementation of the proposed
CleanCity IoT solution, detailing its hardware architecture,
communication model, and cloud-analytics workflow.

COMPARATIVE SUMMARY OF RELATED IOT AND MOBILE AIR-QUALITY MONITORING SYSTEMS

Author & Year

Platform System

Methodology Features

Key Contribution

Identified Limitation

Santana et al. (2021)

Vehicle-mounted AQ
mapping

ESP32 + GSM; PMas / NO:
sensing

Affordable mobile monitoring

No predictive analytics

Ivanova et al. (2020)

ToT on municipal vehicles

Wi-Fi IoT nodes; CO PM sensors

Dynamic city-wide mapping

Limited citizen interface

Correia et al. (2023)

Bus-based AQ system

Cloud dashboard visualization

Real-time city dashboards

No forecasting capability

Zherka & Tafa (2023)

Vehicular sensor network

On-board sensors + data fusion

Real-time analysis

Lacks scalability

Zboralski & Kunz (2024)

Mobile GIS framework

Cloud integration

Open-source architecture

No alert or policy module

CleanCity IoT (this

Vehicle IoT +GSM + ML
work)

LSTM

ESP32 + GSM + ThingSpeak +

Real-time forecasting +
dashboard + alerts

III. METHODOLOGY

A. Overview of the Proposed Framework

The CleanCity loT framework is designed as an end-to-end
intelligent air-quality monitoring and forecasting system that
leverages Internet of Things (IoT), cloud computing, and
machine learning (ML) technologies to provide real-time
insights into urban pollution dynamics. The framework aims to
transform conventional monitoring often limited to fixed
stations into a mobile, scalable, and predictive sensing
ecosystem suited for low-resource contexts such as Rwandan
cities.

In Fig. 1, the system operates through four tightly integrated
layers: 1) sensing and acquisition, 2) communication and

transmission, 3) cloudstorage and analytics,and 4) visualization
and forecasting. Each layer contributes specific functionalities,
forming a pipeline that converts raw sensor readings into
actionable intelligence for environmental management and
policy decision-making.

In the sensing and acquisition layer, a suite of low-cost
environmental sensors continuously measures air pollutants
including particulate matter (PM..s, PMio), nitrogen dioxide
(NO»), sulfur dioxide (SO2), ozone (Os), and carbon dioxide
(CO»), alongside ambient parameters such as temperature and
humidity. These sensors are interfaced with an ESP32
microcontroller integrated with a SIM80OL GSM module,
enabling both data collection and mobile transmission from
vehicle-mounted units.
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The communication and transmission layer employs
GSM/GPRS connectivity for real-time data delivery to cloud
infrastructure. This design choice compared to Wi-Fi or LoRa is
motivated by the wide availability of mobile networks across
Rwandan cities and highways, ensuring scalability and mobility
without dependency on fixed infrastructure.

The cloud layer utilizes the ThingSpeakIoT platform, which
serves as both a data repository and preliminary analytics
engine. Each sensing node transmits periodic measurements
(every 30 seconds to 1 minute) to predefined ThingSpeak
channels through HTTP POST requests. The platform
aggregates, timestamps, and visualizes incoming data streams,
while also allowing external APIs for integration with advanced
analytical tools such as MATLAB, Python, or Node-RED for
extended processing and forecasting.

The visualization and forecasting layer bridge the system’s
technical outputs with end-user interaction. A custom Air
Quality Dashboard accessible via web or mobile interface—
displays real-time pollutant levels, temporal trends, and
geospatial mapping of emission zones. Historical datasets
retrieved from ThingSpeak are used to train a Long Short-Term
Memory (LSTM)-based predictive model, which forecasts
pollutant concentrations two hours ahead. This predictive
feature enhances early-warning capabilities and supports data-
driven policy interventions by environmental authorities.
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Fig. 1. Proposed framework.

B. Hardware Design and Components

The CleanCity IoT hardware architecture was designed to
achieve low-cost, high-mobility, and energy-efficient air-quality
monitoring while maintaining compatibility with existing
mobile communication networks. The system integrates
multiple sensors, a microcontroller unit, and a GSM
communication interface, all mounted within a compact
enclosure suitable for vehicular deployment.

Vol. 16, No. 12, 2025

1) Main controller: ESP32 (LilyGO T-Call SIM800L): At
the core of the system lies the LilyGO T-Call ESP32 board on
Fig. 2, which combines a dual-core 32-bit Xtensa processor
with an embedded SIMS8OOL GSM/GPRS module. The ESP32
manages sensor data acquisition, preprocessing, and
transmission, while the GSM modem handles real-time
communication with the cloud platform. The built-in UART,
ADC, and GPIO interfaces facilitate multi-sensor connectivity,
and the board supports 3.3 V logic with a stable 5 V input via
USB or Li-ion battery.

T
[}
&
@
%)

Fig.2. LilyGO T-Call SIM8OOL.

The SIM800L module provides reliable 2G cellular
connectivity, using HTTP POST requests to upload sensor
readings to ThingSpeak channels. The use of GSM ensures that
each node remains fully mobile and independent of Wi-Fi
coverage, a critical feature for vehicle-mounted monitoring units
in Rwandan cities and peri-urban areas.

2) Sensor suite: The CleanCity IoT system employs a
diverse set of environmental sensors to capture the most
relevant atmospheric parameters affecting air quality. Each
sensor was selected for its low cost, stability, and proven
performance in mobile IoT applications.

3) PMS5003 — particulate matter (PM:.s and PM1o): The
Plantower PMS5003 in Fig. 3 is a laser-scattering particulate
matter sensor capable of measuring fine and coarse particles
(PM:.s and PMo) inreal time. It uses a light-scattering principle
combined with a digital signal processor to calculate mass
concentration in micrograms per cubic meter (ng/m?®). The
sensor communicates via UART and offers high sensitivity and
accuracy suitable for vehicular environments, making it ideal
for continuous mobile air-quality monitoring.

4) MQ-131 — Ozone (Os) sensor: The MQ-131 sensor in
Fig. 4 detects ozone concentrations using a tin dioxide (SnOy)-
based semiconductor layer. When Os gas contacts the sensitive
surface, it alters the material’s conductivity proportionally to
the gas concentration. The analog output from the sensor is fed
tothe ESP32’s ADC pin, which converts itintoa corresponding
Os level in parts per million (ppm). This sensor was chosen for
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its low cost and reasonable response time, essential for
detecting short-term pollution spikes.

Fig. 3. Plantower PMS5003.

o
I~
Fig.4. MQ-131 sensor.

5) MICS-6814 — Nitrogen Dioxide (NO:) Sensor: The
MICS-6814 inFig. 5 is a compact three-channel semiconductor
gas sensor that simultaneously measures NO2z, CO, and NHs
gases. It is particularly suitable for mobile IoT applications due
to its low power consumption and small form factor. For this
project, the NO: channel was primarily used, with calibration
coefficients adjusted based on the manufacturer’s
characterization curve. Its analog signal provides ppm-level
readings processed by the ESP32’s 12-bit ADC.

Fig. 5. Nitrogen Dioxide (NO2) sensor.

6) AGSM-SO:-5 Sulfur Dioxide (SO:) sensor: The AGSM-
SO:-5 in Fig. 6 is an electrochemical-type sensorused to detect
sulfur dioxide concentrations in ambient air. The sensor
produces a small current proportional to the SO. gas
concentration, which is converted to voltage using an external
resistor circuitand read through an ADCinput. This sensortype
offers high selectivity and low detection limits, enabling
reliable SO measurement even in mixed-gas environments. Its
readings are periodically calibrated against baseline voltages
under clean-air conditions.

Vol. 16, No. 12, 2025

Fig. 6. Sulfur Dioxide (SO2) sensor.

7) MG-811 Carbon Dioxide (COz) sensor: The MG-811
sensor in Fig. 7 measures carbon dioxide (CO2) concentration
using a solid electrolyte cell. The sensor outputs an analog
voltage that decreases as CO: concentration increases. It
operates between 0-10,000 ppm and provides stable
performance for mobile applications when coupled with proper
temperature compensation. The MG-811 data complements the
other gas readings by offering insights into combustion-related
emissions.

Fig. 7. Carbon Dioxide (CO:) sensor.

8) DHTI 1 temperature and humidity sensor: The DHT11
digital sensor in Fig. 8 monitors ambient temperature and
relative humidity, parameters that directly influence gas sensor
accuracy and pollutant dispersion. Its single-wire digital output
simplifies integration with the ESP32 microcontroller. The
temperature and humidity data collected are used to normalize
and interpret gas readings, reducing variability due to
environmental factors.

Fig.8. DHTI11 temperature and humidity sensor.

C. Custom PCB Design and Circuit Integration

To ensure a compact, reliable, and vibration-resistant mobile
sensing unit, the system incorporates a custom-designed PCB,
created using EasyEDA and manufactured as a single-layer
board. The PCB consolidates all key components including the
LilyGO T-Call ESP32, PMS5003 particulate matter sensor,
MQI131 ozone module, CIMCU-6814 multi-gas sensor (NO: +
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SO2), and analog SO: sensor interface into a unified hardware
platform optimized for vehicular deployment.

IIIIJ..HI:.HH.;I 1

Sheet_1 + }

Fig. 9. Schematic diagram of clean city IoT system.

The PCB layoutin Fig. 9 follows a structured placement
strategy, with the PMS5003 connector positioned on the upper-
left side to minimize trace length for the UART interface, while
the MQ131 and CIMCU-6814 modules are placed on the right
to avoid electromagnetic interference from the GSM modem.
Dedicated headers provide labeled terminals for VCC, GND,
RX, and TX, ensuring clear wiring during assembly and
simplifying sensor maintenance or replacement. The bottom
section houses the footprint for the LilyGO T-Call board,
providing directaccessto GSM, UART, and ADC lines without
intermediate wiring.

Fig. 10. 3D view of the custom PCB design for the CleanCity IoT device.

The corresponding circuit schematic (Fig. 10) illustrates the
electrical interconnections between all sensing modules and the
ESP32 controller. UART pins are assigned to the PMS5003
(U3) and SO: sensor interface, while the MQ131 analog output
is routed to an ADC input. The CJMCU-6814 module is
powered by a stable 5V rail, and its NO2/SO: analog channels
are fed into separate ADC lines for accurate digital conversion.
Ground planes and decoupling capacitors are incorporated to
enhance signal stability and reduce noise, which is critical for
gas sensor accuracy. The PCB also accommodates optional
onboard filtering capacitors for the analog channels, further
increasing measurement reliability.

Vol. 16, No. 12, 2025

This custom PCB significantly enhances the robustness of
the CleanCity IoT device compared to breadboard-based
prototypes. By minimizing loose wiring, standardizing sensor
interfaces, and optimizing component placement, the board
improves electrical reliability, reduces interference from the
GSM module, and ensures consistent sensor readings during
mobile operation. It also enables rapid replication of the device
for larger-scale deployments in Kigali or other Rwandan cities.

D. Data Acquisition and Transmission

The CleanCity loT system collects, processes, and transmits
multi-sensor environmental data in real time through a unified
acquisition pipeline. The design ensures synchronized sampling
across all sensing modules, reliable communication via GSM,
and consistent data formatting for cloud integration.

E. Sensor Data Acquisition Cycle

Each monitoring node performs periodic measurements of
particulate matter, gaseous pollutants, and ambient conditions.

e Particulate Matter (PM2.s and PMio): The PMS5003
sensor provides continuous data through a UART
interface, reporting particle concentrations in pg/m?.

e Gaseous Pollutants: Os, NO2, SOz, and CO: levels are
sensed using analog sensors (MQ-131, MICS-6814,
AGSM-S0:-5,and MG-811). Their analog voltages are
sampled by the ESP32’s 12-bit ADC and converted to
concentration values (ppm) using calibration curves
derived from reference data.

e Ambient Conditions: The DHTI11 sensor provides
temperature and relative-humidity readings, which are
used for contextual adjustment of gas-sensor responses.

To reduce random noise and ensure stability, multiple
readings are averaged within each cycle before transmission.
The resulting dataset per interval includes parameters as shown
in Table IL

TABLE II. PARAMETERS ACQUIRED DURING EACH SAMPLING CYCLE
Parameter Symbol Unit

PM..s concentration PM2.5 pg/m?

PMio concentration PM10 png/m?

Ozone Os ppm

Nitrogen Dioxide NO: ppm

Sulfur Dioxide SO ppm

Carbon Dioxide CO: ppm

Temperature T °C

Humidity H %

F. Data Pre-Processing and Packet Formation

Before transmission, each sensor reading undergoes a
lightweight pre-processing pipeline to improve data reliability
and ensure consistency across the full dataset. First, a noise-
filtering procedure is applied to remove spurious or invalid
sensor values. Given a raw reading x; for pollutant j, the system
checks whether it falls within the predefined operational range
[L;,U;] This filtering step is mathematically expressed as:
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Ensuring that negative values, extreme spikes, and sensor
glitches do not propagate into the cloud dataset.

Following outlier removal, each pollutant value is
normalized into standard physical units (Lg/m? or ppm) using a
linear scaling transformation. This normalization converts raw
sensor outputs into a consistent range defined by calibration
limits, allowing accurate comparison across sensors. The
conversion is achieved using Eq. (2).

Xnorm = S Emin_ X (Smax - Smin) + Smin (2)

Xmax~Xmin
where x,,,,, and x,,;,, are the sensor’s calibrated electrical
bounds and S,,,, , Spn  correspond to the standardized
environmental scale. This operation ensures homogeneous units
throughout the dataset, which is essential for downstream
analytics.

Each sanitized and normalized reading is then assigned a
timestamp to preserve temporal integrity. The timestamp ¢,
originates either from the GSM network clock or the ESP32’s
internal real-time counter. The final structured data packet
transmitted at time k is represented as,

Dk =
{DevicelD,PM,¢,PM,,,05,NO,,50,,C0,,T,H,t; }(3)

capturing all pollutants, environmental conditions, and
metadata in a single, machine-readable structure compatible
with ThingSpeak’s REST API.

G. GSM-Based Data Transmission

The LilyGO T-Call ESP32 integrates a SIM800OL
GSM/GPRS modem, allowing each mobile sensing unit to
transmit air-quality data directly to the cloud without requiring
Wi-Fi or external gateways. Once a complete measurement
vector

z, = [PM,,PM,,,05,NO,,S0,,C0,,T, H] 4

is pre-processed, the system encapsulates the data into a
structured transmission packet. The full packetsent at time t is
expressed as:

P, = {DevicelD, z;, t} ®))

Every transmission cycle follows a periodic schedule, where
the upload interval is defined as

At =ty —ty4 (6)

and during the experimental deployment, At =~ 30 s,
providing a balance between data granularity and power
efficiency for vehicular operation. The SIM80OL modem
performs an HTTP POST request over GPRS, where the payload
corresponds to the encoded packet Pt. The uplink transmission
can be represented as

T (P.) - ThingSpeak Channel (7)

where T (P:) denotes the GSM-based upload operation.
Once the server acknowledges receipt, ThingSpeak updates the
real-time charts for all monitored pollutants. To ensure time-

Vol. 16, No. 12, 2025

series completeness, the system incorporates a local
retransmission buffer. If a temporary network outage occurs,
packets are stored in a local queue

Q={Pt1,Pt2,...,Ptm} (®)

and are automatically resent once connectivity is restored.
Successful transmission empties the queue according to

Q< 0\P, ©)

This queue-based recovery mechanism guarantees
robustness in urban mobility conditions, where cellular coverage
may momentarily fluctuate. As a result, the system achieves
reliable, timestamped uploads essential for downstream
analytics, ML model training, and spatiotemporal pollution

mapping.
H. Cloud Integration and Dashboard Development

The CleanCity IoT system relies on ThingSpeak Cloud as
the centralplatform for ingesting, storing, and visualizing sensor
data in real time. Each monitoring node continuously uploads
the structured packet Pt to a dedicated ThingSpeak channel,
where the information is automatically timestamped and
organized across eight data fields. The cloud interface provides
dashboards, charts, and API endpoints that support both manual
inspection and automated analytical tasks such as forecasting
and multi-pollutant correlation studies.

To quantify the data-handling performance of the cloud
layer, the expected number of uploaded records over an
observation period T is expressed as,

T
Np=+ (10)
where, At represents the transmission interval
(approximately 30 seconds in this deployment). This relation
determines the temporal granularity and the total volume of data
streamed into the cloud. The corresponding data throughput,
crucial for evaluating network and storage efficiency, is
computed using

w = _NT:”'« (11)

where, P, denotes the average packet size in bytes. These
metrics confirm that the system maintains consistent upload
behavior, even under mobile conditions. In ThingSpeak,
pollutant concentrationsare further processed to computean Air
Quality Index (AQI). For each pollutant iii, the platform
evaluates a sub-index using

R

Ii_w(ci_clow)+llow (12)

- Chigh—Clow
where the constants correspond to standard AQI breakpoints.
The overall AQI at time ¢ is determined by,
AQI = max(l;) (13)

allowing the system to categorize air quality levels and
support early-warning notifications when thresholds are
exceeded.

The cloud platform also enables multi-variable diagnostic
analysis, particularly through pollutant correlation. The linear
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relationship between any two-pollutant series x; and x; is
computed using the Pearson coefficient,

2= (i —%0) (3= %5) (14)

T
Jzﬁq(xi.k—’?)z NINCITE N

ij —

This allows identification of pollutant sources with similar
temporal behaviors, such as PMz.s and NO: often linked to
traffic emissions. To ensure reliability, ThingSpeak computes a
data completeness index over any period T as,

cT=’1Vv—St><100% (15)

where Ns and Nt are the numbers of successfully uploaded
and total expected packets, respectively. This metric is essential
for confirming the robustness of GSM-based data acquisition,
especially in mobile environments where connectivity might
fluctuate. Through this cloud architecture, CleanCity loT
achieves real-time visualization, long-term storage, and
automated analytic capability, making it suitable for continuous
urban air-quality monitoring and predictive modeling.

I. Machine Learning Model Development

The dataset collected from the ThingSpeak cloud was used
totraina Long Short-Term Memory (LSTM) neural network for
short-term air-quality forecasting. The choice of LSTM was
motivated by its ability to capture nonlinear temporal
dependencies in multivariate time-series data, making it suitable
for predicting pollutant levels under changing meteorological
and traffic conditions. To prepare the data, each environmental
variable was standardized to ensure consistent scaling across all
pollutants. This normalization follows the transformation.
290

20 =1 (16)

o
where, it(l) denotes the original reading of feature i at time
t, and p;and o; represent the corresponding mean and standard
deviation. A sliding window of length L was then used to
construct input sequences for themodel. Each multivariate input
window is defined as,

X = [Zt—L+1' Zt_py2r v 7t] € RV® 17)

while the prediction target for horizon H is given by,

Yt = Zeyn (18)
The LSTM learns a nonlinear mapping
Ve = fo(X,) (18)

where, f, denotes the trained neural-network function
parameterized by 6. The training objective is to minimize the
Mean Squared Error (MSE):

1 ~
LMSE(8) = -3, 1y — 72113 (19)

Model performance was evaluated using Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and the coefficient of determination
R?, expressed respectively as
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MAE; = % to1 |J’t(j) _y,t(\])| (20)
RMSE; = \/% X y@)2 1)
MAPE; = -23, | f(zg@ (22)
P Z’tv=1(y§j)-;@)z (23)

! Z’&(ﬁ”—ﬁ)z

These performance indicators assess the reliability of the
LSTM model in forecasting pollutant levels such as PMas,
PMio, NOz, SOz, Os, CO2, temperature, and humidity. By using
standardized inputs and multivariate temporal windows, the
model is able to produce stable forecasts up to two hours ahead,
enabling early-warning capabilities and supporting real-time
decision-making for environmental monitoring.

IV. RESULTS AND DISCUSSION

A. Dataset Characteristics

The CleanCity IoT mobile sensing unit collected a total of
6,484 multivariate records during vehicular movement across
urban road segments in Kigali. Each record contains
synchronized measurements of particulate pollution (PM:.s,
PMio), gaseous pollutants (NO2, SO, O, CO:), and
meteorological variables (temperature and relative humidity).
Data were transmitted at an average 30-second sampling
interval, resulting in a dense and continuous time-series suitable
for both statistical analysis and machine learning-based
forecasting.

The temporal behavior of the dataset is illustrated in Fig, 11,
which shows the evolution of PMas, PMi, NO:, and
temperature over several days. The plots reveal clear short-term
fluctuations drivenby traffic movement, road dust resuspension,
and localized emission hotspots commonly encountered during
mobile sensing. The temperature curve exhibits a pronounced
diurnal cycle, confirming environmental consistency and stable
sensor response.

MMWM R T P | P
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8
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Fig. 11. Time-series variation of key air-quality parameters (PMz.s, PMio,
NO:) and meteorological variables collected from the CleanCity IoT mobile
sensing system.
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To further assess data richness and distributional
characteristics, histogram plots for all pollutants and
environmental variables are shown in Fig. 12. These
distributions demonstrate substantial variability across
measured concentrations, with PMio and PM..s showing
multimodal behavior associated with alternating high -trafficand
low-traffic conditions. Gaseous pollutants (NO2, SOz, Os)
present narrower distributions, typical of background urban air
composition, while CO: ranges reflect both ambient outdoor
levels and intermittent vehicle exhaust influence.

The completeness of the dataset was evaluated using the
metric.
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Fig. 12. Distribution of pollutant and environmental variables, illustrating
concentration variability and underlying statistical patterns within the dataset.

where, N is the number of successfully uploaded samples
and N, is the expected number of samples based on the
configured transmission interval. The system maintained high
dataavailability acrossthe monitoring period, confirmingrobust
GSM connectivity and effective packet buffering in the LilyGO
T-Call ESP32 board. Collectively, the time-series behavior,
variable distributions, and high completeness rate validate the
dataset as a reliable basis for subsequent LSTM-based
forecasting and statistical analysis of urban air-quality
dynamics.

B. System Performance Evaluation

The CleanCity IoT mobile sensing platform was deployed
ona vehicle and evaluatedunder real urban operating conditions
to assess communication stability, data reliability,
environmental robustness, and cloud-integration performance.
The LilyGO T-Call ESP32 board, equipped with the SIM800L
GSM/GPRS module, demonstrated stable mobile connectivity
throughout the monitoring period. The system achieved a high
uploadsuccess rate, with most packets reachingthe cloud on the
first transmission attempt. Occasional GSM signal drops were
mitigated by the built-in buffering mechanism, allowing queued
packets to be retransmitted automatically once connectivity
resumed.

The sensor suite also exhibited consistent and predictable
behavior, as demonstrated by the correlation structureamong the
measured variables in Fig. 13. Strong positive correlations
between PMz2.s and PMio confirm expected particulate co-
variability in traffic-related environments, while moderate

Vol. 16, No. 12, 2025

relationships between gaseous pollutants reflect common
emission sources along the vehicle routes. The negative
correlation between temperature and humidity follows typical
micro-meteorological conditions in Kigali’s urban climate,
further validating sensor stability.

Correlation matrix of input variables
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Fig. 13. Correlation matrix illustrating interdependencies between pollutant
concentrations and meteorological variables

The data transmission latency averaged 2-4 seconds per
packet during motion, consistent with typical GSM-based loT
deployments. The cloud dashboard updated in near real time,
enabling effective monitoring of pollutant trends and
environmental changes as the vehicle traversed different
locations. Additionally, the hardware system demonstrated
resilience to vibration, temperature changes, and power
fluctuations during mobile operation. Overall, the system
performance confirmsthatthe CleanCity loT platformis reliable
for continuous mobile sensing in urban environments,
maintaining stable communication, accurate sensing behavior,
and real-time cloud integration suitable for further analytics and
forecasting applications.

C. Machine Learning Model Performance

The cleaned and preprocessed multivariate dataset was used
to train an LSTM-based forecasting model designed to predict
short-term pollutant concentrations in real time. Input sequences
were constructed using sliding windows of length L, where each
window (Eq 16 ) represents the normalized and filtered sensor
readings across all eight variables. The model produces a
prediction (Eq 18) where fg denotes the LSTM, network
parameterized by 6.

Model training converged smoothly, with the mean squared
error (MSE) for both training and validation sets decreasing
consistently, as shown in Fig. 14. The validation curve remained
stable without divergence, indicating good generalization and
absence of overfitting.

1) Prediction accuracy on key pollutants: The prediction
performance for PMz.s and PMio is shown in Fig. 15, where the
predicted values closely follow the temporal structure of the
true sensor measurements. The model successfully captures
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peaks, transitions, and low-concentration periods,
demonstrating strong short-term forecasting capability.
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0.42 Val MSE

0.34 4

0.32 4

0.30 4

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Fig. 14. Training and validation loss curves of the LSTM model,
demonstrating convergence behavior and generalization performance.
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Fig. 15. Comparison between ground-truth and LSTM-predicted
concentrations for PM2.s and PMio over selected test windows.

2) Modelfit across all variables: Scatter plots comparing
predicted versus true values for all pollutants and
environmental variables are shown in Fig. 16. The clustering of
points around the 1:1 line demonstrates strong model
agreement, especially for CO., temperature, Os, and NO..
Variability in PMz.s and SO: predictions reflects the intrinsic
noisiness of mobile-sensing particulate measurements.
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Fig. 16. Scatter plots comparing true and predicted values for all variables,
with the 1:1 reference line indicating model accuracy.

3) Error distribution: To further examine predictive
behavior, Fig. 17 presents the error distribution for PMz.s. The
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histogram shows a narrow, approximately Gaussian
distribution centered close to zero, indicating low systematic
bias and moderate variance in short-term particulate
predictions.

1750 4

1500 +

1250 4

1000 +

Count

750 A

500 4

250

0- T

T T T T
20 40 60 80 100 120
PM2.5 error {True — Pred) [pg/m?]

Fig. 17. Error distribution of PM..s predictions, highlighting bias and variance
characteristics of the LSTM model.

4) Quantitative metrics: Summarizes the evaluation
metrics for each variable, including MAE, RMSE, and MAPE.
The LSTM model achieved strong predictive performance for
temperature, CO2,0s, and NOz, while PM2.s and PMioexhibited
higher relative errors due to their higher temporal variability
and sensitivity to rapid environmental changes (Table III)
during vehicle motion.

TABLEIIl.  PERFORMANCE METRICS (MAE, RMSE, MAPE) OF THE
LSTM MODEL ACROSS ALL POLLUTANTS AND ENVIRONMENTAL VARIABLES
Variable MAE RMSE MAPE_percent

PM2_5_ugm3 6.83 10.45 6141
PM10_ugm3 9.26 13.72 56.24
NO2_ppm 0.005 0.007 12.993
SO2_ppm 0.006 0.007 68.230
O3_ppm 0.005 0.006 14.537
CO2_ppm 10.64 14.39 242
Temperature_C 1.19 1.49 5.40
Humidity pct 325 4.06 4.40

Overall, the LSTM model demonstrates strong capability in
short-term pollutant forecasting across multiple variables.
Stability in the loss curve, tight clustering in scatter plots,
realistic error distributions, and favorable MAE/RMSE/MAPE
scores confirm that the forecasting framework is effective for
real-time deployment in mobile urban air-quality monitoring
systems.

D. Assembled Edge Device with Deployed Model

The complete air-quality monitoringunit was integrated into
a compact, weather-resistant enclosure and mounted on the front
of a motorcycle to enable continuous mobile sensing across
urban routes. As shown in Fig. 18, the device securely attaches
to the motorcycle’s suspension frame, ensuring minimal
vibration interference while maintainingunobstructed airflow to
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the sensing chamber. The embedded ESP32-SIMSOOL
controller executes the trained machine-learning model directly
on the edge, enabling on-device preprocessing, anomaly
filtering, and real-time prediction without reliance on cloud-
based computation.

i )

|
|

i
1.4

“

Fig. 18. Clean city IoT device mounted on motorcycle.

The internalhardware layout, presented in Fig. 19, illustrates
the modular arrangement of components including the PM and
gas sensors, power system, GSM communication module, and
microcontroller. The wiring architecture was optimized to
reduce electromagnetic interference and to maintain sensor
accuracy duringmobile operation. This assembly design ensures
robustness under typical road conditions while maintaining low
power consumption, making it suitable for long-term vehicular
deployments.

Fig. 19. Internal hardware layout of clean city IoT device.

E. Dashboard for Remote Monitoring

A web-based dashboard was developed to provide real-time
visualization and remote access to sensor measurements, model
inferences, and device status. The interface, shown in Fig. 20,
displays pollutant concentrations (PM2.5, PM10, SOz, NO2, Os,
CO3) alongside temperature and humidity, each represented with
intuitive color codes and threshold indicators. This enables rapid

Vol. 16, No. 12, 2025
interpretation of air-quality conditions by operators and supports
downstream analytics such as hotspot identification and route-
based pollution profiling.
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AirQuality

Dashboard Sensor Overview

502 ] PM25 ° PMI0 coz °
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Fig. 20. Web-based remote monitoring dashboard of clean city IoT device.

The dashboard integrates seamlessly with the GSM-enabled
edge devices via the cloud backend, allowing continuous
updates at fixed intervals. Users may access detailed historical
charts, inspect sensor-level readings, or monitor multiple
devices simultaneously. This platform improves situational
awareness and supports data-driven decision-making for urban
air-quality management.

V. DIscuUsSsION

The results obtained from the mobile air-quality monitoring
platform highlight the strong potential of integrating low-cost
sensing, edge intelligence, and mobile data acquisition to
provide high-resolution pollution insights in dynamic urban
environments. The temporal plots and distribution analyses
demonstrate that the system successfully captured realistic
pollutant patterns, including recurring diurnal behaviors, peak
concentrations along traffic corridors, and rapid fluctuations
associated with vehicle-dense areas. These trends align with
previously reported characteristics of mobile sensing platforms,
reinforcing the reliability of the collected dataset.

The performance of the LSTM model reflects both the
strengths and inherent challenges of forecasting air-quality
parameters in mobile conditions. Temperature, humidity, CO.,
and O; predictions achieved low MAE and RMSE values,
indicating that their temporal structures exhibit smoother and
more predictable patterns that are well-suited to sequence-
learning models. Conversely, higher error values observed for
PM2.5 and PM10 are consistent with the behavior of particulate
pollutants, which often vary sharply due to localized dust
sources, abrupt vehicle acceleration, wind disturbances, or
sudden micro-spikes near emission points. These high-
frequency fluctuations pose a challenge for recurrent models,
which assume gradual temporal transitions. Despite this, the
predicted sequences still closely follow the underlying pollutant
trends, suggesting that the LSTM architecture provides valuable
short-term predictive capability.

The correlation matrix further reinforces the internal
consistency of the dataset by revealing strong associations
between combustion-related pollutants (PM2.5, PM10, NO-,
SO:). These relationships are well documented in air-quality
literature and confirm that the system effectively captured
realistic vehicular emission profiles. The inclusion of
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meteorological parameters in the model input contributed to
performance stability by providing contextual information on
atmospheric  dispersion, temperature-dependent sensor
responses, and humidity-driven particle behavior.

Operationally, the motorcycle-mounted sensing device (Fig.
18, Fig 20) validated the practicality of a low-power, mobile,
GSM-enabled platform forreal-timeair-quality assessment. The
device maintained stable measurements during movement and
reliably transmitted data to the cloud dashboard. The remote
monitoring interface (Fig. 20) enabled seamless visualization of
pollutant levels, supporting quick interpretation and forming a
foundation for futurelarge-scale deployments. This capability is
particularly valuable in resource-constrained environments
where installing dense networks of fixed monitoring stations is
not feasible.

Nonetheless, several limitations were observed. The
elevated prediction errors for particulate matter indicate the need
for more advanced filtering or hybrid modeling techniques such
as Kalman filters, temporal attention mechanisms, or
transformer-based architectures better suited for abrupt pollutant
variability. Occasional GSM transmission delays highlight a
trade-off between mobile connectivity and data continuity,
suggesting that buffering strategies or 4G/LTE-based modules
may be advantageous in future iterations. Sensor drift and long-
term degradation pose additional challenges, underscoring the
importance of periodic recalibration, redundancy, or sensor
fusion approaches to maintain long-term reliability.

The findings demonstrate that mobile IoT sensing combined
with edge-deployed machine-leaming models provide a
powerful andscalable approach to capturing granular air-quality
information. It offers a practical pathway toward city-wide
mobile pollution mapping, intelligent fleet monitoring, and data-
driven environmental planning, especially in developing urban
regions where cost-effective solutions are essential.

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE
WORK

This study presented a mobile air-quality monitoring
platform that integrates low-cost sensors, an ESP32—SIM800L
edge device, GSM-based communication, and an LSTM
prediction model to enable high-resolution pollution monitoring
in dynamic urban environments. The mobile system
successfully captured realistic temporal patterns of key
pollutants including PM2.5, PM10, SO, NO-, and Os while
simultaneously collecting meteorological variables relevant to
dispersion and atmospheric behavior. The experimental results
demonstrated that the model accurately predicted smoother
variables such as temperature, humidity, CO, and Os, while
exhibiting higher, yet consistent, errors for particulate matter
due to its inherently abrupt and highly localized fluctuations.
Overall, the system validated the feasibility ofusing a low-cost,
edge-intelligent, mobile sensing approach to complement
existing fixed monitoring infrastructures particularly in regions
where traditional stations are sparse or economically
prohibitive. The combination of real-time edge inference and
cloud-based visualization provides a scalable foundation for
city-wide monitoring, rapid hotspot identification, and informed
environmental planning.
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Model prediction errors for PM2.5 and PM10 highlight the
need for more advanced temporal modeling techniques capable
of handling sudden spikes and high-frequency variability.
Network latency introduced by GSM connectivity suggests
exploring more robust communication protocols and buffering
strategies for uninterrupted data flow. Additionally, long-term
reliability will require periodic sensor calibration, redundancy
mechanisms, and drift-compensation strategies to maintain
accuracy during extended deployments.

Based on these findings, the following recommendations are
proposed:

e Adopt advanced hybrid modeling techniques: such as
temporal attention mechanisms, transformer-based
architectures, or Kalman-filter-enhanced LSTM to
improve particulate matter forecasting.

e Upgrade communication infrastructure to LTE/4G or
MQTT-based lightweight protocols to minimize
transmission delays and enhance scalability.

e Implement periodic calibration schedules and sensor
redundancy to mitigate drift, aging, and environmental
contamination.

e Integrate geospatial and meteorological data sources
(GIS layers, wind maps, road classifications) for more
context-aware predictions and hotspot analysis.

Future work will focus on addressing these challenges by
extending the system to support multi-node collaborative
sensing, employing federated learning for distributed model
updates,and exploringadaptive edge inference that dynamically
adjusts sampling rates depending on environmental conditions.
Additional work will investigate long-term deployment
performance, data fusion with satellite products, and integration
with policy tools for real-time air-quality alerts.

In conclusion, this research provides a practical, scalable,
and cost-effective framework for mobile air-quality monitoring
in rapidly urbanizing regions. By combining IoT sensing, edge
computing, and machine learning, the system offers a promising
direction for enhancing environmental intelligence and
supporting evidence-based public health interventions.
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