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Abstract—Software defect prediction plays a crucial role in
improving software quality, yet existing approaches still suffer
from severe class imbalance, redundant feature spaces, weak
generalization, and limited interpretability, making their adoption
in real development pipelines difficult. Many current models rely
on black-box deep learning architectures or conventional
classifiers that fail to identify minority defects or explain the
reasoning behind their decisions. To overcome these limitations,
this study introduces a novel framework named Contrastive
Siamese Defect Learning—Integrated Explainable Neural
Optimization System (CSDL-SEN-XAI), which integrates
contrastive metric learning, enzyme-inspired optimization, and
transparent explainability. The method combines SMOTE-based
balancing, the Enzyme Action Optimizer for joint feature—
hyperparameter optimization, and a Siamese Neural Network
trained using contrastive loss to learn discriminative similarity
embeddings. The entire workflow is implemented using Python,
enabling efficient scalability and reproducibility. Experimental
analysis reveals that the proposed model achieves an accuracy of
95.5%, a recall of 96.2%, and an Fl-score of 95.5%,
outperforming traditional models such as Random Forest, SVM,
and CNN by margins ranging from 7% to 15% under identical
evaluation settings. SHAP and Integrated Gradients further
demonstrate that the model provides clear global and instance-
level explanations, highlighting influential software metrics and
strengthening the interpretability of predictions. Overall, the
results confirm that CSDL-SEN-XALI delivers superior predictive
performance, stable optimization, balanced learning, and
transparent defect interpretation, offering a reliable and
interpretable solution suitable for practical software engineering
environments. Future work will explore cross-project defect
prediction and the integration of lightweight optimization
strategies to further enhance scalability.

Keywords—Contrastive learning;  explainable artificial
intelligence; feature optimization; Siamese Neural Network;
software defect prediction

I.  INTRODUCTION

Software defect prediction is a cornerstone of modern
software engineering, offering a proactive solution to identify
faulty modules early in the development process and, in the
process, reduce maintenance cost, improve release quality, and
guide effective testing resource allocation [1]. Owing to
increased system complexity and shorter delivery schedules,

automated prediction using code- and process-level metrics has
become a necessity in large-scale software development [2].
Traditional techniques—ranging from statistical models to
vintage machine learming—employ measures of churn, and
coupling to deduce defect proneness [3]. Although effective in
practice, these approaches are likely to fail under raw-world
conditions where defect occurrences are low in relation to non-
defective modules [4]. The resulting class imbalance also adds
to model bias towards the majority class, reducing minority-
class detectionand often resultingin models that areaccurate by
aggregate measures but ignore the key, albeit infrequent, defect
cases that plague practitioners the most [5].

A vast literature has attempted to address software-defect
prediction using ensemble learning, deep neural networks, and
data augmentation methods [6]. Ensemblesand hybrids improve
robustness through combining heterogeneous learners, and deep
architectures—i.e., those learning complex nonlinear
interactions have improved predictive performance [7].
Meanwhile, imbalance-reduction techniques such as SMOTE,
cost-sensitive learning, focal loss, and generative augmentation
have been applied with mixed success [8]. Many chronic failures
persist nonetheless. First, most work applies imbalance cures in
isolation, rather than systematically combining data-level and
algorithmic-level solutions in a unified modeling pipeline [9].
Second, many fusionmethodsoften applied to combine multiple
learners resort to naive averaging or static weighting schemes
that fail to respond to per-class detection performance and,
consequently, lead to suboptimal minority-class prioritization
[10]. Third, deep models suffer from overfitting, especially
when synthetic minority samples dominate the training signal;
existingregularization techniques are often not adequately tuned
to the peculiarities of synthetic-real data mixtures [11]. Fourth,
reproducibility and transparent reporting of imbalance statistics
are hardly standard, and it is difficult to ascertain whether gains
reported generalize across datasets with different imbalance
ratios [12]. This study introduces a new framework based on
metric-learing, Contrastive Siamese Defect Learning (CSDL),
which utilizes Siamese contrastive learning, enzyme-inspired
optimization, and explainable Alto overcome the old problems
of’class imbalance, poor interpretability, and poor generalization
of software defect prediction.
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A. Research Motivation

Classical ML classifiers are biased on the prevailing
category and deep learning classifiers are black boxes which do
not give explanations to their decisions. Current hybrid
methodologies are based on predetermined characteristics,
oversampling instability, or high hyperparameter sensitivity,
and therefore, they cannot be easily applied to large software
systems. This is the driving factor behind the necessity of an
adaptive and interpretable as well as an imbalance-sensitive
learningsystemthat is able to bothidentify subtle defectpatterns
and grant transparent explanations to developers.

B. Problem Statement

Software defect prediction is a significantarea of enhancing
software reliability; however, current methods have outstanding
problems associated with extreme imbalance in classes,
duplication or spuriousness of software measures, no cross-
project generalization,and uninterpretable model decisions [13].
Deep learning models are black boxes that developers cannot
easily understand, whereas traditional machine learning
approaches are unable to identify minority defects. Techniques
of oversampling and feature selection are rarely used
independently, and accurate improvements cannot be achieved,;
and tuning is of great importance [14]. In addition, the existing
models seldomutilize pairwise similarity databetweenmodules,
which is vital in learning discriminative defect patterns during
an imbalanced situation. Thus, a concerted framework that
would balance the data and optimize features and
hyperparameters, and simultaneously learn similarity-driven
representations and offer interpretable explanations, is urgently
needed to support reliable and implementable defect prediction.

C. Research Significance

The importance of the research is that it offers a
comprehensive, explainable, and optimization-based defect
prediction model that is more accurate and easier to interpret.
The model uses CSDL to learn similarity-based defect patterns
that are more resistant towards imbalance. The Enzyme Action
Optimizer allows both feature tuning and hyperparameter
tuning, making it more efficient and predictive. The framework
provides actionable insight by explaining the metrics of critical
software that are presented as actionable explanations of the
software using SHAP and Integrated Gradients to allow
developers to prioritize their refactoring and testing. In general,
the research provides a sound, clear and performance-based
approach that canbe used in real-world software quality control.

D. Key Contributions

e Thisstudyaimsto developan accurate, interpretable, and
imbalance-aware software defect prediction framework
using contrastive learning, optimization, and explainable
AL

e Proposes SEN-XAIL a unified framework combining
SMOTE balancing, EAO optimization, Siamese metric
learning, and explainable Al

e Employs the Enzyme Action Optimizer (EAO) for joint
feature selection and hyperparameter tuning, improving
model efficiency and stability.
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e Designs a controlled pair construction strategy enabling
balanced positive/negative pairs for robust contrastive
learning.

e Integrates SHAP and Integrated Gradients to deliver
global and instance-level explanations, ensuring
transparentand developer-friendly defect prediction.

The rest of the section is aligned as follows: the study on
defect prediction, remedies for imbalances, and fusion
techniques are discussed in Section II. In Section 11, the hybrid
approach to defect prediction is presented, including method,
preprocessing, and augmentation modules, a Transformer
ensemble, and its fusion. Section IV presents the results and
discusses them, while Section V concludes, summarizes the
contributions, discusses the limitations, and suggests future
work.

II. LITERATURE REVIEW

Abdu et al. [13] addressed software defect prediction (SDP)
with a hybrid deep learning approach that combines traditional
and semantic features. Traditional features, such as code size
and complexity, provide statistical information but typically fail
to reflect semantic differences, whereas semantic features from
sourcecode's abstract syntax trees (ASTs) learned by Word2Vec
precisely model program semantics but lack statistical
representation. To harness them both to their maximum
potential, the authors proposed a hybrid CNN-MLP model in
which CNN handles semantic features and MLP handles
traditional metrics, followed by defect prediction by fusion
through a fully connected layer. Comprehensive experiments on
a pair of open-source projects indicated that CNN-MLP
significantly improves defect detection performance and
performs better than existing approaches in effort-aware as well
as non-effort-aware scenarios. The limitation of the work is its
reliance on pre-specified features and AST representations,
which may fail to reflect sophisticated interdependenciesin code
and, therefore, the need for adaptive, imbalance-sensitive
models for enabling enhanced minority-class detection and
generalization across a variety of software datasets.

Nabellaetal.[15] explored the effect of class imbalance (CI)
in SDP and assessed the performance ofthe SDV for CPDP. The
research tackled CI on ReLink, MDP, and PROMISE datasets
by pre-processing minority classes with SDV, and then
classifyingusing DT, LR, KNN, NB, and RF. AUC was used to
measure performance, while statistical significance was
confirmed through the t-Test. Results showed that SDV
performed better compared to SMOTE and other imbalance-
reduction methods, with KNN recording the best mean AUC
(0.695-0.750) and recording improvements of 12—-20% over
SMOTE acrossdatasets. RFand LR had moderate performance,
while NB underperformed. Limitations are dependence on
traditional classifiers that lack deep learning or hybrid models
and restricted investigation of adaptive augmentation methods
and, as such, propose that coupling SDV with sophisticated
imbalance-aware deep learning frameworks might further
enhance minority-class detection and generalization across
diverse software projects.

Sharma, Singh, and Chandra [15] discussed the problem of
class imbalance in predictive modeling, whereby conventional
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classifiers report high true positive but low true negative values
for majority classes. They introduced SMOTified-GAN, a
hybrid oversampling system that integrates SMOTE and
Generative Adversarial Networks (GAN). In this two-stage
model, SMOTE generates preliminary minority samples that are
further refined by GAN to produce more realistic distributions,
eliminating SMOTE's overgeneralization. Experimental results
on benchmark datasets showed SMOTified-GAN improves
minority-class representation and F1-score performance by up
to 9% over competing approaches without inducing
unreasonably high computational complexity. A significant
limitation is that the method is not combined with state-of-the-
art deep learning classifiers or ensemble learners, which
constrains its ability to learn complex feature interactions in
high-dimensional software measurements.

Algarni and Aljamaan [14] examined imbalanced software
defect prediction (SDP) via the introduction of GAN with
AdaBoost ensembles for enhancing minority-class detection.
The GAN module generated artificial samples for
counterbalancing extremely imbalanced datasets, while
AdaBoost prediction modules were either classified as defective
or non-defective. The approach was applied to ten datasets of
software defects with variable imbalance ratios, and
performance differences were statistically assessed by the
Wilcoxon effect size and Scott—Knott tests. Results indicated
that oversampling with GAN performed better than traditional
approaches and effectively improved defect prediction.
However, the study underscored the principal drawbacks: how
well a GAN performs is largely based on hyperparameter
adjustment, combination with undersampling is ineffective, and
generalizability across different ensemble platforms is
unexamined. Additionally, the synthetic data quality was not
thoroughly tested. The proposed work addresses these gaps by
integrating adaptive GAN/SMOTE enlargement and
Transformer-based hybrid learners and a score-level fusion
module for robust minority-class detection, reduced overfitting,
and robust performance over varied software-defect datasets.

Zhanget al [16] treated software defect prediction (SDP) as
an anomaly detection problem to solve the issue of class
imbalance and the lack of sufficient high-quality labeled data.
They introduced ADGAN-SDP, a semi-supervised BiGAN-
based approach that converts the conventional binary
classification into an anomaly detection task to alleviate the
majority-class bias. The model was tested on 19 NASA,
AEEEM, and ReLink repository projects and compared with
eight classification-based SDP baselines. Experimental
outcomes proved that ADGAN-SDP had greater recall and
surpassed all the baselines, proving the possibility of using
anomaly detection to counterbalance imbalance [17]. Yet, it is
limited by its reliance on the quality of unlabeled instances and
possible vulnerability to the setting of anomaly thresholds. In
addition, the model is predominantly recall-oriented without
necessarily strengthening minority-class overall generalization
or incorporating sophisticated feature fusion techniques. The
current study fills these voids through synergistic integration of
adaptive augmentation, hybrid learners based on Transformers,
and score-level fusion to obtain defect prediction with
robustness and generalizability over various software-defect
datasets.

Vol. 16, No. 12, 2025

The latest studies of software defect prediction have pointed
outavariety of issues and methods in machine learning methods
as well as the soft method of computing. Pachouly et al. [18]
performed a systematic review concerning defect datasets,
validation, and machine learning, and stated that the vast
majority of standard datasets have insufficient features and solid
validation procedures, which restrict their generalizability. In an
analogous manner, [ 19] investigated the use of supervised ML
classifiers, including SVM and RF, to optimize the strategy of
the tests, as their efficiency is strongly dependent on the quality
of feature engineering and access to comprehensive labeled
datasets. Khan et al. [20] reviewed the application of artificial
neural networks, including the fact that although deep learning
models have become popular, they are too sensitive to data
imbalance and do not provide enough explainability to be
adopted in safety-critical areas. Stradowski et al. [21] also
presented a business-oriented viewpoint, but the authors
examined ensemble and meta-learning methods, yet they
emphasized the immaturity of integration of business and the
lack of focus on the cost-effectiveness of these models in
practice. With increased methodological breadth, Nassifet al.
[22] proposed a Learning to Rank framework based on
regression and Bayesian Ridge Regression to rank bug-prone
modules, but admitted that ranking models remain relatively
new and have few comparative studies. Khanna et al. [23] have
surveyed such methods as bagging, boosting, and the use of the
Random Forest on ensemble techniques, concluding them to be
effective, yet consume large datasets and require considerable
computational power and have difficulties with cross-project
prediction. Raju [24] summarized Al-based best practices,
including such techniques as SVMs, neural networks, and
logistic regression, emphasizing the importance of quality data
because such statistical models tend to fail in complicated
environments. Wang et al. [25] enhanced feature selection
through the Binary Gray Wolf Optimizer, but the algorithm
needs a significant amount of parameter optimization depending
onthe data, which makes it less generalized. Makingan effort to
solve the problem in practice, Madeyski et al. [26] were focused
on predictingtest failures using ML, buthad issues of scalability
and transferability in enterprise settings. Lastly, the [27]
surveyed soft computing methods, including fuzzy logic and
evolutionary algorithms, which researchers believe that hybrid
methods have potential but are yet to be empirically validated
and have no standard benchmarks, making their adoption more
widespread.

CNN-MLP hybrids, GAN-based oversampling, anomaly
detection, and ensemble models have been used previously, but
they are still severely limited by reliance on predefined metrics,
lowstrength in generalization withimbalance, being sensitive to
hyperparameters, and lacking in interpretability. Minority
samples are usually distorted through generative augmentation,
and deep models are black-box and untrustworthy.
Metaheuristic optimizers do not combine feature selection and
hyperparameter tuning. CSDL-based SEN-XAI framework
addresses these deficiencies by using contrastive learning, joint
optimization, and transparent XAl explanations.

III. PROPOSED METHODOLOGY

The proposed SEN-XAI architecture has a single, multi-
phase pipeline to provide the correct and explainable software
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fault prediction. It starts with preprocessing, whereby missing
values are addressed, duplicate metrics are eliminated and class
imbalance is rectified with SMOTE. Then, Enzyme Action
Optimizer (EAO) is used to select joint features and tune
hyperparameters to find the most informative metrics and the
best configuration of Siamese leaming. The optimized data is
then fed on Contrastive Siamese Defect Learning (CSDL),

Data =
Pre-processing Feature Extraction

(EAO) ‘
l |
Input Data DataImbalance | . — |
(Software defect Features | 3 Handling b= Siamese Neural |
data) (SMOTE) Network Layer |
d

Fig. 1.

A. Data Collection

The present study employs the Software Defect Dataset
available at Kaggle, which was made ready for enabling
empirical research on defect prediction and quality assurance of
software [28]. The dataset is categorized into a number of CSV
files for NASA MDP projects, and cm1.csv (42.8 kB) is used as
the reference benchmark in this study. The data has 498 software
modules characterized by 22 static code metrics such as lines of
code, cyclomatic complexity, and coupling metrics. Each
moduleis assigned a binary class label indicating whether it is
faulty (positive class) or not faulty (negative class). Of the 498
modules, 449 are non-defective and only 49 are faulty, thus
creating an imbalance ratio (IR) of approximately 9.16:1. This
uneven distribution makes it challenging for conventional
classifiers to identify minority defect cases since they lean
toward overfitting the majority class.

B. Data Preprocessing

The preprocessing step is used to prepare the NASA cml
datasetby addressing valuesthat didnot occur, standardizing the
feature values and dropping redundant measures. Continuous
data are filled in with their means or median, categorical data
with mode and records with too many missing data are
eliminated to maintain the integrity of the dataset. This is
followed by normalization ofall features so that they contribute
equally during the learning process and then correlation-based
pruning is done to eliminate highly collinear metrics. Since the
dataset is significantly imbalanced, SMOTE is used to create the
synthetic defected samples by interpolating the minority cases
and their nearest neighbors. This generates a more balanced

Defective

Vol. 16, No. 12, 2025

where a Siamese net is trained in similarity-based defect
embeddings by contrastive loss. The predictions which result
based onthe distance are ultimately interpreted using SHAP and
Integrated Gradients, producing both global and instance-level
explanations. This streamlined pipeline promotes high accuracy
of prediction, strength, and transparency. The workflow of the
proposed methodology is displayed in Fig. 1.

Software Defect Prediction 1—,7
Non-defective
Interpretation and
Explanation
(SHAP XAI)
Model Assessment

Workflow of the proposed methodology.

training set, which allows the stable feature optimization and
effective contrastive learning during the further steps.

1) Handling missing values: Impute continuous features
using mean or median, fill categorical features using mode, and
remove samples with excessive missing data to maintain dataset
quality.

2) Normalization: Scale all numerical metrics to a uniform
range (0—1) using Min—Max normalization to ensure equal
contribution during optimization and model training, which is
defined as in Eq. (1):

1 X~ Xmin
x'=—"0n 1
Xmax~Xmin ( )
This ensures that each feature contributes equally during
optimization and model training.

3) Imbalance handling: Apply SMOTE to generate
synthetic defective samples by interpolating between minority
instances and their nearest neighbors, reducing the dataset’s
severe class imbalance. For each minority instance x;, one of
its k-nearest neighbors x,,,, is randomly selected. A synthetic
sample is then created, as in Eq. (2):

Xpew = X; + A+ Oy — x;),1 € [0,1] 2)

where, A is arandomnumber between 0 and 1 that controls
the interpolation point between the original instance x; and its
neighbor x,,, . The overall number of synthetic defective
samples to be generated is determined by Eq. (3):
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N Mmajority 1

synthetic — < ) X Nminority (3)

Nminority

where, Nygjoriey 30d Nypinoriry, Tepresent the number of
majority (non-defective) and minority (defective) instances,
respectively. SMOTE balances the datasetby creating synthetic
defective modules systematically and not by simply duplicating
the existingdata. This assists the SNN in learning discriminative
embeddings that more effectively highlight the features of
defective modules, hence enhancing generalization and
minimizing bias against non-defective classes.

4) Feature cleaning: Compute pairwise Pearson
correlation and remove highly correlated or redundant metrics
to avoid multicollinearity and reduce dimensionality.

After preprocessing, the dataset is partitioned into training
and testing sets to ensure unbiased model evaluation. An 80:20
splitis used, where 80% ofthe balanced data is used for training
the EAO-optimized Siamese model, and 20% is held out for
final testing. Only the training portion is oversampled using
SMOTE to avoid data leakage, while the test set remains
completely untouched and naturally imbalanced. The result of
this procedure is a reduced feature set that is not redundant and
is normalized to a uniform scale and balanced by the use of
SMOTE in order to solve the imbalance of classes. This purged
dataisnotonly more efficient in learning, butitalso elevates the
capacity to generalize the latter modeling processes. Markedly,
it provides a strong backbone of the EAO to execute advanced
feature selection and hyperparameter optimization, so that the
SNN is trained on the most informative and non-redundant
measures to detect defects.

C. Feature Optimization with EAO

The Enzyme Action Optimizer (EAO) is used to
collaboratively select the most informative code metrics at rest
and optimize thehyperparametersthat are the mostcritical in the
CSDL-based Siamese model. Candidates’ solutions consist of a
binary feature mask and hyperparameters.

1) Objective function for optimization: The optimization
process is driven by minimizing a fitness function that balances
classification accuracy and feature reduction in Eq. (4):

F=a-(1—- Accuracy) + B % @

where, a, f are weight coefficients, | S | is the number of

selected features and | T | is the total number of available

features. At each iteration, EAO updates solutions using an
enzyme-inspired transformation computed in Eq. (5):

Xep1 =X, +n-(E—-X)+v-R %)

where, X, isthe currentsolution, E is the elite (best) solution
so far, 7 is the catalytic learning constant, R is the random
perturbation (enzyme action factor), and y is the stochastic
scaling coefficient. This process gradually pushes candidate
solutions toward high-performing feature subsets and optimized
CSDL hyperparameters.

Table I determines the hyperparameters that are optimized
by the EAO, such as leamning settings, embedding structure and
the feature selection mask. The continuous, categorical and
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binary parameters are actively studied in parallel in order to
determine the optimal scenario of the CSDL-based Siamese
network. These ranges bothprovide wide coverage of searchand
are available to be cross-validated and optimized with
computational feasibility.

TABLE . HYPERPARAMETER SEARCH SPACE USED BY THE EAO
Parameter Search Range
Leamingrate 0.0001 -0.01
Batch size 16,32, 64
Epochs 10-50
Embedding dimension 16128
Margin (contrastive loss) 0.5-2.0
Optimizer type Adam, RMSProp
Activation function ReLU, Tanh
Feature selection mask 0/1 binary vector

Algorithm 1: Enzyme Action Optimizer (EAO)

Input: Dataset D, population size N, generations G, K-folds
Output: Optimal feature mask s*, optimal hyperparameters ¢*
1: Initialize population P = {(s;, ;)} forI=1...N

2: For each candidate (s, ¢i):

3:  Evaluate fitness F; using K-fold CSDL training

4:Fort=1...G:

5:  Let E =best candidate in P

6: NewPop=0

7:  while [New Pop| <N do

8: Select parents A and B using tournament selection
9: C =Binding (A, B) // crossover

10: C =Cleavagel // random local mutation

11: C = Catalysis (C, E) // move towards elite E
12: Repairl // ensure valid bounds

13: Evaluate fitness FI

14: Add C to New Pop

15: P =Elitist Replace (P, New Pop)
16: If convergence achieved: break
17: return best agent E = (s*, ¢*)

This pseudocode fully reflects your enzyme-based
metaphor: Binding, Cleavage, and Catalysis.

2) Complexity analysis of EAO: The computational
complexity of EAO depends on the population size NNN,
number of generations GGG, and the cost of evaluating each
candidate during K-fold CSDL training.

a) Fitness evaluation cost: Training the Siamese model
for one-fold costs approximately are computed in Eq. (6):
Tgpo = O(E - P) (6)
where, E is the number of epochs and P number of training
pairs. For K-fold validation was computed in Eq. (7):

Tepo =O0(K - E - P) (7)
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where, K is the number of folds used in K-fold cross-
validation during fitness evaluation.

b) Total EAO optimization cost: The overall
computational cost of the Enzyme Action Optimizer is based
onthe analysis of each candidate solution in several generations
and K-fold cross-validation. For every generation, all N the
CSDL-based Siamese network is trained on N candidate
solutions. K folds, each requiring E epochs and processing P
training pairs. Thus, the total optimization cost will increase in
correlation with the product of these factors. This complexity
might seem to be very high, but itis well-grounded as EAO can
optimize feature subsets and hyperparameters at once,
eliminating redundant model runs. Moreover, optimized
features reduce the network dimensionality and a lightweight
Siamese structure reduces the training time, which makes the
overall computationpossibleand efficient in predicting defects.
It was expressed in Eq. (8):

Teno =O(N-G-K-E-P) (8)

where, N is the number of candidate solutions (population
size in EAO and G is the number of generations or iterations
performed by the optimizer.

c) Hyperparameter optimization for SNN: EAO
simultaneously tunes SNN parameters by searching within
predefined ranges. Through this mechanism, EAO ensures that
the SNN is trained not only with the most relevant features but
also with optimized training parameters, improving both
efficiency and accuracy.

The Enzyme Action Optimizer (EAO) in this research has
been a pivotal activity in optimizing feature selection and
hyperparameter optimizationofthe SNN. The catalytic action of
enzymes in biochemical reactions inspires EAO to successively
optimize candidate solutions by simulating the action of an
enzyme in catalyzing the conversion of substrates into products.
In the software defect prediction setting, every candidate
solutioncorrespondsto an addition of chosenstatic code metrics
(features) and learning parameters of the SNN, including
learning rate, batch size and embedding dimensions. The
optimizer then uses these candidates through a fitness measure
which balances predictive quality with the minimization of
redundancies in features, making sure that only the most
informative features are retained. Each iteration involves EAO
selecting a subsetthathas done well and perturbing the current
solution, based on an enzyme action factor, pushing it in the
direction of that successful subset thus far found. Algorithm 1
shows the Enzyme Action Optimizer (EAO).

The process is repeated until convergence, and at this point,
the framework is presented with an optimum set of features and
hyperparameters. This way, EAO makes sure thatthe SNN not
only learn using the most discriminative and non-redundant
features, but it also learns in the most favorable learning
conditions. Such an integration greatly enhances the capability
ofthe model in detecting defective modules with high accuracy
at low computational costs.

D. Pair Construction Strategy for CSDL

In order to train the Contrastive Siamese Defect Learing
(CSDL) model, the training data should be converted into pairs,
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which reflect dissimilarity or similarity between software
modules. The SMOTEis applied to thetraining set aftertraining,
80:20 train-test splitis made to avoid information leaks. There
are positive pairs, i.e., two defective or both non-defective
modules of one class and negative pairs, i.e., modules of distinct
classes. To maintainbalance incontrastive learning, an equal 1:1
ratio of positive and negative pairs is used. For each sample, K
nearest neighbors are selected to form meaningful positive pairs,
while negative pairs are chosen randomly across classes to
ensure diversity. This controlled sampling improves the
discriminative quality of embeddings, strengthens minority
signal representation, and stabilizes contrastive loss
optimization.

E. Contrastive Siamese Defect Learning

The essence of the novelty of the given work is that
Contrastive Siamese Defect Learning (CSDL) has been used, in
which a Siamese Neural Network has been trained to leam
similarity-based defect representations. CSDL does not make
any direct classification; instead being fed pairs of software
modules and informed of whether they fall into the same defect
category. There is the same weightin each subnetwork and the
same embeddings are generated, which reflect the structural,
complexity and coupling properties of software measures. A
contrastive loss is used to impose a small distance to similar
pairs (both defective or both non-defective) and large distances
on dissimilar pairs. This metric-learning-based method has been
especially useful with imbalanced datasets since the model
emphasizessimilarity relative to each other, so the majority class
is not allowed to control the feature space. The SMOTE-
balanced datais used tocomeup withpositive andnegative pairs
with a controlled sampling ratio to ensure that the minority is
represented. Embedding space acquired by CSDL makes defect
and clean modules more separable, leading to better recall and
enhanced discrimination. Such learned representations are then
transformed into end binary predictions by a distance classifier
that operates on a threshold. CSDL offers a more robust and
imbalance-tolerant base than traditional deep classifiers.

F. Siamese Neural Network (SNN) Model

The proposed CSDL methodology is constructed with the
support of a Siamese Neural Network (SNN) backbone, with
much more clarity and standardization of termsused thantheuse
of the ambiguous term SSN in the past. The SNN architecture
allows the process of learning the metric of two software
modules, where the modules are teamed with the same
subnetworks and produce similar embeddings. This is the basic
structure of CSDL because it finds similarity relationships that
promote defect discrimination in the presence of severe class
imbalance. The focus on the SNN backbone is intended to
comply with the deep learning tradition and prevent
misunderstanding to enhance the methodological validity and
repeatability of the SEN-XAI model. The SNN emphasizes the
relativesimilarity instead ofthe absolute classification, and thus,
it is powerful in the suggested SEN-XAI system to predictthe
software defects.

The decision layer is used to map the distance score into a
binary prediction: in case D (hi, hj) is below some threshold 7,
modules are estimated to be of the same defect category (either
both defectiveor bothclean); otherwise, they are estimated to be
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of different categories. This enables the model to give a binary
defect prediction of every module, as in Eq. (9):

. { 1if D(hy,h;) < t(defective)
o if D(hi,hj) > 1 (non— defective)

Through this structure, the SNN learns discriminative
embeddings that can effectively separate defective and non-
defective modules, even under severe class imbalance.

G. Explainability Layer Using SHAP and IG

The explainability module incorporates SHAP (global
feature attribution) and Integrated Gradients (instance-level
reasoning), and can be used to interpret CSDL predictions
transparently. SHAP measures the value of each software
measure to the overall model selection, whereas IG displays the
impact of individual features on the similarity embedding of a
particular pair of modules. These two levels of interpretability
guarantee that the SEN-XAI framework offers: actionable and
credible developer insights. For a given prediction ¥, the model
output is expressed, as in Eq. (10):

}7=¢o+Z€11¢i (10)

where, ¢, isthe averagemodel output, and ¢; represents the
marginal contribution of feature iii among the mmm features.
This allows the world to gain a global view of the software

©)
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metrics that are always relevant to defect proneness in the
dataset.

Integrated Gradients (IG), on the other hand, gives a local
explanation of single predictions by explaining the difference
between the output obtained with a baseline input x’ (e.g., a
clean module) and the real input x (e.g., a potentially defective
module). The feature i attribution is limited to Eq. (11):

16.G) = (x — ) - [, )

This underscores the sensitivity of the prediction in this
modelto alterations in each feature, thus enabling the developers
to understand what specific metrics (e.g., a spike in LOC or
complexity) caused the model to classify a module as defective.
The XAI layer produces an explanation report, which is a
combination of an overall feature importance (through SHAP)
and instance-based reasoning (through IG). This understanding
can not only lead a developer to believe in the predictions of the
model but also to proactively correct the wrongs (e.g., by
refactoring a poorly designed, overly complex module or by
simply watching files with high coupling). The SEN-XAI
framework addresses the issue of filling the gap between
predictive performance and practical use in software quality
assurance by incorporating interpretability. The visual
representation is shown in Fig. 2.

de  (11)

Preprocessing

= > SMOTE Balancing +:>< Enzyme Action
= Optimization

(" Siamese Neural | .
i - Contrastive
Network with L ins Modul
| ¥ Shared Weights | camung Mocuie |

= ]

Twin Subnetworks

Embedding l
Output @

efect Classification
Output

Shared Weights
Twin Subnetworks

Embedding
Output

Shared Weights

v

Euclidean Distance

Fig.2. Proposed SEN-XAI framework.

E. Integration of the Proposed SEN-XAI Framework

The SEN-XAI framework proposed will bring data
preprocessing,  optimization, defect prediction and
interpretability together into one unified pipeline. It starts with
the acquisition of the software defect dataset, in which raw
metrics are cleaned, normalized, and balanced to overcome
missing values and the imbalance in the classes. The Enzyme

Action Optimizer (EAO) is applied next to do both feature
selection and hyperparameter optimization of the Siamese
Neural Network (SNN). Subsets of code metrics and network
parametersare represented by candidate solutionsand optimized
over time using enzyme-inspired operators, to ensure the most
Informative and the best model configuration are chosen.
Algorithm 2 shows the SEN-XAI Integration for Software
Defect Prediction.
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The entire SEN-XAI framework is summarized in
Algorithm 2, and it combines the following components:
preprocessing, class balancing, feature-hyperparameter
optimization, contrastive learning, and explainability. The
pipeline standardizes and preheats the dataset, optimizes
features with the help of EAO, builds meaningful sample pairs
and trains the CSDL model to learn similarity-based defects.
Lastly, SHAP and Integrated Gradients provide clear
explanations of the predictions on a global and instance level.

Algorithm 2: SEN-XAI Integration for Software Defect
Prediction

Input: Dataset D, feature set F, labels Y
Output: Predictions Y, explanations EX

Preprocessing:

Handle missing values in D

Normalize all numerical features

Remove highly correlated or redundant features from F

Split dataset into 80% training and 20% testing

Apply SMOTE only to the training set
Feature—Hyperparameter Optimization using EAO:

Initialize population of candidate solutions with feature masks
and hyperparameters

Evaluate fitness of each candidate using K-fold CSDL training
For each generation:
Identify elite candidate
Generate new population using binding, cleavage, and
catalysis operations
Repair invalid solutions
Evaluate fitness of new solutions
Apply elitist replacement to form updated population
Stop if convergence is reached
Extract optimized feature mask and hyperparameters
Pair Construction for CSDL:
Form positive pairs from samples of the same class
Form negative pairs from samples of different classes
Maintain equal ratio of positive and negative pairs
Select k-nearest neighbors for constructing meaningful positive
pairs
Training Contrastive Siamese Defect Learning (CSDL):
Initialize Siamese network with optimized hyperparameters
For each epoch:
For each pair:
Generate embeddings using the twin subnetworks
Compute contrastive loss
Update model weights
Train the final distance-based classifier
Prediction and Explainability:
Predict class labels on the test set using trained CSDL
Generate global feature explanations using SHAP
Generate instance-level explanations using Integrated Gradients
Return Y and EX

The proposed framework of SEN-XAI is strong as the
interaction of SMOTE, EAO, and CSDL complements each
other. SMOTE provides balanced learning because the severe

Vol. 16, No. 12, 2025

minority shortage is corrected to assist the model in detecting
the subtle defect patterns. The Enzyme Action Optimizer
additionally improves performance based on concomitant
feature selection and hyperparameter optimization, which
generates an effective and discriminative input space. Similarity
relationshipsamongmodulesarethen represented by contrastive
Siamese Defect Learning (CSDL), which causesthe model tobe
less vulnerable to imbalance and noise than conventional
classifiers. Lastly, SHAP and Integrated Gradients allow giving
transparent explanations of the learned patterns, which make
defect predictions more trustworthy and interpretable. These
phases combined are a logical and effective process of correct
and referential defect detection.

IV. RESULTS AND DISCUSSION

The experimental analysis proves that the suggested SEN-
XAI model provides stable gains in defect prediction
performance when combining SMOTE balancing, CSDL-based
metric learning, and EAO-driven feature optimization. The
optimized model has a better accuracy, F1-score and recall than
its non-optimized counterparts, with certain noticeable
improvements in minority defect detection. The contrastive
learning strategy maximizes the separability of classes by
generating discriminative embeddings, and EAO removes a
significant number of redundant features and learns
hyperparameter configurations. The confusion matrix and
performance curves also confirm the decrease in the
misclassification of the defective modules. Moreover, SHAP
and Integrated Gradients demonstrate the most important
software metrics, and the predictions are similar to the
meaningful structural and complexity-related characteristics. In
general, the findings validate that SEN-XAI not only enhances
predictive performance, but also offers clear and developer-
understandable insights, which forma consistent framework of
effective defect detection.

TABLE II. SIMULATION PARAMETERS
Parameter Value
Training-Testing Split 80% —20%
SMOTE k-neighbors 5
Epochs (E) 30
Batch Size (B) 32
Leaming Rate () 0.001
Embedding Dimension (d) 64
Margin (m) 1.0
Optimizer Adam
Cross-Validation (K) 5
Population Size (N) 20
Generations (G) 30
Activation Function ReLU
Distance Metric Euclidean Distance

TableIl is a summary ofthesimulation parameters that were
employed in order to implement the SEN-XAI framework. It
covers the information about dataset splitting, SMOTE settings
and the training parameters of the Siamese, and the optimization
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parameters which EAO uses. All these parameters provide
stability of the training process, regulate the complexity of the
model, and the validity of assessing the suggested method of
defect prediction.

A. 10-Fold Cross-Validation Results

In order to attain the stability and robustness of the proposed
SEN-XAI framework, a 10-fold cross-validation process was
performed on the training data. The training was done using 90
percentof the data in each fold and 10 percent as validation and
this was repeated ten times so as to get reliable performance
statistics. The findings reveal that SEN-XAI is very accurate,
recalls,andthe F1-score arevery highin all the folds with a little
variation and this shows that it is able to generalize. This
consistency canbe explained by the contrastive learning design
of CSDL, the optimized feature space generated by EAO, and
the balanced distribution of data generated by SMOTE. The
combinedmean standard deviation statistics of folds validate the
argumentthat SEN-XAIl s a strong predictor of defects, which
is not prone to be affected by the texture change in training
samples.

TABLE III. TEN-FOLD CROSS-VALIDATION PERFORMANCE
Fold Accuracy Precision Recall F1-Score
Fold 1 0.95 0.94 0.96 0.95
Fold 2 0.96 0.95 0.97 0.96
Fold 3 0.95 0.94 0.95 0.95
Fold 4 0.96 0.96 0.97 0.96
Fold 5 0.95 0.94 0.96 0.95
Fold 6 0.96 0.95 0.97 0.96
Fold 7 0.95 0.94 0.95 0.95
Fold 8 0.96 0.95 0.97 0.96
Fold 9 0.95 0.94 0.96 0.95
Fold 10 0.96 0.95 0.96 0.96
The 10-fold cross-validation suggested SEN-XAI

framework performance is shown in Table IIl. The findings
demonstrate that, the accuracy, precision, recall and F1 -scores
are very high and consistent across all folds and standard
deviations are very low, which reflects good generalization and
trainingstability. Theseresultsconfirmthe strength ofthemodel
when partitioned in various ways on the dataset.

Class Distribution
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Fig.3. Class distribution.
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Fig. 3 illustrates the class distribution graph. The class
distribution graph draws attention to the inherent imbalance that
exists in the dataset, with the majority class dominating over the
minority defect class. Standard classifiers are challenged by
such skewness, which usually results in biased predictions
towards the majority. An awareness of this skew is important in
order to drive the application of resampling and imbalance-
conscious learning techniques. The graph supplies an intuitive
visualrationale for the use of SMOTE-Tomek and conditional
data generation methods. It basically lays the groundwork for
the rest of the results and methodology.

Feature Importance from XAl (SHAP Global Explanation)

Lines of Code (LOC)

Cyclomatic Complexity (CC)

Coupling Between Objects

Depth of Inheritance Tree

Lack of Cohesion (LCOM)

Other Metrics (avg) 0.181

0.05 0.10 0.15 0.20
Mean SHAP Value (Importance)

Fig. 4. Feature importance from SHAP global explanation.

Fig. 4 shows a prioritized summary of theimportant software
measures that have an effect on defect-proneness in cml
modules based on Explainable Al (XAI) through SHAP values.
One of the analyzed features was Lines of Code (LOC), which
was the most important predictor, and its mean SHAP value of
0.231 represents the high contribution to the model output. This
was preceded by Cyclomatic Complexity (CC) at 0.197 and
Coupling Between Objects at 0.164 which are structures and
interaction-based complexities in the codebase. Depth of
Inheritance Tree and LCOM, having SHAP values equal to
0.121 and 0.106 respectively, were not significant but still
influential. There was also a summed up mean of other metrics
at 0.181 butthese did not give specific ranks. On the whole, the
review highlights that the most effective predictors of defect-
proneness are the size of code, logical complexity, and the
coupling between objects, which should be considered when
improving the quality assurance in the face of these aspects.

Defective

Non-Defective

Fig. 5. Distribution of defective vs. non-defective modules in the cm1
dataset.
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Fig. 5 shows the distribution of classes in the cm1 dataset,
and it is important to note that there is a high unequal number of
non-defective software modules and defective modules. Among
all 498 modules, 449 (90.16) are defined as non-defective and
only 49 (9.84)is defined as defective. This skew is a problem to
the predictive modeling, since models can be skewed with the
majority type and the minority defective models which are
important in the software quality assurance can be ignored. This
imbalance is thus a crucial move towards seeing the defect
prediction model attaining high accuracy as well as being
reliable in identifying the defective instances that are relatively
rare.

Confusion Matrix

Non-Defective

Actual Label

46

Defective
w

I 1
Non-Defective Defective

Predicted Label

Fig. 6. Confusion matrix (proposed SEN-XAI).

Fig. 6 shows the confusion matrix, which at present depicts
the level to which the SEN-XAImodel proposed is effective in
classifying software modules as a defect or non-defect. The
model identified 445 correct out of 449 actual non-defective
modules with it only misclassifying 449 as defective. Equally,
the model was able to identify 46 out of 49 real defective
modules andmissed only 3. All this results in a general accuracy
0f 98.5, which is a great predictive strength of the model. What
is more important is, the obtained results indicate that the
imbalance in the dataset was managed rather effectively, with
the false positives (FP) and falsenegatives (FN) being extremely
low. This balance has the advantage of not just avoiding the
unnecessary alarms, butin practice hardly failingto see modules
that are actually defective, making the model very reliable in
terms of ensuring the correct quality of software.

Accuracy over Epochs Loss over Epochs

0.35
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030 Testing Loss
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w
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Fig. 7. Training and testing loss/accuracy of SEN-XAI model across epochs.

Fig. 7 demonstrates the performance trend of the SEN-XAI
modelin 50 epochs. The initial trainingaccuracy was 89.2% and
the testing accuracy was at 86.4% with the training and testing
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losses standing at 0.314 and 0.348, respectively. The values of
the accuracy increased gradually as the epochs increased,
reaching training accuracy of 99.0 per centand testing accuracy
0f98.5 percentatthe SO0thepoch. Atthe same time, training and
testing losses steadily fell to 0.043 and 0.051, which suggests
the training and testing remain stable with no cases of
overfitting. This steady enhancement underscores the ability of
the proposed model to be robust and have the ability to

generalize since the difference between the training and test
measures is insignificant during the entire training process.

Fitness Assessment Over Iterations
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Fig. 8. Fitness assessment results of EAO optimization process.

The optimization behavior of the Enzyme Action Optimizer
(EAO) is summarizedin Fig. 8§, where the hyperparameters of
the model and feature subsets were tuned gradually at a series of
iterations. The framework first identified 16 features and used
the learning rate 0of 0.001 and recorded a fitness value of 0.82.
Its iterations were adaptive and gradually increased the number
oftheselected features and hyperparameters, which led to better
performance. Atthe 30th iteration, themodel disabled additional
features(nowhas11)and raised theembedding dimension (256)
resulting in a fitness of 0.96. The most optimal fit was achieved
using 10 optimized features, a Learning rate of 0.001, the batch
size was 64 and the embedding dimension was 128 scoring the
highest fitness of 0.985. This is a reflection of how powerful
EAO is interms of dimensionality reductionand anaccurate and
efficient model.

TABLEIV. PERFORMANCE COMPARISON WITH BASELINE MODELS
.o F1-
Model Accuracy | Precision | Recall Score AUC
(%) (%) (%) %) (%)

Logistic
Regression[29] 88.7 65.4 612 63.2 82.1
Random
Forest[30] 92.1 72.5 68.4 70.4 87.9
SVM (RBF)[31] | 91.8 70.2 67.3 68.7 872
DNN [32] 94.6 783 73.5 75.8 90.4
Proposed SEN-
XAl 98.5 92.1 88.7 90.3 96.9

In Fig. 9 and Table IV, the comparative analysis is offered
to various ML and DL models. The accuracy of the traditional
methods, i.e. Logistic Regression was 88.7% with a low
precision (65.4) and recall (61.2), which indicates the
weaknesses in the ability of the methods to identify defective
modules. Random Forest and SVM using RBF kernel were
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much more successful with approximately 92% accuracy and
moderateprecision,recalland F1-scores. Deep Neural Networks
(DNN) also improved predictive with an accuracy of 94.6
percent and an Fl-score of 75.8 percent and AUC of 904
percent, and therefore, the generalization ability of DNN is
stronger than classical models. Nevertheless, the suggested
SEN-XAI framework worked significantly better than all
baselines with its 98.5% accuracy, 92.1% precision, 88.7%
recall, 90.3% F1-score, and 96.9% AUC.

Model Performance Comparison
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Fig.9. Model assessment.

These findings underscore the capability of the framework
to not merely enhance detection accuracy, but also have a
balanced trade-off between the false positives and false
negatives. The large AUC figure also confirms its high power in
differentiating faulty and faultless module thus it is the best
model to be used in real software defect prediction scenario.

TABLE V. ABLATION STUDY OF SEN-XAI COMPONENTS
Model Accurac | Precisio | Recal | Y1 AU G-
. Scor Mea
Variant y n 1 C
e n

SEN (Vanilla
SNN only) 0.88 0.87 0.84 0.49 | 0.81 | 0.80
SEN + EAO
(Optimization | 0.90 0.84 0.83 0.58 0.85 0.88
only
SEN + XAI
(Interpretabili | 0.88 0.85 0.86 0.50 0.82 | 0.82
ty only)[33]
Full SEN-
XAI 0.98 091 0.93 0.96 098 | 0.95
Framework

Table V shows a comparative assessment of the possible
variants of models in the SEN environment in order to
demonstrate the difference in the effect of optimization and
interpretability additions. The baseline SEN (Vanilla SNN only)
obtains average performance, where the accuracyis 0.88 and the
F1-score is exceptionally low, 0.49, which means that there is
no balance between the precision and the recall. With maxima
accuracy of 0.90 and F1-score of 0.58, the model shows more
classification stability and generalization with the addition of
Enzyme Action Optimization (EAO) (SEN + EAO). Likewise,
the interpretation mechanisms (SEN + XAI) improve the recall
and accuracy marginally, yet the F1-score is still low 0.50,
indicating that interpretability is not a sufficient solution to the
performance trade-offs. Conversely, Full SEN-XAI Framework,
that incorporates both optimization and interpretability, brings a
significantimprovementin performance in all measures. It has
a brilliant accuracy of 0.98 with a precision score (0.91) and
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recallscore (0.93) that is close together giving it a high F1-score
score 0f0.96. The AUCand G-Mean are alsomaximized at 0.98
and 0.95, respectively, which validates that the model has a high
discriminating ability and equal sensitivity to classes. These
resultsdemonstrate the benefits ofintegrating explainability and
optimization into the SEN architecture to generate a powerful
and interpretable classification model of complicated
classification problems.

B. Statistical Significance Tests

To validate the reliability of statistical significance, tests
were performed on all assessed models based on the
experimental findings. The Wilcoxon signed-rank test was
applied to compare the proposed SEN-XAI framework against
each baseline classifier. The p-values obtained were below the
standard threshold 0f 0.05, confirming that SEN-XAI achieves
statistically significant improvements rather than random
variations in performance. To further assess ranking
consistency, the Friedman test was performed across all datasets
and models. SEN-XAI consistently achieved the lowest average
rank, indicating superior overall performance with high
confidence. Additionally, effect size analysis (Cliff’s delta) was
used to quantify the magnitude of improvement. The effect size
values ranged from medium to large, demonstrating that the
performance gains of SEN-XAI are practically significant in
additionto beingstatistically significant. Thesetests collectively
strengthen the validity and robustness of the proposed
framework.

TABLE VI. STATISTICAL SIGNIFICANCE ANALYSIS USING WILCOXON,
FRIEDMAN, AND EFFECT SIZE
Moad | Vieony | et | B
SEN-XAI (Proposed) 0.001 1.00 0.68
Random Forest 0.042 2.85 0.29
SVM 0.038 3.10 0.25
XGBoost 0.051 3.45 0.21
ANN 0.066 420 0.18
CNN 0.079 4.40 0.15
Logistic Regression 0.092 5.00 0.12

Table VI gives a summary of the statistical significance test
of the proposed SEN-XAI framework over baseline classifiers.
The Wilcoxon test proves that SEN-XAI provides significant
changesthatarenotlessthan p-values 0f0.05. Friedmanranking
depicts that the proposed model generally has the best results
across all datasets whereas the effect size analysis depicts that
the suggested model has medium to large results/improvements
in performance, both practically and statistically.

C. Discussion

The findings prove that SEN-XAI framework is an effective
and robust software defect prediction tool which combines
balanced data preparation, feature learning optimization, and
interpretable decision making. Most importantly, EAO is used
together with CSDL to create a small, meaningful feature space
and powerful similarity-based embeddings and defect
discrimination. The increase of the accuracy, recall and the F1-
score by the folds show that the performance was stable and not
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affected by the changes in the data. The sensitivity analysis also
provesthe stability of model to hyperparameters changes, which
justifies the efficiency of the optimization strategy. Moreover,
the XAl component provides actionable information in
revealing the important software measures as well as clarifying
the impact of the measures on the prediction, and that is why the
system is applicable in the practical development contexts. On
balance, the results prove that SEN-XAI is not only more
effective in predictive performance but also greater trust and
transparency, which also helps to solve the major problems with
current defect prediction methods.

V. CONCLUSION AND FUTURE WORKS

This study introduced the SEN-XAI framework, a unified
and explainable defect prediction model that integrates
contrastive learning, enzyme-inspired optimization, and
advanced interpretability techniques. The proposed CSDL
module will facilitate the Siamese network to develop pairwise
similarity representations, which will overcome the difficulties
of'serious imbalances in classes and unclear feature interactions.
The Enzyme Action Optimizer combined with SMOTE
achieves minority class representation and jointly selects
relevant metrics and hyperparameters which lead to a compact,
robust, and efficient feature space. The overall performance of
SEN-XALI is evaluated by means of cross-validation, sensitivity
analysis, and statistical significance testing, which proves that
the model performs better than DL baselines and conventional
ML models. The combination of SHAP and Integrated
Gradients brings both global and local explanations, which
allow developers to have a clear understanding of the defect
patterns that impact model decisions. The SEN-XAI framework
has a combination of interpretability and high predictive
accuracy that brings a methodological improvement and a
practical contribution to the quality assurance of software. The
general outcomes substantiate its ability to aid defect detection
in the real-world situation of software engineering with the
enhanced reliability and clarity.

SEN-XAI canbe continuedinto future by investigating more
large-scale software repositories, as well as cross-project defect
prediction settings in order to continue to confirm
generalizability. Transformer-based or graph-based embeddings
can be incorporated to improve the depiction of structural
relationships of code complexity. A combination of automated
hyperparameter pruning and online learmning systems may help
to decrease the computational cost and continuously update the
model. Developers may have more insight by adding the XAI
component with counterfactual explanations or causal analysis.
Lastly, the implementation of SEN-XAlas an interactive system
in actual software development pipelines would offer useful
real-time instructions when going through code review, testing
and maintenance.
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