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Abstract—In recent decades, the RAFT distributed consensus
algorithm has become a main pillar of the distributed systems
ecosystem, ensuring data consistency and fault tolerance across
multiple nodes. Although the fact that RAFT is well known for its
simplicity, reliability, and efficiency, its security properties are not
fully recognized, leaving implementations vulnerable to different
kinds of attacks and threats, which can transform the RAFT
harmony of consensus into a chaos of data inconsistency. This
paper presents a systematic security analysis of the RAFT
protocol, with a specific focus on its susceptibility to security
threats such as message replay attacks and message forgery
attacks. Examined how a malicious actor canexploit the protocol's
message-passing mechanism to reintroduce old messages,
disrupting the consensus process and leading to data
inconsistency. The practicalfeasibility of these attacksis examined
through simulated scenarios, and the key weaknesses in RAFT's
design that enable them are identified. To address these
vulnerabilities, a novel approach based on cryptography,
authenticated message verification, and freshness check is
proposed. This proposed solution provides a framework for
enhancing the security of the RAFT implementations and guiding
the development of more resilient distributed systems.
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I.  INTRODUCTION

The world today is surrounded by distributed systems
everywhere, which operate behind the scenes, seamlessly
coordinating tasks across multiple computer-based systems,
often geographically scattered [2]. From global communication
networks to critical financial transactions, these systems rely on
fundamental principles of distributed systems to ensure
reliability and data consistency [1]. A core component of this
reliability is the distributed consensus algorithm, which enables
autonomous nodes to agree on a single value, even in the
presence of network failures or node crashes [9]. In recent
decades, the RAFT distributed consensus algorithm has become
a main pillar of the distributed systems ecosystem.

The RAFT algorithm is a foundational element for ensuring
data integrity in distributed consensus. Designed for
understandability and implementation ease [3], it has not only
simplified the process of building resilient distributed
applications but has also become a standard of comparison for
new consensus research. RAFT achieves its primary goal of
fault tolerance by replicating state across nodes, making it
resilient against system failures and crashes.

However, while RAFT is well-known forits faulttolerance
and simplicity, the consensus mechanism itself typically
operates under a "fail-stop" model (node crashes or network
partitions), assuming non-malicious failures [ 10]. Consequently,
the security concerns regarding its design, particularly its
mitigation against active, malicious attacks, are often not fully
integrated or covered in standard implementations [4, 5]. This
gap leaves implementations vulnerable to threats and attacks
that can compromise the RAFT state machine and data integrity
established by the protocol, potentially leading to data
corruption and service disruption in critical applications [8].

This gap in the existing RAFT implementation poses a
significantrisk of vulnerability; a secure consensus algorithm is
more than just ensuring agreement; it's about safeguarding the
entire ecosystem of distributed systems, protecting data,
preventing disruptions, and ultimately, mitigating failures and
data corruption. In particular, the fact that the protocol does not
have its own end-to-end security mechanisms makes it
vulnerable to potential threats, including replay attacks and
message forgery attacks, which target the RAFT’s message
passing mechanism and disrupt the consensus process.
Therefore, this paper, in the coming sections, analyzes and
evaluates the RAFT algorithm's security properties,
demonstrating its design weaknesses with a focus on its
susceptibility to message replay attacks and forgery attacks. The
primary objective of this researchis to propose and validate a
novel, modular, and lightweight security enhancement that is
based on encryption and authenticated message verification to
mitigate these vulnerabilities and enhance the RAFT security
implementations.

To achieve this objective, the subsequent sections of this
paper first build the necessary foundational Distributed Systems
and Consensus Background in Section II. Then Section Il dives
deeper into the details of the RAFT Distributed Consensus
Protocol. Section IV provides a thorough Security Analysis of
the RAFT vulnerabilities, focusing on message integrity.
Section V presents the Related Work concerning secure RAFT
implementations and countermeasures, justifying the research
gap. Section VIintroduces the Proposed Solution for mitigating
the identified security concemns. Section VII details the
Methodology used for testing and validation, followed by
Section VIIL, which presents the Resultsof the simulated attacks
and the performance evaluation. Section IX provides a dedicated
Discussion of the findings, their implications, and researchers
point of view. Section X offers the Conclusion of this research
outcome. Finally, Section XIoutlines directions for future study.
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II. BACKGROUND

A. Distributed Systems

Distributed systems are the core basis of today's technology
ecosystem, from powering global communication networks to
orchestrating critical financial transactions, distributed systems
can be defined as a collection of autonomous computing
elements (nodes) that appears to users as a single coherent
system [1], within this single system the collection of nodes
regardless oftheir number, locations, or components, operate as
a unified whole, no matter where, when, and how interaction
between a user and the system takes place.

The distributed system provides the means for components
of a single distributed application to communicate with each
other. At the same time, it hides the differences in hardware and
operating systems from each application; this can be
orchestrated using a middleware.

In a sense, middleware to a distributed systemis the same as
an operating system to a computer: a manager of resources
offering its applications to efficiently share and deploy those
resources across a network [2].

The basic distributed systems architecture and the
relationship between its main components: hardware,
applications, the operating system, and the middleware layer,
which acts as a very essential role in coordinating
communication and abstracting hardware differences across the
network, is illustrated in Fig. 1.

Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
1 [
Appl. A Application B Appl. C
[ = N 1 l l [ 1 I ]
Distributed-system layer (middleware)
| Local OS 1 ‘ ‘ Local OS 2 ‘ | Local OS 3 ‘ | Local OS 4 ‘

Fig. 1. The middleware layer extends over multiple machines and offers
each application the same interface.

The middleware, nodes, applications, and this ever-
expanding realm of distributed systems need to assure stability
and consistency of communication and exchanged messages,
and keep all parties informed of all correct and recent updates
on the system, here the important role of the consensus
algorithm, which addresses these needs, is thus witnessed.

B. Distributed Consensus

Consensus in general means agreement made by multiple
parties; for example, if a group of friends decides to have lunch,
which restaurant to order from is an agreement. Basically,
consensus hasthe same meaningin computer science, especially
in distributed systems, as it can be defined as a process where
multiple nodes of a distributed system agree on values of
messages, transactions, or objects. It is a basic challenge in
distributed systems. However, once the nodes agree on a value,
that agreement should be final.
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Some of the earliest implementations of consensus
algorithms relied on voting-based mechanisms, which provide
reasonable fault tolerance and have strong mathematical proofs
to ensure integrity and stability. Some of the popular voting-
based algorithms include Paxos and Raft. Paxos was originally
first proposed by Leslie Lamport in 1989, however it was
published by the end 0of 2001 due to many factors, including, of
course, its well-knownhigh level of complexity, which hindered
its widespread adoption. In response to this, the Raft algorithm
was introducedin 2014 by Diego Ongaroas a simpler alternative
to Paxos. Raft's designemphasizes simplicity and manageability
while maintaining the same level of fault tolerance and
consistency as its predecessors.

III. RAFT DiSTRIBUTED CONSENSUS PROTOCOL

This section provides a briefoverview of the Raft distributed
consensus algorithm. For a more detailed description, please
refer to the original paper “In search of an understandable
consensus algorithm” [3].

A. The Raft

Raftis a highly common and reliable distributed consensus
algorithm designed as a more understandable and easily
implementable alternative to its complex predecessor, the Paxos
algorithm. Raft is a fault-tolerant protocol that depends on a
single elected leader, logreplication, and a probability approach.

To understand how Raft works, let's imagine a server cluster
of three nodes or replicas, each hosts a state machine, log, and
raft protocol, as long as they all begin with the same state and
perform the same operations in the same order then they should
all end up with the same state, anytime a replica receives a
command such as setting a new key with a value, the replica
appends and saves the command as a new entry in its log, every
replica's log must always contain the same exact sequence of
commands for other replicas to remain synchronized.

In a Raft cluster, one nodeis elected as the leader, with the
others actingas followers. The leaderis responsible for handling
all client requests and for replicating log entries to the followers
to ensure they remain synchronized.

B. Leader Election

Atany pointin time,any node of the Raft cluster can takeon
only one state: leader, follower, or candidate. Initially, all nodes
start in the follower state. Each follower sets an election random
timeout. Thus, if a follower fails to receive heartbeats
consecutively, then it assumes there is no viable leader and
transitions to candidate state to startan election [ 13]. It wins the
election and becomes the new leader if it secures a majority of
the total votes. Once elected, a node remains a leader until it
crashes or observes another node with a higher term [15]. If the
election results in a split vote or if another candidate is elected,
the node reverts to the follower state to await a new leader’s
heartbeat. The RAFT leader election flow is illustrated in Fig. 2.

Leader election can begin for any reason, whether it's
brought about after a leader fails, goes offline, if the network
experiences enough latency, or whenanetwork partitionisolates
a follower where a follower reaches its election timeout despite
a leader still being alive.
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Fig.2. The Raft basic leader election flow.

Oncealeaderis elected, it assumes responsibility for logging
all new changes to the system. The leader regularly sends
append entry messages to all followers within the RAFT cluster.
These messages serve a dual purpose: they act as a heartbeat to
prevent followers from initiating a new election, and they
instruct followers to replicate new log entries, ensuring
consistency across the cluster.

C. Log Replication

All changes in the system, such as new commands or
transactions, are exclusively handled by the leader. Changes are
sent by clients to the leader who receives them and appends a
new entry to its log, this log entry remains uncommitted till the
leader replicates it to all follower nodes, then the leader waits
until a majority of nodes in the cluster (>50%)
confirms/acknowledges the new value, now the leader commits
the new entry, and informs the followers that the entry is
committed, and the cluster is considered to have reached
consensus. Fig. 3 shows the basic log replication flow of the
RAFT.
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Fig. 3. The Raft basic log replication flow.
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According to Ongaro and Ousterhout [3], founders of the
RAFT consensus [19,21] algorithm, it was originally designed
to be more understandable than Paxos, simpler, and more
efficient, which later became a foundation for a wide range of
applications requiring fault-tolerant data storage and consistent
state management. However, despite its resilience and
robustness in handling system failures, the RAFT’s message-
passing architecture remains vulnerable to various security
threats that need to be investigated further, including message
forgery and replay attacks.

IV. RAFT SECURITY ANALYSIS

Although that Raft consensus algorithm is a key technology
for state replication in distributed systems [14] and is well-
known for its simplicity, effectiveness, and dependability, its
security vulnerabilities remain a critical area of exploration to
consider. This section investigates some of the known threats,
attack methods, and discusses the potential consequences of
compromising consensus and jeopardizing system stability.

A. Denial-of-Service (DoS) Attacks

A denial-of-service (DoS) attack is a malicious attempt by
an attacker to overload the leader or other nodes with a flood of
messages, preventing them from operating normally and
overloading their resources.

Since Raft adopts a strong leader model, a malicious leader
can launch DoS or censorship attacks by intentionally delaying
or dropping messages, which disrupts log replication and causes
followers to initiate unnecessary elections. Moreover, an
attackercan controlmultiple nodesand, through a majority vote,
ensure that one of their compromised nodes is elected as the
leader [4].

B. Byzantine Attacks / Message Forgery or Impersonation

In the RAFT consensus algorithm, the system’s integrity can
be compromised by Byzantine attacks, which include message
forgery and impersonation, launched by nearby
malicious/illegitimate node(s). Indeed, additions can be seen as
messages surreptitiouslyinserted in the system by some outside,
and possiblymalicious, entity [ 12]. In the impersonation attacks,
malicious nodes try to claim themselves as legitimate
nodes/followers by utilizing a forged character in order to
destroy the consensus mechanism [5].

Byzantine attacks sending fake messages may result in
transaction latency, data inconsistencies, data leaks, and even
compromising system integrity.

This can have a measurable impact on performance. For
example, transaction latency can be modeled to show its linear
relationship to the number of attackers.
The total commit time (¢,.) is the sum ofreplication time(t,.) and
transaction latency (t;):

Transaction commit time can be calculated as follows:
te =t,. +¢
And transaction latency as

t;, =RTT(1 + q)(1 + p)
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This shows that if the number of attackers increases, the
transaction latency would linearly increase as well.

TABLE L. NOTATIONS
Notations Description
te transaction commit time
tr transaction request time
t transaction latency
RTT round-trip time for request/response messa ge
p percentage of Byzantine nodes (=n/m)
attack success rate
n number of Byzantine nodes
m number of all nodes

C. Message Replay Attacks

The previous general vulnerabilities setthe grounds formore
complex attacks. While many types of attacks represent notable
threats, the message replay attacks represent a serious and often
overlooked threat to consensus protocols like RAFT. A message
replay attackis a type of network attack in which a malicious
actor intercepts a legitimate data transmission, captures a valid
message, and maliciously retransmits it later. In the context of
distributed consensus, this attack takes advantage of the
protocol's reliance on message-passing to deceive nodes and
disrupt the consensus process and the system's state (see Table I
for notations).

In the RAFT cluster, an attacker can start a replay attack by
capturing valid, previously sent messages like RequestVote and
re-injecting theminto the network again later, which can cause
a follower or more to respond with a vote, consequently
triggering a new, unnecessary election and causing a leader-
follower split.

The successofamessage replayattack onRAFT is primarily
due to the protocol’s vulnerability to a lack of intrinsic replay
protection mechanisms. Standard RAFT messages do not
include a monotonically increasing sequence number or any
unique, session-based identifier that would allow a recipient
node to detect thata message is a stale duplicate. This absence
of a freshness check makes the protocol susceptible to being
manipulated by replayed messages, leadingto a breakdown in
consensus. This can result in system instability, data
inconsistencies, and a compromise of the distributed system's
integrity.

V. RELATED WORK

The increasing dependency on distributed systems for
critical infrastructure/systems has highlighted the need for
robust consensus mechanisms that are resilient to both crash
failures and malicious attacks. In this section, relevant
researches are reviewed to compare and validate this paper’s
proposed solution for mitigating replay/message forgery attacks
against the default RAFT implementation, and other RAFT
flavors that addressed these concerns.

The theoretical foundation of achieving fault tolerance in
distributed systems is rooted in the State Machine Replication
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approach [9], which requires all replicas to execute the same
sequence of operations in the same starting state [ 1]. To achieve
this goal, we have to make sure no malicious factor is affecting
the state machine and the exchanged messages integrity. The
RAFT consensus protocol [3] was introduced as a practical
alternative to Paxos, focusing on understandability and
simplicity while achieving the same fault-tolerance properties
(tolerating crash failures). Standard RAFT implementations,
however, assume a "fail-stop" environment and do not account
for the Byzantine Faults, where nodes can behave maliciously
and affecttheintegrity ofthe consensus process. This distinction
is crucial, as general Byzantine protocols like P-BFT [20] often
introduce high computational overhead trying to address this
problem, which, on the other hand, prompted research into
lightweight alternatives that can keep the performance
benchmarks whileachievingthe security mitigations effectively.

The standard RAFT design assumes a “trusted” environment
where nodes are honestbut can crash. This assumption left the
protocol inherently vulnerable to active attacks that exploit its
unauthenticated, plaintext message structure. Several studies
have tried to identify, address, and formalize these weaknesses:

1) The Original RAFT: The foundational work by Ongaro
and Ousterhout [3]introduced RAFT as a more understandable
alternative to Paxos, focusing on maintaining consistency
against crash failures and network partitions, implicitly
assuming a trusted network environment, however they did not
consider security attacks such as replay attacks and message
forgery.

2) RaBFT: an improved Byzantine fault tolerance
consensus algorithm based on Raft [10]. Full Byzantine Fault
Tolerance (tolerate f malicious nodes in 3f+1 total nodes),
where it introduces Secret Sharing to optimize log message
distribution and uses a dynamic Committee role to distribute
leader pressure. It alters the log replication process and election
logic. It protects against malicious nodes forging; however, it
requires a complete redesign of the RAFT consensus engine,
introducing complex multi-party computation steps (secret
sharing verification) and new roles (Committee), and adds
loads of overhead layers burden.

3) ENGRAFT (Enclave-Guarded RAFT) is another
example of a security enhancement that operates within the
consensus layer, specifically designed to protect against
Byzantine faults within the nodes themselves [4]. It leverages
Trusted Execution Environments (TEEs), such as Intel SGX
enclaves, to safeguard the core RAFT state and logic on each
node. In ENGRAFT, all critical consensus operations,
including state updates and log manipulation, are performed
inside the secure, isolated hardware enclave. This design is
highly effective at defending against insider threats and BFT
attacks, however this approach introduces dependencies on
specific hardware and results in a higher implementation
complexity in terms of hardware, protocol, and platform.

4) Countering Active Attacks on RAFT-Based IoT
Blockchain Networks [5] using pathloss. This paper proposes a
physical-layer authentication mechanism using pathloss to
secure the Raft against impersonation attacks in a wireless loT
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environment. The proposed solution uses pathloss of the signal
between the transmitter node and the receiver node as a unique
device fingerprint to authenticate the sender. This solution's
weak points are that it can be easily affected by environmental
changes and multipaths.

5) Trust and Reputation Management System [11]: This
method assigns credit scores to nodes based on historical
behaviorto identifyand isolatemaliciousnodes. However, such
systems suffer from the "cold start" problem and slow
convergence; malicious nodes can behave honestly for long
periodsto buildhigh trust. Furthermore, the overhead of storing
and updating reputation scores for every node scales poorly in
large distributed systems.

6) Combination of P-BFT and RAFT: “A New Approach
to Building Networks that Provide Reliability and Security"
[20] proposes a hybrid model that merges the simplicity and
efficiency of RAFT with the robust security of P-BFT. This
combination aims to build networks capable of withstanding
Byzantine failures (malicious behavior). While highly effective
at securingthe consensus process against internal attacks, BFT-
RAFT inherently requires significant modifications to the
RAFT state machine, leading to increased complexity in
protocol execution and a higher overhead.

7) Zero Trust Consensus Algorithm [16]: This notable
effort to bridge the gap between RAFT and modern security
concepts proposes a VSSB-Raft, which adoptsa Zero Trust
security model, "never trust, always verify". It achieves this
high security by leveraging verifiable secret sharing (VSS)
mechanisms and digital signatures to ensure that no singlenode
can compromise the system. While VSSB-Raft demonstrates a
solution for achieving Byzantine Fault Tolerance in a resource-
efficient manner compared to traditional BFT protocols, its
comprehensive security guarantees rely on significant
modifications to the RAFT state machine and the integration of
complex cryptographic primitives, leading to a higher
implementation complexity than modular transport layer
solutions.

8) GPBFT (Group-Based Practical Byzantine Fault-
Tolerant)[17]: an enhancement to the existing BFT protocols,
involves leveraging a Dual Administrator Short Group
Signature mechanism. Allowingnodesto verify messagesusing
short group signatures, while powerful, these solutions
maintain a high barrier to entry, adding significant complexity
and communication overhead, plus it fully replaces the RAFT
with a complex BFT protocol.

9) PB-Raft [18]: integrate Byzantine Fault Tolerance
(BFT) capabilities into RAFT. This solution is dual-layered:
first, introduces a Weighted PageRank algorithmto evaluate the
reputation and trust of nodes. Second, utilizesa BLS (Boneh—
Lynn—Shacham) threshold signature scheme to ensure the
authenticity and consensus of log entries. This solution
introduces two main points of complexity and potential
overhead plus that the leader must collect a threshold of
signatures before committing a log in addition to that the
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reputation scoring based on PageRank requires continuous,
complex calculation and updates across the cluster.

The review of related work reveals a clear trade-off within
the current landscape of RAFT security. While some of the
previous work in this field is mature enough, offering
comprehensive security against malicious attacks, they incur
significant overhead and require complex modifications to the
core consensus logic. This analysis confirms a significant gap in
the literature: the lack of a modular, low-overhead security
solution that operates at the transport layer to specifically and
comprehensively counter active message forgery and replay
attacks on the fundamental RAFT without altering the core of
the consensus protocol itself. Therefore, the objective of this
work is to introducea securetransport layermechanism that fills
this gap, providing essential message authentication and
freshness without altering the RAFT state machine, as detailed
in the following section.

VI. PROPOSED SOLUTION

As discussed in this paper, the Raft distributed consensus
protocol, its mechanism, and its importance, also explored some
of its security risks.

It is intended in this section to mitigate the vulnerabilities to
message replay attacks and propose a secure transport layer
integration to the RAFT, designed to protect communication
between cluster nodes in a modular way, leaving the original
RAFT intact. It uses a combination of modern cryptographic
techniques to ensure message confidentiality, authenticity, some
sort of checksum for integrity, and a message cache for replay
attacks mitigation. This proposed solution is meant to be a
lightweight modification to the original RAFT algorithm,
ensuring thatit remains efficient while significantly boosting its
security properties. The proposed solution architecture is shown
in Fig. 4.

Sender node

RAFT Message
Y

Secure Transport Layer
HKDF (Key Derivation)

AES-GCM (Encryption &
Authentication)

[ Roriey Gocre

Receiver node

Fig.4. Proposed solution basic flow.

The Proposed approach involves three key components:
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A. Unique Encryption Key

The proposed solution uses the HMAC-based Key
Derivation Function (HKDF) [6] to generate a unique,
temporary encryption key for every single message, rather than
depending on a single, long-term key for all communications.
HKDF derives a fresh key for each message from a shared
master secret. This procedure is a very important security best
practice, because if an attacker were able to compromise one
message's key, they would not be able to compromise any other
messages, and the revealed key would be useless.

B. Authenticated Encryption

The AES-GCM Advanced Encryption Standard (AES) in
Galois Counter Mode (GCM) [7] is the cryptographic algorithm
used for both encryption and authentication of RAFT messages
during communication in the proposed solution.

e AES: This partofthealgorithmensures that the message
content is encrypted, so no one can read it in transit. To
guarantee the most complex level of encryption in the
AES process, the GCM [7] mode will be used.

e GCM: This part generates an authentication tag that
guarantees the message has not been tampered with and
that it originates from a valid sender with the correct
key. This is vital in RAFT, where nodes must trust that
a log entry or vote is legitimate and unaltered.

Below is a pseudo-code of the algorithm that explains it:

function secure-envelope(plaintext, confidential, peer id,
K master, key_id):

// generate unique per-message identifiers

nonce « random(12)

tx_id «— random(16)

// derive a unique key for this message

K tx « HKDF-SHA256(K_master, nonce, peer_id)
/I construct Associated Authenticated Data (AAD)
aad < combine(key id, nonce, tx_id, peer_id)

if confidential:

// encrypt and authenticate with AES-GCM

ct_combined <— AESGCM.encrypt(K _tx, nonce, plaintext,
aad)

ciphertext «— ct_combined[:-16]

tag «— ct_combined[-16:]

else:

// authenticate only (generate tag)

ciphertext «— plaintext

tag « compute_tag(K tx, aad, plaintext)

end if

// return the final secure envelope

return { key id, nonce, tx_id, ciphertext, tag}

end function

Vol. 16, No. 12, 2025

The AES-GCM algorithm architecture and full flow, starting
from the initialization vector and till generating the tag which is
attached to the encrypted message, as illustrated in Fig. 5.

C. Replay Cache

A replay cache is a critical additional defense layer against
replay attacks. The replay cache works by maintaining a list of
identifiers (the unique message ID) for all recently processed
messages. When a new message arrives, the system checks its
identifier against the cache. If the ID is found, the message is
immediately rejected as a replay, preventing the attack from
succeeding, else the message is accepted, and its ID is logged in
the replay cache.

Below is a pseudo-code explaining the cache check:

data_structure: cache # internal data structure// Function to
check ifamessage hasbeen seenbefore function SEEN(peer id,
tx_id): key «— combine(peer_id, tx_id) if key in cache:
return True // Replay detected  else:  return
False // New message end if end function // function to
record a new message as seen function REMEMBER(peer id,
tx_id):key «— combine(peer_id, tx_id) cache.add(key)
end function.

Ld
Counter 0

‘l ‘I .Il
plalnlex! 1 NP, plalntm{t 2 ., p\amrexl n .,
v

Fig 5. AES-GCM.

VII. METHODOLOGY

This section provides an overview of the methods and tools
used to evaluate the proposed solution for mitigating replay
attacks and message forgery on a RAFT cluster. The primary
objective is to evaluate the impact of a replay attack on a RAFT
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cluster before and after the implementation of the proposed
security solution to prove the RAFT’s vulnerability and the
efficiency of the proposed solution.

A. Experimental Setup and Architecture

The study's methodology and architecture focuses on a
python based native RAFT implementation based on
https://github.com/nikwl/raft-lite, a physical lab setup of three
nodesin a RAFT cluster, all of the three nodes are running the
Linux (Ubuntu server) as an operating system, and they
communicate through Ethernet network using [Pv4 addresses,
the attack simulator and proposed solution are both developed
using python as shown on Fig. 6.

RAFT cluster (python based)
Leader follower follower
attack
-« — |-
simulator
no#e 1 noc*e 2 no#e 3

Y

‘ IPv4 network ’

Fig. 6. The physical lab architecture.

B. Testing Procedures

The testing process was divided into two distinct phases to
evaluate both the baseline vulnerability of the standard default
RAFT behaviour before implementing the proposed solution
and the efficacy of the proposed solution after implementing it.

1) Pre-implementation testing (baseline vulnerability):
The initial phase focused on subjecting the default RAFT
cluster to a simulated message replay attack to establish a
security baseline we can measure based on.

a) Attack simulation setup: A custom client script,
utilizing Python's socket library to establish a TCP connection
to a follower node of the three-node RAFT cluster.

b) Attack execution: A valid RAFT message (e.g., a
heartbeat or log entry) was captured and subsequently replayed
with no modifications using a specialized attack script
(replaylast) and (entryattack) to simulate log replication to
introduce malicious or stale log entries, representing an explicit
Byzantine message forgery and replay attack scenario.

2) Post-implementation testing (proposed solution
efficacy): The second phase involved implementing the
proposed security mechanism across all three nodes of the
RAFT cluster andenablingthe secure features. The same attack
simulation is then activated again, and the cluster's behavior is
monitored, same as done in phase one.

a) Testing procedure: The exact same steps and attack
scripts used in the pre-implementation phase were executed
against the modified cluster after activating the secure features.
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b) Solution results: The modified RAFT implementation
of the proposed solution successfully rejected and dropped all
attack messages for the following reasons:

e Legitimate Traffic: Throughout the testing, all
legitimate traffic, current messages continued to be
accepted and processed correctly, confirming the
solution's targeted function.

e Replayed Legitimate Messages: Legitimate messages
that were captured and replayed later on were dropped
after the receiver checked and found their unique ID
already present in the local cache (failing the freshness
check).

e New Forged Messages: Newly forged malicious
messages were dropped due to a failure in the integrated
authentication check against the tag introduced and
explained earlier.

3) Performance evaluation: Following the proposed
solution security enhancements, testing and validation,
performance tests were conducted to evaluate the overhead that
is introduced by the proposed solution compared to the default
RAFT implementation. Key performance benchmarks were
measured using the industry standard tool raft-bench in these
tests.

VIII. RESULTS

This section presents the objective findings from the security
and performancetests withoutdetailed interpretation, which will
be reserved for the Discussion section.

A. Security Assessment Results

The security assessment confirmed the vulnerability of the
default RAFT implementation and the effectiveness of the
proposed solution:

1) Pre-implementation testing (baseline vulnerability): As
expected, the default RAFT implementation lacks basic replay
protection and, therefore, successfully accepted and processed
the attack messages. This action disrupted the log consistency
and eventually compromised the consensus state.

2) Post-implementation testing (proposed solution
efficacy): The post-implementation testing phase demonstrated
the effectiveness of the proposed Secure Transport Layer. As
the modified RAFT implementation of the proposed solution
successfully rejected and dropped all attack messages for the
following reasons:

a) Legitimate traffic: Throughout the testing, all
legitimate traffic, current messages continued to be accepted
and processed correctly, confirming the solution's targeted
function.

b) Replayed legitimate messages: Legitimate messages
that were captured and replayed later on were dropped after the
receiver checked and found their unique ID already present in
the local cache (failing the freshness check).

¢) New forged messages: Newly forged malicious
messages were dropped due to a failure in the integrated
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authentication check against the tagintroduced and explained
earlier.

3) Performance benchmarks: The performance tests
evaluated the overhead of the proposed solution compared to
the default RAFT implementation. The results are summarized
in Table IL

TABLEII. PERFORMANCE ANALYSIS
Metric Default Raft Proposed Solution Change %

Throughput 297.19 269.61 -9.28%
Latency 468.01 539.44 15.26%

b=

5 297.19

g

g

% _

g

g

100 200 300

=]

Default Rait [l Proposed Solution

Fig. 7. Throughput performance analysis for default vs. proposed solution.

468.01

milliseconds

=]

200 400 600

Default Raft [l Proposed Solution

Fig. 8. Latency performance analysis for default vs. proposed solution.

As illustrated in Fig. 7, 8, and Table I, the results show a
9.28% decrease in throughput and a 15.26% increase in latency
for the proposed solution. This performance cost is directly
attributed to the computational overhead of generating and
verifying the secure, encrypted messages and unique identifiers
oneverymessage, demonstratinga typical security -performance
trade-off.

IX. DiscussioN

The findings of this research demonstrate that the proposed
solution can effectively mitigate the two critical attacks on the
RAFT: message replay and message forgery. The pre-
implementation baseline testing confirmed that the standard
RAFT design is vulnerable to message replay and forgery
attacks dueto its reliance on unauthenticated messages and the
lack of a freshness check.

The post-implementation analysis showed that the proposed
solution successfully rejected all replayed legitimate messages
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and all newly forged malicious messages. These efficient
outcomes result from a combination of cryptographically
enforced message authentication and the transaction ID-based
replay cache. The authenticated encryption (AES-GCM)
ensures the legitimacy of the sender and the integrity ofthe
message content, while the unique, per-message identifier used
by the Replay Cache successfully guarantees timing-based
replay attacks mitigation.

Security-Performance  Trade-off: The performance
evaluation revealed a typical, quantifiable trade-off between
security and efficiency. The proposed solution introduced a
9.28% decrease in throughput and a 15.26% increase in
transaction latency when compared to the default, unsecured
RAFT implementation. This performance cost is directly
attributed to the computational overhead required for generating
a unique encryption key (HKDF) and performing authenticated
encryption (AES-GCM) for every message sent and received.

The key insight of this research is that the security gained—
protection against system-compromising attacks like forgery
and replay—comes at a price tag of this minimal overhead,
especially in mission-critical environments such as financial
systems or sensitive data ledgers, where data integrity is crucial.
This measured performance impact is an acceptable cost for
achieving a high level of data integrity and authenticity.

Comparison with Alternative Approaches: The modular
design of the solution is a key differentiator. Unlike other
advanced security proposals like RaBFT [10], which requires a
complete redesign of the core RAFT consensus engine, or
pathloss-basedsolutions [ 5], which rely on specialized physical-
layer measurements, our proposal operates entirely at the
transport layer. This approach achieves its primary goal of
mitigating replay and forgery attacks with low complexity and
minimal impact on the core RAFT logic. Which also enhances
the development lifecycle of each component without affecting
the other components or evenreplacing a whole module with a
better-performing one in the future.

Limitations: The primary operational limitation of this
approach is the potential for replay cache size growth over long-
termoperation. This needs tobe managed in the futureto prevent
excessive memory consumption.

X. CONCLUSION

This Paper successfully assessed the security vulnerabilities
of the RAFT distributed consensus protocol, identifying its
critical vulnerabilities to active message replay and forgery
attacks. To mitigate these threats, a novel and modular Secure
Transport Layer integration based on authenticated message
verification and a freshness check was proposed. This paper’s
contribution, unlike previous work that either redesigns the core
RAFT protocol, adds heavy burdens, targets only a specific
message vulnerability (like message forgery), or relies on
specialized hardware/physical-layer attributes, a modular
Secure Transport Layer approach is proposed without altering
the core consensus logic or adding notable overheads.

The scientificvalueadded by thiswork is underscored by the
following contributions:
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1) Vulnerability  validation:  Practical ~ simulation
demonstrating the ease of disrupting the consensus and
compromising the data integrity of the default RAFT protocol,
with which unauthenticated RAFT messages can be exploited
to achieve such.

2) Modular solution: The development and validation of a
lightweight, Transport-Layer-based security enhancement that
utilizes HKDF [6] for unique key derivationand AES-GCM [7]
for simultaneous encryption and authentication can be achieved
without changing the default RAFT logic or adding heavy
burdens.

3) Replay attacks protection: The introduction of a unique
transaction identifier and a replay cache mechanism that

Vol. 16, No. 12, 2025

effectively protects the protocol against previously successful
replay attacks.

4) Message forgery protection: The same unique
transaction identifier, along with the computed TAG, acts as an
additional defense layer to make sure of the authenticity of the
sender and the message itself.

5) Performance characterization: Measuring the security-
performance trade-off, providing experimental data that shows
a robust security gain is achievable with a measured low
overhead of (9.28% throughput decrease and 15.26% latency
increase).

In Table III, a brief analysis comparison between the
proposed solution and other RAFT implementations is
presented.

TABLEIII. PERFORMANCE ANALYSIS
item Original RAFT RaBFT Pathloss (Physical Layer) Proposed solution
Primary Crash  Fault Tolerance . Authentication against Impersonation | Mitigate Replay / Message
. B Fault Tol BFT
Goal (CFT) and Log Consistency yzantine Fault Tolerance ( ) Attacks. Forgery attacks

Mitigation None

Secret Sharing, Dynamic Committee

Pathloss Measurement as a Device | Authenticated Encryption and

Roles, Altered Election/Replication. | Fingerprint. Anti-Replay Cache.
s Application/Consensus  (Protocol .
Layer Application Redesign) Physical Transport
Overhead /| Simple, understandable | High. Complete protocol redesign, Low, minimal impact on core

Complexity | logic.

complex multi-party computation.

Moderate. Requires initial calibration. .
logic.

High performance and complexity

Weakness vulnerable

overhead.

Requires special hardware, susceptible

. he file st h.
to environmental changes. Cache file size growt

The findings of this research confirm that the lack of
message authentication is the biggest security weakness in the
standard RAFT. Our solution provides a high-applicability
framework for enhancing RAFT implementations that prioritize
data integrity over raw speed and cannot tolerate the complexity
of full Byzantine Fault Tolerance (BFT) protocols.

While highly effective against man-in-the-middle replay and
forgery attacks, the solution’s dependence on a per-message
cache introduces a practical limitation concerning memory
scalability and cache management over extended operational
periods.

XI. FUTURE WORK

Future research will focus on transitioning this modular
solution into a production-ready framework by addressing its
current limitations and expanding its current scope. The future
research should include areas such as:

e (Cache optimization: Implementing and evaluating time-
to-live (TTL) and least recently used (LRU) eviction
policies to ensure the replay cache maintains high
efficiency and manages memory consumption
dynamically.

e Secure Key Lifecycle Management: Developing a
secure, dynamic process for periodic rotation of the
master secret key to defend against long-term
compromise of a server.

e Expanded attack areas validation: Broadening the scope
of validation to test the solution against other network-

level vulnerabilities, such as Denial-of-Service (DoS)
attacks.
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