
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1069 | P a g e
www.ijacsa.thesai.org

An Interpretable Analytical Intelligence Architecture

Delivering Reliable Detection of Software Defect

Instances

Srinivasa Rao Katragadda1, Dr.Sirisha Potluri2

Research Scholar, Department of Computer Science and Engineering,
Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad-500043, Telangana, India1

Associate Professor, Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad-500043, Telangana, India2

Abstract—Software defect prediction plays a crucial role in

improving software quality, yet existing approaches still suffer

from severe class imbalance, redundant feature spaces, weak

generalization, and limited interpretability, making their adoption

in real development pipelines difficult. Many current models rely

on black-box deep learning architectures or conventional

classifiers that fail to identify minority defects or explain the

reasoning behind their decisions. To overcome these limitations,

this study introduces a novel framework named Contrastive

Siamese Defect Learning–Integrated Explainable Neural

Optimization System (CSDL-SEN-XAI), which integrates

contrastive metric learning, enzyme-inspired optimization, and

transparent explainability. The method combines SMOTE-based

balancing, the Enzyme Action Optimizer for joint feature–

hyperparameter optimization, and a Siamese Neural Network

trained using contrastive loss to learn discriminative similarity

embeddings. The entire workflow is implemented using Python,

enabling efficient scalability and reproducibility. Experimental

analysis reveals that the proposed model achieves an accuracy of

95.5%, a recall of 96.2%, and an F1-score of 95.5%,

outperforming traditional models such as Random Forest, SVM,

and CNN by margins ranging from 7% to 15% under identical

evaluation settings. SHAP and Integrated Gradients further

demonstrate that the model provides clear global and instance-

level explanations, highlighting influential software metrics and

strengthening the interpretability of predictions. Overall, the

results confirm that CSDL-SEN-XAI delivers superior predictive

performance, stable optimization, balanced learning, and

transparent defect interpretation, offering a reliable and

interpretable solution suitable for practical software engineering

environments. Future work will explore cross-project defect

prediction and the integration of lightweight optimization

strategies to further enhance scalability.

Keywords—Contrastive learning; explainable artificial

intelligence; feature optimization; Siamese Neural Network;

software defect prediction

I. INTRODUCTION

Software defect prediction is a cornerstone of modern
software engineering, offering a proactive solution to identify
faulty modules early in the development process and, in the
process, reduce maintenance cost, improve release quality, and
guide effective testing resource allocation [1]. Owing to
increased system complexity and shorter delivery schedules,

automated prediction using code- and process-level metrics has
become a necessity in large-scale software development [2].
Traditional techniques—ranging from statistical models to
vintage machine learning—employ measures of churn, and
coupling to deduce defect proneness [3]. Although effective in
practice, these approaches are likely to fail under raw-world
conditions where defect occurrences are low in relation to non-
defective modules [4]. The resulting class imbalance also adds
to model bias towards the majority class, reducing minority-
class detection and often resulting in models that are accurate by
aggregate measures but ignore the key, albeit infrequent, defect
cases that plague practitioners the most [5].

A vast literature has attempted to address software-defect
prediction using ensemble learning, deep neural networks, and
data augmentation methods [6]. Ensembles and hybrids improve
robustness through combining heterogeneous learners, and deep
architectures—i.e., those learning complex nonlinear
interactions have improved predictive performance [7].
Meanwhile, imbalance-reduction techniques such as SMOTE,
cost-sensitive learning, focal loss, and generative augmentation
have been applied with mixed success [8]. Many chronic failures
persist nonetheless. First, most work applies imbalance cures in
isolation, rather than systematically combining data-level and
algorithmic-level solutions in a unified modeling pipeline [9].
Second, many fusion methods often applied to combine multiple
learners resort to naive averaging or static weighting schemes
that fail to respond to per-class detection performance and,
consequently, lead to suboptimal minority-class prioritization
[10]. Third, deep models suffer from overfitting, especially
when synthetic minority samples dominate the training signal;
existing regularization techniques are often not adequately tuned
to the peculiarities of synthetic-real data mixtures [11]. Fourth,
reproducibility and transparent reporting of imbalance statistics
are hardly standard, and it is difficult to ascertain whether gains
reported generalize across datasets with different imbalance
ratios [12]. This study introduces a new framework based on
metric-learning, Contrastive Siamese Defect Learning (CSDL),
which utilizes Siamese contrastive learning, enzyme-inspired
optimization, and explainable AI to overcome the old problems
of class imbalance, poor interpretability, and poor generalization
of software defect prediction.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1070 | P a g e
www.ijacsa.thesai.org

A. Research Motivation

Classical ML classifiers are biased on the prevailing
category and deep learning classifiers are black boxes which do
not give explanations to their decisions. Current hybrid
methodologies are based on predetermined characteristics,
oversampling instability, or high hyperparameter sensitivity,
and therefore, they cannot be easily applied to large software
systems. This is the driving factor behind the necessity of an
adaptive and interpretable as well as an imbalance-sensitive
learning system that is able to both identify subtle defect patterns
and grant transparent explanations to developers.

B. Problem Statement

Software defect prediction is a significant area of enhancing
software reliability; however, current methods have outstanding
problems associated with extreme imbalance in classes,
duplication or spuriousness of software measures, no cross-
project generalization, and uninterpretable model decisions [13].
Deep learning models are black boxes that developers cannot
easily understand, whereas traditional machine learning
approaches are unable to identify minority defects. Techniques
of oversampling and feature selection are rarely used
independently, and accurate improvements cannot be achieved;
and tuning is of great importance [14]. In addition, the existing
models seldom utilize pairwise similarity data between modules,
which is vital in learning discriminative defect patterns during
an imbalanced situation. Thus, a concerted framework that
would balance the data and optimize features and
hyperparameters, and simultaneously learn similarity-driven
representations and offer interpretable explanations, is urgently
needed to support reliable and implementable defect prediction.

C. Research Significance

The importance of the research is that it offers a
comprehensive, explainable, and optimization-based defect
prediction model that is more accurate and easier to interpret.
The model uses CSDL to learn similarity-based defect patterns
that are more resistant towards imbalance. The Enzyme Action
Optimizer allows both feature tuning and hyperparameter
tuning, making it more efficient and predictive. The framework
provides actionable insight by explaining the metrics of critical
software that are presented as actionable explanations of the
software using SHAP and Integrated Gradients to allow
developers to prioritize their refactoring and testing. In general,
the research provides a sound, clear and performance-based
approach that can be used in real-world software quality control.

D. Key Contributions

• This study aims to develop an accurate, interpretable, and
imbalance-aware software defect prediction framework
using contrastive learning, optimization, and explainable
AI.

• Proposes SEN-XAI, a unified framework combining
SMOTE balancing, EAO optimization, Siamese metric
learning, and explainable AI.

• Employs the Enzyme Action Optimizer (EAO) for joint
feature selection and hyperparameter tuning, improving
model efficiency and stability.

• Designs a controlled pair construction strategy enabling
balanced positive/negative pairs for robust contrastive
learning.

• Integrates SHAP and Integrated Gradients to deliver
global and instance-level explanations, ensuring
transparent and developer-friendly defect prediction.

The rest of the section is aligned as follows: the study on
defect prediction, remedies for imbalances, and fusion
techniques are discussed in Section II. In Section III, the hybrid
approach to defect prediction is presented, including method,
preprocessing, and augmentation modules, a Transformer
ensemble, and its fusion. Section IV presents the results and
discusses them, while Section V concludes, summarizes the
contributions, discusses the limitations, and suggests future
work.

II. LITERATURE REVIEW

Abdu et al. [13] addressed software defect prediction (SDP)
with a hybrid deep learning approach that combines traditional
and semantic features. Traditional features, such as code size
and complexity, provide statistical information but typically fail
to reflect semantic differences, whereas semantic features from
source code's abstract syntax trees (ASTs) learned by Word2Vec
precisely model program semantics but lack statistical
representation. To harness them both to their maximum
potential, the authors proposed a hybrid CNN-MLP model in
which CNN handles semantic features and MLP handles
traditional metrics, followed by defect prediction by fusion
through a fully connected layer. Comprehensive experiments on
a pair of open-source projects indicated that CNN-MLP
significantly improves defect detection performance and
performs better than existing approaches in effort-aware as well
as non-effort-aware scenarios. The limitation of the work is its
reliance on pre-specified features and AST representations,
which may fail to reflect sophisticated interdependencies in code
and, therefore, the need for adaptive, imbalance-sensitive
models for enabling enhanced minority-class detection and
generalization across a variety of software datasets.

Nabella et al. [15] explored the effect of class imbalance (CI)
in SDP and assessed the performance of the SDV for CPDP. The
research tackled CI on ReLink, MDP, and PROMISE datasets
by pre-processing minority classes with SDV, and then
classifying using DT, LR, KNN, NB, and RF. AUC was used to
measure performance, while statistical significance was
confirmed through the t-Test. Results showed that SDV
performed better compared to SMOTE and other imbalance-
reduction methods, with KNN recording the best mean AUC
(0.695–0.750) and recording improvements of 12–20% over
SMOTE across data sets. RF and LR had moderate performance,
while NB underperformed. Limitations are dependence on
traditional classifiers that lack deep learning or hybrid models
and restricted investigation of adaptive augmentation methods
and, as such, propose that coupling SDV with sophisticated
imbalance-aware deep learning frameworks might further
enhance minority-class detection and generalization across
diverse software projects.

Sharma, Singh, and Chandra [15] discussed the problem of
class imbalance in predictive modeling, whereby conventional

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1071 | P a g e
www.ijacsa.thesai.org

classifiers report high true positive but low true negative values
for majority classes. They introduced SMOTified-GAN, a
hybrid oversampling system that integrates SMOTE and
Generative Adversarial Networks (GAN). In this two-stage
model, SMOTE generates preliminary minority samples that are
further refined by GAN to produce more realistic distributions,
eliminating SMOTE's overgeneralization. Experimental results
on benchmark datasets showed SMOTified-GAN improves
minority-class representation and F1-score performance by up
to 9% over competing approaches without inducing
unreasonably high computational complexity. A significant
limitation is that the method is not combined with state-of-the-
art deep learning classifiers or ensemble learners, which
constrains its ability to learn complex feature interactions in
high-dimensional software measurements.

Alqarni and Aljamaan [14] examined imbalanced software
defect prediction (SDP) via the introduction of GAN with
AdaBoost ensembles for enhancing minority-class detection.
The GAN module generated artificial samples for
counterbalancing extremely imbalanced datasets, while
AdaBoost prediction modules were either classified as defective
or non-defective. The approach was applied to ten datasets of
software defects with variable imbalance ratios, and
performance differences were statistically assessed by the
Wilcoxon effect size and Scott–Knott tests. Results indicated
that oversampling with GAN performed better than traditional
approaches and effectively improved defect prediction.
However, the study underscored the principal drawbacks: how
well a GAN performs is largely based on hyperparameter
adjustment, combination with undersampling is ineffective, and
generalizability across different ensemble platforms is
unexamined. Additionally, the synthetic data quality was not
thoroughly tested. The proposed work addresses these gaps by
integrating adaptive GAN/SMOTE enlargement and
Transformer-based hybrid learners and a score-level fusion
module for robust minority-class detection, reduced overfitting,
and robust performance over varied software-defect datasets.

Zhang et al [16] treated software defect prediction (SDP) as
an anomaly detection problem to solve the issue of class
imbalance and the lack of sufficient high-quality labeled data.
They introduced ADGAN-SDP, a semi-supervised BiGAN-
based approach that converts the conventional binary
classification into an anomaly detection task to alleviate the
majority-class bias. The model was tested on 19 NASA,
AEEEM, and ReLink repository projects and compared with
eight classification-based SDP baselines. Experimental
outcomes proved that ADGAN-SDP had greater recall and
surpassed all the baselines, proving the possibility of using
anomaly detection to counterbalance imbalance [17]. Yet, it is
limited by its reliance on the quality of unlabeled instances and
possible vulnerability to the setting of anomaly thresholds. In
addition, the model is predominantly recall-oriented without
necessarily strengthening minority-class overall generalization
or incorporating sophisticated feature fusion techniques. The
current study fills these voids through synergistic integration of
adaptive augmentation, hybrid learners based on Transformers,
and score-level fusion to obtain defect prediction with
robustness and generalizability over various software-defect
datasets.

The latest studies of software defect prediction have pointed
out a variety of issues and methods in machine learning methods
as well as the soft method of computing. Pachouly et al. [18]
performed a systematic review concerning defect datasets,
validation, and machine learning, and stated that the vast
majority of standard datasets have insufficient features and solid
validation procedures, which restrict their generalizability. In an
analogous manner, [19] investigated the use of supervised ML
classifiers, including SVM and RF, to optimize the strategy of
the tests, as their efficiency is strongly dependent on the quality
of feature engineering and access to comprehensive labeled
datasets. Khan et al. [20] reviewed the application of artificial
neural networks, including the fact that although deep learning
models have become popular, they are too sensitive to data
imbalance and do not provide enough explainability to be
adopted in safety-critical areas. Stradowski et al. [21] also
presented a business-oriented viewpoint, but the authors
examined ensemble and meta-learning methods, yet they
emphasized the immaturity of integration of business and the
lack of focus on the cost-effectiveness of these models in
practice. With increased methodological breadth, Nassif et al.
[22] proposed a Learning to Rank framework based on
regression and Bayesian Ridge Regression to rank bug-prone
modules, but admitted that ranking models remain relatively
new and have few comparative studies. Khanna et al. [23] have
surveyed such methods as bagging, boosting, and the use of the
Random Forest on ensemble techniques, concluding them to be
effective, yet consume large datasets and require considerable
computational power and have difficulties with cross-project
prediction. Raju [24] summarized AI-based best practices,
including such techniques as SVMs, neural networks, and
logistic regression, emphasizing the importance of quality data
because such statistical models tend to fail in complicated
environments. Wang et al. [25] enhanced feature selection
through the Binary Gray Wolf Optimizer, but the algorithm
needs a significant amount of parameter optimization depending
on the data, which makes it less generalized. Making an effort to
solve the problem in practice, Madeyski et al. [26] were focused
on predicting test failures using ML, but had issues of scalability
and transferability in enterprise settings. Lastly, the [27]
surveyed soft computing methods, including fuzzy logic and
evolutionary algorithms, which researchers believe that hybrid
methods have potential but are yet to be empirically validated
and have no standard benchmarks, making their adoption more
widespread.

CNN-MLP hybrids, GAN-based oversampling, anomaly
detection, and ensemble models have been used previously, but
they are still severely limited by reliance on predefined metrics,
low strength in generalization with imbalance, being sensitive to
hyperparameters, and lacking in interpretability. Minority
samples are usually distorted through generative augmentation,
and deep models are black-box and untrustworthy.
Metaheuristic optimizers do not combine feature selection and
hyperparameter tuning. CSDL-based SEN-XAI framework
addresses these deficiencies by using contrastive learning, joint
optimization, and transparent XAI explanations.

III. PROPOSED METHODOLOGY

The proposed SEN-XAI architecture has a single, multi-
phase pipeline to provide the correct and explainable software

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1072 | P a g e
www.ijacsa.thesai.org

fault prediction. It starts with preprocessing, whereby missing
values are addressed, duplicate metrics are eliminated and class
imbalance is rectified with SMOTE. Then, Enzyme Action
Optimizer (EAO) is used to select joint features and tune
hyperparameters to find the most informative metrics and the
best configuration of Siamese learning. The optimized data is
then fed on Contrastive Siamese Defect Learning (CSDL),

where a Siamese net is trained in similarity-based defect
embeddings by contrastive loss. The predictions which result
based on the distance are ultimately interpreted using SHAP and
Integrated Gradients, producing both global and instance-level
explanations. This streamlined pipeline promotes high accuracy
of prediction, strength, and transparency. The workflow of the
proposed methodology is displayed in Fig. 1.

Fig. 1. Workflow of the proposed methodology.

A. Data Collection

The present study employs the Software Defect Dataset
available at Kaggle, which was made ready for enabling
empirical research on defect prediction and quality assurance of
software [28]. The dataset is categorized into a number of CSV
files for NASA MDP projects, and cm1.csv (42.8 kB) is used as
the reference benchmark in this study. The data has 498 software
modules characterized by 22 static code metrics such as lines of
code, cyclomatic complexity, and coupling metrics. Each
module is assigned a binary class label indicating whether it is
faulty (positive class) or not faulty (negative class). Of the 498
modules, 449 are non-defective and only 49 are faulty, thus
creating an imbalance ratio (IR) of approximately 9.16:1. This
uneven distribution makes it challenging for conventional
classifiers to identify minority defect cases since they lean
toward overfitting the majority class.

B. Data Preprocessing

The preprocessing step is used to prepare the NASA cm1
dataset by addressing values that did not occur, standardizing the
feature values and dropping redundant measures. Continuous
data are filled in with their means or median, categorical data
with mode and records with too many missing data are
eliminated to maintain the integrity of the dataset. This is
followed by normalization of all features so that they contribute
equally during the learning process and then correlation-based
pruning is done to eliminate highly collinear metrics. Since the
dataset is significantly imbalanced, SMOTE is used to create the
synthetic defected samples by interpolating the minority cases
and their nearest neighbors. This generates a more balanced

training set, which allows the stable feature optimization and
effective contrastive learning during the further steps.

1) Handling missing values: Impute continuous features

using mean or median, fill categorical features using mode, and

remove samples with excessive missing data to maintain dataset

quality.

2) Normalization: Scale all numerical metrics to a uniform

range (0–1) using Min–Max normalization to ensure equal

contribution during optimization and model training, which is

defined as in Eq. (1):

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1)

This ensures that each feature contributes equally during
optimization and model training.

3) Imbalance handling: Apply SMOTE to generate

synthetic defective samples by interpolating between minority

instances and their nearest neighbors, reducing the dataset’s

severe class imbalance. For each minority instance 𝑥𝑖, one of

its k-nearest neighbors 𝑥𝑛𝑛 is randomly selected. A synthetic

sample is then created, as in Eq. (2):

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 ∙ (𝑥𝑛𝑛 − 𝑥𝑖), 𝜆 ∈ [0,1] (2)

where, 𝜆 is a random number between 0 and 1 that controls
the interpolation point between the original instance 𝑥𝑖 and its
neighbor 𝑥𝑛𝑛 . The overall number of synthetic defective
samples to be generated is determined by Eq. (3):

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1073 | P a g e
www.ijacsa.thesai.org

𝑁𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = (
𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦
− 1) × 𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 (3)

where, 𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 and 𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 represent the number of

majority (non-defective) and minority (defective) instances,
respectively. SMOTE balances the dataset by creating synthetic
defective modules systematically and not by simply duplicating
the existing data. This assists the SNN in learning discriminative
embeddings that more effectively highlight the features of
defective modules, hence enhancing generalization and
minimizing bias against non-defective classes.

4) Feature cleaning: Compute pairwise Pearson

correlation and remove highly correlated or redundant metrics

to avoid multicollinearity and reduce dimensionality.

After preprocessing, the dataset is partitioned into training
and testing sets to ensure unbiased model evaluation. An 80:20
split is used, where 80% of the balanced data is used for training
the EAO-optimized Siamese model, and 20% is held out for
final testing. Only the training portion is oversampled using
SMOTE to avoid data leakage, while the test set remains
completely untouched and naturally imbalanced. The result of
this procedure is a reduced feature set that is not redundant and
is normalized to a uniform scale and balanced by the use of
SMOTE in order to solve the imbalance of classes. This purged
data is not only more efficient in learning, but it also elevates the
capacity to generalize the latter modeling processes. Markedly,
it provides a strong backbone of the EAO to execute advanced
feature selection and hyperparameter optimization, so that the
SNN is trained on the most informative and non-redundant
measures to detect defects.

C. Feature Optimization with EAO

The Enzyme Action Optimizer (EAO) is used to
collaboratively select the most informative code metrics at rest
and optimize the hyperparameters that are the most critical in the
CSDL-based Siamese model. Candidates’ solutions consist of a
binary feature mask and hyperparameters.

1) Objective function for optimization: The optimization

process is driven by minimizing a fitness function that balances

classification accuracy and feature reduction in Eq. (4):

𝐹 = 𝛼 ∙ (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝛽 ∙
|𝑆|

|𝑇|
 (4)

where, 𝛼, 𝛽 are weight coefficients, ∣ 𝑆 ∣ is the number of
selected features and ∣ 𝑇 ∣ is the total number of available
features. At each iteration, EAO updates solutions using an
enzyme-inspired transformation computed in Eq. (5):

𝑋𝑡+1 = 𝑋𝑡 + η ⋅ (𝐸 − 𝑋𝑡) + γ ⋅ 𝑅 (5)

where, 𝑋𝑡 is the current solution, 𝐸 is the elite (best) solution
so far, 𝜂 is the catalytic learning constant, 𝑅 is the random
perturbation (enzyme action factor), and 𝛾 is the stochastic
scaling coefficient. This process gradually pushes candidate
solutions toward high-performing feature subsets and optimized
CSDL hyperparameters.

Table I determines the hyperparameters that are optimized
by the EAO, such as learning settings, embedding structure and
the feature selection mask. The continuous, categorical and

binary parameters are actively studied in parallel in order to
determine the optimal scenario of the CSDL-based Siamese
network. These ranges both provide wide coverage of search and
are available to be cross-validated and optimized with
computational feasibility.

TABLE I. HYPERPARAMETER SEARCH SPACE USED BY THE EAO

Parameter Search Range

Learning rate 0.0001 – 0.01

Batch size 16, 32, 64

Epochs 10 – 50

Embedding dimension 16 – 128

Margin (contrastive loss) 0.5 – 2.0

Optimizer type Adam, RMSProp

Activation function ReLU, Tanh

Feature selection mask 0/1 binary vector

Algorithm 1: Enzyme Action Optimizer (EAO)

Input: Dataset D, population size N, generations G, K-folds

Output: Optimal feature mask s*, optimal hyperparameters φ*

1: Initialize population P = {(sᵢ, φᵢ)} for I = 1…N

2: For each candidate (sᵢ, φᵢ):

3: Evaluate fitness Fᵢ using K-fold CSDL training

4: For t = 1…G:

5: Let E = best candidate in P

6: New Pop = ∅

7: while |New Pop| < N do

8: Select parents A and B using tournament selection

9: C = Binding (A, B) // crossover

10: C = CleavageI // random local mutation

11: C = Catalysis (C, E) // move towards elite E

12: RepairI // ensure valid bounds

13: Evaluate fitness FI

14: Add C to New Pop

15: P = Elitist Replace (P, New Pop)

16: If convergence achieved: break

17: return best agent E = (s*, φ*)

This pseudocode fully reflects your enzyme-based
metaphor: Binding, Cleavage, and Catalysis.

2) Complexity analysis of EAO: The computational

complexity of EAO depends on the population size NNN,

number of generations GGG, and the cost of evaluating each

candidate during K-fold CSDL training.

a) Fitness evaluation cost: Training the Siamese model

for one-fold costs approximately are computed in Eq. (6):

𝑇EAO = 𝑂(𝐸 ⋅ 𝑃) (6)

where, 𝐸 is the number of epochs and 𝑃 number of training
pairs. For K-fold validation was computed in Eq. (7):

𝑇EAO = 𝑂(𝐾 ⋅ 𝐸 ⋅ 𝑃) (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1074 | P a g e
www.ijacsa.thesai.org

where, 𝐾 is the number of folds used in K-fold cross-
validation during fitness evaluation.

b) Total EAO optimization cost: The overall
computational cost of the Enzyme Action Optimizer is based
on the analysis of each candidate solution in several generations

and K-fold cross-validation. For every generation, all 𝑁 the
CSDL-based Siamese network is trained on 𝑁 candidate

solutions. 𝐾 folds, each requiring 𝐸 epochs and processing 𝑃
training pairs. Thus, the total optimization cost will increase in
correlation with the product of these factors. This complexity
might seem to be very high, but it is well-grounded as EAO can
optimize feature subsets and hyperparameters at once,
eliminating redundant model runs. Moreover, optimized
features reduce the network dimensionality and a lightweight

Siamese structure reduces the training time, which makes the
overall computation possible and efficient in predicting defects.

It was expressed in Eq. (8):

𝑇EAO = 𝑂(𝑁 ⋅ 𝐺 ⋅ 𝐾 ⋅ 𝐸 ⋅ 𝑃) (8)

where, 𝑁 is the number of candidate solutions (population
size in EAO and 𝐺 is the number of generations or iterations
performed by the optimizer.

c) Hyperparameter optimization for SNN: EAO
simultaneously tunes SNN parameters by searching within

predefined ranges. Through this mechanism, EAO ensures that
the SNN is trained not only with the most relevant features but
also with optimized training parameters, improving both

efficiency and accuracy.

The Enzyme Action Optimizer (EAO) in this research has
been a pivotal activity in optimizing feature selection and
hyperparameter optimization of the SNN. The catalytic action of
enzymes in biochemical reactions inspires EAO to successively
optimize candidate solutions by simulating the action of an
enzyme in catalyzing the conversion of substrates into products.
In the software defect prediction setting, every candidate
solution corresponds to an addition of chosen static code metrics
(features) and learning parameters of the SNN, including
learning rate, batch size and embedding dimensions. The
optimizer then uses these candidates through a fitness measure
which balances predictive quality with the minimization of
redundancies in features, making sure that only the most
informative features are retained. Each iteration involves EAO
selecting a subset that has done well and perturbing the current
solution, based on an enzyme action factor, pushing it in the
direction of that successful subset thus far found. Algorithm 1
shows the Enzyme Action Optimizer (EAO).

The process is repeated until convergence, and at this point,
the framework is presented with an optimum set of features and
hyperparameters. This way, EAO makes sure that the SNN not
only learn using the most discriminative and non-redundant
features, but it also learns in the most favorable learning
conditions. Such an integration greatly enhances the capability
of the model in detecting defective modules with high accuracy
at low computational costs.

D. Pair Construction Strategy for CSDL

In order to train the Contrastive Siamese Defect Learning
(CSDL) model, the training data should be converted into pairs,

which reflect dissimilarity or similarity between software
modules. The SMOTE is applied to the training set after training,
80:20 train-test split is made to avoid information leaks. There
are positive pairs, i.e., two defective or both non-defective
modules of one class and negative pairs, i.e., modules of distinct
classes. To maintain balance in contrastive learning, an equal 1:1
ratio of positive and negative pairs is used. For each sample, 𝐾
nearest neighbors are selected to form meaningful positive pairs,
while negative pairs are chosen randomly across classes to
ensure diversity. This controlled sampling improves the
discriminative quality of embeddings, strengthens minority
signal representation, and stabilizes contrastive loss
optimization.

E. Contrastive Siamese Defect Learning

The essence of the novelty of the given work is that
Contrastive Siamese Defect Learning (CSDL) has been used, in
which a Siamese Neural Network has been trained to learn
similarity-based defect representations. CSDL does not make
any direct classification; instead being fed pairs of software
modules and informed of whether they fall into the same defect
category. There is the same weight in each subnetwork and the
same embeddings are generated, which reflect the structural,
complexity and coupling properties of software measures. A
contrastive loss is used to impose a small distance to similar
pairs (both defective or both non-defective) and large distances
on dissimilar pairs. This metric-learning-based method has been
especially useful with imbalanced datasets since the model
emphasizes similarity relative to each other, so the majority class
is not allowed to control the feature space. The SMOTE-
balanced data is used to come up with positive and negative pairs
with a controlled sampling ratio to ensure that the minority is
represented. Embedding space acquired by CSDL makes defect
and clean modules more separable, leading to better recall and
enhanced discrimination. Such learned representations are then
transformed into end binary predictions by a distance classifier
that operates on a threshold. CSDL offers a more robust and
imbalance-tolerant base than traditional deep classifiers.

F. Siamese Neural Network (SNN) Model

The proposed CSDL methodology is constructed with the
support of a Siamese Neural Network (SNN) backbone, with
much more clarity and standardization of terms used than the use
of the ambiguous term SSN in the past. The SNN architecture
allows the process of learning the metric of two software
modules, where the modules are teamed with the same
subnetworks and produce similar embeddings. This is the basic
structure of CSDL because it finds similarity relationships that
promote defect discrimination in the presence of severe class
imbalance. The focus on the SNN backbone is intended to
comply with the deep learning tradition and prevent
misunderstanding to enhance the methodological validity and
repeatability of the SEN-XAI model. The SNN emphasizes the
relative similarity instead of the absolute classification, and thus,
it is powerful in the suggested SEN-XAI system to predict the
software defects.

The decision layer is used to map the distance score into a

binary prediction: in case 𝐷(ℎ𝑖,ℎ𝑗) is below some threshold 𝜏,

modules are estimated to be of the same defect category (either
both defective or both clean); otherwise, they are estimated to be

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1075 | P a g e
www.ijacsa.thesai.org

of different categories. This enables the model to give a binary
defect prediction of every module, as in Eq. (9):

𝑦̂ = {
1 𝑖𝑓 𝐷(ℎ𝑖 ,ℎ𝑗) ≤ 𝜏(𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

0 𝑖𝑓 𝐷(ℎ𝑖 , ℎ𝑗) > 𝜏 (𝑛𝑜𝑛 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)
 (9)

Through this structure, the SNN learns discriminative
embeddings that can effectively separate defective and non-
defective modules, even under severe class imbalance.

G. Explainability Layer Using SHAP and IG

The explainability module incorporates SHAP (global
feature attribution) and Integrated Gradients (instance-level
reasoning), and can be used to interpret CSDL predictions
transparently. SHAP measures the value of each software
measure to the overall model selection, whereas IG displays the
impact of individual features on the similarity embedding of a
particular pair of modules. These two levels of interpretability
guarantee that the SEN-XAI framework offers: actionable and
credible developer insights. For a given prediction 𝑦̂, the model

output is expressed, as in Eq. (10):

𝑦 = 𝜙0 + ∑ 𝜙𝑖
𝑚
𝑖=1 (10)

where, 𝜙0 is the average model output, and 𝜙𝑖 represents the
marginal contribution of feature iii among the mmm features.
This allows the world to gain a global view of the software

metrics that are always relevant to defect proneness in the
dataset.

Integrated Gradients (IG), on the other hand, gives a local
explanation of single predictions by explaining the difference
between the output obtained with a baseline input 𝑥′ (e.g., a
clean module) and the real input 𝑥 (e.g., a potentially defective
module). The feature 𝑖 attribution is limited to Eq. (11):

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′) ∙ ∫

𝜕𝑓(𝑥′ +𝛼(𝑥−𝑥′))

𝜕𝑥𝑖

𝑙

𝛼=0
𝑑𝛼 (11)

This underscores the sensitivity of the prediction in this
model to alterations in each feature, thus enabling the developers
to understand what specific metrics (e.g., a spike in LOC or
complexity) caused the model to classify a module as defective.
The XAI layer produces an explanation report, which is a
combination of an overall feature importance (through SHAP)
and instance-based reasoning (through IG). This understanding
can not only lead a developer to believe in the predictions of the
model but also to proactively correct the wrongs (e.g., by
refactoring a poorly designed, overly complex module or by
simply watching files with high coupling). The SEN-XAI
framework addresses the issue of filling the gap between
predictive performance and practical use in software quality
assurance by incorporating interpretability. The visual
representation is shown in Fig. 2.

Fig. 2. Proposed SEN-XAI framework.

E. Integration of the Proposed SEN-XAI Framework

The SEN-XAI framework proposed will bring data
preprocessing, optimization, defect prediction and
interpretability together into one unified pipeline. It starts with
the acquisition of the software defect dataset, in which raw
metrics are cleaned, normalized, and balanced to overcome
missing values and the imbalance in the classes. The Enzyme

Action Optimizer (EAO) is applied next to do both feature
selection and hyperparameter optimization of the Siamese
Neural Network (SNN). Subsets of code metrics and network
parameters are represented by candidate solutions and optimized
over time using enzyme-inspired operators, to ensure the most
Informative and the best model configuration are chosen.
Algorithm 2 shows the SEN-XAI Integration for Software
Defect Prediction.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1076 | P a g e
www.ijacsa.thesai.org

The entire SEN-XAI framework is summarized in
Algorithm 2, and it combines the following components:
preprocessing, class balancing, feature-hyperparameter
optimization, contrastive learning, and explainability. The
pipeline standardizes and preheats the dataset, optimizes
features with the help of EAO, builds meaningful sample pairs
and trains the CSDL model to learn similarity-based defects.
Lastly, SHAP and Integrated Gradients provide clear
explanations of the predictions on a global and instance level.

Algorithm 2: SEN-XAI Integration for Software Defect

Prediction

Input: Dataset D, feature set F, labels Y

Output: Predictions Ŷ, explanations EX

Preprocessing:

 Handle missing values in D

 Normalize all numerical features

 Remove highly correlated or redundant features from F

 Split dataset into 80% training and 20% testing

 Apply SMOTE only to the training set

Feature–Hyperparameter Optimization using EAO:

 Initialize population of candidate solutions with feature masks

and hyperparameters

 Evaluate fitness of each candidate using K-fold CSDL training

 For each generation:

 Identify elite candidate

 Generate new population using binding, cleavage, and

catalysis operations

 Repair invalid solutions

 Evaluate fitness of new solutions

 Apply elitist replacement to form updated population

 Stop if convergence is reached

 Extract optimized feature mask and hyperparameters

Pair Construction for CSDL:

 Form positive pairs from samples of the same class

 Form negative pairs from samples of different classes

 Maintain equal ratio of positive and negative pairs

 Select k-nearest neighbors for constructing meaningful positive

pairs

Training Contrastive Siamese Defect Learning (CSDL):

 Initialize Siamese network with optimized hyperparameters

 For each epoch:

 For each pair:

 Generate embeddings using the twin subnetworks

 Compute contrastive loss

 Update model weights

 Train the final distance-based classifier

Prediction and Explainability:

 Predict class labels on the test set using trained CSDL

 Generate global feature explanations using SHAP

 Generate instance-level explanations using Integrated Gradients

 Return Ŷ and EX

The proposed framework of SEN-XAI is strong as the
interaction of SMOTE, EAO, and CSDL complements each
other. SMOTE provides balanced learning because the severe

minority shortage is corrected to assist the model in detecting
the subtle defect patterns. The Enzyme Action Optimizer
additionally improves performance based on concomitant
feature selection and hyperparameter optimization, which
generates an effective and discriminative input space. Similarity
relationships among modules are then represented by contrastive
Siamese Defect Learning (CSDL), which causes the model to be
less vulnerable to imbalance and noise than conventional
classifiers. Lastly, SHAP and Integrated Gradients allow giving
transparent explanations of the learned patterns, which make
defect predictions more trustworthy and interpretable. These
phases combined are a logical and effective process of correct
and referential defect detection.

IV. RESULTS AND DISCUSSION

The experimental analysis proves that the suggested SEN-
XAI model provides stable gains in defect prediction
performance when combining SMOTE balancing, CSDL-based
metric learning, and EAO-driven feature optimization. The
optimized model has a better accuracy, F1-score and recall than
its non-optimized counterparts, with certain noticeable
improvements in minority defect detection. The contrastive
learning strategy maximizes the separability of classes by
generating discriminative embeddings, and EAO removes a
significant number of redundant features and learns
hyperparameter configurations. The confusion matrix and
performance curves also confirm the decrease in the
misclassification of the defective modules. Moreover, SHAP
and Integrated Gradients demonstrate the most important
software metrics, and the predictions are similar to the
meaningful structural and complexity-related characteristics. In
general, the findings validate that SEN-XAI not only enhances
predictive performance, but also offers clear and developer-
understandable insights, which form a consistent framework of
effective defect detection.

TABLE II. SIMULATION PARAMETERS

Parameter Value

Training–Testing Split 80% – 20%

SMOTE k-neighbors 5

Epochs (E) 30

Batch Size (B) 32

Learning Rate (α) 0.001

Embedding Dimension (d) 64

Margin (m) 1.0

Optimizer Adam

Cross-Validation (K) 5

Population Size (N) 20

Generations (G) 30

Activation Function ReLU

Distance Metric Euclidean Distance

Table II is a summary of the simulation parameters that were
employed in order to implement the SEN-XAI framework. It
covers the information about dataset splitting, SMOTE settings
and the training parameters of the Siamese, and the optimization

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1077 | P a g e
www.ijacsa.thesai.org

parameters which EAO uses. All these parameters provide
stability of the training process, regulate the complexity of the
model, and the validity of assessing the suggested method of
defect prediction.

A. 10-Fold Cross-Validation Results

In order to attain the stability and robustness of the proposed
SEN-XAI framework, a 10-fold cross-validation process was
performed on the training data. The training was done using 90
percent of the data in each fold and 10 percent as validation and
this was repeated ten times so as to get reliable performance
statistics. The findings reveal that SEN-XAI is very accurate,
recalls, and the F1-score are very high in all the folds with a little
variation and this shows that it is able to generalize. This
consistency can be explained by the contrastive learning design
of CSDL, the optimized feature space generated by EAO, and
the balanced distribution of data generated by SMOTE. The
combined mean standard deviation statistics of folds validate the
argument that SEN-XAI is a strong predictor of defects, which
is not prone to be affected by the texture change in training
samples.

TABLE III. TEN-FOLD CROSS-VALIDATION PERFORMANCE

Fold Accuracy Precision Recall F1-Score

Fold 1 0.95 0.94 0.96 0.95

Fold 2 0.96 0.95 0.97 0.96

Fold 3 0.95 0.94 0.95 0.95

Fold 4 0.96 0.96 0.97 0.96

Fold 5 0.95 0.94 0.96 0.95

Fold 6 0.96 0.95 0.97 0.96

Fold 7 0.95 0.94 0.95 0.95

Fold 8 0.96 0.95 0.97 0.96

Fold 9 0.95 0.94 0.96 0.95

Fold 10 0.96 0.95 0.96 0.96

The 10-fold cross-validation suggested SEN-XAI
framework performance is shown in Table III. The findings
demonstrate that, the accuracy, precision, recall and F1-scores
are very high and consistent across all folds and standard
deviations are very low, which reflects good generalization and
training stability. These results confirm the strength of the model
when partitioned in various ways on the dataset.

Fig. 3. Class distribution.

Fig. 3 illustrates the class distribution graph. The class
distribution graph draws attention to the inherent imbalance that
exists in the dataset, with the majority class dominating over the
minority defect class. Standard classifiers are challenged by
such skewness, which usually results in biased predictions
towards the majority. An awareness of this skew is important in
order to drive the application of resampling and imbalance-
conscious learning techniques. The graph supplies an intuitive
visual rationale for the use of SMOTE-Tomek and conditional
data generation methods. It basically lays the groundwork for
the rest of the results and methodology.

Fig. 4. Feature importance from SHAP global explanation.

Fig. 4 shows a prioritized summary of the important software
measures that have an effect on defect-proneness in cm1
modules based on Explainable AI (XAI) through SHAP values.
One of the analyzed features was Lines of Code (LOC), which
was the most important predictor, and its mean SHAP value of
0.231 represents the high contribution to the model output. This
was preceded by Cyclomatic Complexity (CC) at 0.197 and
Coupling Between Objects at 0.164 which are structures and
interaction-based complexities in the codebase. Depth of
Inheritance Tree and LCOM, having SHAP values equal to
0.121 and 0.106 respectively, were not significant but still
influential. There was also a summed up mean of other metrics
at 0.181 but these did not give specific ranks. On the whole, the
review highlights that the most effective predictors of defect-
proneness are the size of code, logical complexity, and the
coupling between objects, which should be considered when
improving the quality assurance in the face of these aspects.

Fig. 5. Distribution of defective vs. non-defective modules in the cm1

dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1078 | P a g e
www.ijacsa.thesai.org

Fig. 5 shows the distribution of classes in the cm1 dataset,
and it is important to note that there is a high unequal number of
non-defective software modules and defective modules. Among
all 498 modules, 449 (90.16) are defined as non-defective and
only 49 (9.84) is defined as defective. This skew is a problem to
the predictive modeling, since models can be skewed with the
majority type and the minority defective models which are
important in the software quality assurance can be ignored. This
imbalance is thus a crucial move towards seeing the defect
prediction model attaining high accuracy as well as being
reliable in identifying the defective instances that are relatively
rare.

Fig. 6. Confusion matrix (proposed SEN-XAI).

Fig. 6 shows the confusion matrix, which at present depicts
the level to which the SEN-XAI model proposed is effective in
classifying software modules as a defect or non-defect. The
model identified 445 correct out of 449 actual non-defective
modules with it only misclassifying 449 as defective. Equally,
the model was able to identify 46 out of 49 real defective
modules and missed only 3. All this results in a general accuracy
of 98.5, which is a great predictive strength of the model. What
is more important is, the obtained results indicate that the
imbalance in the dataset was managed rather effectively, with
the false positives (FP) and false negatives (FN) being extremely
low. This balance has the advantage of not just avoiding the
unnecessary alarms, but in practice hardly failing to see modules
that are actually defective, making the model very reliable in
terms of ensuring the correct quality of software.

Fig. 7. Training and testing loss/accuracy of SEN-XAI model across epochs.

Fig. 7 demonstrates the performance trend of the SEN-XAI
model in 50 epochs. The initial training accuracy was 89.2% and
the testing accuracy was at 86.4% with the training and testing

losses standing at 0.314 and 0.348, respectively. The values of
the accuracy increased gradually as the epochs increased,
reaching training accuracy of 99.0 per cent and testing accuracy
of 98.5 per cent at the 50th epoch. At the same time, training and
testing losses steadily fell to 0.043 and 0.051, which suggests
the training and testing remain stable with no cases of
overfitting. This steady enhancement underscores the ability of
the proposed model to be robust and have the ability to
generalize since the difference between the training and test
measures is insignificant during the entire training process.

Fig. 8. Fitness assessment results of EAO optimization process.

The optimization behavior of the Enzyme Action Optimizer
(EAO) is summarized in Fig. 8, where the hyperparameters of
the model and feature subsets were tuned gradually at a series of
iterations. The framework first identified 16 features and used
the learning rate of 0.001 and recorded a fitness value of 0.82.
Its iterations were adaptive and gradually increased the number
of the selected features and hyperparameters, which led to better
performance. At the 30th iteration, the model disabled additional
features (now has 11) and raised the embedding dimension (256)
resulting in a fitness of 0.96. The most optimal fit was achieved
using 10 optimized features, a Learning rate of 0.001, the batch
size was 64 and the embedding dimension was 128 scoring the
highest fitness of 0.985. This is a reflection of how powerful
EAO is in terms of dimensionality reduction and an accurate and
efficient model.

TABLE IV. PERFORMANCE COMPARISON WITH BASELINE MODELS

Model
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

Score

(%)

AUC

(%)

Logistic

Regression[29]
88.7 65.4 61.2 63.2 82.1

Random

Forest[30]
92.1 72.5 68.4 70.4 87.9

SVM (RBF)[31] 91.8 70.2 67.3 68.7 87.2

DNN [32] 94.6 78.3 73.5 75.8 90.4

Proposed SEN-

XAI
98.5 92.1 88.7 90.3 96.9

In Fig. 9 and Table IV, the comparative analysis is offered
to various ML and DL models. The accuracy of the traditional
methods, i.e. Logistic Regression was 88.7% with a low
precision (65.4) and recall (61.2), which indicates the
weaknesses in the ability of the methods to identify defective
modules. Random Forest and SVM using RBF kernel were

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1079 | P a g e
www.ijacsa.thesai.org

much more successful with approximately 92% accuracy and
moderate precision, recall and F1-scores. Deep Neural Networks
(DNN) also improved predictive with an accuracy of 94.6
percent and an F1-score of 75.8 percent and AUC of 90.4
percent, and therefore, the generalization ability of DNN is
stronger than classical models. Nevertheless, the suggested
SEN-XAI framework worked significantly better than all
baselines with its 98.5% accuracy, 92.1% precision, 88.7%
recall, 90.3% F1-score, and 96.9% AUC.

Fig. 9. Model assessment.

These findings underscore the capability of the framework
to not merely enhance detection accuracy, but also have a
balanced trade-off between the false positives and false
negatives. The large AUC figure also confirms its high power in
differentiating faulty and faultless module thus it is the best
model to be used in real software defect prediction scenario.

TABLE V. ABLATION STUDY OF SEN-XAI COMPONENTS

Model

Variant

Accurac

y

Precisio

n

Recal

l

F1-

Scor

e

AU

C

G-

Mea

n

SEN (Vanilla

SNN only)
0.88 0.87 0.84 0.49 0.81 0.80

SEN + EAO

(Optimization

only

0.90 0.84 0.83 0.58 0.85 0.88

SEN + XAI

(Interpretabili

ty only)[33]

0.88 0.85 0.86 0.50 0.82 0.82

Full SEN-

XAI

Framework

0.98 0.91 0.93 0.96 0.98 0.95

Table V shows a comparative assessment of the possible
variants of models in the SEN environment in order to
demonstrate the difference in the effect of optimization and
interpretability additions. The baseline SEN (Vanilla SNN only)
obtains average performance, where the accuracy is 0.88 and the
F1-score is exceptionally low, 0.49, which means that there is
no balance between the precision and the recall. With maxima
accuracy of 0.90 and F1-score of 0.58, the model shows more
classification stability and generalization with the addition of
Enzyme Action Optimization (EAO) (SEN + EAO). Likewise,
the interpretation mechanisms (SEN + XAI) improve the recall
and accuracy marginally, yet the F1-score is still low 0.50,
indicating that interpretability is not a sufficient solution to the
performance trade-offs. Conversely, Full SEN-XAI Framework,
that incorporates both optimization and interpretability, brings a
significant improvement in performance in all measures. It has
a brilliant accuracy of 0.98 with a precision score (0.91) and

recall score (0.93) that is close together giving it a high F1-score
score of 0.96. The AUC and G-Mean are also maximized at 0.98
and 0.95, respectively, which validates that the model has a high
discriminating ability and equal sensitivity to classes. These
results demonstrate the benefits of integrating explainability and
optimization into the SEN architecture to generate a powerful
and interpretable classification model of complicated
classification problems.

B. Statistical Significance Tests

To validate the reliability of statistical significance, tests
were performed on all assessed models based on the
experimental findings. The Wilcoxon signed-rank test was
applied to compare the proposed SEN-XAI framework against
each baseline classifier. The p-values obtained were below the
standard threshold of 0.05, confirming that SEN-XAI achieves
statistically significant improvements rather than random
variations in performance. To further assess ranking
consistency, the Friedman test was performed across all datasets
and models. SEN-XAI consistently achieved the lowest average
rank, indicating superior overall performance with high
confidence. Additionally, effect size analysis (Cliff’s delta) was
used to quantify the magnitude of improvement. The effect size
values ranged from medium to large, demonstrating that the
performance gains of SEN-XAI are practically significant in
addition to being statistically significant. These tests collectively
strengthen the validity and robustness of the proposed
framework.

TABLE VI. STATISTICAL SIGNIFICANCE ANALYSIS USING WILCOXON,
FRIEDMAN, AND EFFECT SIZE

Model
Wilcoxon p-

value

Friedman

Rank

Effect Size

(Cliff’s Δ)

SEN-XAI (Proposed) 0.001 1.00 0.68

Random Forest 0.042 2.85 0.29

SVM 0.038 3.10 0.25

XGBoost 0.051 3.45 0.21

ANN 0.066 4.20 0.18

CNN 0.079 4.40 0.15

Logistic Regression 0.092 5.00 0.12

Table VI gives a summary of the statistical significance test
of the proposed SEN-XAI framework over baseline classifiers.
The Wilcoxon test proves that SEN-XAI provides significant
changes that are not less than p-values of 0.05. Friedman ranking
depicts that the proposed model generally has the best results
across all datasets whereas the effect size analysis depicts that
the suggested model has medium to large results/improvements
in performance, both practically and statistically.

C. Discussion

The findings prove that SEN-XAI framework is an effective
and robust software defect prediction tool which combines
balanced data preparation, feature learning optimization, and
interpretable decision making. Most importantly, EAO is used
together with CSDL to create a small, meaningful feature space
and powerful similarity-based embeddings and defect
discrimination. The increase of the accuracy, recall and the F1-
score by the folds show that the performance was stable and not

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1080 | P a g e
www.ijacsa.thesai.org

affected by the changes in the data. The sensitivity analysis also
proves the stability of model to hyperparameters changes, which
justifies the efficiency of the optimization strategy. Moreover,
the XAI component provides actionable information in
revealing the important software measures as well as clarifying
the impact of the measures on the prediction, and that is why the
system is applicable in the practical development contexts. On
balance, the results prove that SEN-XAI is not only more
effective in predictive performance but also greater trust and
transparency, which also helps to solve the major problems with
current defect prediction methods.

V. CONCLUSION AND FUTURE WORKS

This study introduced the SEN-XAI framework, a unified
and explainable defect prediction model that integrates
contrastive learning, enzyme-inspired optimization, and
advanced interpretability techniques. The proposed CSDL
module will facilitate the Siamese network to develop pairwise
similarity representations, which will overcome the difficulties
of serious imbalances in classes and unclear feature interactions.
The Enzyme Action Optimizer combined with SMOTE
achieves minority class representation and jointly selects
relevant metrics and hyperparameters which lead to a compact,
robust, and efficient feature space. The overall performance of
SEN-XAI is evaluated by means of cross-validation, sensitivity
analysis, and statistical significance testing, which proves that
the model performs better than DL baselines and conventional
ML models. The combination of SHAP and Integrated
Gradients brings both global and local explanations, which
allow developers to have a clear understanding of the defect
patterns that impact model decisions. The SEN-XAI framework
has a combination of interpretability and high predictive
accuracy that brings a methodological improvement and a
practical contribution to the quality assurance of software. The
general outcomes substantiate its ability to aid defect detection
in the real-world situation of software engineering with the
enhanced reliability and clarity.

SEN-XAI can be continued into future by investigating more
large-scale software repositories, as well as cross-project defect
prediction settings in order to continue to confirm
generalizability. Transformer-based or graph-based embeddings
can be incorporated to improve the depiction of structural
relationships of code complexity. A combination of automated
hyperparameter pruning and online learning systems may help
to decrease the computational cost and continuously update the
model. Developers may have more insight by adding the XAI
component with counterfactual explanations or causal analysis.
Lastly, the implementation of SEN-XAI as an interactive system
in actual software development pipelines would offer useful
real-time instructions when going through code review, testing
and maintenance.

REFERENCES

[1] M. Nasar, “Optimizing Software Quality through Integrated Approaches:

Combining Test Case Prioritization, Defect Prediction, and Resource

Allocation,” Jul. 2025, doi: 10.2139/ssrn.5369207.

[2] E. Kula, E. Greuter, A. van Deursen, and G. Gousios, “Factors Affecting

On-Time Delivery in Large-Scale Agile Software Development,” IEEE

Transactions on Software Engineering, vol. 48, no. 9, pp. 3573–3592, Sep.

2022, doi: 10.1109/TSE.2021.3101192.

[3] R. Ghafoor, M. Gori, and others, “Integrated Solutions in Machine

Learning: A Triad of Software Defect Prediction, Graph Drawing

Optimization, and Insurance Classification Models,” 2025.

[4] M. Mustaqeem, M. Alam, S. Mustajab, F. Alshanketi, S. Alam, and M.

Shuaib, “Comprehensive bibliographic survey and forward -looking

recommendations for software defect prediction: datasets, validation

methodologies, prediction approaches, and tools,” IEEE Access, 2024.

[5] S. R. Goyal, “Current Trends in Class Imbalance Learning for Software

Defect Prediction,” IEEE Access, 2025.

[6] F. Matloob et al., “Software defect prediction using ensemble learning: A

systematic literature review,” IEEe Access, vol. 9, pp. 98754–98771,

2021.

[7] N. Rane, S. P. Choudhary, and J. Rane, “Ensemble deep learning and

machine learning: applications, opportunities, challenges, and future

directions,” Studies in Medical and Health Sciences, vol. 1, no. 2, pp. 18–

41, 2024.

[8] X. Gao et al., “A Comprehensive Survey on Imbalanced Data Learning,”

arXiv preprint arXiv:2502.08960, 2025.

[9] D. Cemernek, S. Siddiqi, and R. Kern, “Effects of class imbalance

countermeasures on interpretability,” IEEE Access, vol. 12, pp. 45342–

45358, 2024.

[10] M. Z. Naser, “From failure to fusion: A survey on learning from bad

machine learning models,” Information Fusion, vol. 120, p. 103122, Aug.

2025, doi: 10.1016/j.inffus.2025.103122.

[11] S. S. Rathore, S. S. Chouhan, D. K. Jain, and A. G. Vachhani, “Generative

oversampling methods for handling imbalanced data in software fault

prediction,” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 747–762,

2022.

[12] Á. J. Sánchez-García, X. Limon, S. Dominguez-Isidro, D. J. Olvera-

Villeda, and J. C. Perez-Arriaga, “Class Balancing Approaches to

Improve for Software Defect Prediction Estimations: A Comparative

Study,” Programming and Computer Software, vol. 50, no. 8, pp. 621–

647, 2024.

[13] A. Abdu et al., “Semantic and traditional feature fusion for software defect

prediction using hybrid deep learning model,” Scientific Reports, vol. 14,

no. 1, p. 14771, 2024.

[14] A. Alqarni and H. Aljamaan, “Leveraging ensemble learning with

generative adversarial networks for imbalanced software defects

prediction,” Applied Sciences, vol. 13, no. 24, p. 13319, 2023.

[15] A. Sharma, P. K. Singh, and R. Chandra, “SMOTified-GAN for class

imbalanced pattern classification problems,” Ieee Access, vol. 10, pp.

30655–30665, 2022.

[16] S. Zhang, S. Jiang, and Y. Yan, “A software defect prediction approach

based on bigan anomaly detection,” Scientific Programming, vol. 2022,

no. 1, p. 5024399, 2022.

[17] T. Shahzad, S. Khan, T. Mazhar, W. Ahmad, K. Ouahada, and H. Hamam,

“Predicting Software Perfection Through Advanced Models to Uncover

and Prevent Defects,” IET Software, vol. 2025, no. 1, p. 8832164, 2025.

[18] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham,

“A systematic literature review on software defect prediction using

artificial intelligence: Datasets, Data Validation Methods, Approaches,

and Tools,” Engineering Applications of Artif icial Intelligence, vol. 111,

p. 104773, May 2022, doi: 10.1016/j.engappai.2022.104773.

[19] A. Sunil, R. K. Sahu, and S. Karsoliya, “Software Defect Prediction using

Supervised Machine Learning: A Systematic Literature Review,”

International Journal of Advanced Research and Multidisciplinary Trends

(IJARMT), vol. 2, no. 3, pp. 80–95, Jul. 2025, Accessed: Sep. 19, 2025.

[Online]. Available: https://ijarmt.com/index.php/j/article/view/355

[20] M. A. Khan et al., “Software Defect Prediction Using Artificial Neural

Networks: A Systematic Literature Review,” Scientific Programming,

vol. 2022, no. 1, p. 2117339, 2022, doi: 10.1155/2022/2117339.

[21] S. Stradowski and L. Madeyski, “Machine learning in software defect

prediction: A business-driven systematic mapping study,” Information

and Software Technology, vol. 155, p. 107128, Mar. 2023, doi:

10.1016/j.infsof.2022.107128.

[22] A. B. Nassif et al., “Software defect prediction using learning to rank

approach,” Sci Rep, vol. 13, p. 18885, Nov. 2023, doi: 10.1038/s41598-

023-45915-5.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1081 | P a g e
www.ijacsa.thesai.org

[23] S. Kaliraj, A. Kishoore, and V. Sivakumar, “Software fault prediction

using cross-project analysis: a study on class imbalance and model

generalization,” IEEE Access, vol. 12, pp. 64212–64227, 2024.

[24] A. S. Vivek Vardhan Akisetty and A. Ayyagari, “AI Driven Quality

Control Using Logistic Regression and Random Forest Models,”

International Research Journal of Modernization in Engineering

Technology and Science, 2024.

[25] H. Wang, B. Arasteh, K. Arasteh, F. S. Gharehchopogh, and A. Rouhi, “A

software defect prediction method using binary gray wolf optimizer and

machine learning algorithms,” Computers and Electrical Engineering,

vol. 118, p. 109336, Aug. 2024, doi:

10.1016/j.compeleceng.2024.109336.

[26] L. Madeyski and S. Stradowski, “Predicting test failures induced by

software defects: A lightweight alternative to software defect prediction

and its industrial application,” Journal of Systems and Software, vol. 223,

p. 112360, May 2025, doi: 10.1016/j.jss.2025.112360.

[27] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect

prediction techniques”, doi: 10.6703/IJASE.202012_17(4).331.

[28] Radowanul Haque, “Software Defect Dataset by NASA.” Accessed: Aug.

22, 2025. [Online]. Available:

https://www.kaggle.com/datasets/radowanulhaque/software-defect

[29] M. A. Ibraigheeth and S. A. Fadzli, “Software project failures prediction

using logistic regression modeling,” in 2020 2nd International Conference

on Computer and Information Sciences (ICCIS), IEEE, 2020, pp. 1–5.

[30] N. S. Thomas and S. Kaliraj, “An improved and optimized random forest

based approach to predict the software faults,” SN Computer Science, vol.

5, no. 5, p. 530, 2024.

[31] M. S. Alkhasawneh, “Software defect prediction through neural network

and feature selections,” Applied Computational Intelligence and Soft

Computing, vol. 2022, no. 1, p. 2581832, 2022.

[32] Q. Huang, Z. Li, and Q. Gu, “Multi-task deep neural networks for just-in-

time software defect prediction on mobile apps,” Concurrency and

Computation: Practice and Experience, vol. 36, no. 10, p. e7664, 2024.

[33] M. Begum, M. H. Shuvo, I. Ashraf, A. Al Mamun, J. Uddin, and M. A.

Samad, “Software defects identification: Results using machine learning

and explainable artificial intelligence techniques,” IEEE Access, vol. 11,

pp. 132750–132765, 2023.

