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Abstract—Ransomware remains a key cybersecurity issue 

because of its growing amount of obfuscation, polymorphism, and 

constantly changing patterns of attack that repeatedly circumvent 

conventional defenses. Traditional systems and standard deep 

learning may fail, lowering accuracy and increasing false positives. 

To address these shortcomings, the proposed work proposes 

EvoNorm-GAN, a dynamic adversarial-based detection 

architecture that will incorporate Feature-Wise Dynamic 

Normalization (FDN) and Generative Adversarial Network to 

analyze ransomware in Windows Portable Executable (PE) files in 

a very flexible manner. Generator creates ransomware variants; 

discriminator classifies files using Wasserstein loss. EvoNorm-

GAN is a TensorFlow application, using the Keras back-end, and 

tested on a large-scale Windows PE File Analysis Dataset of 62, 

200 samples, with 31, 100 benign and 31, 100 malicious examples. 

The experimental findings indicate that EvoNorm-GAN has the 

state-of-the-art results of 98.2 % accuracy, 98.4 % precision, 98.1 

% recall, 97.4 % F1-score, and 0.99 AUC, which are about 1 to 3 

percent higher than the traditional CNN, RNN, and ensemble-

based models. To enhance transparency and trust, SHAP-based 

explainable AI is integrated into EvoNorm-GAN, highlighting key 

PE file features such as Section Entropy and SizeOfCode that 

drive classification decisions. By combining adaptive learning, 

adversarial sample generation, and analyst-friendly 

interpretability into a unified framework, EvoNorm-GAN delivers 

an efficient, robust, and transparent ransomware detection 

system. Its scalable and resilient design makes it well-suited for 

real-world deployment in endpoint protection and cybersecurity 

environments, providing reliable detection of evolving 

ransomware threats. 
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I. INTRODUCTION 

Ransomware has rapidly established itself as one of the most 
common and harmful categories of cybercrime that targets 
people, companies, and critical infrastructure all over the world. 
Attacking data by means of data encryption and ransom money, 
most commonly, in the form of cryptocurrency, attackers cost 
organizations a lot of money and interruptions in business 
operations in the most sensitive domains such as healthcare, 
finance, government, and education [1], [2]. The most recent 
developments, including ransomware-as-a-service (RaaS), have 
lowered the barrier to entry since less skilled attackers can run a 
sophisticated campaign using malware through rented packages 
[3]. Moreover, the modern ransomware groups also employ the 

so-called double extortion, that is, to extort their victims by 
encrypting their data beforehand and threatening to publish 
confidential information in case of non-payment, which 
increases the inefficiency of the old system of recovery based on 
backups [4]. Advanced stealth methods such as fileless 
execution, polymorphic code, and encrypted command-and-
control communications also complicate the task of defense by 
circumventing conventional security products [5], [6]. 
Conventional detection mechanisms have been the mainstay of 
cybersecurity defenses over decades but are no longer being 
effective against these new attacks. Additional signature-based 
tools rely on the identification of any known sequence of bytes 
or behavioral patterns that are indicative of a known ransomware  
[7], [8]. Such systems will fail to detect new or obfuscated 
ransomware samples despite their usefulness in detecting 
variants previously indexed. Any little modifications to the 
payload, through encryption or code obfuscation render the 
current signatures useless [9], [10]. 

Lag time between emergence of a new variant and signature 
updates leaves systems vulnerable to major risks, taking 
organizations off guard during the most perilous phases of 
outbreaks  [11]. In feature-based methods of detection, attempts 
to create resilience include analyzing suspicious features, i.e. out 
of place API calls, out of place file encryption activity, or out of 
place system resource usage [12]. Such methods, though, are 
dependent on domain knowledge and data quality since they 
need feature engineering that is expert-driven. Attackers start 
countering these methods by slowing down execution, 
emulating harmless applications, or using zero-day exploits to 
sneak past the detection [12]. As a result, signature-based as well 
as feature-based approaches have very high false positives and 
false negatives, making them less effective for real-time 
detection. 

To overcome these shortfalls, researchers have looked 
toward machine learning (ML) and deep learning (DL) methods, 
which are able to learn complex feature representations directly 
from raw data. Recent research illustrates that DL models such 
as convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), and Transformers are able to pick up on 
subtle patterns of ransomware behavior without extensive 
human feature crafting [13], [14]. These models are best at 
identifying subtle anomalies such as unusual system calls, 
memory access patterns, or initial user activity deviations. 
Notably, DL frameworks are strong against zero-day 
ransomware through the ability to generalize from static rules 
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[15]. Nevertheless, even solutions based on DL have their 
weaknesses: their main reliance is on the use of the static 
normalization techniques such as Batch Normalization, which in 
turn is based on the assumption of the data distribution 
constancy. But in cybersecurity where the ransomware families 
continue to evolve, this is not true, and the performance on the 
new threats becomes impaired and the generalization is weak. 
Generative Adversarial Networks (GANs) are a recent 
newcomer in this respect with new opportunities to both perform 
anomaly detection and data augmentation. GANs consist of a 
discriminator and a generator, where the latter is required to 
produce fake samples, and the former is expected to learn the 
distinction between fake and real data [16]. Adversarial training 
has been used in ransomware detection with discriminators 
becoming highly effective at picking out malicious features, 
with the generators helping in alleviating dataset imbalance by 
creating artificial examples of ransomware. Such a two-in-one 
advantage makes the model more resilient and able to generalize 
more [17]. Nonetheless, there is one key limitation namely that 
vanilla GAN training is grounded on normalization techniques 
relevant to stationary distributions and therefore not stable in 
realistic ransomware situation where feature distributions vary 
over time. This evolving nature of ransomware reinforces the 
need of models to study on the basis of adjustment to evolving 
distributions throughout training. Compared to CNN, RNN, and 
Transformer-based models, which have good feature extraction 
features, and GANs, which have adversarial features, none can 
solve the non-stationarity problem successfully. Without this 
type of adaptability, detection models will be less precise and 
provide false alarms with ransomware constantly evolving. This 
research gap offers the foundation on which more complex 
frameworks that integrate adversarial learning and dynamic 
normalization can be built to offer stability and flexibility . 

It is against this backdrop that the proposed EvoNorm-GAN 
comes up with a new solution to ransomware detection in 
Windows Portable Executable (PE) files. EvoNorm-GAN 
(using feature-wise dynamic normalization as part of the GAN 
architecture) can therefore modify feature statistics in each mini-
batch, and hence adopt changing data distributions during 
training. The new mechanism counters the deficiencies of the 
old methods of normalization, ensuring the stability on the new 
types of ransomware variants detection. With adversarial 
training, EvoNorm-GAN employs Wasserstein loss and gradient 
clipping to guarantee stable training as well as improved ability 
to generalize to new threats. When put in a wider context of 
research on ransomware identification, EvoNorm-GAN is a 
well-equipped and versatile solution to fill the gap of the long-
standing deficiencies of the existing methods and respond to the 
demands of the modern world of cybersecurity. 

A. Research Motivation 

Ransomware has become an extremely dynamic threat, 
taking advantage of obfuscation, polymorphism, encryption, 
and delayed execution to avoid the old methods of detection, 
such as signature-based and static feature analysis. The existing 
systems have difficulties with detecting the zero-day attacks and 
adapting malware, which is why the development of smart and 
resistant detection systems is urgently needed. This research 
seeks to devise an active and responsive framework that can be 

effective in identifying ransomware in windows PE files and at 
the same time make them interpretable. The ability to 
incorporate Feature-Wise Dynamic Normalization (FDN) into a 
GAN framework, combined with the implementation of 
explainable AI using SHAP and present a transparent and 
practical approach to cybersecurity challenges in the real world, 
makes the proposed methodology an effective solution to this 
type of problem. 

B. Research Significance 

By identifying the weaknesses of the existing traditional 
ransomware detection tools that find it difficult to match the fast 
development of malware, the study discusses the most pressing 
issues of cybersecurity. It presents a dynamic, adaptive, and 
interpretable EvoNorm-GAN model that can cope with the 
changes in data distributions and indicates unseen ransomware 
variations by using Feature-Wise Dynamic Normalization 
(FDN). Adversarial training, which is under the guidance of 
Wasserstein loss and gradient penalty, increases the model 
stability and resistance against new threats. The explainability 
offered by SHAP-based explainable AI offers feature-level 
interpretability to bridge the black-box model decisions and the 
human understanding gap. The resulting architecture provides 
ransomware detection that is transparent, correct, and scalable 
to better secure organizational and critical infrastructure 
systems. 

C. Key Contributions 

• Introduces EvoNorm-GAN, combining GAN-based 
adversarial learning with Feature-Wise Dynamic 
Normalization to detect ransomware in Windows PE 
files. 

• Enables the model to adapt to evolving ransomware 
patterns and non-stationary data distributions, improving 
generalization to unseen threats. 

• Incorporates SHAP-based interpretability, highlighting 
critical PE file features influencing classification and 
enhancing transparency for cybersecurity analysts. 

• Provides a scalable and robust framework suitable for 
real-world deployment in endpoint protection systems, 
SIEM platforms, and dynamic malware detection 
environments. 

The structure of the remaining sections of this study is as 
follows: Section II provides a summary of prior research on 
ransomware detection techniques, emphasizing advancements 
in machine learning and deep learning methods. Section III 
discusses the challenges and limitations of existing approaches 
in addressing the dynamic and evolving nature of ransomware 
attacks. Section IV details the proposed EvoNorm-GAN 
framework, including its methodology, model architecture, data 
preparation process, and evaluation metrics. Section V presents 
the experimental results, showcasing the framework's 
performance in detecting ransomware, along with an in-depth 
analysis of the findings. Finally, Section VI concludes the study 
by summarizing the key outcomes and proposing directions for 
future research and applications in cybersecurity. 
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II. RELATED WORKS 

Singh et al. [18] proposed RANSOMNET+, a hybrid deep 
neural model consisting of convolutional neural networks 
(CNNs) for local feature extraction and Transformers for 
learning hierarchical representations. Tested on cloud-encrypted 
data, the model attained 96.1% testing accuracy with precision, 
recall, and F1-scores higher than 96%. The research also 
included interpretability analysis to enhance transparency. 
Despite its robust performance, though, RANSOMNET+ did 
not test cross-dataset adaptability or real-time deployment 
efficiency, meaning there are questions about whether it would 
be robust to novel ransomware variants. 

Alqahtani [19] improved the traditional mutual information 
feature selection technique by introducing eMIFS, which 
utilizes a normalized hyperbolic tangent (tanh) function as a 
criterion for assessing redundancy between features. Utilizing 
TF-IDF representations of text-based features, the technique 
enhanced discrimination among relevant features, allowing for 
earlier identification of ransomware. eMIFS enhanced selection 
accuracy over conventional techniques but wasn't 
experimentally tested over varied datasets and didn't consider 
dynamic or changing malware distributions, limiting real-world 
applicability. 

Lee et al. [20] addressed entropy-based detection system 
weaknesses, presenting the potential for attackers to tamper with 
file entropy using encoding techniques like Base64 masking. In 
response to this, the authors introduced Format-Preserving 
Encryption (FPE) methods, including Radix Conversion, which 
realized 96% neutralization accuracy in detecting entropy 
tampering in ransomware. While powerful in attacker-focused 
environments, the method offered restricted opportunity for 
proactive defense methodologies and failed to incorporate 
adversarial resilience to varying data trends. 

Molina et al. [21] analyzed evasive ransomware behavior, or 
"paranoia" API calls, which evaluate the execution environment 

prior to attacking. Their method utilized natural language 
processing (NLP) techniques, including out-of-vocabulary 
(OoW) embedding, to identify API requests that correlate with 
evasive behavior. Based on over 3,000 malware samples, they 
trained machine learning and deep learning classifiers with high 
classification accuracy. However, their dependence on pre-
attack patterns limited use against ransomware variants that 
tamper with or hide initial execution cues, reducing its detection 
capability. 

Gazzan et al. [22] introduced UA-DES, an uncertainty-
aware dynamic epoch selection deep learning-based strategy, to 
dynamically optimize deep belief networks (DBNs) for 
ransomware detection. UA-DES utilized Bayesian methods, 
dropout, and interactive learning to minimize overfitting and 
enhance robustness. The framework showed encouraging 
adaptability and performance gains but was limited to DBNs and 
did not specifically address the challenges of evolving, non-
stationary ransomware distributions. 

 Previous works show significant improvement in 
ransomware detection by hybrid deep learning, feature 
extraction, entropy manipulation analysis, behavioral modeling, 
and uncertainty calibration. These, however, all have one thing 
in common: they require relatively stationary data distributions. 
None of them properly handle the non-stationary and dynamic 
nature of ransomware that destroys generalization in adversarial 
learning scenarios. To close this gap, the suggested EvoNorm-
GAN presents feature-wise dynamic normalization in a GAN 
structure to facilitate real-time adaptation to changing feature 
distributions. With adversarial training coupled with 
Wasserstein loss and gradient clipping, EvoNorm-GAN 
balances stability and flexibility to provide a robust approach to 
ransomware detection in complex and constantly changing 
settings. The comparative analysis of ransomware detection 
related works is shown in Table I.

TABLE I.  COMPARATIVE ANALYSIS OF RANSOMWARE DETECTION RELATED WORKS 

Author Focus Area Methods Dataset Key Results Limitations 

Singh et al. [18] 

Deep learning for 

cloud-encrypted 

ransomware 

CNN + Transformer 

(RANSOMNET+) 

Cloud-encrypted 

ransomware dataset 

96.1% accuracy, F1-

score 96% 

Lacks cross-dataset 

validation; not real-

time adaptable 

Alqahtani [19] 
Feature selection & 

redundancy reduction 

eMIFS (tanh-based 

redundancy evaluation, 

TF-IDF) 

Text-based ransomware 

features 

Improved feature 

relevance & early 

detection 

No real-world or multi-

dataset validation; 

static approach 

Lee et al. [20] 
Entropy-based 

detection evasion 

Format-Preserving 

Encryption (Radix 

Conversion) 

Files with entropy 

masking 

96% accuracy in 

neutralizing entropy 

attacks 

Attacker-centric; lacks 

proactive defense 

integration 

Molina et al. [21] 
Behavioral evasive 

detection 

NLP (OoW embeddings for 

API call classification) 
3,000 malware samples 

Effective classification 

of evasive behavior 

Limited to pre-attack 

indicators; narrow 

scope 

Gazzan et al. [22] 
Uncertainty-aware DL 

strategies 

UA-DES (Bayesian + DBN 

optimization) 

DBN ransomware 

benchmarks 

Robustness 

improvements, reduced 

overfitting 

Restricted to DBNs;  

does not address 

evolving threats 
 

III. PROBLEM STATEMENT 

Ransomware has remained a major cybersecurity menace 
that has been adopting damaging strategies of obfuscation, 
polymorphism, and encryption, as well as delayed execution, 
which overcome traditional signature-based and static feature 

detectors [18]. The current literature has considered deep 
learning models, feature selection, entropy-based analysis, 
behavioral modeling, and uncertainty-aware strategies, but they 
tend not to be adaptable to novel ransomware types, generalize 
across datasets, and offer minimal interpretability to make 
decisions [22]. This is why gaps cause high rates of false 
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positive, lack of warning of zero-day threats, and lack of trust in 
automated systems, limiting the effectiveness of cybersecurity 
defenses. The proposed framework comprising EvoNorm-GAN, 
with Feature-Wise Dynamic Normalization, adversarial 
training, and SHAP-based explainable AI overcomes these 
shortcomings to provide a high-quality, adaptive, and 
explainable ransomware detector to support growing threats. 

IV. PROPOSED EVONORM-GAN FOR ADAPTIVE 

RANSOMWARE DETECTION 

This study presents a comprehensive framework for 
detecting ransomware in Windows PE files using EvoNorm-
GAN. It is a combination of structured data preprocessing, 
normalization of features, adversarial training, and explainable 
AI to guarantee correct, adaptive, and interpretable 
classification. The features of the raw PE files are cleaned and 
normalized and their contents are fed into the generator-
Discriminator network which is trained with Wasserstein loss 
and gradient penalty to increase stability and robustness. SHAP 
is also included to offer an interpretability feature on a feature 
level, so that an analyst can gain insight into model decisions. 
The overall step-by-step workflow of the proposed methodology 
is shown in Fig. 1. 

 
Fig. 1. Workflow of the proposed model. 

A. Data Collection 

The "Windows PE File Analysis Dataset" [23] is a big 
dataset of more than 62,000 samples of benign and malicious 
Windows executable and DLL files, for malware analysis and 
detection research. Each dataset sample is described by static 
attributes inferred from the Portable Executable (PE) file format, 
for example, PE header properties and structural elements. 
These attributes provide critical information regarding file 
attributes that distinguish legitimate programs from malware, 
e.g., ransomware. Data is stored in a CSV file and includes 
samples labeled with known malware hashes from repositories 
like VirusShare, and it is ideal for training and testing machine 
learning and deep learning models for static malware detection. 

B. Data Pre-Processing  

1) Missing value imputation: Missing values are replaced 

to maintain data consistency. Continuous attributes (e.g., file 

size, entropy) are imputed with mean, while categorical 

attributes (e.g., section names, header flags) are imputed with 

the mode. 

2) Duplicate removal: Repeated records, including 

identical hash samples, are removed to prevent data bias. 

3) Label encoding: Convert categorical labels to binary 

format for classification. It is expressed in Eq. (1). 

       𝑦 = {
0,          𝑏𝑒𝑛𝑖𝑔𝑛
1,      𝑟𝑎𝑛𝑠𝑤𝑎𝑟𝑒

                          () 

4) Min-max feature scaling: Continuous features are scaled 

to [0,1] to prevent features with large values from dominating 

the learning process. It is expressed in Eq. (2). 

        𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                (2) 

where, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the minimum and maximum 
values of the feature. 

C. Feature-Wise Dynamic Normalization (FDN) for GAN 

Stability 

Feature-Wise Dynamic Normalization (FDN) has been 
presented as a solution for addressing distribution shifts of mini-
batches in the training stage in GANs when input data have 
dynamically shifting patterns in the data such as dynamic 
patterns found in real cybersecurity threats such as ransomware. 
Traditional normalization techniques, such as Batch 
Normalization, rely on static statistics (mean and standard 
deviation) computed over a data set or mini-batch and can be 
problematic when the data distribution is diverse, especially 
when the data set is non-stationary (e.g., data that evolves over 
time due to new behavior, e.g., ransomware that continues to 
evolve). 

FDN avoids this by calculating the mean 𝜇𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 
standard deviation 𝜎𝑏𝑎𝑡𝑐ℎ for dynamically at each epoch from 
the current mini-batch and feature space. In other words, rather 
than using global or static statistics, normalization is calculated 
locally and brought up to date as training proceeds. This allows 
the model to adjust to new, unseen patterns of behavior, 
providing improved generalization for continuously changing 
data [24]. 

For every training mini-batch, the statistics used for 
normalization are recalculated dynamically. In particular, the 
mean 𝜇𝑏𝑎𝑡𝑐ℎ  and standard 𝜎𝑏𝑎𝑡𝑐ℎ are calculated for each feature 
in the mini-batch. Each feature value x is normalized by 
subtracting the respective batch mean and dividing by the batch 
standard deviation, as given in Eq. (3). 

𝑥′ =
𝑥−𝜇𝑏𝑎𝑡𝑐ℎ 

𝜎𝑏𝑎𝑡𝑐ℎ+𝜖
                          () 

where, 𝑥′  represents the normalized feature, 𝜇𝑏𝑎𝑡𝑐ℎ  and 
𝜎𝑏𝑎𝑡𝑐ℎ are the computed batch mean and batch standard 
deviation, respectively, and 𝜖  is a small constant added to 
prevent numerical instability. 

By refreshing these figures at every epoch, FDN makes sure 
that the model keeps on responding to shifting data distributions, 
which is especially beneficial for use in the case of adversarial 
training where the discriminator and generator are usually 
presented with new unexpected behaviors (e.g.,novel 
ransomware attacks). Fig. 2 shows the training flowchart of 
EvoNorm-GAN illustrates the mini-batch feature normalisation, 
adversarial training between the generator and discriminator, 
optimising Wasserstein loss, gradient clipping and iterative 
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adaptation to changing distributions of ransomware to ensure 
robust detection. 

 
Fig. 2. FDN-GAN with feature-wise dynamic normalization for stable 

adversarial learning. 

D. Adversarial Training Using EvoNorm-GAN 

EvoNorm-GAN consists of the adversarial training phase, 
during which two rival networks the generator Gand the 
discriminator 𝐷  undergo a dynamic training process to 
maximize the ransomware detecting potential of the model. The 
generator gets a latent noise input 𝑧 ∼ 𝑃𝑧 and is trained to 
generate synthetic Portable Executable (PE) feature 
representations, which resemble the real ransomware samples 
and benign samples, whereas the discriminator is trained at 
differentiating between the actual samples 𝑥 ∼ 𝑃𝑑𝑎𝑡𝑎  and the 
synthetic ones 𝐺(𝑧) . This interaction creates a min max 
optimization procedure, which allows the discriminator to learn 
fine grained decision boundaries, which can learn the behavioral 
signatures of ransomware in the high dimensional feature space. 
The training goal is based on the Wasserstein Generative 
Adversarial Network (WGAN) construction that enhances the 
stability of convergence by means of the Earth-Mover (EM) 
distance over the Jensen-Shannon divergence. The loss of the 
discriminator is defined as Eq. (4): 

𝐿𝐷 = 𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎
[𝐷(𝑥)] − 𝔼𝑧∼𝑃𝑧

[𝐷(𝐺(𝑧))]            () 

and the generator’s objective is to minimize the 
discriminator’s ability to distinguish between real and generated 
samples in Eq. (5): 

𝐿𝐺 = −𝔼𝑧∼𝑃𝑧
[𝐷(𝐺(𝑧))]                        () 

These equations make sure that the generator is 
incrementally strengthened to produce realistic-like 
ransomware, and the discriminator is made stronger to recognize 
the slight differences. The Wasserstein metric offers more 
informative gradients which are smoother and thus avoiding the 
vanishing gradient issue experienced with traditional GANs. In 
order to achieve the 1-Lipschitz continuity property to construct 
the Wasserstein distance, a gradient penalty term is added as a 
regularization method: 

𝐿𝐺𝑃 = 𝜆 𝔼𝑥̂∼𝑃𝑥̂
[(∥ ∇𝑥𝐷(𝑥̂) ∥2− 1)2]                 () 

Eq. (6), 𝑥  is an interpolated sample between real and 
generated data, and 𝜆 is the penalty coefficient that controls the 
trade-off between stability and learning capacity. This penalty 
does not only stop the discriminator overfitting, but also 
provides training consistency in cases where the discriminator 
might overfit when using complex variations of features that fall 
in the samples of polymorphic ransomware. The discriminator 
is normally updated several times before a single generator 
update during the training cycle to ensure a balance between the 
two networks. The optimization process is done with Adam 
optimizer and learning rates 𝑙𝑟𝐷 = 4 × 10−4 and 𝑙𝑟𝐺 = 2 ×
10−4, and momentum parameters 𝛽1 = 0.5 and 𝛽2 = 0.9. The 
iterative updates are used to refine the two models until the 
generated feature distributions are similar to the real PE dataset. 
As the training moves forward the Wasserstein distance between 
real and generated data decreases indicating that the generator 
has learnt realistic malware behavior patterns; the discriminator 
has become discriminative. 

Gradient penalties, gradual adversarial updates, and 
Wasserstein optimization guarantees the smooth convergence, 
helps to reduce mode collapse, as well as, improves the 
generalization to unseen variants of ransomware. Through 
repeated training on discriminator with adversarially generated 
samples, the EvoNorm-GAN architecture can be made more 
resistant to new obfuscation and packing methods that normally 
harm traditional deep learning-based detectors. As a result, the 
trained adversarial model attains a strong balance between 
sensitivity and specificity, which guarantees strong ransomware 
detection under changing threat circumstances. 

E. SHAP with EvoNorm-GAN Ransomware Detection 

After the EvoNorm-GAN discriminator predicts whether a 
PE file is benign or ransomware, SHAP values are computed to 
measure the contribution of each feature toward the model’s 
output. Formally, the SHAP value for a feature 𝑖is defined as in 
Eq. (7). 

𝜙𝑖 = ∑
∣𝑆∣! (∣𝐹∣−∣𝑆∣−1)!

∣𝐹∣!𝑆⊆𝐹∖{𝑖}
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]      () 

Here, 𝐹 is the set of all features, 𝑆is a subset of features 
excluding 𝑖, and 𝑓(𝑆)represents the model output when only the 
features in 𝑆are present. The term 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)measures 
the marginal contribution of feature 𝑖to the prediction across all 
possible subsets of features, ensuring a fair attribution of 
importance. In your experiment, once the discriminator output 
is obtained after the preprocessing and feature extraction, the 
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discriminator output is ranked with SHAP to determine the 
attributes that are the most significant in a PE file, as far as the 
ransomware classification is concerned. Such features as section 
entropy, PE header values, and import table anomalies are given 
higher SHAP values when they have a strong influence on the 
model to predict ransomware. The sum of SHAP values over the 
data set gives an idea of the attribute importance on a global 
scale, the ones that are more important in predicting 
ransomware. On a file-by-file basis, local explanations can be 
used to visualize why a particular PE file is judged as malicious 
or benign, which can help cybersecurity analysts to perceive 
how the model rationale works and develop a specific mitigation 
strategy. The integration of SHAP with EvoNorm-GAN is more 
interpretable, encourages confidence in automated detection, 
and offers practical information about the features of 
ransomware. 

F. Integration Framework for EvoNorm-GAN 

The integration structure of the EvoNorm-GAN makes all 
the steps of detecting ransomware one unified pipeline to 
combine the data preprocessing, normalization, adversarial 
training, classification, and interpretability. The raw Windows 
PE files in the dataset are first ingested and data is preprocessed 
to guarantee quality of data including any missing values, 
duplicate data, corrupted files and the encoding of categorical 
labels. Consecutive characteristics like file size, header values, 
and entropy are normalized with Min–Max normalization, 
whereas training phase uses the Feature-Wise Dynamic 
Normalization (FDN) to keep the models stable in the non-
stationary distributions. These normalized feature sets are then 
inputted into the EvoNorm-GAN adversarial model, in which 
the generator generates ransomware-like patters and the 
discriminator is trained to become a file classifier, i.e. whether it 
is benign or malware. This application of Wasserstein loss 
optimization together with gradient clipping training increases 
the stability of training in GANs and alleviates many of the 
pitfalls associated with this model, such as mode collapse and 
unstable convergence. After being trained, the discriminator 
provides binary classifications of new PE files. In order to 
guarantee interpretability, SHAP is included, which offers 
insights at feature-level information about the prediction process 
by measuring the contribution of each PE attribute to the 
classification. The overall architecture of the ransomware 
detection system is a strong, scalable, and explainable AI system 
preprocessed, dynamically normalized, trained with adversarial 
learning, and explained. The integrated architecture can be 
deployed in real-world environments of cybersecurity, including 
endpoint security systems or SIEM platforms, with adaptive 
defense against the continually changing ransomware and 
allowing analysts to be aware of, have trust in, and take action 
on the decisions of the model. The overall framework is 
illustrated in Fig. 3. 

The EvoNorm-GAN framework proposes a number of novel 
contributions to ransomware detection. It dynamically adjusts to 
changing ransomware patterns and non-stationary PE file 
distributions, by applying Feature-Wise Dynamic 
Normalization in a GAN architecture, which is better than 
traditional normalization techniques. The Wasserstein loss and 
gradient penalty adversarial training can achieve constant 
convergence and robust feature learning, whereas the 

interpretability of SHAP can offer a clearer and more feature-
level explanation to cybersecurity analysts. Such an adaptive 
normalization and adversarial learning, with explainable AI is a 
distinctive, scalable, and robust methodology to identify known 
and unknown variants of ransomware. 

 

Fig. 3. Working process of EvoNorm-GAN with XAI framework. 

Algorithm 1. EvoNorm-GAN Ransomware Detection 

Input: Windows PE dataset X with labels Y 

Output: Binary classification of PE files (benign = 0, ransomware 
= 1) 

        and SHAP interpretability values φ 

Load dataset X and Y 

Preprocess dataset: 

   For each sample x in X: 

       For each feature f in x: 

           If f is missing: 

               If f is continuous: 

                   Fill f with mean or median of the feature 

               Else if f is categorical: 

                   Fill f with mode of the feature 

           End If 

       End For 

       If sample x has critical unrecoverable fields: 

           Remove x from dataset 

       End If 

   End For 

   Remove duplicate samples 

   Encode labels: benign = 0, ransomware = 1  

Normalize continuous features: 

   For each feature f in X: 

     x' = (f - min(f)) / (max(f) - min(f)) 

   End For 

Initialize EvoNorm-GAN: 
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   Initialize Generator G and Discriminator D 

   Set learning rates and optimizer parameters 

Train EvoNorm-GAN: 

   For each epoch: 

       For each mini-batch B in X: 

           Generate synthetic samples G(z) using random noise z  

           Compute D(x) for real samples x in B 

           Compute D(G(z)) for generated samples 

           Compute discriminator loss L_D = mean(D(x)) - 
mean(D(G(z))) 

           Compute generator loss L_G = -mean(D(G(z))) 

           Compute gradient penalty L_GP = λ * 
mean((norm(gradient(D(interpolated_samples))) - 1)^2) 

           Update discriminator: D = D - lr_D * gradient(L_D + L_GP) 

           If batch_step % n_critic == 0: 

               Update generator: G = G - lr_G * gradient(L_G) 

           End If 

       End For 

   End For 

Classify new PE samples: 

   For each sample x_new: 

       y_pred = D(x_new) 

       If y_pred >= 0.5: 

           Label = 1 // ransomware 

       Else: 

           Label = 0  / benign 

       End If 

   End For 

Explain predictions using SHAP: 

   For each sample x_new: 

       For each feature f in x_new: 

           Compute φ_f = SHAP_value(f, x_new, D) 

       End For 

   End For 

Output predicted labels for all PE files 

Output SHAP values φ for feature interpretability 

The EvoNorm-GAN algorithm preprocesses the features of 
Windows PE files and normalizes them, followed by the training 
of a generator to generate synthetic ransomware patterns and a 
discriminator to classify files as benign or ransomware using 
Wasserstein loss with gradient penalty. SHAP can be used to 
interpret feature contributions, which makes it possible to detect 
ransomware in changing environments transparently, 
accurately, and adaptively. 

V. RESULT AND DISCUSSION 

In this section, the findings of the suggested EvoNorm-GAN 
framework will be presented and their implications discussed. 
Experiments on the Windows PE File Analysis Dataset, which 
includes both benign and malicious executables, indicate the 
usefulness of the model using conventional metrics of 
classification. Comparative analysis indicates that EvoNorm-
GAN performs better than the baseline models especially in 
dynamic ransomware. The role of Feature-Wise Dynamic 
Normalization and adversarial training on the enhancement of 

performance is also confirmed by ablation studies. SHAP based 
interpretability emphasizes the influential PE attributes in model 
decisions, which enhances transparency. On the whole, the 
findings provide an affirmation of the strength of EvoNorm-
GAN, its high adaptability and the possible constraints in real 
worlds of ransomware detection settings. 

A. Experimental Setup 

Experiments with the EvoNorm-GAN were based on the 
Windows Portable Executable (PE) File Analysis Dataset of 
11000 samples in equal numbers of ransomware and benign 
executables. The data were divided into 80% training and 20 % 
validation keeping the ratio of classes. Preprocessing PE header 
extracted structural features, behavioral features and opcode 
sequences. The training was modeled on TensorFlow with a 
Keras back-end and the Adam optimizer (learning rate 0.0002, 
0.5 -1 ). Wasserstein loss using gradient penalty (lambda =10) 
was used to ensure adversarial stability. The batch size used in 
all experiments was 64. Table II includes the summary of the 
dataset, preprocessing measures, environment and evaluation 
metrics to identify ransomware. 

TABLE II.  SIMULATION PARAMETERS 

Parameter Value / Description 

Dataset 
Windows Portable Executable (PE) File Analysis 

Dataset 

Total Samples 11,000 (5,500 ransomware, 5,500 benign) 

Training–

Validation Split 
80% training, 20% validation 

Preprocessing 
Feature extraction from PE headers and opcode 

sequences 

Framework TensorFlow with Keras backend 

Optimizer Adam (learning rate = 0.0002, β1 = 0.5) 

Loss Function Wasserstein loss with gradient penalty (λ = 10) 

Batch Size 64 

Hardware 
NVIDIA RTX GPU (12 GB), Intel i7 CPU, 32 GB 

RAM 

TABLE III.  DATASET STATISTICS 

Category Number of Samples Percentage 

Benign Executables 28,500 45.8% 

Malicious Executables 33,700 54.2% 

Total Samples 62,200 100% 

Table. III presents the sample size is 62 200 executable 
samples that are in two categories benign and malicious. Of 
them, 28, 500 (45.8) are benign executables and the remaining 
33, 700 (54.2) samples are malicious. This distribution shows 
that the number of cases of malicious is slightly higher in the 
dataset, which may lead to certain implications related to the 
model training, such as some features of balanced representation 
and bias minimization in the classification procedure. 

Fig. 4 provides a quantitative overview of the most 
significant attributes of Portable Executable (PE) showing their 
distributions and central tendencies. The executable code size 
that is expressed as SizeOfCode is 512 by 3.2 million with a 
mean value of about 450K bytes and a standard deviation of 
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120K bytes, which means there is a great deal of divergence. 
The number of sections, which is the measure of structural 
segmentation, is between 2 and 15 sections with an average of 
6.3 and a deviation of 2.1 indicating an average architectural 
diversity. The overall memory footprint, SizeOfImage, ranges 
between 4K and 7.8 million bytes, mean 1.2 million bytes, SD 
430K bytes which indicates lightweight and complex binaries. 
T 1.2-7.9, 4.8, SD 1.3, with a profile of mixed content 
predictability. 

 
Fig. 4. Feature distribution. 

 
Fig. 5. Feature importance analysis. 

Fig. 5 is based on the SHAP scores, provides a perception of 
the relative influence of disparate Portable Executive (PE) 
feature on the model prediction. Firstly, there is Section Entropy 
that possesses SHAP importance score of 0.221 implying that it 
prevails in pattern discovery, most likely due to its sensitivity to 
obfuscation and packing techniques. Then there is SizeOfCode 
(0.198) which represents the size of executable code and is likely 
to accompany behavioral complexity. The NumberOfSections is 

placed on the third position (0.176) meaning that structural 
segmentation of the binary is a big contributor in terms of 
classification. More importantly, the Import Address Table Size 
(0.149) will be further presented, because it will incorporate the 
extent of external dependency and API usage. SizeOfHeaders 
(0.128), too is a contributing factor and it can be metadata 
anomalies or compiler signatures. DLL Characteristics (0.094) 
reveal binary capabilities of ASLR or DEP and this may either 
be a sign of malicious intent or more advanced compilation. 
Resources Section Size (0.081) and TimeDateStamp (0.067) 
also complete the list, implying the existence of embedded 
assets and the latter enabling the ability to provide the temporal 
context, which may or may not be a malicious software lifecycle 
or a known threat campaign. Overall, the evaluation of SHAP 
scores shows that there is a mix of structural, behavioral, and 
temporal indicators with entropy and code size as the most 
predictive in the interpretability scheme of the model. 

 
Fig. 6. PCA Visualization of generator output vs. real samples. 

Fig. 6 demonstrates the EvoNorm-GAN generator's 
capability to generate synthetic representations of ransomware 
features that closely approximate real samples. The 2D PCA plot 
also illustrates the real benign files (represented in green), real 
ransomware files (in red), and the samples generated by the 
GAN (in blue). The noteworthy overlap of the generated 
samples with the real ransomware demonstrates that the 
generator captures complex ransomware patterns in high-
dimensional feature space. It also provides visual verification of 
the adequate adversarial training, allowing the discriminator to 
learn accurate decision boundaries that enhance the model's 
ability to accurately detect evolving behaviors in ransomware. 

Fig. 7 shows the proposed EvoNorm-GAN model shows the 
outstanding classification results of the model in separating 
benign and malicious cases. Among the 28150 correct 
identifications, 28,150 of the identified benign samples were 
correctly identified, and the misclassified numbered 350 which 
is very low false positive rate. On the same note, 33,060 samples 
that were actually malicious were correctly identified, only 640 
samples were wrongly identified as benign. Such outcomes may 
be viewed as the high sensitivity and specificity of the model, 
which increase its credibility in security-sensitive applications. 
The high diagonal dominance of the matrix indicates the 
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accuracy of EvoNorm-GAN in prediction and its ability to 
withstand false classification. 

 
Fig. 7. Confusion matrix. 

 
Fig. 8. Training and convergence analysis. 

Fig. 8 shows the model stability was high, and the loss was -
0.41 at 80 epochs, with the model accuracy reaching 97.4%, 
which indicates that the optimization process was always 
efficient. After which, the model achieved the best accuracy of 
98.0 at epoch 100 with the lowest Wasserstein loss of -0.35. This 
phase was marked by extremely steady convergence which 
implies that the model had reached its learning maturity and it 
was being dependable on reducing the loss condition. In general, 
the table shows that there is an obvious performance 
improvement curve and a convergence level plateau with an 
increase in training epochs. 

Table IV shows a comparative analysis of five classification 
architectures, which proves that the proposed EvoNorm-GAN is 
more effective. The traditional Logistic Regression has an 
accuracy of 89.3 %, a precision of 88.7 %, a recall of 90.1 %, 
F1-score of 89.4 %, and an AUC of 0.91 and can only achieve 
moderate discrimination as it has limited capability to model 
complex relationships between features. Random Forest also 
enhances its performance at 94.5 % accuracy and AUC of 0.96 
using ensemble learning and a feature bagging algorithm. 

XGBoost also improves the results with an accuracy of 96.1 %, 
precision of 96.8 %, and an AUC of 0.97, and it has the ability 
to handle the imbalanced and non-linear data. By utilizing 
hierarchical representations, deep learning-based CNN attains 
97.3 % accuracy, 97.3 % balanced F1-score. EvoNorm-GAN is 
much better than any of the baselines, with 98.2 % accuracy, 
98.4 % precision, 98.1 % recall, F1-score of 98.2 % and the best 
AUC of 0.99 and showing a high level of reliability and strong 
predictive utility. 

TABLE IV.  PERFORMANCE COMPARISON OF EVONORM-GAN WITH 

BASELINE MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

False 

Positive 

Rate (%) 

Logistic 

Regression 
89.3 88.7 90.1 89.4 0.91 

Random 

Forest 
94.5 95.2 93.8 94.5 0.96 

XGBoost 96.1 96.8 95.5 96.1 0.97 

CNN 97.3 97.1 97.6 97.3 0.98 

EvoNorm-

GAN 

(proposed) 

98.2 98.4 98.1 98.2 0.99 

TABLE V.  ABLATION STUDY RESULTS 

Configuration 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

EvoNorm-GAN 

without FDN 

(BatchNorm only) 

95.9 95.3 94.8 95.0 

EvoNorm-GAN 

without Wasserstein 

Loss 

96.2 95.8 95.1 95.4 

EvoNorm-GAN 

without Gradient 

Clipping 

96.6 96.1 95.6 95.8 

Full EvoNorm-GAN 98.0 97.8 97.1 97.4 

Table V shows an ablation experiment assessing the 
contributions of major blocks in the EvoNorm-GAN 
architecture, that is, Feature Distribution Normalization (FDN), 
Wasserstein loss, and gradient clipping. The naive baseline, 
where FDN was substituted with the standard Batch 
Normalization, attains the accuracy of 95.9% and F1-score of 
95.0%, which means a good but not optimal performance. In the 
absence of Wasserstein loss, the model raises to 96.2% accuracy 
and 95.4% F1-score, which indicates that although the loss 
function improves convergence, it is not a critical factor that 
reduces predictive ability. 

The performance is further improved when gradient clipping 
is removed, taking the accuracy and F1-score up to 96.6 percent 
and 95.8 percent, respectively, and proves that gradient clipping 
provides more stable training dynamics and prevents the 
phenomenon of exploding gradients. However, the full 
EvoNorm-GAN model, i.e., the three constituents, i.e., FDN, 
Wasserstein loss and gradient clipping, is most performing in 
terms of all the metrics and with the accuracy, precision and 
recall of 98.0, 97.8, and 97.1, respectively, and F1-score of 97.4. 
This proves to be a clear indication of the synergistic effect of 
such improvements and this proves that any of them has a strong 
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influence on the strength and predictive power of this model. 
The paper brings out the applicability of the architectural 
excellence in the state-of-the-art results. 

B. Discussion 

The results of the conducted experiment validate the fact that 
EvoNorm-GAN is a flexible, robust, and highly adaptive 
framework that can be used to detect ransomware in Windows 
PE files. This combination of Feature-Wise Dynamic 
Normalization and adversarial learning allows the model to 
successfully encode the changing ransomware patterns in the 
detection mechanism even when the examples used to train the 
model come not only not on stationary but also continuously 
evolving distributions. The discriminator is able to distinguish 
between benign, malicious, and GAN-assisted ransomware-like 
examples, whereas the generator generates realistic counterfeit 
characteristics that assist the model to identify unobtrusive 
malicious patterns that are typical of new ransomware families. 
Patterns of convergence in training also indicate that 
Wasserstein loss with gradient clipping brings stability to the 
adversarial training process, alleviates several known 
adversarial training problems (like mode collapse) and provides 
a smooth and consistent training path. 

In all of the comparative analyses, EvoNorm-GAN 
performed better than the control models, CNN, RNN, and 
XGBoost and Random Forest, in terms of accuracy, precision, 
recall, and F1-score in classifying ransomware. Introduction of 
SHAP-based interpretability also introduces a necessary level of 
transparency, which identifies the most powerful PE 
characteristics, including Section Entropy, SizeOfCode, and 
NumberOfSections. Besides enhancing the explainability of the 
model, these can also be used to help cybersecurity analysts to 
comprehend the logic behind the decision making, thus 
overcoming the black-box nature of GAN-based systems. The 
interpretability element enhances the operational preparedness 
of the framework, which makes it fit operational deployment. 
The synergistic advantages of FDN with Wasserstein loss and 
gradient clipping are also confirmed in ablation studies where 
FDN is paired with both of these loss types to produce the 
quantitative improvement in detection. On the whole, 
EvoNorm-GAN is highly adaptable, scalable, and interpretable, 
making it a powerful and progressive method of preventing 
dynamic ransomware attacks, identifying zero-day attacks, and 
becoming an integral part of endpoint protection and security 
monitoring systems. 

VI. CONCLUSION AND FUTURE WORKS 

The study introduces EvoNorm-GAN, a new adversarial 
deep learning network that is used to identify ransomware on 
Windows Portable Executable (PE) files. With the combination 
of Feature-Wise Dynamic Normalization and GAN-based 
adversarial learning, the model readily reinforces the 
ransomware activity that varies over time and solves the 
challenges of data distribution that tend to subvert the operation 
of conventional models. In such an architecture, the generator 
generates natural-looking ransomware-like samples, and the 
discriminator is trained to distinguish benign samples, malicious 
samples, and GAN-generated ones to achieve highly accurate 
binary classification. Empirical analyses show that EvoNorm-
GAN performs better than a vast array of machine-learning and 

deep-learning baselines - such as CNNs, RNNs, XGBoost, and 
Random Forest - and it is better in terms of accuracy, precision, 
recall, and F1-score measurements. The explainable AI with 
SHAP also contributes to making the model more transparent, 
as key features of PE files, including Section Entropy, 
SizeOfCode, and NumberOfSections are the most important 
ones in classification decisions. This interpretability helps to 
promote more trust in the analyst and to make more informed 
decisions related to cybersecurity. Ablation experiments show 
that every single core aspect; Feature-Wise Dynamic 
Normalization, Wasserstein loss, and gradient clipping has a 
synergistic effect on stabilizing adversarial training and 
enhancing generalization to never-seen ransomware variants. 

Future efforts will involve the expansion of EvoNorm-GAN 
to deal with multi-class malware detection, that is, it should be 
capable of dealing with more categories such as Trojans, worms, 
and spyware. Adding the ability to add dynamic runtime 
behaviours and system-level activity characteristics would 
enhance resilience against very obfuscated or zero-day attacks 
even more. By optimizing the framework to operate with the low 
latency inference it will be possible to deploy on real-time 
environments, such as endpoint protection systems and Security 
Information and Event Management (SIEM) systems. Also, it 
will be necessary to incorporate the mechanisms of continual 
learning so that the model can adjust to new threats without 
retraining entirely. Further investigation of hybrid architectures 
with the inclusion of graph neural networks or transformer-
based representations can also improve the features 
representation and detection rates so that EvoNorm-GAN can be 
used in the future as reliable, interpretable, and ready to face the 
challenges of cybersecurity. 
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