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Abstract—Ransomware remains a key cybersecurity issue
because of its growing amount of obfuscation, polymorphism, and
constantly changing patterns of attack that repeatedly circumvent
conventional defenses. Traditional systems and standard deep
learning may fail, lowering accuracy and increasing false positives.
To address these shortcomings, the proposed work proposes
EvoNorm-GAN, a dynamic adversarial-based detection
architecture that will incorporate Feature-Wise Dynamic
Normalization (FDN) and Generative Adversarial Network to
analyze ransomware in Windows Portable Executable (PE) files in
a very flexible manner. Generator creates ransomware variants;
discriminator classifies files using Wasserstein loss. EvoNorm-
GAN is a TensorFlow application, using the Keras back-end, and
tested on a large-scale Windows PE File Analysis Dataset of 62,
200 samples, with 31, 100 benign and 31, 100 malicious examples.
The experimental findings indicate that EvoNorm-GAN has the
state-of-the-art results 0f 98.2 % accuracy, 98.4 % precision, 98.1
% recall, 97.4 % F1-score, and 0.99 AUC, which are about1 to 3
percent higher than the traditional CNN, RNN, and ensemble-
based models. To enhance transparency and trust, SHAP-based
explainable Al is integrated into EvoNorm-GAN, highlighting key
PE file features such as Section Entropy and SizeOfCode that
drive classification decisions. By combining adaptive learning,
adversarial sample  generation, and  analyst-friendly
interpretability into a unified framework, EvoNorm-GAN delivers
an efficient, robust, and transparent ransomware detection
system. Its scalable and resilient design makes it well-suited for
real-world deployment in endpoint protection and cybersecurity
environments, providing reliable detection of evolving
ransomware threats.

Keywords—Ransomware detection; EvoNorm-GAN; feature-
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I.  INTRODUCTION

Ransomware has rapidly established itself as one of the most
common and harmful categories of cybercrime that targets
people, companies, and critical infrastructure all over the world.
Attacking data by means of data encryption and ransom money,
most commonly, in the form of cryptocurrency, attackers cost
organizations a lot of money and interruptions in business
operations in the most sensitive domains such as healthcare,
finance, government, and education [1], [2]. The most recent
developments, including ransomware-as-a-service (RaaS), have
lowered the barrier to entry since less skilled attackers canrun a
sophisticated campaign using malware through rented packages
[3]. Moreover, the modern ransomware groups also employ the

so-called double extortion, that is, to extort their victims by
encrypting their data beforehand and threatening to publish
confidential information in case of non-payment, which
increases theinefficiency ofthe oldsystemofrecovery based on
backups [4]. Advanced stealth methods such as fileless
execution, polymorphic code, and encrypted command-and-
control communications also complicate the task of defense by
circumventing conventional security products [5], [6].
Conventional detection mechanisms have been the mainstay of
cybersecurity defenses over decades but are no longer being
effective againstthese new attacks. Additional signature-based
tools rely on the identification of any known sequence of bytes
orbehavioral patterns thatare indicative of a known ransomware
[71, [8]- Such systems will fail to detect new or obfuscated
ransomware samples despite their usefulness in detecting
variants previously indexed. Any little modifications to the
payload, through encryption or code obfuscation render the
current signatures useless [9], [10].

Lag time between emergence of a new variant and signature
updates leaves systems vulnerable to major risks, taking
organizations off guard during the most perilous phases of
outbreaks [11]. In feature-based methods of detection, attempts
to create resilience include analyzing suspicious features, i.e. out
ofplace API calls, out of place file encryption activity, or out of
place system resource usage [12]. Such methods, though, are
dependent on domain knowledge and data quality since they
need feature engineering that is expert-driven. Attackers start
countering these methods by slowing down execution,
emulating harmless applications, or using zero-day exploits to
sneak pastthe detection [12]. As aresult, signature-based as well
as feature-based approaches have very high false positives and
false negatives, making them less effective for real-time
detection.

To overcome these shortfalls, researchers have looked
toward machinelearning (ML) and deep learning (DL) methods,
which are able to learn complex feature representations directly
fromraw data. Recentresearch illustrates that DL models such
as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and Transformers are able to pick up on
subtle patterns of ransomware behavior without extensive
human feature crafting [13], [14]. These models are best at
identifying subtle anomalies such as unusual system calls,
memory access patterns, or initial user activity deviations.
Notably, DL frameworks are strong against zero-day
ransomware through the ability to generalize from static rules
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[15]. Nevertheless, even solutions based on DL have their
weaknesses: their main reliance is on the use of the static
normalization techniques such as Batch Normalization, whichin
turn is based on the assumption of the data distribution
constancy. But in cybersecurity where the ransomware families
continue to evolve, this is not true, and the performance on the
new threats becomes impaired and the generalization is weak.
Generative Adversarial Networks (GANs) are a recent
newcomer in this respect withnew opportunities to both perform
anomaly detection and data augmentation. GANs consist of a
discriminator and a generator, where the latter is required to
produce fake samples, and the former is expected to learn the
distinction between fake and real data [ 16]. Adversarial training
has been used in ransomware detection with discriminators
becoming highly effective at picking out malicious features,
with the generators helping in alleviating dataset imbalance by
creating artificial examples of ransomware. Such a two-in-one
advantage makes themodel more resilient and able to generalize
more [17]. Nonetheless, there is one key limitation namely that
vanilla GAN trainingis grounded on normalization techniques
relevant to stationary distributions and therefore not stable in
realistic ransomware situation where feature distributions vary
over time. This evolving nature of ransomware reinforces the
need of modelsto study on the basis of adjustment to evolving
distributions throughout training. Compared to CNN, RNN, and
Transformer-based models, which have good feature extraction
features, and GANs, which have adversarial features, none can
solve the non-stationarity problem successfully. Without this
type of adaptability, detection models will be less precise and
provide false alarms with ransomware constantly evolving. This
research gap offers the foundation on which more complex
frameworks that integrate adversarial learning and dynamic
normalization can be built to offer stability and flexibility.

It is against this backdrop that the proposed EvoNorm-GAN
comes up with a new solution to ransomware detection in
Windows Portable Executable (PE) files. EvoNorm-GAN
(using feature-wise dynamic normalization as part of the GAN
architecture) cantherefore modify feature statisticsin each mini-
batch, and hence adopt changing data distributions during
training. The new mechanism counters the deficiencies of the
old methods of normalization, ensuring the stability on the new
types of ransomware variants detection. With adversarial
training, EvoNorm-GAN employs Wasserstein lossand gradient
clipping to guarantee stable training as well as improved ability
to generalize to new threats. When put in a wider context of
research on ransomware identification, EvoNorm-GAN is a
well-equipped and versatile solution to fill the gap of the long-
standing deficiencies of the existing methods and respond to the
demands of the modern world of cybersecurity.

A. Research Motivation

Ransomware has become an extremely dynamic threat,
taking advantage of obfuscation, polymorphism, encryption,
and delayed execution to avoid the old methods of detection,
such as signature-based and static feature analysis. The existing
systems have difficulties with detecting the zero-day attacksand
adapting malware, which is why the development of smart and
resistant detection systems is urgently needed. This research
seeks to devise an active and responsive framework thatcan be

Vol. 16, No. 12, 2025

effective in identifying ransomware in windows PE files and at
the same time make them interpretable. The ability to
incorporate Feature-Wise Dynamic Normalization (FDN) into a
GAN framework, combined with the implementation of
explainable Al using SHAP and present a transparent and
practical approach to cybersecurity challenges in the real world,
makes the proposed methodology an effective solution to this
type of problem.

B. Research Significance

By identifying the weaknesses of the existing traditional
ransomware detection tools that find it difficult to match the fast
development of malware, the study discusses the most pressing
issues of cybersecurity. It presents a dynamic, adaptive, and
interpretable EvoNorm-GAN model that can cope with the
changes in data distributions and indicates unseen ransomware
variations by using Feature-Wise Dynamic Normalization
(FDN). Adversarial training, which is under the guidance of
Wasserstein loss and gradient penalty, increases the model
stability and resistance against new threats. The explainability
offered by SHAP-based explainable Al offers feature-level
interpretability to bridge the black-box model decisions and the
human understanding gap. The resulting architecture provides
ransomware detection that is transparent, correct, and scalable
to better secure organizational and critical infrastructure
systems.

C. Key Contributions

e Introduces EvoNorm-GAN, combining GAN-based
adversarial learning with Feature-Wise Dynamic
Normalization to detect ransomware in Windows PE
files.

e Enables the model to adapt to evolving ransomware
patterns and non-stationary data distributions, improving
generalization to unseen threats.

e Incorporates SHAP-based interpretability, highlighting
critical PE file features influencing classification and
enhancing transparency for cybersecurity analysts.

e Provides a scalable and robust framework suitable for
real-world deployment in endpoint protection systems,
SIEM platforms, and dynamic malware detection
environments.

The structure of the remaining sections of this study is as
follows: Section II provides a summary of prior research on
ransomware detection techniques, emphasizing advancements
in machine learning and deep learning methods. Section III
discusses the challenges and limitations of existing approaches
in addressing the dynamic and evolving nature of ransomware
attacks. Section IV details the proposed EvoNorm-GAN
framework, including its methodology, model architecture, data
preparation process, and evaluation metrics. Section V presents
the experimental results, showcasing the framework's
performance in detecting ransomware, along with an in-depth
analysis of the findings. Finally, Section VIconcludes the study
by summarizing the key outcomes and proposing directions for
future research and applications in cybersecurity.
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II. RELATED WORKS

Singh et al. [18] proposed RANSOMNET, a hybrid deep
neural model consisting of convolutional neural networks
(CNNs) for local feature extraction and Transformers for
learninghierarchical representations. Tested on cloud-encrypted
data, the model attained 96.1% testing accuracy with precision,
recall, and F1-scores higher than 96%. The research also
included interpretability analysis to enhance transparency.
Despite its robust performance, though, RANSOMNET+ did
not test cross-dataset adaptability or real-time deployment
efficiency, meaning there are questions about whether it would
be robust to novel ransomware variants.

Alqgahtani [19] improved the traditional mutual information
feature selection technique by introducing eMIFS, which
utilizes a normalized hyperbolic tangent (tanh) function as a
criterion for assessing redundancy between features. Utilizing
TF-IDF representations of text-based features, the technique
enhanced discrimination among relevant features, allowing for
earlier identification of ransomware. eMIFS enhanced selection
accuracy over conventional techniques but wasn't
experimentally tested over varied datasets and didn't consider
dynamic or changing malware distributions, limiting real-world
applicability.

Lee et al. [20] addressed entropy-based detection system
weaknesses, presenting the potential for attackers to tamper with
file entropy using encoding techniques like Base64 masking. In
response to this, the authors introduced Format-Preserving
Encryption (FPE) methods, including Radix Conversion, which
realized 96% neutralization accuracy in detecting entropy
tampering in ransomware. While powerful in attacker-focused
environments, the method offered restricted opportunity for
proactive defense methodologies and failed to incorporate
adversarial resilience to varying data trends.

Molinaetal.[21] analyzed evasive ransomware behavior, or
"paranoia" API calls, which evaluate the execution environment
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prior to attacking. Their method utilized natural language
processing (NLP) techniques, including out-of-vocabulary
(OoW) embedding, to identify API requests that correlate with
evasive behavior. Based on over 3,000 malware samples, they
trained machine learning and deep learning classifiers with high
classification accuracy. However, their dependence on pre-
attack patterns limited use against ransomware variants that
tamper with or hide initial execution cues, reducing its detection
capability.

Gazzan et al. [22] introduced UA-DES, an uncertainty-
aware dynamic epoch selection deep learning-based strategy, to
dynamically optimize deep belief networks (DBNs) for
ransomware detection. UA-DES utilized Bayesian methods,
dropout, and interactive learning to minimize overfitting and
enhance robustness. The framework showed encouraging
adaptability and performance gainsbutwas limited to DBNs and
did not specifically address the challenges of evolving, non-
stationary ransomware distributions.

Previous works show significant improvement in
ransomware detection by hybrid deep learning, feature
extraction, entropy manipulation analysis, behavioral modeling,
and uncertainty calibration. These, however, all have one thing
in common: they require relatively stationary data distributions.
None of them properly handle the non-stationary and dynamic
nature of ransomware that destroys generalization in adversarial
learning scenarios. To close this gap, the suggested EvoNorm-
GAN presents feature-wise dynamic normalization in a GAN
structure to facilitate real-time adaptation to changing feature
distributions. With adversarial training coupled with
Wasserstein loss and gradient clipping, EvoNorm-GAN
balances stability and flexibility to provide a robustapproach to
ransomware detection in complex and constantly changing
settings. The comparative analysis of ransomware detection
related works is shown in Table L.

TABLE I. COMPARATIVE ANALYSIS OF RANSOMWARE DETECTION RELATED WORKS
Author Focus Area Methods Dataset Key Results Limitations

. Deep  leaming  for CNN +  Transformer | Cloud-encrypted 96.1% accuracy, Fl1- Lac.ks . cross-dataset
Singh et al. [18] cloud-encrypted (RANSOMNET-) ransomware dataset score 96% validation; not real-

ransomware time adaptable
. eMIFS (tanh-based Improved feature | No real-world or multi-

. Feature selection & . Text-based ransomware A

Algahtani [19] redundancy reduction redundancy evaluation, features relevance &  early | dataset validation;

y TF-IDF) detection static approach
Format-Preserving . . 96%  accuracy in | Attacker-centric; lacks

Entropy-based . . Files with entropy .. .
Lee et al. [20] detection ion Encryption (Radix maskin neutralizing  entropy | proactive defense
etection evasio Conversion) asking attacks integration

Limited to pre-attack

overfitting

. Behavioral evasive | NLP (OoW embeddings for Effective classification | . .. X
Molina et al. [21] . . . 3,000 malware samples . . indicators; narrow
detection API call classification) of evasive behavior scope
Uncertainty-aware DL | UA-DES (Bayesian+ DBN | DBN ransomware Robustness Restricted to  DBNs;
Gazzan et al. [22] . Lo improvements, reduced | does  not  address
strategies optimization) benchmarks

evolving threats

III. PROBLEM STATEMENT

Ransomware has remained a major cybersecurity menace
that has been adopting damaging strategies of obfuscation,
polymorphism, and encryption, as well as delayed execution,
which overcome traditional signature-based and static feature

detectors [18]. The current literature has considered deep
learning models, feature selection, entropy-based analysis,
behavioral modeling, and uncertainty-aware strategies, but they
tend not to be adaptable to novel ransomware types, generalize
across datasets, and offer minimal interpretability to make
decisions [22]. This is why gaps cause high rates of false
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positive, lack of warmning of zero-day threats, and lack of trust in
automated systems, limiting the effectiveness of cybersecurity
defenses. The proposed framework comprising EvoNorm-GAN,
with Feature-Wise Dynamic Normalization, adversarial
training, and SHAP-based explainable Al overcomes these
shortcomings to provide a high-quality, adaptive, and
explainable ransomware detector to support growing threats.

IV. PrROPOSED EVONORM-GAN FOR ADAPTIVE
RANSOMWARE DETECTION

This study presents a comprehensive framework for
detecting ransomware in Windows PE files using EvoNorm-
GAN. It is a combination of structured data preprocessing,
normalization of features, adversarial training, and explainable
Al to guarantee correct, adaptive, and interpretable
classification. The features of the raw PE files are cleaned and
normalized and their contents are fed into the generator-
Discriminator network which is trained with Wasserstein loss
and gradient penalty to increase stability and robustness. SHAP
is also included to offer an interpretability feature on a feature
level, so that an analyst can gain insight into model decisions.
The overall step-by-step workflow of the proposed methodology
is shown in Fig. 1.

Data Collection

Preprocessing

Feature-Wise
Dynamic
Normalization

Windows PE
File
Analysis
Dataset

@ _>_,
-

Adversarial
SHAP with EvoNorm-GAN

Ransomware Detection

Deployment <=

Training Using
voNorm-GAl

Fig. 1. Workflow of the proposed model.

A. Data Collection

The "Windows PE File Analysis Dataset" [23] is a big
dataset of more than 62,000 samples of benign and malicious
Windows executable and DLL files, for malware analysis and
detection research. Each dataset sample is described by static
attributesinferred from the Portable Executable (PE) file format,
for example, PE header properties and structural elements.
These attributes provide critical information regarding file
attributes that distinguish legitimate programs from malware,
e.g., ransomware. Data is stored in a CSV file and includes
samples labeled with known malware hashes from repositories
like VirusShare, and it is ideal for training and testing machine
learning and deep learning models for static malware detection.

B. Data Pre-Processing

1) Missing value imputation: Missing values are replaced
to maintain data consistency. Continuous attributes (e.g., file
size, entropy) are imputed with mean, while categorical
attributes (e.g., section names, header flags) are imputed with
the mode.

2) Duplicate removal: Repeated records, including
identical hash samples, are removed to prevent data bias.

Vol. 16, No. 12, 2025
3) Label encoding: Convert categorical labels to binary
format for classification. It is expressed in Eq. (1).

{ 0, benign
1, ransware

= (1

4) Min-max feature scaling: Continuous features arescaled

to [0,1] to prevent features with large values from dominating
the learning process. It is expressed in Eq. (2).

x' = X~ Xmin (2)

Xmax~Xmin

where, X,,;, and x,,,, are the minimum and maximum
values of the feature.

C. Feature-Wise Dynamic Normalization (FDN) for GAN
Stability

Feature-Wise Dynamic Normalization (FDN) has been
presented as a solution for addressing distributionshifts of mini-
batches in the training stage in GANs when input data have
dynamically shifting patterns in the data such as dynamic
pattemns found in real cybersecurity threats such as ransomware.
Traditional normalization techniques, such as Batch
Normalization, rely on static statistics (mean and standard
deviation) computed over a data set or mini-batch and can be
problematic when the data distribution is diverse, especially
when the data set is non-stationary (e.g., data thatevolves over
time due to new behavior, e.g., ransomware that continues to
evolve).

FDN avoids this by calculating the mean {4y qmic and
standard deviation 6}, for dynamically at each epoch from
the current mini-batch and feature space. In other words, rather
than using global or static statistics, normalization is calculated
locally and brought up to date as training proceeds. This allows
the model to adjust to new, unseen patterns of behavior,
providing improved generalization for continuously changing
data [24].

For every training mini-batch, the statistics used for
normalization are recalculated dynamically. In particular, the
mean Uy, and standard o, 4, are calculated for each feature
in the mini-batch. Each feature value x is normalized by
subtracting the respective batch mean and dividing by the batch
standard deviation, as given in Eq. (3).

xl — X—Hpatch (3)
Obatch+e
where, x' represents the normalized feature, pt} 4., and
Opatcr are the computed batch mean and batch standard
deviation, respectively, and € is a small constant added to

prevent numerical instability.

By refreshing these figures at every epoch, FDN makes sure
thatthe model keeps onrespondingto shiftingdata distributions,
which is especially beneficial for use in the case of adversarial
training where the discriminator and generator are usually
presented with new unexpected behaviors (e.g.,novel
ransomware attacks). Fig. 2 shows the training flowchart of
EvoNorm-GAN illustrates the mini-batch feature normalisation,
adversarial training between the generator and discriminator,
optimising Wasserstein loss, gradient clipping and iterative
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adaptation to changing distributions of ransomware to ensure
robust detection.

Start

+

Load Mini-Batch:
Retrieve WNew Batch

+

Compute Dynamic Status

!

Normalize the data

¥

Update Model Weights
Train GAN No

¥

Repeat for NextEpoch
Update States

}

If Converged

Yes
v

End

Fig.2. FDN-GAN with feature-wise dynamic normalization for stable
adversarial learning.

D. Adversarial Training Using EvoNorm-GAN

EvoNorm-GAN consists of the adversarial training phase,
during which two rival networks the generator Gand the
discriminator D undergo a dynamic training process to
maximize the ransomware detecting potential of the model. The
generator gets a latent noise input z ~ P, and is trained to
generate synthetic Portable Executable (PE) feature
representations, which resemble the real ransomware samples
and benign samples, whereas the discriminator is trained at
differentiating between the actual samples x ~ Py, and the
synthetic ones G(z) . This interaction creates a min max
optimization procedure, which allows the discriminator to leamn
fine grained decision boundaries, which can learn the behavioral
signatures of ransomware in the high dimensional feature space.
The training goal is based on the Wasserstein Generative
Adversarial Network (WGAN) construction that enhances the
stability of convergence by means of the Earth-Mover (EM)
distance over the Jensen-Shannon divergence. The loss of the
discriminator is defined as Eq. (4):

Lp = Expyua[DOO] = Eoep, [D(G(2))] Q)

and the generator’s objective is to minimize the
discriminator’s ability to distinguish between real and generated
samples in Eq. (5):

Vol. 16, No. 12, 2025

Lg=—E,.p,[D(G(2)] (&)

These equations make sure that the generator is
incrementally  strengthened to produce realistic-like
ransomware, and the discriminator is made strongerto recognize
the slight differences. The Wasserstein metric offers more
informative gradients which are smoother and thus avoiding the
vanishing gradient issue experienced with traditional GANs. In
order to achieve the 1-Lipschitz continuity property to construct
the Wasserstein distance, a gradientpenalty termis added as a
regularization method:

Lep = AUIE%P,?[(" VeD(R) Nl — 1)2] (6)

Eq. (6), £ is an interpolated sample between real and
generated data, and A is the penalty coefficient that controls the
trade-off between stability and learning capacity. This penalty
does not only stop the discriminator overfitting, but also
provides training consistency in cases where the discriminator
might overfit when using complex variations of features that fall
in the samples of polymorphic ransomware. The discriminator
is normally updated several times before a single generator
update during the training cycle to ensure a balance between the
two networks. The optimization process is done with Adam
optimizer and learning rates 1, =4 x 10~*and lr; = 2 X
10~*, and momentum parameters f; = 0.5and 8, = 0.9. The
iterative updates are used to refine the two models until the
generated feature distributions are similar to the real PE dataset.
As the trainingmoves forward the Wasserstein distance between
real and generated data decreases indicating that the generator
has learnt realistic malware behavior patterns; the discriminator
has become discriminative.

Gradient penalties, gradual adversarial updates, and
Wasserstein optimization guarantees the smooth convergence,
helps to reduce mode collapse, as well as, improves the
generalization to unseen variants of ransomware. Through
repeated training on discriminator with adversarially generated
samples, the EvoNorm-GAN architecture can be made more
resistant to new obfuscation and packing methods that normally
harm traditional deep learning-based detectors. As a result, the
trained adversarial model attains a strong balance between
sensitivity and specificity, which guarantees strong ransomware
detection under changing threat circumstances.

E. SHAP with EvoNorm-GAN Ransomware Detection

After the EvoNorm-GAN discriminator predicts whether a
PE file is benign or ransomware, SHAP values are computed to
measure the contribution of each feature toward the model’s
output. Formally, the SHAP value for a feature iis defined as in

Eq. (7).
_ ISII(IFI-IS|-1)! )
b= Z RS U - )] (D)
SCF\{i}

|FI!

Here, Fis the set of all features, Sis a subset of features
excluding i,and f (S)represents themodel output when only the
features in Sare present. The term £ (S U {i}) — f(S)measures
the marginal contribution of feature ito the prediction across all
possible subsets of features, ensuring a fair attribution of
importance. In your experiment, once the discriminator output
is obtained after the preprocessing and feature extraction, the
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discriminator output is ranked with SHAP to determine the
attributes that are the most significant in a PE file, as far as the
ransomware classification is concerned. Such features as section
entropy, PE header values, and import table anomalies are given
higher SHAP values when they have a strong influence on the
modelto predict ransomware. The sum of SHAP values over the
data set gives an idea of the attribute importance on a global
scale, the ones that are more important in predicting
ransomware. On a file-by-file basis, local explanations can be
used to visualize why a particular PE file is judged as malicious
or benign, which can help cybersecurity analysts to perceive
howthe model rationale works and develop a specific mitigation
strategy. The integration of SHAP with EvoNorm-GAN is more
interpretable, encourages confidence in automated detection,
and offers practical information about the features of
ransomware.

F. Integration Framework for EvoNorm-GAN

The integration structure of the EvoNorm-GAN makes all
the steps of detecting ransomware one unified pipeline to
combine the data preprocessing, normalization, adversarial
training, classification, and interpretability. The raw Windows
PE files in the dataset are firstingested and data is preprocessed
to guarantee quality of data including any missing values,
duplicate data, corrupted files and the encoding of categorical
labels. Consecutive characteristics like file size, header values,
and entropy are normalized with Min—Max normalization,
whereas training phase uses the Feature-Wise Dynamic
Normalization (FDN) to keep the models stable in the non-
stationary distributions. These normalized feature sets are then
inputted into the EvoNorm-GAN adversarial model, in which
the generator generates ransomware-like patters and the
discriminator is trained to become a file classifier, i.e. whether it
is benign or malware. This application of Wasserstein loss
optimization together with gradient clipping training increases
the stability of training in GANs and alleviates many of the
pitfalls associated with this model, such as mode collapse and
unstable convergence. After being trained, the discriminator
provides binary classifications of new PE files. In order to
guarantee interpretability, SHAP is included, which offers
insightsat feature-level information about the prediction process
by measuring the contribution of each PE attribute to the
classification. The overall architecture of the ransomware
detection systemis astrong, scalable, and explainable Alsystem
preprocessed, dynamically normalized, trained with adversarial
learning, and explained. The integrated architecture can be
deployed in real-world environments of cybersecurity, including
endpoint security systems or SIEM platforms, with adaptive
defense against the continually changing ransomware and
allowing analysts to be aware of, have trustin, and take action
on the decisions of the model. The overall framework is
illustrated in Fig. 3.

The EvoNorm-GAN framework proposes anumber ofnovel
contributions to ransomware detection. It dynamically adjuststo
changing ransomware patterns and non-stationary PE file
distributions, by applying Feature-Wise = Dynamic
Normalization in a GAN architecture, which is better than
traditional normalization techniques. The Wasserstein loss and
gradient penalty adversarial training can achieve constant
convergence and robust feature learning, whereas the
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interpretability of SHAP can offer a clearer and more feature-
level explanation to cybersecurity analysts. Such an adaptive
normalization and adversarial learning, with explainable Al is a
distinctive, scalable, and robust methodology to identify known
and unknown variants of ransomware.

Input PE File

Data Preprocessing
transformm PE into a
suitable formatf model

FDN Normalization
Group Normalization

Generator

GAN Gion
Adversarial
Training

&

Discriminator
Classification

Discriminator
Generatos syntheti
synthetic PE-
PE file features

&,
Discrimiabiity
SHAP-based Interretability
Malicous or bencen

<> SHAP Explanations 07

contributed most to decision

Model
Assessment

Fig.3. Working process of EvoNorm-GAN with XAI framework.

Algorithm 1. EvoNorm-GAN Ransomware Detection
Input: Windows PE dataset X with labels Y
Output: Binary classification of PE files (benign = 0, ransomware

=1)

and SHAP interpretability values ¢
Load dataset X and Y
Preprocess dataset:
For each sample x in X:
For each feature fin x:
If f is missing:
If f is continuous:
Fill f with mean or median of the feature
Else if f is categorical:
Fill f with mode of the feature
End If
End For
If sample x has critical unrecoverable fields:
Remove x from dataset
End If
End For
Remove duplicate samples
Encode labels: benign = 0, ransomware = 1
Normalize continuous features:
For each feature fin X:
x' = (f - min(f)) / (max(f) - min(f))
End For
Initialize EvoNorm-GAN:
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Initialize Generator G and Discriminator D
Set learning rates and optimizer parameters
Train EvoNorm-GAN:
For each epoch:
For each mini-batch B in X:

Generate synthetic samples G(z) using random noise z
Compute D(x) for real samples x in B
Compute D(G(z)) for generated samples

Compute discriminator loss L D = mean(D(x)) -
mean(D(G(z)))

Compute generator loss LG = -mean(D(G(z)))

Compute  gradient penalty L GP = A *

mean((norm(gradient(D(interpolated samples))) - 1)"2)
Update discriminator: D=D -Ir_ D * gradient(L D+L_GP)
If batch_step % n_critic = 0:
Update generator: G=G - Ir_G * gradient(L_G)
End If
End For
End For
Classify new PE samples:
For each sample x_new:
y_pred = D(x_new)
Ify pred >=0.5:
Label =1 // ransomware
Else:
Label =0 /benign
End If
End For
Explain predictions using SHAP:
For each sample X _new:
For each feature fin x_new:
Compute ¢ _f=SHAP value(f, x_new, D)
End For
End For
Output predicted labels for all PE files
Output SHAP values ¢ for feature interpretability

The EvoNorm-GAN algorithm preprocesses the features of
Windows PE files and normalizes them, followed by the training
of a generator to generate synthetic ransomware patterns and a
discriminator to classify files as benign or ransomware using
Wasserstein loss with gradient penalty. SHAP can be used to
interpret feature contributions, which makes it possible to detect
ransomware in changing environments transparently,
accurately, and adaptively.

V. RESULT AND DISCUSSION

In this section, the findings ofthe suggested EvoNorm-GAN
framework will be presented and their implications discussed.
Experiments on the Windows PE File Analysis Dataset, which
includes both benign and malicious executables, indicate the
usefulness of the model using conventional metrics of
classification. Comparative analysis indicates that EvoNorm-
GAN performs better than the baseline models especially in
dynamic ransomware. The role of Feature-Wise Dynamic
Normalization and adversarial training on the enhancement of
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performance is also confirmed by ablation studies. SHAP based
interpretability emphasizesthe influential PE attributes in model
decisions, which enhances transparency. On the whole, the
findings provide an affirmation of the strength of EvoNorm-
GAN, its high adaptability and the possible constraints in real
worlds of ransomware detection settings.

A. Experimental Setup

Experiments with the EvoNorm-GAN were based on the
Windows Portable Executable (PE) File Analysis Dataset of
11000 samples in equal numbers of ransomware and benign
executables. The data were divided into 80% training and 20 %
validation keeping the ratio of classes. Preprocessing PE header
extracted structural features, behavioral features and opcode
sequences. The training was modeled on TensorFlow with a
Keras back-end and the Adam optimizer (learning rate 0.0002,
0.5 -1). Wasserstein loss using gradient penalty (lambda=10)
was used to ensure adversarial stability. The batch size used in
all experiments was 64. Table Il includes the summary of the
dataset, preprocessing measures, environment and evaluation
metrics to identify ransomware.

TABLE II. SIMULATION PARAMETERS

Parameter Value / Description

Windows Portable Executable (PE) File Analysis
Dataset

11,000 (5,500 ransomware, 5,500 benign)

Dataset

Total Samples

Training—

o) pi o S
Validation Split 80% training, 20% validation

. Feature extraction from PE headers and opcode
Preprocessing

sequences
Framework TensorFlow with Keras backend
Optimizer Adam (learning rate =0.0002, 1 =0.5)
Loss Function Wasserstein loss with gradient penalty (A=10)
Batch Size 64

NVIDIA RTX GPU (12 GB), Intel i7 CPU, 32 GB
Hardware

RAM

TABLE III. DATASET STATISTICS
Category Number of Samples Percentage

Benign Executables 28,500 45.8%
Malicious Executables 33,700 54.2%
Total Samples 62,200 100%

Table. Il presents the sample size is 62 200 executable
samples that are in two categories benign and malicious. Of
them, 28, 500 (45.8) are benign executables and the remaining
33,700 (54.2) samples are malicious. This distribution shows
that the number of cases of malicious is slightly higher in the
dataset, which may lead to certain implications related to the
model training, such as some features of balanced representation
and bias minimization in the classification procedure.

Fig. 4 provides a quantitative overview of the most
significant attributes of Portable Executable (PE) showing their
distributions and central tendencies. The executable code size
that is expressed as SizeOfCode is 512 by 3.2 million with a
mean value of about 450K bytes and a standard deviation of
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120K bytes, which means there is a great deal of divergence.
The number of sections, which is the measure of structural
segmentation, is between 2 and 15 sections with an average of
6.3 and a deviation of 2.1 indicating an average architectural
diversity. The overall memory footprint, SizeOflmage, ranges
between 4K and 7.8 million bytes, mean 1.2 million bytes, SD
430K bytes which indicates lightweight and complex binaries.
T 1.2-79, 4.8, SD 1.3, with a profile of mixed content
predictability.
—— SizeOfCode (bytes)
- NumberOfSections

—— SizeOfimage (bytes)
—— Entropy of Sections

Min

Std. Dgv Max

Mean

Fig. 4. Feature distribution.

Feature Importance (SHAP Scores)

TimeDateStamp

Resource Section Size

DLL Characteristics

SizeOfHeaders

PE Attribute

Import Address Table Size

NumberOfSections

Size0fCode

Section Entropy

I T T T T
0.00 0.05 0.10 0.15 0.20
SHAP Importance Score

Fig. 5. Feature importance analysis.

Fig. 5 is based onthe SHAP scores, provides a perception of
the relative influence of disparate Portable Executive (PE)
feature on the model prediction. Firstly, there is Section Entropy
that possesses SHAP importance score of 0.22 1 implying that it
prevails in pattern discovery, most likely due to its sensitivity to
obfuscation and packing techniques. Then there is SizeOfCode
(0.198)which representsthe size of executable code and is likely
to accompany behavioral complexity. The NumberOfSections is
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placed on the third position (0.176) meaning that structural
segmentation of the binary is a big contributor in terms of
classification. More importantly, the Import Address Table Size
(0.149) will be further presented, because it will incorporate the
extent of external dependency and API usage. SizeOfHeaders
(0.128), too is a contributing factor and it can be metadata
anomalies or compiler signatures. DLL Characteristics (0.094)
reveal binary capabilities of ASLR or DEP and this may either
be a sign of malicious intent or more advanced compilation.
Resources Section Size (0.081) and TimeDateStamp (0.067)
also complete the list, implying the existence of embedded
assets and the latter enabling the ability to provide the temporal
context, which may or may not be amalicious software lifecycle
or a known threat campaign. Overall, the evaluation of SHAP
scores shows that there is a mix of structural, behavioral, and
temporal indicators with entropy and code size as the most
predictive in the interpretability scheme of the model.

PCA Visualization of Real vs Generated PE Samples
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Fig. 6. PCA Visualization of generator output vs. real samples.

Fig. 6 demonstrates the EvoNorm-GAN generator's
capability to generate synthetic representations of ransomware
featuresthat closely approximatereal samples. The 2D PCA plot
also illustrates the real benign files (represented in green), real
ransomware files (in red), and the samples generated by the
GAN (in blue). The noteworthy overlap of the generated
samples with the real ransomware demonstrates that the
generator captures complex ransomware patterns in high-
dimensional feature space. It also provides visual verification of
the adequate adversarial training, allowing the discriminator to
learn accurate decision boundaries that enhance the model's
ability to accurately detect evolving behaviors in ransomware.

Fig. 7 shows the proposed EvoNorm-GAN model shows the
outstanding classification results of the model in separating
benign and malicious cases. Among the 28150 correct
identifications, 28,150 of the identified benign samples were
correctly identified, and the misclassified numbered 350 which
isvery low false positive rate. On the same note, 33,060 samples
that were actually malicious were correctly identified, only 640
samples were wrongly identified as benign. Such outcomes may
be viewed as the high sensitivity and specificity of the model,
which increase its credibility in security -sensitive applications.
The high diagonal dominance of the matrix indicates the
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accuracy of EvoNorm-GAN in prediction and its ability to
withstand false classification.

Confusion Matrix - EvoNorm-GAN
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Fig. 7. Confusion matrix.
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Fig. 8. Training and convergence analysis.

Fig. 8 shows the model stability was high, and the loss was -
0.41 at 80 epochs, with the model accuracy reaching 97.4%,
which indicates that the optimization process was always
efficient. After which, the modelachieved the best accuracy of
98.0atepoch 100 withthe lowest Wasserstein lossof-0.35. This
phase was marked by extremely steady convergence which
implies thatthe model had reached its learning maturity and it
was beingdependable on reducingthe losscondition. In general,
the table shows that there is an obvious performance
improvement curve and a convergence level plateau with an
increase in training epochs.

Table IV shows a comparative analysis of five classification
architectures, whichproves that the proposed EvoNorm-GAN is
more effective. The traditional Logistic Regression has an
accuracy of 89.3 %, a precisionof 88.7 %, a recall 0£90.1 %,
F1-score 0f 89.4 %, and an AUC of 0.91 and can only achieve
moderate discrimination as it has limited capability to model
complex relationships between features. Random Forest also
enhances its performance at 94.5 % accuracy and AUC of 0.96
using ensemble learning and a feature bagging algorithm.
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XGBoost also improves the results with an accuracy of 96.1 %,
precision 0 96.8 %, and an AUC of 0.97, and it has the ability
to handle the imbalanced and non-linear data. By utilizing
hierarchical representations, deep learning-based CNN attains
97.3 % accuracy, 97.3 % balanced F1-score. EvoNorm-GAN is
much better than any of the baselines, with 98.2 % accuracy,
98.4 % precision, 98.1 % recall, F1-score of 98.2 % and the best
AUC 0f0.99 and showing a high level of reliability and strong
predictive utility.

TABLEIV. PERFORMANCE COMPARISON OF EVONORM-GAN WITH
BASELINE MODELS
Accuracy | Precision | Recall Fl- Fa.lfe
Model (%) %) %) Score Positive
° ° ° (%) | Rate (%)
Logistic 89.3 88.7 90.1 894 | 091
Regression
Random 94.5 952 938 | 945 | 096
Forest
XGBoost 96.1 96.8 95.5 96.1 0.97
CNN 97.3 97.1 97.6 97.3 0.98
EvoNorm-
GAN 98.2 98.4 98.1 98.2 0.99
(proposed)
TABLE V. ABLATION STUDY RESULTS
.. F1-
Confieuration Accuracy Precision Recall Score
8 (%) (%) %) o
(%)
EvoNorm-GAN
without FDN | 95.9 95.3 94.8 95.0
(BatchNorm only)
EvoNorm-GAN
without ~ Wasserstein | 96.2 95.8 95.1 95.4
Loss
EvoNorm-GAN
without Gradient | 96.6 96.1 95.6 95.8
Clipping
Full EvoNorm-GAN 98.0 97.8 97.1 97.4

Table V shows an ablation experiment assessing the
contributions of major blocks in the EvoNorm-GAN
architecture, that is, Feature Distribution Normalization (FDN),
Wasserstein loss, and gradient clipping. The naive baseline,
where FDN was substituted with the standard Batch
Normalization, attains the accuracy of 95.9% and F1 -score of
95.0%, which means a good but not optimal performance. In the
absence of Wasserstein loss, the model raises to 96.2% accuracy
and 95.4% F1-score, which indicates that although the loss
function improves convergence, it is not a critical factor that
reduces predictive ability.

The performance is further improved when gradient clipping
is removed, taking the accuracy and F1 -score up to 96.6 percent
and 95.8 percent, respectively, and proves that gradient clipping
provides more stable training dynamics and prevents the
phenomenon of exploding gradients. However, the full
EvoNorm-GAN model, i.e., the three constituents, i.e., FDN,
Wasserstein loss and gradient clipping, is most performing in
terms of all the metrics and with the accuracy, precision and
recall 0£98.0,97.8,and 97.1, respectively,and F1-score 0o 97 4.
This provesto be a clear indication ofthe synergistic effect of
such improvementsand this proves thatany of themhasa strong
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influence on the strength and predictive power of this model.
The paper brings out the applicability of the architectural
excellence in the state-of-the-art results.

B. Discussion

Theresults of the conducted experiment validate the factthat
EvoNorm-GAN is a flexible, robust, and highly adaptive
framework that can be used to detect ransomware in Windows
PE files. This combination of Feature-Wise Dynamic
Normalization and adversarial leaming allows the model to
successfully encode the changing ransomware patterns in the
detection mechanism even when the examples used to train the
model come not only not on stationary but also continuously
evolving distributions. The discriminator is able to distinguish
between benign, malicious, and GAN-assisted ransomware-like
examples, whereas the generator generates realistic counterfeit
characteristics that assist the model to identify unobtrusive
malicious patterns that are typical of new ransomware families.
Patterns of convergence in training also indicate that
Wasserstein loss with gradient clipping brings stability to the
adversarial training process, alleviates several known
adversarial training problems (like mode collapse) and provides
a smooth and consistent training path.

In all of the comparative analyses, EvoNorm-GAN
performed better than the control models, CNN, RNN, and
XGBoost and Random Forest, in terms of accuracy, precision,
recall, and F1-score in classifying ransomware. Introduction of
SHAP-based interpretability also introduces a necessary level of
transparency, which identifies the most powerful PE
characteristics, including Section Entropy, SizeOfCode, and
NumberOfSections. Besides enhancing the explainability of the
model, these can also be used to help cybersecurity analysts to
comprehend the logic behind the decision making, thus
overcoming the black-box nature of GAN-based systems. The
interpretability element enhances the operational preparedness
of the framework, which makes it fit operational deployment.
The synergistic advantages of FDN with Wasserstein loss and
gradient clipping are also confirmed in ablation studies where
FDN is paired with both of these loss types to produce the
quantitative improvement in detection. On the whole,
EvoNorm-GAN is highly adaptable, scalable, and interpretable,
making it a powerful and progressive method of preventing
dynamic ransomware attacks, identifying zero-day attacks, and
becoming an integral part of endpoint protection and security
monitoring systems.

VI. CONCLUSION AND FUTURE WORKS

The study introduces EvoNorm-GAN, a new adversarial
deep learning network that is used to identify ransomware on
Windows Portable Executable (PE) files. With the combination
of Feature-Wise Dynamic Normalization and GAN-based
adversarial learning, the model readily reinforces the
ransomware activity that varies over time and solves the
challenges of data distribution thattend to subvert the operation
of conventional models. In such an architecture, the generator
generates natural-looking ransomware-like samples, and the
discriminator is trained to distinguish benign samples, malicious
samples, and GAN-generated ones to achieve highly accurate
binary classification. Empirical analyses show that EvoNorm-
GAN performs better than a vast array of machine-learning and
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deep-learning baselines - such as CNNs, RNNs, XGBoost, and
Random Forest - and it is better in terms of accuracy, precision,
recall, and F1-score measurements. The explainable Al with
SHAP also contributes to making the model more transparent,
as key features of PE files, including Section Entropy,
SizeOfCode, and NumberOfSections are the most important
ones in classification decisions. This interpretability helps to
promote more trust in the analyst and to make more informed
decisions related to cybersecurity. Ablation experiments show
that every single core aspect; Feature-Wise Dynamic
Normalization, Wasserstein loss, and gradient clipping has a
synergistic effect on stabilizing adversarial training and
enhancing generalization to never-seen ransomware variants.

Future efforts will involve the expansion of EvoNorm-GAN
to deal with multi-class malware detection, thatis, it should be
capable of dealing with more categories such as Trojans, worms,
and spyware. Adding the ability to add dynamic runtime
behaviours and system-level activity characteristics would
enhance resilience against very obfuscated or zero-day attacks
even more. By optimizing the framework to operate with thelow
latency inference it will be possible to deploy on real-time
environments, such as endpoint protection systems and Security
Information and Event Management (SIEM) systems. Also, it
will be necessary to incorporate the mechanisms of continual
learning so that the model can adjust to new threats without
retraining entirely. Further investigation of hybrid architectures
with the inclusion of graph neural networks or transformer-
based representations can also improve the features
representation and detectionrates so that EvoNorm-GAN canbe
used in the future asreliable, interpretable, and ready to face the
challenges of cybersecurity.
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