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Abstract—Urban air pollution is a growing public-health 

challenge in African cities, yet traditional monitoring stations are 

sparse and expensive. The paper presents CleanCity IoT, a 

deployed, low-cost, vehicle-mounted air-quality platform that 

combines IoT sensors, GSM connectivity, cloud aggregation, and 

machine learning to produce near-real-time exposure maps and 2-

hour forecasts for multiple pollutants. Each device integrates low-

cost sensors for PM2.5, PM10, NO₂, O₃, SO₂, and CO₂, alongside 

temperature and humidity. Measurements are geotagged and 

transmitted over mobile networks form vehicles to a cloud 

backend, where data are validated, stored, and visualized through 

a user-friendly dashboard that also issues automated alerts and 

periodic reports. Using a dataset collected in Kigali and secondary 

cities via routine vehicular routes, the paper introduces the 

training of a multivariate time-series model to forecast short-

horizon pollutant levels, supporting proactive health guidance and 

regulatory action. The system reports a performance in terms of 

latency, uptime, coverage, and data quality, and evaluate forecast 

accuracy using MAE/RMSE/MAPE and event-oriented metrics 

for spike prediction. Results indicate that CleanCity IoT provides 

reliable, scalable, and cost-effective urban air-quality intelligence, 

closing key gaps in spatiotemporal coverage while enabling citizen 

access, policy support, and social impact. The platform 

demonstrates a practical blueprint for African cities to 

operationalize air-quality intelligence using existing mobile 

infrastructure and locally developed technology. 
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I. INTRODUCTION 

Urban air pollution has emerged as one of the fastest-
growing environmental and public-health threats in African 
cities such as Kigali, Rwanda, driven by rapid urbanization, 
motorization, and industrial expansion [1][2]. The World Health 
Organization (WHO) reports that air pollution causes over seven 
million premature deaths annually, while nearly 90% of the 
global population is exposed to pollutant concentrations 
exceeding recommended limits. In many low- and middle-
income countries, fine particulate matter (PM₂.₅ and PM₁₀) and 
gaseous pollutants such as nitrogen dioxide (NO₂), sulfur 

dioxide (SO₂), ozone (O₃), and carbon dioxide (CO₂) remain 
poorly monitored, limiting the capacity for evidence-based 
policymaking and citizen awareness [3]. Recent environmental 
assessments in Kigali have revealed that PM₂.₅ concentrations 
during peak hours often surpass 50 µg/m³, nearly double the 
WHO 24-hour guideline, highlighting an urgent need for high-
resolution, real-time monitoring systems [4]. 

Conventional air-quality monitoring infrastructures, which 
depend on fixed high-precision stations, provide accurate but 
spatially limited data. Their high installation and maintenance 
costs prevent widespread deployment across large or 
topographically diverse urban areas. Consequently, most 
African cities rely on sparse or intermittent measurements that 
fail to capture micro-scale variations and short-term pollution 
spikes. In response, researchers have turned to low-cost Internet 
of Things (IoT)–based sensing networks that offer dense, 
distributed data acquisition at a fraction of the traditional cost 
[4], [5]. Among the most effective configurations are vehicle-
mounted sensor systems, which leverage the mobility of public-
service vehicles, taxis, and buses to achieve city-wide spatial 
coverage without constructing new fixed stations [5] [6] [7]. 

Earlier studies such as [8] on affordable vehicle-mounted 
monitoring, [9] on IoT devices for municipal vehicles, and [6] 
on bus-based monitoring platforms have demonstrated the 
technical feasibility of mobile air-quality mapping and 
visualization. These systems collect particulate and gaseous 
pollutants while traversing city corridors, producing near-real-
time datasets for spatial pattern analysis. However, most prior 
implementations primarily focused on measurement and 
visualization, offering limited integration of predictive 
analytics, alert systems, and policy-support mechanisms—
features crucial for proactive environmental management, 
especially in data-scarce regions. 

Building upon these efforts, this study introduces CleanCity 
IoT, a low-cost, scalable, and mobile air-quality monitoring and 
forecasting platform developed at the University of Rwanda in 
collaboration with national and regional partners. Each 
CleanCity IoT unit integrates low-cost sensors for PM₂.₅, PM₁₀, 
NO₂, SO₂, O₃, and CO₂, along with temperature and humidity 
modules, controlled by an ESP32 microcontroller equipped with 
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GSM connectivity. The devices are mounted on moving 
vehicles, enabling spatially continuous air-quality sampling 
across Kigali and secondary cities. Data are transmitted via 
mobile networks to a cloud server (ThingSpeak), where they are 
cleaned, stored, and visualized through a real-time web 
dashboard featuring pollution heat maps, alert notifications, and 
automated reporting tools. Fig. 1 illustrates the overall 
CleanCity IoT ecosystem, including its sensing, 
communication, and analytics layers. 

A distinctive feature of CleanCity IoT is the inclusion of a 
machine-learning forecasting module that predicts pollutant 
levels up to two hours ahead based on multivariate time-series 
data. This capability enables early warnings and supports 
informed interventions by environmental authorities, health 
agencies, and city planners. Furthermore, by making air-quality 
information publicly accessible through a user-friendly 
dashboard, the system strengthens community engagement and 
promotes citizen science, aligning with Rwanda’s Smart-City 
and environmental-sustainability initiatives. 

The proposed study builds upon the foundational work by 
[10], [11], who developed an IoT-edge-based prototype for 
detecting transportation-related pollution spikes in Kigali. Their 
system demonstrated the feasibility of using low-cost IoT 
networks for real-time air-quality monitoring in urban transport 
corridors. However, while the earlier prototype focused 
primarily on localized pollution detection and data transmission 
through edge networks, the present research extends this 
framework into a fully integrated CleanCity IoT system that 
includes mobile GSM-based data collection, cloud dashboard 
visualization, and machine-learning-driven forecasting. Thus, 
this study represents both continuation and enhancement of the 
ACEIoT initiative’s earlier work, translating edge-level 
monitoring into a scalable, citizen-centered solution for smart 
urban management. 

A. Contributions 

The key contributions of this work are as follows: 

• Design and deployment of a vehicle-mounted IoT device 
integrating multi-pollutant gas and particulate sensors 
with GSM-based real-time communication. 

• Implementation of a cloud-hosted dashboard providing 
visualization, alerting, and reporting functionalities for 
stakeholders. 

• Development of a multivariate machine-learning model 
for two-hour-ahead pollutant prediction, supporting 
proactive urban-health responses. 

• Field validation of the system in Kigali and secondary 
cities, demonstrating low-cost scalability, data 
reliability, and practical usability. 

• Promotion of local innovation and social impact, 
reinforcing Rwanda’s vision for smart and sustainable 
urban management. 

Through these contributions, CleanCity IoT establishes a 
practical, home-grown framework for real-time, predictive, and 
socially inclusive air-quality intelligence applicable to cities 
across Africa. 

B. Paper Organization 

The remainder of this paper is structured as follows: Section 
II reviews related work on mobile air-quality sensing and 
forecasting techniques. Section III describes the system design, 
algorithm construction and hardware implementation. Section 
IV presents data-processing and machine-learning 
methodologies. Section V discusses experimental results and 
performance evaluation, and Section VI concludes with key 
findings and future research directions. 

II. RELATED WORK 

A. Conventional and Fixed-Station Monitoring 

Traditional air-quality surveillance depends on reference-
grade analyzers that provide highly accurate but spatially limited 
data. These stations, typically operated by environmental 
agencies, can cost more than USD 50,000 per unit, with 
significant yearly maintenance expenses [8]. Such systems 
monitor only a few fixed locations, resulting in low spatial 
coverage that fails to capture localized variations in pollutants 
caused by traffic density, topography, or industrial activities. 
While essential for calibration and regulatory baselines, fixed 
networks are financially unsustainable for widespread 
deployment in developing countries. 

B. Emergence of Low-Cost IoT Sensor Networks 

Advances in sensor miniaturization, embedded 
microcontrollers, and cloud connectivity have led to low-cost 
IoT-based monitoring systems [12], [13]. These frameworks 
employ microcontrollers such as Arduino or ESP32 and 
communication technologies including Wi-Fi, GSM, or LoRa to 
transmit environmental data in real time. Gubbi et al. (2013) 
outlined a scalable IoT architecture for smart environments that 
has since inspired numerous urban-sensing deployments. 
Although low-cost sensors are less accurate than reference 
analyzers, they enable dense spatial coverage, data fusion, and 
temporal tracking when coupled with calibration algorithms or 
machine learning [5], [14]. 

C. Mobile and Vehicle-Mounted Sensing Approaches 

To improve spatial resolution, several researchers have 
adopted mobile sensing using vehicles as carriers. The paper 
[12] designed an affordable vehicle-mounted system for 
dynamic air-quality mapping. In the papers [6] implemented a 
bus-based monitoring platform integrated with cloud 
dashboards for real-time visualization. The paper [9] deployed 
IoT modules on municipally governed vehicles to track NO₂ and 
particulate matter across city zones. The paper in [7] proposed a 
vehicular sensor network architecture for real-time pollution 
analysis, while the paper [15] validated low-cost mobile sensors 
for hyperlocal monitoring in London. 
These projects proved the feasibility of vehicular IoT systems, 
but most emphasized data collection and visualization, with 
limited inclusion of predictive analytics, alerts, or decision-
support tools. 

A recent Rwandan contribution in the paper [10] introduced 
an IoT-edge-based system for detecting transportation pollution 
spikes using embedded edge computing. Their implementation 
at the Africa Centre of Excellence in Internet of Things 
(ACEIoT) validated the use of localized edge devices for 
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vehicular pollution tracking. Building on this foundation, the 
current CleanCity IoT framework enhances mobility, 
scalability, and predictive intelligence through GSM-based data 
transmission and cloud-integrated analytics. 

D. Cloud-Based Data Aggregation and Visualization 

Cloud computing has become central to IoT ecosystems for 
environmental data management. Platforms such as 
ThingSpeak, AWS IoT Core, and Azure IoT Hub support data 
ingestion, storage, and visualization in real time [1], [6], [13], 
[14], [16], [17]. The papers [2], [18] [6] demonstrated city-wide 
dashboards for pollutant tracking, and [7] discussed open-source 
architectures for mobile-data integration with geographic 
information systems. Nevertheless, most cloud-based 
implementations stop at visualization, lacking automated 
alerting, policy analytics, and citizen-accessible interfaces key 
enablers for social impact. 

E. Machine-Learning Forecasting for Air Quality 

Accurate short-term forecasting of air pollutants enables 
preventive interventions. Statistical models such as ARIMA and 
VAR have been widely used for one-step-ahead predictions, but 
deep-learning approaches now dominate multivariate time-
series forecasting [19]. LSTM and GRU networks, as explored 
in paper [20] outperform linear models in capturing nonlinear 
temporal dependencies of PM₂.₅ and NO₂ concentrations. 
Despite these advances, few studies integrate such predictive 
analytics directly into mobile, low-cost IoT frameworks, 
particularly within African contexts where both connectivity and 
calibration data are limited. 

Quantitatively, low-cost sensor units in these studies ranged 
from USD 150–300 per node, achieved spatial resolutions up to 

100m, and showed mean deviations of ±10-20 % compared with 
reference instruments [6], [7], [12]. Such performance is 
adequate for mapping and trend detection but insufficient for 
health-critical forecasting without data calibration and model 
correction. 

F. Research Gap and Motivation 

Despite the progress summarized above, major limitations 
persist: 

• Lack of integrated forecasting and alerting modules 
within mobile IoT systems. 

• Absence of region-specific deployments in sub-Saharan 
Africa using GSM infrastructure for scalable 
connectivity. 

• Minimal incorporation of citizen-accessible dashboards 
and community engagement mechanisms. 

The CleanCity IoT platform directly addresses these 
challenges by combining multi-pollutant IoT sensing, GSM data 
transmission, cloud-based visualization, and machine-learning-
driven forecasting. The project exemplifies a locally developed, 
cost-effective solution advancing both environmental 
intelligence and social awareness. 

The reviewed literature highlights a steady evolution from 
fixed-station monitoring toward IoT-enabled, mobile, and data-
driven frameworks as shown in Table I. However, none fully 
integrate predictive analytics, social accessibility, and regional 
scalability within a single platform. Section III therefore 
presents the system design and implementation of the proposed 
CleanCity IoT solution, detailing its hardware architecture, 
communication model, and cloud-analytics workflow. 

TABLE I.  COMPARATIVE SUMMARY OF RELATED IOT AND MOBILE AIR-QUALITY MONITORING SYSTEMS 

Author & Year Platform  System Methodology  Features Key Contribution Identified Limitation 

Santana et al. (2021) 
Vehicle-mounted AQ 

mapping 

ESP32 + GSM; PM₂.₅ / NO₂ 

sensing 
Affordable mobile monitoring No predictive analytics 

Ivanova et al. (2020) IoT on municipal vehicles Wi-Fi IoT nodes; CO  PM sensors Dynamic city-wide mapping Limited citizen interface 

Correia et al. (2023) Bus-based AQ system Cloud dashboard visualization Real-time city dashboards No forecasting capability 

Zherka & Tafa (2023) Vehicular sensor network On-board sensors + data fusion Real-time analysis Lacks scalability 

Zboralski & Kunz (2024) Mobile GIS framework Cloud integration Open-source architecture No alert or policy module 

CleanCity IoT (this 

work) 
Vehicle IoT + GSM + ML 

ESP32 + GSM + ThingSpeak + 

LSTM 

Real-time forecasting + 

dashboard + alerts 
------- 

 

III. METHODOLOGY 

A. Overview of the Proposed Framework 

The CleanCity IoT framework is designed as an end-to-end 
intelligent air-quality monitoring and forecasting system that 
leverages Internet of Things (IoT), cloud computing, and 
machine learning (ML) technologies to provide real-time 
insights into urban pollution dynamics. The framework aims to 
transform conventional monitoring often limited to fixed 
stations into a mobile, scalable, and predictive sensing 
ecosystem suited for low-resource contexts such as Rwandan 
cities. 

In Fig. 1, the system operates through four tightly integrated 
layers: 1) sensing and acquisition, 2) communication and 

transmission, 3) cloud storage and analytics, and 4) visualization 
and forecasting. Each layer contributes specific functionalities, 
forming a pipeline that converts raw sensor readings into 
actionable intelligence for environmental management and 
policy decision-making. 

In the sensing and acquisition layer, a suite of low-cost 
environmental sensors continuously measures air pollutants 
including particulate matter (PM₂.₅, PM₁₀), nitrogen dioxide 
(NO₂), sulfur dioxide (SO₂), ozone (O₃), and carbon dioxide 
(CO₂), alongside ambient parameters such as temperature and 
humidity. These sensors are interfaced with an ESP32 
microcontroller integrated with a SIM800L GSM module, 
enabling both data collection and mobile transmission from 
vehicle-mounted units. 
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The communication and transmission layer employs 
GSM/GPRS connectivity for real-time data delivery to cloud 
infrastructure. This design choice compared to Wi-Fi or LoRa is 
motivated by the wide availability of mobile networks across 
Rwandan cities and highways, ensuring scalability and mobility 
without dependency on fixed infrastructure. 

The cloud layer utilizes the ThingSpeak IoT platform, which 
serves as both a data repository and preliminary analytics 
engine. Each sensing node transmits periodic measurements 
(every 30 seconds to 1 minute) to predefined ThingSpeak 
channels through HTTP POST requests. The platform 
aggregates, timestamps, and visualizes incoming data streams, 
while also allowing external APIs for integration with advanced 
analytical tools such as MATLAB, Python, or Node-RED for 
extended processing and forecasting. 

The visualization and forecasting layer bridge the system’s 
technical outputs with end-user interaction. A custom Air 
Quality Dashboard accessible via web or mobile interface—
displays real-time pollutant levels, temporal trends, and 
geospatial mapping of emission zones. Historical datasets 
retrieved from ThingSpeak are used to train a Long Short-Term 
Memory (LSTM)-based predictive model, which forecasts 
pollutant concentrations two hours ahead. This predictive 
feature enhances early-warning capabilities and supports data-
driven policy interventions by environmental authorities. 

 
Fig. 1. Proposed framework. 

B. Hardware Design and Components 

The CleanCity IoT hardware architecture was designed to 
achieve low-cost, high-mobility, and energy-efficient air-quality 
monitoring while maintaining compatibility with existing 
mobile communication networks. The system integrates 
multiple sensors, a microcontroller unit, and a GSM 
communication interface, all mounted within a compact 
enclosure suitable for vehicular deployment. 

1) Main controller: ESP32 (LilyGO T-Call SIM800L): At 

the core of the system lies the LilyGO T-Call ESP32 board on 

Fig. 2, which combines a dual-core 32-bit Xtensa processor 

with an embedded SIM800L GSM/GPRS module. The ESP32 

manages sensor data acquisition, preprocessing, and 

transmission, while the GSM modem handles real-time 

communication with the cloud platform. The built-in UART, 

ADC, and GPIO interfaces facilitate multi-sensor connectivity, 

and the board supports 3.3 V logic with a stable 5 V input via 

USB or Li-ion battery. 

 
Fig. 2. LilyGO T-Call SIM800L. 

The SIM800L module provides reliable 2G cellular 
connectivity, using HTTP POST requests to upload sensor 
readings to ThingSpeak channels. The use of GSM ensures that 
each node remains fully mobile and independent of Wi-Fi 
coverage, a critical feature for vehicle-mounted monitoring units 
in Rwandan cities and peri-urban areas. 

2) Sensor suite: The CleanCity IoT system employs a 

diverse set of environmental sensors to capture the most 

relevant atmospheric parameters affecting air quality. Each 

sensor was selected for its low cost, stability, and proven 

performance in mobile IoT applications. 

3) PMS5003 – particulate matter (PM₂.₅ and PM₁₀): The 

Plantower PMS5003 in Fig. 3 is a laser-scattering particulate 

matter sensor capable of measuring fine and coarse particles 

(PM₂.₅ and PM₁₀) in real time. It uses a light-scattering principle 

combined with a digital signal processor to calculate mass 

concentration in micrograms per cubic meter (µg/m³). The 

sensor communicates via UART and offers high sensitivity and 

accuracy suitable for vehicular environments, making it ideal 

for continuous mobile air-quality monitoring. 

4) MQ-131 – Ozone (O₃) sensor: The MQ-131 sensor in 

Fig. 4 detects ozone concentrations using a tin dioxide (SnO₂)-

based semiconductor layer. When O₃ gas contacts the sensitive 

surface, it alters the material’s conductivity proportionally to 

the gas concentration. The analog output from the sensor is fed 

to the ESP32’s ADC pin, which converts it into a corresponding 

O₃ level in parts per million (ppm). This sensor was chosen for 
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its low cost and reasonable response time, essential for 

detecting short-term pollution spikes. 

 
Fig. 3. Plantower PMS5003. 

 
Fig. 4. MQ-131 sensor. 

5) MICS-6814 – Nitrogen Dioxide (NO₂) Sensor: The 

MICS-6814 in Fig. 5 is a compact three-channel semiconductor 

gas sensor that simultaneously measures NO₂, CO, and NH₃ 

gases. It is particularly suitable for mobile IoT applications due 

to its low power consumption and small form factor. For this 

project, the NO₂ channel was primarily used, with calibration 

coefficients adjusted based on the manufacturer’s 

characterization curve. Its analog signal provides ppm-level 

readings processed by the ESP32’s 12-bit ADC. 

 
Fig. 5. Nitrogen Dioxide (NO₂) sensor. 

6) AGSM-SO₂-5 Sulfur Dioxide (SO₂) sensor: The AGSM-

SO₂-5 in Fig. 6 is an electrochemical-type sensor used to detect 

sulfur dioxide concentrations in ambient air. The sensor 

produces a small current proportional to the SO₂ gas 

concentration, which is converted to voltage using an external 

resistor circuit and read through an ADC input. This sensor type 

offers high selectivity and low detection limits, enabling 

reliable SO₂ measurement even in mixed-gas environments. Its 

readings are periodically calibrated against baseline voltages 

under clean-air conditions. 

 
Fig. 6. Sulfur Dioxide (SO₂) sensor. 

7) MG-811 Carbon Dioxide (CO₂) sensor: The MG-811 

sensor in Fig. 7 measures carbon dioxide (CO₂) concentration 

using a solid electrolyte cell. The sensor outputs an analog 

voltage that decreases as CO₂ concentration increases. It 

operates between 0–10,000 ppm and provides stable 

performance for mobile applications when coupled with proper 

temperature compensation. The MG-811 data complements the 

other gas readings by offering insights into combustion-related 

emissions. 

 
Fig. 7. Carbon Dioxide (CO₂) sensor. 

8) DHT11 temperature and humidity sensor: The DHT11 

digital sensor in Fig. 8 monitors ambient temperature and 

relative humidity, parameters that directly influence gas sensor 

accuracy and pollutant dispersion. Its single-wire digital output 

simplifies integration with the ESP32 microcontroller. The 

temperature and humidity data collected are used to normalize 

and interpret gas readings, reducing variability due to 

environmental factors. 

 
Fig. 8. DHT11 temperature and humidity sensor. 

C. Custom PCB Design and Circuit Integration 

To ensure a compact, reliable, and vibration-resistant mobile 
sensing unit, the system incorporates a custom-designed PCB, 
created using EasyEDA and manufactured as a single-layer 
board. The PCB consolidates all key components including the 
LilyGO T-Call ESP32, PMS5003 particulate matter sensor, 
MQ131 ozone module, CJMCU-6814 multi-gas sensor (NO₂ + 
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SO₂), and analog SO₂ sensor interface into a unified hardware 
platform optimized for vehicular deployment. 

 
Fig. 9. Schematic diagram of clean city IoT system. 

The PCB layout in Fig. 9 follows a structured placement 
strategy, with the PMS5003 connector positioned on the upper-
left side to minimize trace length for the UART interface, while 
the MQ131 and CJMCU-6814 modules are placed on the right 
to avoid electromagnetic interference from the GSM modem. 
Dedicated headers provide labeled terminals for VCC, GND, 
RX, and TX, ensuring clear wiring during assembly and 
simplifying sensor maintenance or replacement. The bottom 
section houses the footprint for the LilyGO T-Call board, 
providing direct access to GSM, UART, and ADC lines without 
intermediate wiring. 

 
Fig. 10. 3D view of the custom PCB design for the CleanCity IoT device. 

The corresponding circuit schematic (Fig. 10) illustrates the 
electrical interconnections between all sensing modules and the 
ESP32 controller. UART pins are assigned to the PMS5003 
(U3) and SO₂ sensor interface, while the MQ131 analog output 
is routed to an ADC input. The CJMCU-6814 module is 
powered by a stable 5V rail, and its NO₂/SO₂ analog channels 
are fed into separate ADC lines for accurate digital conversion. 
Ground planes and decoupling capacitors are incorporated to 
enhance signal stability and reduce noise, which is critical for 
gas sensor accuracy. The PCB also accommodates optional 
onboard filtering capacitors for the analog channels, further 
increasing measurement reliability. 

This custom PCB significantly enhances the robustness of 
the CleanCity IoT device compared to breadboard-based 
prototypes. By minimizing loose wiring, standardizing sensor 
interfaces, and optimizing component placement, the board 
improves electrical reliability, reduces interference from the 
GSM module, and ensures consistent sensor readings during 
mobile operation. It also enables rapid replication of the device 
for larger-scale deployments in Kigali or other Rwandan cities. 

D. Data Acquisition and Transmission 

The CleanCity IoT system collects, processes, and transmits 
multi-sensor environmental data in real time through a unified 
acquisition pipeline. The design ensures synchronized sampling 
across all sensing modules, reliable communication via GSM, 
and consistent data formatting for cloud integration. 

E. Sensor Data Acquisition Cycle 

Each monitoring node performs periodic measurements of 
particulate matter, gaseous pollutants, and ambient conditions. 

• Particulate Matter (PM₂.₅ and PM₁₀): The PMS5003 
sensor provides continuous data through a UART 
interface, reporting particle concentrations in µg/m³. 

• Gaseous Pollutants: O₃, NO₂, SO₂, and CO₂ levels are 
sensed using analog sensors (MQ-131, MICS-6814, 
AGSM-SO₂-5, and MG-811). Their analog voltages are 
sampled by the ESP32’s 12-bit ADC and converted to 
concentration values (ppm) using calibration curves 
derived from reference data. 

• Ambient Conditions: The DHT11 sensor provides 
temperature and relative-humidity readings, which are 
used for contextual adjustment of gas-sensor responses. 

To reduce random noise and ensure stability, multiple 
readings are averaged within each cycle before transmission. 
The resulting dataset per interval includes parameters as shown 
in Table II. 

TABLE II.  PARAMETERS ACQUIRED DURING EACH SAMPLING CYCLE 

Parameter Symbol Unit 

PM₂.₅ concentration PM2.5 µg/m³ 

PM₁₀ concentration PM10 µg/m³ 

Ozone O₃ ppm 

Nitrogen Dioxide NO₂ ppm 

Sulfur Dioxide SO₂ ppm 

Carbon Dioxide CO₂ ppm 

Temperature T °C 

Humidity H % 

F. Data Pre-Processing and Packet Formation 

Before transmission, each sensor reading undergoes a 
lightweight pre-processing pipeline to improve data reliability 
and ensure consistency across the full dataset. First, a noise-
filtering procedure is applied to remove spurious or invalid 
sensor values. Given a raw reading 𝑥𝑖 for pollutant 𝑗, the system 
checks whether it falls within the predefined operational range 
[𝐿𝑗 ,𝑈𝑗]. This filtering step is mathematically expressed as: 
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𝑥𝑖
′ = {

𝑥𝑖  𝐿𝑗 ≤ 𝑥𝑖 ≤ 𝑈𝑗

 
               () 

Ensuring that negative values, extreme spikes, and sensor 
glitches do not propagate into the cloud dataset. 

Following outlier removal, each pollutant value is 
normalized into standard physical units (µg/m³ or ppm) using a 
linear scaling transformation. This normalization converts raw 
sensor outputs into a consistent range defined by calibration 
limits, allowing accurate comparison across sensors. The 
conversion is achieved using Eq. (2). 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
× (𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛) + 𝑆𝑚𝑖𝑛       () 

where 𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 𝑥𝑚𝑖𝑛  are the sensor’s calibrated electrical 
bounds and 𝑆𝑚𝑎𝑥  , 𝑆𝑚𝑖𝑛   correspond to the standardized 
environmental scale. This operation ensures homogeneous units 
throughout the dataset, which is essential for downstream 
analytics. 

Each sanitized and normalized reading is then assigned a 
timestamp to preserve temporal integrity. The timestamp 𝑡𝑘 
originates either from the GSM network clock or the ESP32’s 
internal real-time counter. The final structured data packet 
transmitted at time 𝑘 is represented as, 

𝐷𝑘 =
{𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷, 𝑃𝑀2.5 ,𝑃𝑀10 ,𝑂3, 𝑁𝑂2 , 𝑆𝑂2 , 𝐶𝑂2 , 𝑇, 𝐻, 𝑡𝑘 } () 

capturing all pollutants, environmental conditions, and 
metadata in a single, machine-readable structure compatible 
with ThingSpeak’s REST API. 

G. GSM-Based Data Transmission 

The LilyGO T-Call ESP32 integrates a SIM800L 
GSM/GPRS modem, allowing each mobile sensing unit to 
transmit air-quality data directly to the cloud without requiring 
Wi-Fi or external gateways. Once a complete measurement 
vector 

𝑧𝑡 = [𝑃𝑀2.5 ,𝑃𝑀10 ,𝑂3 , 𝑁𝑂2, 𝑆𝑂2 , 𝐶𝑂2 , 𝑇, 𝐻]             () 

is pre-processed, the system encapsulates the data into a 
structured transmission packet. The full packet sent at time 𝑡 is 
expressed as: 

𝑃𝑡 = {𝐷𝑒𝑣𝑖𝑐𝑒𝐼𝐷, 𝑧𝑡, 𝑡}                          () 

Every transmission cycle follows a periodic schedule, where 
the upload interval is defined as  

  Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1                             () 

and during the experimental deployment, 𝛥𝑡 ≈  30  s, 
providing a balance between data granularity and power 
efficiency for vehicular operation. The SIM800L modem 
performs an HTTP POST request over GPRS, where the payload 
corresponds to the encoded packet 𝑃𝑡. The uplink transmission 
can be represented as 

𝒯(𝑃𝑡) → ThingSpeak Channel              (7) 

where   𝒯(Pt) denotes the GSM-based upload operation. 
Once the server acknowledges receipt, ThingSpeak updates the 
real-time charts for all monitored pollutants. To ensure time-

series completeness, the system incorporates a local 
retransmission buffer. If a temporary network outage occurs, 
packets are stored in a local queue 

𝒬 = {𝑃𝑡1
, 𝑃𝑡2

, … , 𝑃𝑡𝑚
}                                  () 

and are automatically resent once connectivity is restored. 
Successful transmission empties the queue according to 

   𝒬 ← 𝒬 ∖ 𝑃𝑡𝑖
                                       () 

This queue-based recovery mechanism guarantees 
robustness in urban mobility conditions, where cellular coverage 
may momentarily fluctuate. As a result, the system achieves 
reliable, timestamped uploads essential for downstream 
analytics, ML model training, and spatiotemporal pollution 
mapping. 

H.  Cloud Integration and Dashboard Development 

The CleanCity IoT system relies on ThingSpeak Cloud as 
the central platform for ingesting, storing, and visualizing sensor 
data in real time. Each monitoring node continuously uploads 
the structured packet 𝑃𝑡 to a dedicated ThingSpeak channel, 
where the information is automatically timestamped and 
organized across eight data fields. The cloud interface provides 
dashboards, charts, and API endpoints that support both manual 
inspection and automated analytical tasks such as forecasting 
and multi-pollutant correlation studies. 

To quantify the data-handling performance of the cloud 
layer, the expected number of uploaded records over an 
observation period 𝑇 is expressed as, 

𝑁𝑇 =
𝑇

Δ𝑡
                                        () 

where, 𝛥𝑡  represents the transmission interval 
(approximately 30 seconds in this deployment). This relation 
determines the temporal granularity and the total volume of data 
streamed into the cloud. The corresponding data throughput, 
crucial for evaluating network and storage efficiency, is 
computed using 

𝑅𝑢𝑝 =
𝑁𝑇×𝑃𝑘

𝑇
                                 () 

where, 𝑃𝑘 denotes the average packet size in bytes. These 
metrics confirm that the system maintains consistent upload 
behavior, even under mobile conditions. In ThingSpeak, 
pollutant concentrations are further processed to compute an Air 
Quality Index (AQI). For each pollutant iii, the platform 
evaluates a sub-index using 

𝐼𝑖 =
𝐼ℎ𝑖𝑔ℎ−𝐼𝑙𝑜𝑤

𝐶ℎ𝑖𝑔ℎ −𝐶𝑙𝑜𝑤

(𝐶𝑖 − 𝐶𝑙𝑜𝑤) + 𝐼𝑙𝑜𝑤                   () 

where the constants correspond to standard AQI breakpoints. 

The overall AQI at time 𝑡 is determined by, 

𝐴𝑄𝐼 = max(𝐼𝑖)                             () 

allowing the system to categorize air quality levels and 
support early-warning notifications when thresholds are 
exceeded. 

The cloud platform also enables multi-variable diagnostic 
analysis, particularly through pollutant correlation. The linear 
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relationship between any two-pollutant series 𝑥𝑖 and 𝑥𝑗  is 

computed using the Pearson coefficient, 

𝑟𝑖𝑗 =
∑ (𝑥𝑖,𝑘−𝑥𝑖̅̅̅)(𝑥𝑗,𝑘−𝑥𝑗̅̅ ̅)𝑛

𝑘=1

√∑ (𝑥𝑖,𝑘−𝑥𝑖̅̅̅)
2𝑛

𝑘=1
√∑ (𝑥𝑗,𝑘−𝑥𝑗̅̅ ̅)

2𝑛
𝑘=1

                   () 

This allows identification of pollutant sources with similar 
temporal behaviors, such as PM₂.₅ and NO₂ often linked to 
traffic emissions. To ensure reliability, ThingSpeak computes a 
data completeness index over any period 𝑇 as, 

𝐶𝑇 =
𝑁𝑠

𝑁𝑡
× 100 %                            () 

where 𝑁𝑠 and 𝑁𝑡  are the numbers of successfully uploaded 
and total expected packets, respectively. This metric is essential 
for confirming the robustness of GSM-based data acquisition, 
especially in mobile environments where connectivity might 
fluctuate. Through this cloud architecture, CleanCity IoT 
achieves real-time visualization, long-term storage, and 
automated analytic capability, making it suitable for continuous 
urban air-quality monitoring and predictive modeling. 

I. Machine Learning Model Development 

The dataset collected from the ThingSpeak cloud was used 
to train a Long Short-Term Memory (LSTM) neural network for 
short-term air-quality forecasting. The choice of LSTM was 
motivated by its ability to capture nonlinear temporal 
dependencies in multivariate time-series data, making it suitable 
for predicting pollutant levels under changing meteorological 
and traffic conditions. To prepare the data, each environmental 
variable was standardized to ensure consistent scaling across all 
pollutants. This normalization follows the transformation. 

𝑧̂𝑡
(𝑖)

=
𝑧𝑡

(𝑖)
−μ𝑖

σ𝑖
                                () 

where, 𝑧̂𝑡
(𝑖)

 denotes the original reading of feature 𝑖 at time 
𝑡, and 𝜇𝑖and 𝜎𝑖 represent the corresponding mean and standard 
deviation. A sliding window of length 𝐿  was then used to 
construct input sequences for the model. Each multivariate input 
window is defined as, 

𝑋𝑡 = [𝑧̃𝑡−𝐿+1 ,  𝑧̃𝑡−𝐿+2,   … ,  𝑧𝑡̃] ∈ 𝑅𝐿×𝟠            () 

while the prediction target for horizon 𝐻 is given by, 

𝑦𝑡 = 𝑧𝑡+𝐻                               () 

The LSTM learns a nonlinear mapping 

𝑦𝑡̂ = 𝑓θ(𝑋𝑡)                            () 

where, 𝑓𝜃  denotes the trained neural-network function 
parameterized by 𝜃. The training objective is to minimize the 
Mean Squared Error (MSE): 

ℒMSE(θ) =
1

𝑁
∑ |𝑦𝑡

𝑁
𝑡=1 − 𝑦𝑡̂||2

2                 () 

Model performance was evaluated using Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), and the coefficient of determination 
𝑅2, expressed respectively as 

𝑀𝐴𝐸𝑗 =
1

𝑁
∑ |𝑦𝑡

(𝑗)
− 𝑦𝑡

(𝑗)̂
|𝑁

𝑡=1                        () 

𝑅𝑀𝑆𝐸𝑗 = √1

𝑁
∑ (𝑦𝑡

(𝑗)
− 𝑦𝑡

(𝑗)̂
)

2
𝑁
𝑡=1                   () 

𝑀𝐴𝑃𝐸𝑗 =
100

𝑁
∑ |

𝑦𝑡
(𝑗)

−𝑦𝑡
(𝑗)̂

𝑦𝑡
(𝑗) |𝑁

𝑡=1                        () 

𝑅𝑗
2 = 1 −

∑ (𝑦𝑡
(𝑗)

−𝑦𝑡
(𝑗)̂)

2
𝑁
𝑡=1

∑ (𝑦𝑡
(𝑗)

−𝑦(𝑗)̅̅ ̅̅ ̅̅ )
2

𝑁
𝑡=1

                           () 

These performance indicators assess the reliability of the 
LSTM model in forecasting pollutant levels such as PM2.5, 
PM10, NO₂, SO₂, O₃, CO₂, temperature, and humidity. By using 
standardized inputs and multivariate temporal windows, the 
model is able to produce stable forecasts up to two hours ahead, 
enabling early-warning capabilities and supporting real-time 
decision-making for environmental monitoring. 

IV. RESULTS AND DISCUSSION 

A. Dataset Characteristics 

The CleanCity IoT mobile sensing unit collected a total of 
6,484 multivariate records during vehicular movement across 
urban road segments in Kigali. Each record contains 
synchronized measurements of particulate pollution (PM₂.₅, 
PM₁₀), gaseous pollutants (NO₂, SO₂, O₃, CO₂), and 
meteorological variables (temperature and relative humidity). 
Data were transmitted at an average 30-second sampling 
interval, resulting in a dense and continuous time-series suitable 
for both statistical analysis and machine learning–based 
forecasting. 

The temporal behavior of the dataset is illustrated in Fig. 11, 
which shows the evolution of PM₂.₅, PM₁₀, NO₂, and 
temperature over several days. The plots reveal clear short-term 
fluctuations driven by traffic movement, road dust resuspension, 
and localized emission hotspots commonly encountered during 
mobile sensing. The temperature curve exhibits a pronounced 
diurnal cycle, confirming environmental consistency and stable 
sensor response. 

 
Fig. 11. Time-series variation of key air-quality parameters (PM₂.₅, PM₁₀, 

NO₂) and meteorological variables collected from the CleanCity IoT mobile 

sensing system. 
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To further assess data richness and distributional 
characteristics, histogram plots for all pollutants and 
environmental variables are shown in Fig. 12. These 
distributions demonstrate substantial variability across 
measured concentrations, with PM₁₀ and PM₂.₅ showing 
multimodal behavior associated with alternating high-traffic and 
low-traffic conditions. Gaseous pollutants (NO₂, SO₂, O₃) 
present narrower distributions, typical of background urban air 
composition, while CO₂ ranges reflect both ambient outdoor 
levels and intermittent vehicle exhaust influence. 

The completeness of the dataset was evaluated using the 
metric. 

 
Fig. 12. Distribution of pollutant and environmental variables, illustrating 

concentration variability and underlying statistical patterns within the dataset. 

where, 𝑁𝑆 is the number of successfully uploaded samples 
and 𝑁𝑡  is the expected number of samples based on the 
configured transmission interval. The system maintained high 
data availability across the monitoring period, confirming robust 
GSM connectivity and effective packet buffering in the LilyGO 
T-Call ESP32 board. Collectively, the time-series behavior, 
variable distributions, and high completeness rate validate the 
dataset as a reliable basis for subsequent LSTM-based 
forecasting and statistical analysis of urban air-quality 
dynamics. 

B. System Performance Evaluation 

The CleanCity IoT mobile sensing platform was deployed 
on a vehicle and evaluated under real urban operating conditions 
to assess communication stability, data reliability, 
environmental robustness, and cloud-integration performance. 
The LilyGO T-Call ESP32 board, equipped with the SIM800L 
GSM/GPRS module, demonstrated stable mobile connectivity 
throughout the monitoring period. The system achieved a high 
upload success rate, with most packets reaching the cloud on the 
first transmission attempt. Occasional GSM signal drops were 
mitigated by the built-in buffering mechanism, allowing queued 
packets to be retransmitted automatically once connectivity 
resumed. 

The sensor suite also exhibited consistent and predictable 
behavior, as demonstrated by the correlation structure among the 
measured variables in Fig. 13. Strong positive correlations 
between PM₂.₅ and PM₁₀ confirm expected particulate co-
variability in traffic-related environments, while moderate 

relationships between gaseous pollutants reflect common 
emission sources along the vehicle routes. The negative 
correlation between temperature and humidity follows typical 
micro-meteorological conditions in Kigali’s urban climate, 
further validating sensor stability. 

 
Fig. 13. Correlation matrix illustrating interdependencies between pollutant 

concentrations and meteorological variables 

The data transmission latency averaged 2-4 seconds per 
packet during motion, consistent with typical GSM-based IoT 
deployments. The cloud dashboard updated in near real time, 
enabling effective monitoring of pollutant trends and 
environmental changes as the vehicle traversed different 
locations. Additionally, the hardware system demonstrated 
resilience to vibration, temperature changes, and power 
fluctuations during mobile operation. Overall, the system 
performance confirms that the CleanCity IoT platform is reliable 
for continuous mobile sensing in urban environments, 
maintaining stable communication, accurate sensing behavior, 
and real-time cloud integration suitable for further analytics and 
forecasting applications. 

C. Machine Learning Model Performance 

The cleaned and preprocessed multivariate dataset was used 
to train an LSTM-based forecasting model designed to predict 
short-term pollutant concentrations in real time. Input sequences 
were constructed using sliding windows of length 𝐿, where each 
window (𝐸𝑞 16 ) represents the normalized and filtered sensor 
readings across all eight variables. The model produces a 
prediction (𝐸𝑞 18)  where 𝑓θ  denotes the LSTM, network 
parameterized by 𝜃. 

Model training converged smoothly, with the mean squared 
error (MSE) for both training and validation sets decreasing 
consistently, as shown in Fig. 14. The validation curve remained 
stable without divergence, indicating good generalization and 
absence of overfitting. 

1) Prediction accuracy on key pollutants: The prediction 

performance for PM₂.₅ and PM₁₀ is shown in Fig. 15, where the 

predicted values closely follow the temporal structure of the 

true sensor measurements. The model successfully captures 
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peaks, transitions, and low-concentration periods, 

demonstrating strong short-term forecasting capability. 

 
Fig. 14. Training and validation loss curves of the LSTM model, 

demonstrating convergence behavior and generalization performance. 

 
Fig. 15. Comparison between ground-truth and LSTM-predicted 

concentrations for PM₂.₅ and PM₁₀ over selected test windows. 

2) Model fit across all variables: Scatter plots comparing 

predicted versus true values for all pollutants and 

environmental variables are shown in Fig. 16. The clustering of 

points around the 1:1 line demonstrates strong model 

agreement, especially for CO₂, temperature, O₃, and NO₂. 

Variability in PM₂.₅ and SO₂ predictions reflects the intrinsic 

noisiness of mobile-sensing particulate measurements. 

 
Fig. 16. Scatter plots comparing true and predicted values for all variables, 

with the 1:1 reference line indicating model accuracy. 

3) Error distribution: To further examine predictive 

behavior, Fig. 17 presents the error distribution for PM₂.₅. The 

histogram shows a narrow, approximately Gaussian 

distribution centered close to zero, indicating low systematic 

bias and moderate variance in short-term particulate 

predictions. 

 
Fig. 17. Error distribution of PM₂.₅ predictions, highlighting bias and variance 

characteristics of the LSTM model. 

4) Quantitative metrics: Summarizes the evaluation 

metrics for each variable, including MAE, RMSE, and MAPE. 

The LSTM model achieved strong predictive performance for 

temperature, CO₂, O₃, and NO₂, while PM₂.₅ and PM₁₀ exhibited 

higher relative errors due to their higher temporal variability 

and sensitivity to rapid environmental changes (Table III) 

during vehicle motion. 

TABLE III.  PERFORMANCE METRICS (MAE, RMSE, MAPE) OF THE 

LSTM MODEL ACROSS ALL POLLUTANTS AND ENVIRONMENTAL VARIABLES 

Variable MAE RMSE MAPE_percent 

PM2_5_ugm3 6.83 10.45 61.41 

PM10_ugm3 9.26 13.72 56.24 

NO2_ppm 0.005 0.007 12.993 

SO2_ppm 0.006 0.007 68.230 

O3_ppm 0.005 0.006 14.537 

CO2_ppm 10.64 14.39 2.42 

Temperature_C 1.19 1.49 5.40 

Humidity_pct 3.25 4.06 4.40 

Overall, the LSTM model demonstrates strong capability in 
short-term pollutant forecasting across multiple variables. 
Stability in the loss curve, tight clustering in scatter plots, 
realistic error distributions, and favorable MAE/RMSE/MAPE 
scores confirm that the forecasting framework is effective for 
real-time deployment in mobile urban air-quality monitoring 
systems. 

D. Assembled Edge Device with Deployed Model 

The complete air-quality monitoring unit was integrated into 
a compact, weather-resistant enclosure and mounted on the front 
of a motorcycle to enable continuous mobile sensing across 
urban routes. As shown in Fig. 18, the device securely attaches 
to the motorcycle’s suspension frame, ensuring minimal 
vibration interference while maintaining unobstructed airflow to 
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the sensing chamber. The embedded ESP32–SIM800L 
controller executes the trained machine-learning model directly 
on the edge, enabling on-device preprocessing, anomaly 
filtering, and real-time prediction without reliance on cloud-
based computation. 

 
Fig. 18. Clean city IoT device mounted on motorcycle. 

The internal hardware layout, presented in Fig. 19, illustrates 
the modular arrangement of components including the PM and 
gas sensors, power system, GSM communication module, and 
microcontroller. The wiring architecture was optimized to 
reduce electromagnetic interference and to maintain sensor 
accuracy during mobile operation. This assembly design ensures 
robustness under typical road conditions while maintaining low 
power consumption, making it suitable for long-term vehicular 
deployments. 

 
Fig. 19. Internal hardware layout of clean city IoT device. 

E. Dashboard for Remote Monitoring 

A web-based dashboard was developed to provide real-time 
visualization and remote access to sensor measurements, model 
inferences, and device status. The interface, shown in  Fig. 20, 
displays pollutant concentrations (PM2.5, PM10, SO₂, NO₂, O₃, 
CO₂) alongside temperature and humidity, each represented with 
intuitive color codes and threshold indicators. This enables rapid 

interpretation of air-quality conditions by operators and supports 
downstream analytics such as hotspot identification and route-
based pollution profiling. 

 
Fig. 20. Web-based remote monitoring dashboard of clean city IoT device. 

The dashboard integrates seamlessly with the GSM-enabled 
edge devices via the cloud backend, allowing continuous 
updates at fixed intervals. Users may access detailed historical 
charts, inspect sensor-level readings, or monitor multiple 
devices simultaneously. This platform improves situational 
awareness and supports data-driven decision-making for urban 
air-quality management. 

V. DISCUSSION  

The results obtained from the mobile air-quality monitoring 
platform highlight the strong potential of integrating low-cost 
sensing, edge intelligence, and mobile data acquisition to 
provide high-resolution pollution insights in dynamic urban 
environments. The temporal plots and distribution analyses 
demonstrate that the system successfully captured realistic 
pollutant patterns, including recurring diurnal behaviors, peak 
concentrations along traffic corridors, and rapid fluctuations 
associated with vehicle-dense areas. These trends align with 
previously reported characteristics of mobile sensing platforms, 
reinforcing the reliability of the collected dataset. 

The performance of the LSTM model reflects both the 
strengths and inherent challenges of forecasting air-quality 
parameters in mobile conditions. Temperature, humidity, CO₂, 
and O₃ predictions achieved low MAE and RMSE values, 
indicating that their temporal structures exhibit smoother and 
more predictable patterns that are well-suited to sequence-
learning models. Conversely, higher error values observed for 
PM2.5 and PM10 are consistent with the behavior of particulate 
pollutants, which often vary sharply due to localized dust 
sources, abrupt vehicle acceleration, wind disturbances, or 
sudden micro-spikes near emission points. These high-
frequency fluctuations pose a challenge for recurrent models, 
which assume gradual temporal transitions. Despite this, the 
predicted sequences still closely follow the underlying pollutant 
trends, suggesting that the LSTM architecture provides valuable 
short-term predictive capability. 

The correlation matrix further reinforces the internal 
consistency of the dataset by revealing strong associations 
between combustion-related pollutants (PM2.5, PM10, NO₂, 
SO₂). These relationships are well documented in air-quality 
literature and confirm that the system effectively captured 
realistic vehicular emission profiles. The inclusion of 
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meteorological parameters in the model input contributed to 
performance stability by providing contextual information on 
atmospheric dispersion, temperature-dependent sensor 
responses, and humidity-driven particle behavior. 

Operationally, the motorcycle-mounted sensing device (Fig. 
18, Fig 20) validated the practicality of a low-power, mobile, 
GSM-enabled platform for real-time air-quality assessment. The 
device maintained stable measurements during movement and 
reliably transmitted data to the cloud dashboard. The remote 
monitoring interface (Fig. 20) enabled seamless visualization of 
pollutant levels, supporting quick interpretation and forming a 
foundation for future large-scale deployments. This capability is 
particularly valuable in resource-constrained environments 
where installing dense networks of fixed monitoring stations is 
not feasible. 

Nonetheless, several limitations were observed. The 
elevated prediction errors for particulate matter indicate the need 
for more advanced filtering or hybrid modeling techniques such 
as Kalman filters, temporal attention mechanisms, or 
transformer-based architectures better suited for abrupt pollutant 
variability. Occasional GSM transmission delays highlight a 
trade-off between mobile connectivity and data continuity, 
suggesting that buffering strategies or 4G/LTE-based modules 
may be advantageous in future iterations. Sensor drift and long-
term degradation pose additional challenges, underscoring the 
importance of periodic recalibration, redundancy, or sensor 
fusion approaches to maintain long-term reliability. 

The findings demonstrate that mobile IoT sensing combined 
with edge-deployed machine-learning models provide a 
powerful and scalable approach to capturing granular air-quality 
information. It offers a practical pathway toward city-wide 
mobile pollution mapping, intelligent fleet monitoring, and data-
driven environmental planning, especially in developing urban 
regions where cost-effective solutions are essential. 

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE 

WORK 

This study presented a mobile air-quality monitoring 
platform that integrates low-cost sensors, an ESP32–SIM800L 
edge device, GSM-based communication, and an LSTM 
prediction model to enable high-resolution pollution monitoring 
in dynamic urban environments. The mobile system 
successfully captured realistic temporal patterns of key 
pollutants including PM2.5, PM10, SO₂, NO₂, and O₃ while 
simultaneously collecting meteorological variables relevant to 
dispersion and atmospheric behavior. The experimental results 
demonstrated that the model accurately predicted smoother 
variables such as temperature, humidity, CO₂, and O₃, while 
exhibiting higher, yet consistent, errors for particulate matter 
due to its inherently abrupt and highly localized fluctuations. 
Overall, the system validated the feasibility of using a low-cost, 
edge-intelligent, mobile sensing approach to complement 
existing fixed monitoring infrastructures particularly in regions 
where traditional stations are sparse or economically 
prohibitive. The combination of real-time edge inference and 
cloud-based visualization provides a scalable foundation for 
city-wide monitoring, rapid hotspot identification, and informed 
environmental planning. 

Model prediction errors for PM2.5 and PM10 highlight the 
need for more advanced temporal modeling techniques capable 
of handling sudden spikes and high-frequency variability. 
Network latency introduced by GSM connectivity suggests 
exploring more robust communication protocols and buffering 
strategies for uninterrupted data flow. Additionally, long-term 
reliability will require periodic sensor calibration, redundancy 
mechanisms, and drift-compensation strategies to maintain 
accuracy during extended deployments. 

Based on these findings, the following recommendations are 
proposed: 

• Adopt advanced hybrid modeling techniques: such as 
temporal attention mechanisms, transformer-based 
architectures, or Kalman-filter-enhanced LSTM to 
improve particulate matter forecasting. 

• Upgrade communication infrastructure to LTE/4G or 
MQTT-based lightweight protocols to minimize 
transmission delays and enhance scalability. 

• Implement periodic calibration schedules and sensor 
redundancy to mitigate drift, aging, and environmental 
contamination. 

• Integrate geospatial and meteorological data sources 
(GIS layers, wind maps, road classifications) for more 
context-aware predictions and hotspot analysis. 

Future work will focus on addressing these challenges by 
extending the system to support multi-node collaborative 
sensing, employing federated learning for distributed model 
updates, and exploring adaptive edge inference that dynamically 
adjusts sampling rates depending on environmental conditions. 
Additional work will investigate long-term deployment 
performance, data fusion with satellite products, and integration 
with policy tools for real-time air-quality alerts. 

In conclusion, this research provides a practical, scalable, 
and cost-effective framework for mobile air-quality monitoring 
in rapidly urbanizing regions. By combining IoT sensing, edge 
computing, and machine learning, the system offers a promising 
direction for enhancing environmental intelligence and 
supporting evidence-based public health interventions. 
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