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Abstract—Software defect prediction plays a crucial role in 

improving software quality, yet existing approaches still suffer 

from severe class imbalance, redundant feature spaces, weak 

generalization, and limited interpretability, making their adoption 

in real development pipelines difficult. Many current models rely 

on black-box deep learning architectures or conventional 

classifiers that fail to identify minority defects or explain the 

reasoning behind their decisions. To overcome these limitations, 

this study introduces a novel framework named Contrastive 

Siamese Defect Learning–Integrated Explainable Neural 

Optimization System (CSDL-SEN-XAI), which integrates 

contrastive metric learning, enzyme-inspired optimization, and 

transparent explainability. The method combines SMOTE-based 

balancing, the Enzyme Action Optimizer for joint feature–

hyperparameter optimization, and a Siamese Neural Network 

trained using contrastive loss to learn discriminative similarity 

embeddings. The entire workflow is implemented using Python, 

enabling efficient scalability and reproducibility. Experimental 

analysis reveals that the proposed model achieves an accuracy of 

95.5%, a recall of 96.2%, and an F1-score of 95.5%, 

outperforming traditional models such as Random Forest, SVM, 

and CNN by margins ranging from 7% to 15% under identical 

evaluation settings. SHAP and Integrated Gradients further 

demonstrate that the model provides clear global and instance-

level explanations, highlighting influential software metrics and 

strengthening the interpretability of predictions. Overall, the 

results confirm that CSDL-SEN-XAI delivers superior predictive 

performance, stable optimization, balanced learning, and 

transparent defect interpretation, offering a reliable and 

interpretable solution suitable for practical software engineering 

environments. Future work will explore cross-project defect 

prediction and the integration of lightweight optimization 

strategies to further enhance scalability. 
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I. INTRODUCTION 

Software defect prediction is a cornerstone of modern 
software engineering, offering a proactive solution to identify 
faulty modules early in the development process and, in the 
process, reduce maintenance cost, improve release quality, and 
guide effective testing resource allocation [1]. Owing to 
increased system complexity and shorter delivery schedules, 

automated prediction using code- and process-level metrics has 
become a necessity in large-scale software development [2]. 
Traditional techniques—ranging from statistical models to 
vintage machine learning—employ measures of churn, and 
coupling to deduce defect proneness [3]. Although effective in 
practice, these approaches are likely to fail under raw-world 
conditions where defect occurrences are low in relation to non-
defective modules [4]. The resulting class imbalance also adds 
to model bias towards the majority class, reducing minority-
class detection and often resulting in models that are accurate by 
aggregate measures but ignore the key, albeit infrequent, defect 
cases that plague practitioners the most [5]. 

A vast literature has attempted to address software-defect 
prediction using ensemble learning, deep neural networks, and 
data augmentation methods [6]. Ensembles and hybrids improve 
robustness through combining heterogeneous learners, and deep 
architectures—i.e., those learning complex nonlinear 
interactions have improved predictive performance [7]. 
Meanwhile, imbalance-reduction techniques such as SMOTE, 
cost-sensitive learning, focal loss, and generative augmentation 
have been applied with mixed success [8]. Many chronic failures 
persist nonetheless. First, most work applies imbalance cures in 
isolation, rather than systematically combining data-level and 
algorithmic-level solutions in a unified modeling pipeline [9]. 
Second, many fusion methods often applied to combine multiple 
learners resort to naive averaging or static weighting schemes 
that fail to respond to per-class detection performance and, 
consequently, lead to suboptimal minority-class prioritization 
[10]. Third, deep models suffer from overfitting, especially 
when synthetic minority samples dominate the training signal; 
existing regularization techniques are often not adequately tuned 
to the peculiarities of synthetic-real data mixtures [11]. Fourth, 
reproducibility and transparent reporting of imbalance statistics 
are hardly standard, and it is difficult to ascertain whether gains 
reported generalize across datasets with different imbalance 
ratios [12]. This study introduces a new framework based on 
metric-learning, Contrastive Siamese Defect Learning (CSDL), 
which utilizes Siamese contrastive learning, enzyme-inspired 
optimization, and explainable AI to overcome the old problems 
of class imbalance, poor interpretability, and poor generalization 
of software defect prediction. 
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A. Research Motivation 

Classical ML classifiers are biased on the prevailing 
category and deep learning classifiers are black boxes which do 
not give explanations to their decisions. Current hybrid 
methodologies are based on predetermined characteristics, 
oversampling instability, or high hyperparameter sensitivity, 
and therefore, they cannot be easily applied to large software 
systems. This is the driving factor behind the necessity of an 
adaptive and interpretable as well as an imbalance-sensitive 
learning system that is able to both identify subtle defect patterns 
and grant transparent explanations to developers. 

B. Problem Statement 

Software defect prediction is a significant area of enhancing 
software reliability; however, current methods have outstanding 
problems associated with extreme imbalance in classes, 
duplication or spuriousness of software measures, no cross-
project generalization, and uninterpretable model decisions [13]. 
Deep learning models are black boxes that developers cannot 
easily understand, whereas traditional machine learning 
approaches are unable to identify minority defects. Techniques 
of oversampling and feature selection are rarely used 
independently, and accurate improvements cannot be achieved; 
and tuning is of great importance [14]. In addition, the existing 
models seldom utilize pairwise similarity data between modules, 
which is vital in learning discriminative defect patterns during 
an imbalanced situation. Thus, a concerted framework that 
would balance the data and optimize features and 
hyperparameters, and simultaneously learn similarity-driven 
representations and offer interpretable explanations, is urgently 
needed to support reliable and implementable defect prediction. 

C. Research Significance 

The importance of the research is that it offers a 
comprehensive, explainable, and optimization-based defect 
prediction model that is more accurate and easier to interpret. 
The model uses CSDL to learn similarity-based defect patterns 
that are more resistant towards imbalance. The Enzyme Action 
Optimizer allows both feature tuning and hyperparameter 
tuning, making it more efficient and predictive. The framework 
provides actionable insight by explaining the metrics of critical 
software that are presented as actionable explanations of the 
software using SHAP and Integrated Gradients to allow 
developers to prioritize their refactoring and testing. In general, 
the research provides a sound, clear and performance-based 
approach that can be used in real-world software quality control. 

D. Key Contributions 

• This study aims to develop an accurate, interpretable, and 
imbalance-aware software defect prediction framework 
using contrastive learning, optimization, and explainable 
AI. 

• Proposes SEN-XAI, a unified framework combining 
SMOTE balancing, EAO optimization, Siamese metric 
learning, and explainable AI. 

• Employs the Enzyme Action Optimizer (EAO) for joint 
feature selection and hyperparameter tuning, improving 
model efficiency and stability. 

• Designs a controlled pair construction strategy enabling 
balanced positive/negative pairs for robust contrastive 
learning. 

• Integrates SHAP and Integrated Gradients to deliver 
global and instance-level explanations, ensuring 
transparent and developer-friendly defect prediction. 

The rest of the section is aligned as follows: the study on 
defect prediction, remedies for imbalances, and fusion 
techniques are discussed in Section II. In Section III, the hybrid 
approach to defect prediction is presented, including method, 
preprocessing, and augmentation modules, a Transformer 
ensemble, and its fusion. Section IV presents the results and 
discusses them, while Section V concludes, summarizes the 
contributions, discusses the limitations, and suggests future 
work. 

II. LITERATURE REVIEW 

Abdu et al. [13] addressed software defect prediction (SDP) 
with a hybrid deep learning approach that combines traditional 
and semantic features. Traditional features, such as code size 
and complexity, provide statistical information but typically fail 
to reflect semantic differences, whereas semantic features from 
source code's abstract syntax trees (ASTs) learned by Word2Vec 
precisely model program semantics but lack statistical 
representation. To harness them both to their maximum 
potential, the authors proposed a hybrid CNN-MLP model in 
which CNN handles semantic features and MLP handles 
traditional metrics, followed by defect prediction by fusion 
through a fully connected layer. Comprehensive experiments on 
a pair of open-source projects indicated that CNN-MLP 
significantly improves defect detection performance and 
performs better than existing approaches in effort-aware as well 
as non-effort-aware scenarios. The limitation of the work is its 
reliance on pre-specified features and AST representations, 
which may fail to reflect sophisticated interdependencies in code 
and, therefore, the need for adaptive, imbalance-sensitive 
models for enabling enhanced minority-class detection and 
generalization across a variety of software datasets. 

Nabella et al. [15] explored the effect of class imbalance (CI) 
in SDP and assessed the performance of the SDV for CPDP. The 
research tackled CI on ReLink, MDP, and PROMISE datasets 
by pre-processing minority classes with SDV, and then 
classifying using DT, LR, KNN, NB, and RF. AUC was used to 
measure performance, while statistical significance was 
confirmed through the t-Test. Results showed that SDV 
performed better compared to SMOTE and other imbalance-
reduction methods, with KNN recording the best mean AUC 
(0.695–0.750) and recording improvements of 12–20% over 
SMOTE across data sets. RF and LR had moderate performance, 
while NB underperformed. Limitations are dependence on 
traditional classifiers that lack deep learning or hybrid models 
and restricted investigation of adaptive augmentation methods 
and, as such, propose that coupling SDV with sophisticated 
imbalance-aware deep learning frameworks might further 
enhance minority-class detection and generalization across 
diverse software projects. 

Sharma, Singh, and Chandra [15] discussed the problem of 
class imbalance in predictive modeling, whereby conventional 
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classifiers report high true positive but low true negative values 
for majority classes. They introduced SMOTified-GAN, a 
hybrid oversampling system that integrates SMOTE and 
Generative Adversarial Networks (GAN). In this two-stage 
model, SMOTE generates preliminary minority samples that are 
further refined by GAN to produce more realistic distributions, 
eliminating SMOTE's overgeneralization. Experimental results 
on benchmark datasets showed SMOTified-GAN improves 
minority-class representation and F1-score performance by up 
to 9% over competing approaches without inducing 
unreasonably high computational complexity. A significant 
limitation is that the method is not combined with state-of-the-
art deep learning classifiers or ensemble learners, which 
constrains its ability to learn complex feature interactions in 
high-dimensional software measurements. 

Alqarni and Aljamaan [14] examined imbalanced software 
defect prediction (SDP) via the introduction of GAN with 
AdaBoost ensembles for enhancing minority-class detection. 
The GAN module generated artificial samples for 
counterbalancing extremely imbalanced datasets, while 
AdaBoost prediction modules were either classified as defective 
or non-defective. The approach was applied to ten datasets of 
software defects with variable imbalance ratios, and 
performance differences were statistically assessed by the 
Wilcoxon effect size and Scott–Knott tests. Results indicated 
that oversampling with GAN performed better than traditional 
approaches and effectively improved defect prediction. 
However, the study underscored the principal drawbacks: how 
well a GAN performs is largely based on hyperparameter 
adjustment, combination with undersampling is ineffective, and 
generalizability across different ensemble platforms is 
unexamined. Additionally, the synthetic data quality was not 
thoroughly tested. The proposed work addresses these gaps by 
integrating adaptive GAN/SMOTE enlargement and 
Transformer-based hybrid learners and a score-level fusion 
module for robust minority-class detection, reduced overfitting, 
and robust performance over varied software-defect datasets. 

Zhang et al [16] treated software defect prediction (SDP) as 
an anomaly detection problem to solve the issue of class 
imbalance and the lack of sufficient high-quality labeled data. 
They introduced ADGAN-SDP, a semi-supervised BiGAN-
based approach that converts the conventional binary 
classification into an anomaly detection task to alleviate the 
majority-class bias. The model was tested on 19 NASA, 
AEEEM, and ReLink repository projects and compared with 
eight classification-based SDP baselines. Experimental 
outcomes proved that ADGAN-SDP had greater recall and 
surpassed all the baselines, proving the possibility of using 
anomaly detection to counterbalance imbalance [17]. Yet, it is 
limited by its reliance on the quality of unlabeled instances and 
possible vulnerability to the setting of anomaly thresholds. In 
addition, the model is predominantly recall-oriented without 
necessarily strengthening minority-class overall generalization 
or incorporating sophisticated feature fusion techniques. The 
current study fills these voids through synergistic integration of 
adaptive augmentation, hybrid learners based on Transformers, 
and score-level fusion to obtain defect prediction with 
robustness and generalizability over various software-defect 
datasets. 

The latest studies of software defect prediction have pointed 
out a variety of issues and methods in machine learning methods 
as well as the soft method of computing. Pachouly et al. [18] 
performed a systematic review concerning defect datasets, 
validation, and machine learning, and stated that the vast 
majority of standard datasets have insufficient features and solid 
validation procedures, which restrict their generalizability. In an 
analogous manner, [19] investigated the use of supervised ML 
classifiers, including SVM and RF, to optimize the strategy of 
the tests, as their efficiency is strongly dependent on the quality 
of feature engineering and access to comprehensive labeled 
datasets. Khan et al. [20] reviewed the application of artificial 
neural networks, including the fact that although deep learning 
models have become popular, they are too sensitive to data 
imbalance and do not provide enough explainability to be 
adopted in safety-critical areas. Stradowski et al. [21] also 
presented a business-oriented viewpoint, but the authors 
examined ensemble and meta-learning methods, yet they 
emphasized the immaturity of integration of business and the 
lack of focus on the cost-effectiveness of these models in 
practice. With increased methodological breadth, Nassif et al. 
[22] proposed a Learning to Rank framework based on 
regression and Bayesian Ridge Regression to rank bug-prone 
modules, but admitted that ranking models remain relatively 
new and have few comparative studies. Khanna et al. [23] have 
surveyed such methods as bagging, boosting, and the use of the 
Random Forest on ensemble techniques, concluding them to be 
effective, yet consume large datasets and require considerable 
computational power and have difficulties with cross-project 
prediction. Raju [24] summarized AI-based best practices, 
including such techniques as SVMs, neural networks, and 
logistic regression, emphasizing the importance of quality data 
because such statistical models tend to fail in complicated 
environments. Wang et al. [25] enhanced feature selection 
through the Binary Gray Wolf Optimizer, but the algorithm 
needs a significant amount of parameter optimization depending 
on the data, which makes it less generalized. Making an effort to 
solve the problem in practice, Madeyski et al. [26] were focused 
on predicting test failures using ML, but had issues of scalability 
and transferability in enterprise settings. Lastly, the [27] 
surveyed soft computing methods, including fuzzy logic and 
evolutionary algorithms, which researchers believe that hybrid 
methods have potential but are yet to be empirically validated 
and have no standard benchmarks, making their adoption more 
widespread. 

CNN-MLP hybrids, GAN-based oversampling, anomaly 
detection, and ensemble models have been used previously, but 
they are still severely limited by reliance on predefined metrics, 
low strength in generalization with imbalance, being sensitive to 
hyperparameters, and lacking in interpretability. Minority 
samples are usually distorted through generative augmentation, 
and deep models are black-box and untrustworthy. 
Metaheuristic optimizers do not combine feature selection and 
hyperparameter tuning. CSDL-based SEN-XAI framework 
addresses these deficiencies by using contrastive learning, joint 
optimization, and transparent XAI explanations. 

III. PROPOSED METHODOLOGY 

The proposed SEN-XAI architecture has a single, multi-
phase pipeline to provide the correct and explainable software 
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fault prediction. It starts with preprocessing, whereby missing 
values are addressed, duplicate metrics are eliminated and class 
imbalance is rectified with SMOTE. Then, Enzyme Action 
Optimizer (EAO) is used to select joint features and tune 
hyperparameters to find the most informative metrics and the 
best configuration of Siamese learning. The optimized data is 
then fed on Contrastive Siamese Defect Learning (CSDL), 

where a Siamese net is trained in similarity-based defect 
embeddings by contrastive loss. The predictions which result 
based on the distance are ultimately interpreted using SHAP and 
Integrated Gradients, producing both global and instance-level 
explanations. This streamlined pipeline promotes high accuracy 
of prediction, strength, and transparency. The workflow of the 
proposed methodology is displayed in Fig. 1. 

 
Fig. 1. Workflow of the proposed methodology. 

A. Data Collection 

The present study employs the Software Defect Dataset 
available at Kaggle, which was made ready for enabling 
empirical research on defect prediction and quality assurance of 
software [28]. The dataset is categorized into a number of CSV 
files for NASA MDP projects, and cm1.csv (42.8 kB) is used as 
the reference benchmark in this study. The data has 498 software 
modules characterized by 22 static code metrics such as lines of 
code, cyclomatic complexity, and coupling metrics. Each 
module is assigned a binary class label indicating whether it is 
faulty (positive class) or not faulty (negative class). Of the 498 
modules, 449 are non-defective and only 49 are faulty, thus 
creating an imbalance ratio (IR) of approximately 9.16:1. This 
uneven distribution makes it challenging for conventional 
classifiers to identify minority defect cases since they lean 
toward overfitting the majority class. 

B. Data Preprocessing 

The preprocessing step is used to prepare the NASA cm1 
dataset by addressing values that did not occur, standardizing the 
feature values and dropping redundant measures. Continuous 
data are filled in with their means or median, categorical data 
with mode and records with too many missing data are 
eliminated to maintain the integrity of the dataset. This is 
followed by normalization of all features so that they contribute 
equally during the learning process and then correlation-based 
pruning is done to eliminate highly collinear metrics. Since the 
dataset is significantly imbalanced, SMOTE is used to create the 
synthetic defected samples by interpolating the minority cases 
and their nearest neighbors. This generates a more balanced 

training set, which allows the stable feature optimization and 
effective contrastive learning during the further steps. 

1) Handling missing values: Impute continuous features 

using mean or median, fill categorical features using mode, and 

remove samples with excessive missing data to maintain dataset 

quality. 

2) Normalization: Scale all numerical metrics to a uniform 

range (0–1) using Min–Max normalization to ensure equal 

contribution during optimization and model training, which is 

defined as in Eq. (1): 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (1) 

This ensures that each feature contributes equally during 
optimization and model training. 

3) Imbalance handling: Apply SMOTE to generate 

synthetic defective samples by interpolating between minority 

instances and their nearest neighbors, reducing the dataset’s 

severe class imbalance. For each minority instance 𝑥𝑖, one of 

its k-nearest neighbors 𝑥𝑛𝑛 is randomly selected. A synthetic 

sample is then created, as in Eq. (2): 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 ∙ (𝑥𝑛𝑛 − 𝑥𝑖), 𝜆 ∈ [0,1]  (2) 

where, 𝜆 is a random number between 0 and 1 that controls 
the interpolation point between the original instance 𝑥𝑖 and its 
neighbor 𝑥𝑛𝑛 . The overall number of synthetic defective 
samples to be generated is determined by Eq. (3): 
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𝑁𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = (
𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦
− 1) × 𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  (3) 

where, 𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦  and 𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  represent the number of 

majority (non-defective) and minority (defective) instances, 
respectively. SMOTE balances the dataset by creating synthetic 
defective modules systematically and not by simply duplicating 
the existing data. This assists the SNN in learning discriminative 
embeddings that more effectively highlight the features of 
defective modules, hence enhancing generalization and 
minimizing bias against non-defective classes. 

4) Feature cleaning: Compute pairwise Pearson 

correlation and remove highly correlated or redundant metrics 

to avoid multicollinearity and reduce dimensionality. 

After preprocessing, the dataset is partitioned into training 
and testing sets to ensure unbiased model evaluation. An 80:20 
split is used, where 80% of the balanced data is used for training 
the EAO-optimized Siamese model, and 20% is held out for 
final testing. Only the training portion is oversampled using 
SMOTE to avoid data leakage, while the test set remains 
completely untouched and naturally imbalanced. The result of 
this procedure is a reduced feature set that is not redundant and 
is normalized to a uniform scale and balanced by the use of 
SMOTE in order to solve the imbalance of classes. This purged 
data is not only more efficient in learning, but it also elevates the 
capacity to generalize the latter modeling processes. Markedly, 
it provides a strong backbone of the EAO to execute advanced 
feature selection and hyperparameter optimization, so that the 
SNN is trained on the most informative and non-redundant 
measures to detect defects. 

C. Feature Optimization with EAO 

The Enzyme Action Optimizer (EAO) is used to 
collaboratively select the most informative code metrics at rest 
and optimize the hyperparameters that are the most critical in the 
CSDL-based Siamese model. Candidates’ solutions consist of a 
binary feature mask and hyperparameters. 

1) Objective function for optimization: The optimization 

process is driven by minimizing a fitness function that balances 

classification accuracy and feature reduction in Eq. (4): 

𝐹 = 𝛼 ∙ (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + 𝛽 ∙
|𝑆|

|𝑇|
  (4) 

where, 𝛼, 𝛽  are weight coefficients, ∣ 𝑆 ∣ is the number of 
selected features and ∣ 𝑇 ∣  is the total number of available 
features. At each iteration, EAO updates solutions using an 
enzyme-inspired transformation computed in Eq. (5): 

𝑋𝑡+1 = 𝑋𝑡 + η ⋅ (𝐸 − 𝑋𝑡) + γ ⋅ 𝑅                 (5) 

where, 𝑋𝑡 is the current solution, 𝐸 is the elite (best) solution 
so far, 𝜂  is the catalytic learning constant, 𝑅  is the random 
perturbation (enzyme action factor), and 𝛾  is the stochastic 
scaling coefficient. This process gradually pushes candidate 
solutions toward high-performing feature subsets and optimized 
CSDL hyperparameters. 

Table I determines the hyperparameters that are optimized 
by the EAO, such as learning settings, embedding structure and 
the feature selection mask. The continuous, categorical and 

binary parameters are actively studied in parallel in order to 
determine the optimal scenario of the CSDL-based Siamese 
network. These ranges both provide wide coverage of search and 
are available to be cross-validated and optimized with 
computational feasibility. 

TABLE I.  HYPERPARAMETER SEARCH SPACE USED BY THE EAO 

Parameter Search Range 

Learning rate 0.0001 – 0.01 

Batch size 16, 32, 64 

Epochs 10 – 50 

Embedding dimension 16 – 128 

Margin (contrastive loss) 0.5 – 2.0 

Optimizer type Adam, RMSProp 

Activation function ReLU, Tanh 

Feature selection mask 0/1 binary vector 

 

Algorithm 1: Enzyme Action Optimizer (EAO) 

Input: Dataset D, population size N, generations G, K-folds 

Output: Optimal feature mask s*, optimal hyperparameters φ*  

1: Initialize population P = {(sᵢ, φᵢ)} for I = 1…N 

2: For each candidate (sᵢ, φᵢ): 

3:      Evaluate fitness Fᵢ using K-fold CSDL training 

4: For t = 1…G: 

5:      Let E = best candidate in P 

6:      New Pop = ∅ 

7:      while |New Pop| < N do 

8:          Select parents A and B using tournament selection 

9:          C = Binding (A, B) // crossover 

10:         C = CleavageI // random local mutation 

11:         C = Catalysis (C, E) // move towards elite E 

12:         RepairI // ensure valid bounds 

13:         Evaluate fitness FI 

14:         Add C to New Pop 

15:     P = Elitist Replace (P, New Pop) 

16:     If convergence achieved: break 

17: return best agent E = (s*, φ*) 

This pseudocode fully reflects your enzyme-based 
metaphor: Binding, Cleavage, and Catalysis. 

2) Complexity analysis of EAO: The computational 

complexity of EAO depends on the population size NNN, 

number of generations GGG, and the cost of evaluating each 

candidate during K-fold CSDL training. 

a) Fitness evaluation cost: Training the Siamese model 

for one-fold costs approximately are computed in Eq. (6): 

𝑇EAO = 𝑂(𝐸 ⋅ 𝑃)                                   (6) 

where, 𝐸  is the number of epochs and 𝑃 number of training 
pairs. For K-fold validation was computed in Eq. (7): 

𝑇EAO = 𝑂(𝐾 ⋅  𝐸 ⋅ 𝑃)                              (7) 
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where, 𝐾  is the number of folds used in K-fold cross-
validation during fitness evaluation. 

b) Total EAO optimization cost: The overall 
computational cost of the Enzyme Action Optimizer is based 
on the analysis of each candidate solution in several generations 

and K-fold cross-validation. For every generation, all 𝑁  the 
CSDL-based Siamese network is trained on 𝑁  candidate 

solutions. 𝐾 folds, each requiring 𝐸  epochs and processing 𝑃 
training pairs. Thus, the total optimization cost will increase in 
correlation with the product of these factors. This complexity 
might seem to be very high, but it is well-grounded as EAO can 
optimize feature subsets and hyperparameters at once, 
eliminating redundant model runs. Moreover, optimized 
features reduce the network dimensionality and a lightweight 

Siamese structure reduces the training time, which makes the 
overall computation possible and efficient in predicting defects. 

It was expressed in Eq. (8): 

𝑇EAO = 𝑂(𝑁 ⋅ 𝐺 ⋅ 𝐾 ⋅ 𝐸 ⋅ 𝑃)                      (8) 

where, 𝑁 is the number of candidate solutions (population 
size in EAO and 𝐺  is the number of generations or iterations 
performed by the optimizer. 

c) Hyperparameter optimization for SNN: EAO 
simultaneously tunes SNN parameters by searching within 

predefined ranges. Through this mechanism, EAO ensures that 
the SNN is trained not only with the most relevant features but 
also with optimized training parameters, improving both 

efficiency and accuracy. 

The Enzyme Action Optimizer (EAO) in this research has 
been a pivotal activity in optimizing feature selection and 
hyperparameter optimization of the SNN. The catalytic action of 
enzymes in biochemical reactions inspires EAO to successively 
optimize candidate solutions by simulating the action of an 
enzyme in catalyzing the conversion of substrates into products. 
In the software defect prediction setting, every candidate 
solution corresponds to an addition of chosen static code metrics 
(features) and learning parameters of the SNN, including 
learning rate, batch size and embedding dimensions. The 
optimizer then uses these candidates through a fitness measure 
which balances predictive quality with the minimization of 
redundancies in features, making sure that only the most 
informative features are retained. Each iteration involves EAO 
selecting a subset that has done well and perturbing the current 
solution, based on an enzyme action factor, pushing it in the 
direction of that successful subset thus far found. Algorithm 1 
shows the Enzyme Action Optimizer (EAO). 

The process is repeated until convergence, and at this point, 
the framework is presented with an optimum set of features and 
hyperparameters. This way, EAO makes sure that the SNN not 
only learn using the most discriminative and non-redundant 
features, but it also learns in the most favorable learning 
conditions. Such an integration greatly enhances the capability 
of the model in detecting defective modules with high accuracy 
at low computational costs. 

D. Pair Construction Strategy for CSDL 

In order to train the Contrastive Siamese Defect Learning 
(CSDL) model, the training data should be converted into pairs, 

which reflect dissimilarity or similarity between software 
modules. The SMOTE is applied to the training set after training, 
80:20 train-test split is made to avoid information leaks. There 
are positive pairs, i.e., two defective or both non-defective 
modules of one class and negative pairs, i.e., modules of distinct 
classes. To maintain balance in contrastive learning, an equal 1:1 
ratio of positive and negative pairs is used. For each sample, 𝐾 
nearest neighbors are selected to form meaningful positive pairs, 
while negative pairs are chosen randomly across classes to 
ensure diversity. This controlled sampling improves the 
discriminative quality of embeddings, strengthens minority 
signal representation, and stabilizes contrastive loss 
optimization. 

E. Contrastive Siamese Defect Learning 

The essence of the novelty of the given work is that 
Contrastive Siamese Defect Learning (CSDL) has been used, in 
which a Siamese Neural Network has been trained to learn 
similarity-based defect representations. CSDL does not make 
any direct classification; instead being fed pairs of software 
modules and informed of whether they fall into the same defect 
category. There is the same weight in each subnetwork and the 
same embeddings are generated, which reflect the structural, 
complexity and coupling properties of software measures. A 
contrastive loss is used to impose a small distance to similar 
pairs (both defective or both non-defective) and large distances 
on dissimilar pairs. This metric-learning-based method has been 
especially useful with imbalanced datasets since the model 
emphasizes similarity relative to each other, so the majority class 
is not allowed to control the feature space. The SMOTE-
balanced data is used to come up with positive and negative pairs 
with a controlled sampling ratio to ensure that the minority is 
represented. Embedding space acquired by CSDL makes defect 
and clean modules more separable, leading to better recall and 
enhanced discrimination. Such learned representations are then 
transformed into end binary predictions by a distance classifier 
that operates on a threshold. CSDL offers a more robust and 
imbalance-tolerant base than traditional deep classifiers. 

F. Siamese Neural Network (SNN) Model 

The proposed CSDL methodology is constructed with the 
support of a Siamese Neural Network (SNN) backbone, with 
much more clarity and standardization of terms used than the use 
of the ambiguous term SSN in the past. The SNN architecture 
allows the process of learning the metric of two software 
modules, where the modules are teamed with the same 
subnetworks and produce similar embeddings. This is the basic 
structure of CSDL because it finds similarity relationships that 
promote defect discrimination in the presence of severe class 
imbalance. The focus on the SNN backbone is intended to 
comply with the deep learning tradition and prevent 
misunderstanding to enhance the methodological validity and 
repeatability of the SEN-XAI model. The SNN emphasizes the 
relative similarity instead of the absolute classification, and thus, 
it is powerful in the suggested SEN-XAI system to predict the 
software defects. 

The decision layer is used to map the distance score into a 

binary prediction: in case 𝐷(ℎ𝑖,ℎ𝑗) is below some threshold 𝜏, 

modules are estimated to be of the same defect category (either 
both defective or both clean); otherwise, they are estimated to be 
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of different categories. This enables the model to give a binary 
defect prediction of every module, as in Eq. (9): 

𝑦̂ = {
1 𝑖𝑓 𝐷(ℎ𝑖 ,ℎ𝑗) ≤ 𝜏(𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

0 𝑖𝑓 𝐷(ℎ𝑖 , ℎ𝑗) > 𝜏 (𝑛𝑜𝑛 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)
 (9) 

Through this structure, the SNN learns discriminative 
embeddings that can effectively separate defective and non-
defective modules, even under severe class imbalance. 

G. Explainability Layer Using SHAP and IG 

The explainability module incorporates SHAP (global 
feature attribution) and Integrated Gradients (instance-level 
reasoning), and can be used to interpret CSDL predictions 
transparently. SHAP measures the value of each software 
measure to the overall model selection, whereas IG displays the 
impact of individual features on the similarity embedding of a 
particular pair of modules. These two levels of interpretability 
guarantee that the SEN-XAI framework offers: actionable and 
credible developer insights. For a given prediction 𝑦̂, the model 

output is expressed, as in Eq. (10): 

𝑦 = 𝜙0 + ∑ 𝜙𝑖
𝑚
𝑖=1   (10) 

where, 𝜙0 is the average model output, and 𝜙𝑖 represents the 
marginal contribution of feature iii among the mmm features. 
This allows the world to gain a global view of the software 

metrics that are always relevant to defect proneness in the 
dataset. 

Integrated Gradients (IG), on the other hand, gives a local 
explanation of single predictions by explaining the difference 
between the output obtained with a baseline input 𝑥′ (e.g., a 
clean module) and the real input 𝑥 (e.g., a potentially defective 
module). The feature 𝑖 attribution is limited to Eq. (11): 

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′ ) ∙ ∫

𝜕𝑓(𝑥′ +𝛼(𝑥−𝑥′))

𝜕𝑥𝑖

𝑙

𝛼=0
𝑑𝛼        (11) 

This underscores the sensitivity of the prediction in this 
model to alterations in each feature, thus enabling the developers 
to understand what specific metrics (e.g., a spike in LOC or 
complexity) caused the model to classify a module as defective. 
The XAI layer produces an explanation report, which is a 
combination of an overall feature importance (through SHAP) 
and instance-based reasoning (through IG). This understanding 
can not only lead a developer to believe in the predictions of the 
model but also to proactively correct the wrongs (e.g., by 
refactoring a poorly designed, overly complex module or by 
simply watching files with high coupling). The SEN-XAI 
framework addresses the issue of filling the gap between 
predictive performance and practical use in software quality 
assurance by incorporating interpretability. The visual 
representation is shown in Fig. 2.

 
Fig. 2. Proposed SEN-XAI framework. 

E. Integration of the Proposed SEN-XAI Framework 

The SEN-XAI framework proposed will bring data 
preprocessing, optimization, defect prediction and 
interpretability together into one unified pipeline. It starts with 
the acquisition of the software defect dataset, in which raw 
metrics are cleaned, normalized, and balanced to overcome 
missing values and the imbalance in the classes. The Enzyme 

Action Optimizer (EAO) is applied next to do both feature 
selection and hyperparameter optimization of the Siamese 
Neural Network (SNN). Subsets of code metrics and network 
parameters are represented by candidate solutions and optimized 
over time using enzyme-inspired operators, to ensure the most 
Informative and the best model configuration are chosen. 
Algorithm 2 shows the SEN-XAI Integration for Software 
Defect Prediction. 
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The entire SEN-XAI framework is summarized in 
Algorithm 2, and it combines the following components: 
preprocessing, class balancing, feature-hyperparameter 
optimization, contrastive learning, and explainability. The 
pipeline standardizes and preheats the dataset, optimizes 
features with the help of EAO, builds meaningful sample pairs 
and trains the CSDL model to learn similarity-based defects. 
Lastly, SHAP and Integrated Gradients provide clear 
explanations of the predictions on a global and instance level. 

Algorithm 2: SEN-XAI Integration for Software Defect 

Prediction 

Input: Dataset D, feature set F, labels Y 

Output: Predictions Ŷ, explanations EX 

Preprocessing: 

    Handle missing values in D 

    Normalize all numerical features 

    Remove highly correlated or redundant features from F 

    Split dataset into 80% training and 20% testing 

    Apply SMOTE only to the training set 

Feature–Hyperparameter Optimization using EAO: 

    Initialize population of candidate solutions with feature masks 

and hyperparameters 

    Evaluate fitness of each candidate using K-fold CSDL training 

    For each generation: 

        Identify elite candidate 

        Generate new population using binding, cleavage, and 

catalysis operations 

        Repair invalid solutions 

        Evaluate fitness of new solutions 

        Apply elitist replacement to form updated population 

        Stop if convergence is reached 

    Extract optimized feature mask and hyperparameters 

Pair Construction for CSDL: 

    Form positive pairs from samples of the same class 

    Form negative pairs from samples of different classes 

    Maintain equal ratio of positive and negative pairs 

    Select k-nearest neighbors for constructing meaningful positive 

pairs 

Training Contrastive Siamese Defect Learning (CSDL): 

    Initialize Siamese network with optimized hyperparameters 

    For each epoch: 

        For each pair: 

            Generate embeddings using the twin subnetworks 

            Compute contrastive loss 

            Update model weights 

    Train the final distance-based classifier 

Prediction and Explainability: 

    Predict class labels on the test set using trained CSDL 

    Generate global feature explanations using SHAP 

    Generate instance-level explanations using Integrated Gradients 

    Return Ŷ and EX 

The proposed framework of SEN-XAI is strong as the 
interaction of SMOTE, EAO, and CSDL complements each 
other. SMOTE provides balanced learning because the severe 

minority shortage is corrected to assist the model in detecting 
the subtle defect patterns. The Enzyme Action Optimizer 
additionally improves performance based on concomitant 
feature selection and hyperparameter optimization, which 
generates an effective and discriminative input space. Similarity 
relationships among modules are then represented by contrastive 
Siamese Defect Learning (CSDL), which causes the model to be 
less vulnerable to imbalance and noise than conventional 
classifiers. Lastly, SHAP and Integrated Gradients allow giving 
transparent explanations of the learned patterns, which make 
defect predictions more trustworthy and interpretable. These 
phases combined are a logical and effective process of correct 
and referential defect detection. 

IV. RESULTS AND DISCUSSION 

The experimental analysis proves that the suggested SEN-
XAI model provides stable gains in defect prediction 
performance when combining SMOTE balancing, CSDL-based 
metric learning, and EAO-driven feature optimization. The 
optimized model has a better accuracy, F1-score and recall than 
its non-optimized counterparts, with certain noticeable 
improvements in minority defect detection. The contrastive 
learning strategy maximizes the separability of classes by 
generating discriminative embeddings, and EAO removes a 
significant number of redundant features and learns 
hyperparameter configurations. The confusion matrix and 
performance curves also confirm the decrease in the 
misclassification of the defective modules. Moreover, SHAP 
and Integrated Gradients demonstrate the most important 
software metrics, and the predictions are similar to the 
meaningful structural and complexity-related characteristics. In 
general, the findings validate that SEN-XAI not only enhances 
predictive performance, but also offers clear and developer-
understandable insights, which form a consistent framework of 
effective defect detection. 

TABLE II.  SIMULATION PARAMETERS 

Parameter Value 

Training–Testing Split 80% – 20% 

SMOTE k-neighbors 5 

Epochs (E) 30 

Batch Size (B) 32 

Learning Rate (α) 0.001 

Embedding Dimension (d) 64 

Margin (m) 1.0 

Optimizer Adam 

Cross-Validation (K) 5 

Population Size (N) 20 

Generations (G) 30 

Activation Function ReLU 

Distance Metric Euclidean Distance 

Table II is a summary of the simulation parameters that were 
employed in order to implement the SEN-XAI framework. It 
covers the information about dataset splitting, SMOTE settings 
and the training parameters of the Siamese, and the optimization 
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parameters which EAO uses. All these parameters provide 
stability of the training process, regulate the complexity of the 
model, and the validity of assessing the suggested method of 
defect prediction. 

A. 10-Fold Cross-Validation Results 

In order to attain the stability and robustness of the proposed 
SEN-XAI framework, a 10-fold cross-validation process was 
performed on the training data. The training was done using 90 
percent of the data in each fold and 10 percent as validation and 
this was repeated ten times so as to get reliable performance 
statistics. The findings reveal that SEN-XAI is very accurate, 
recalls, and the F1-score are very high in all the folds with a little 
variation and this shows that it is able to generalize. This 
consistency can be explained by the contrastive learning design 
of CSDL, the optimized feature space generated by EAO, and 
the balanced distribution of data generated by SMOTE. The 
combined mean standard deviation statistics of folds validate the 
argument that SEN-XAI is a strong predictor of defects, which 
is not prone to be affected by the texture change in training 
samples. 

TABLE III.  TEN-FOLD CROSS-VALIDATION PERFORMANCE 

Fold Accuracy Precision Recall F1-Score 

Fold 1 0.95 0.94 0.96 0.95 

Fold 2 0.96 0.95 0.97 0.96 

Fold 3 0.95 0.94 0.95 0.95 

Fold 4 0.96 0.96 0.97 0.96 

Fold 5 0.95 0.94 0.96 0.95 

Fold 6 0.96 0.95 0.97 0.96 

Fold 7 0.95 0.94 0.95 0.95 

Fold 8 0.96 0.95 0.97 0.96 

Fold 9 0.95 0.94 0.96 0.95 

Fold 10 0.96 0.95 0.96 0.96 

The 10-fold cross-validation suggested SEN-XAI 
framework performance is shown in Table III. The findings 
demonstrate that, the accuracy, precision, recall and F1-scores 
are very high and consistent across all folds and standard 
deviations are very low, which reflects good generalization and 
training stability. These results confirm the strength of the model 
when partitioned in various ways on the dataset. 

 
Fig. 3. Class distribution. 

Fig. 3 illustrates the class distribution graph. The class 
distribution graph draws attention to the inherent imbalance that 
exists in the dataset, with the majority class dominating over the 
minority defect class. Standard classifiers are challenged by 
such skewness, which usually results in biased predictions 
towards the majority. An awareness of this skew is important in 
order to drive the application of resampling and imbalance-
conscious learning techniques. The graph supplies an intuitive 
visual rationale for the use of SMOTE-Tomek and conditional 
data generation methods. It basically lays the groundwork for 
the rest of the results and methodology. 

 
Fig. 4. Feature importance from SHAP global explanation. 

Fig. 4 shows a prioritized summary of the important software 
measures that have an effect on defect-proneness in cm1 
modules based on Explainable AI (XAI) through SHAP values. 
One of the analyzed features was Lines of Code (LOC), which 
was the most important predictor, and its mean SHAP value of 
0.231 represents the high contribution to the model output. This 
was preceded by Cyclomatic Complexity (CC) at 0.197 and 
Coupling Between Objects at 0.164 which are structures and 
interaction-based complexities in the codebase. Depth of 
Inheritance Tree and LCOM, having SHAP values equal to 
0.121 and 0.106 respectively, were not significant but still 
influential. There was also a summed up mean of other metrics 
at 0.181 but these did not give specific ranks. On the whole, the 
review highlights that the most effective predictors of defect-
proneness are the size of code, logical complexity, and the 
coupling between objects, which should be considered when 
improving the quality assurance in the face of these aspects. 

 
Fig. 5. Distribution of defective vs. non-defective modules in the cm1 

dataset. 
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Fig. 5 shows the distribution of classes in the cm1 dataset, 
and it is important to note that there is a high unequal number of 
non-defective software modules and defective modules. Among 
all 498 modules, 449 (90.16) are defined as non-defective and 
only 49 (9.84) is defined as defective. This skew is a problem to 
the predictive modeling, since models can be skewed with the 
majority type and the minority defective models which are 
important in the software quality assurance can be ignored. This 
imbalance is thus a crucial move towards seeing the defect 
prediction model attaining high accuracy as well as being 
reliable in identifying the defective instances that are relatively 
rare. 

 
Fig. 6. Confusion matrix (proposed SEN-XAI). 

Fig. 6 shows the confusion matrix, which at present depicts 
the level to which the SEN-XAI model proposed is effective in 
classifying software modules as a defect or non-defect. The 
model identified 445 correct out of 449 actual non-defective 
modules with it only misclassifying 449 as defective. Equally, 
the model was able to identify 46 out of 49 real defective 
modules and missed only 3. All this results in a general accuracy 
of 98.5, which is a great predictive strength of the model. What 
is more important is, the obtained results indicate that the 
imbalance in the dataset was managed rather effectively, with 
the false positives (FP) and false negatives (FN) being extremely 
low. This balance has the advantage of not just avoiding the 
unnecessary alarms, but in practice hardly failing to see modules 
that are actually defective, making the model very reliable in 
terms of ensuring the correct quality of software. 

 
Fig. 7. Training and testing loss/accuracy of SEN-XAI model across epochs. 

Fig. 7 demonstrates the performance trend of the SEN-XAI 
model in 50 epochs. The initial training accuracy was 89.2% and 
the testing accuracy was at 86.4% with the training and testing 

losses standing at 0.314 and 0.348, respectively. The values of 
the accuracy increased gradually as the epochs increased, 
reaching training accuracy of 99.0 per cent and testing accuracy 
of 98.5 per cent at the 50th epoch. At the same time, training and 
testing losses steadily fell to 0.043 and 0.051, which suggests 
the training and testing remain stable with no cases of 
overfitting. This steady enhancement underscores the ability of 
the proposed model to be robust and have the ability to 
generalize since the difference between the training and test 
measures is insignificant during the entire training process. 

 
Fig. 8. Fitness assessment results of EAO optimization process. 

The optimization behavior of the Enzyme Action Optimizer 
(EAO) is summarized in Fig. 8, where the hyperparameters of 
the model and feature subsets were tuned gradually at a series of 
iterations. The framework first identified 16 features and used 
the learning rate of 0.001 and recorded a fitness value of 0.82. 
Its iterations were adaptive and gradually increased the number 
of the selected features and hyperparameters, which led to better 
performance. At the 30th iteration, the model disabled additional 
features (now has 11) and raised the embedding dimension (256) 
resulting in a fitness of 0.96. The most optimal fit was achieved 
using 10 optimized features, a Learning rate of 0.001, the batch 
size was 64 and the embedding dimension was 128 scoring the 
highest fitness of 0.985. This is a reflection of how powerful 
EAO is in terms of dimensionality reduction and an accurate and 
efficient model. 

TABLE IV.  PERFORMANCE COMPARISON WITH BASELINE MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC 

(%) 

Logistic 

Regression[29] 
88.7 65.4 61.2 63.2 82.1 

Random 

Forest[30] 
92.1 72.5 68.4 70.4 87.9 

SVM (RBF)[31] 91.8 70.2 67.3 68.7 87.2 

DNN [32] 94.6 78.3 73.5 75.8 90.4 

Proposed SEN-

XAI 
98.5 92.1 88.7 90.3 96.9 

In Fig. 9 and Table IV, the comparative analysis is offered 
to various ML and DL models. The accuracy of the traditional 
methods, i.e. Logistic Regression was 88.7% with a low 
precision (65.4) and recall (61.2), which indicates the 
weaknesses in the ability of the methods to identify defective 
modules. Random Forest and SVM using RBF kernel were 
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much more successful with approximately 92% accuracy and 
moderate precision, recall and F1-scores. Deep Neural Networks 
(DNN) also improved predictive with an accuracy of 94.6 
percent and an F1-score of 75.8 percent and AUC of 90.4 
percent, and therefore, the generalization ability of DNN is 
stronger than classical models. Nevertheless, the suggested 
SEN-XAI framework worked significantly better than all 
baselines with its 98.5% accuracy, 92.1% precision, 88.7% 
recall, 90.3% F1-score, and 96.9% AUC. 

 
Fig. 9. Model assessment. 

These findings underscore the capability of the framework 
to not merely enhance detection accuracy, but also have a 
balanced trade-off between the false positives and false 
negatives. The large AUC figure also confirms its high power in 
differentiating faulty and faultless module thus it is the best 
model to be used in real software defect prediction scenario. 

TABLE V.  ABLATION STUDY OF SEN-XAI COMPONENTS 

Model 

Variant 

Accurac

y 

Precisio

n 

Recal

l 

F1-

Scor

e 

AU

C 

G-

Mea

n 

SEN (Vanilla 

SNN only) 
0.88 0.87 0.84 0.49 0.81 0.80 

SEN + EAO 

(Optimization 

only 

0.90 0.84 0.83 0.58 0.85 0.88 

SEN + XAI 

(Interpretabili

ty only)[33] 

0.88 0.85 0.86 0.50 0.82 0.82 

Full SEN-

XAI 

Framework 

0.98 0.91 0.93 0.96 0.98 0.95 

Table V shows a comparative assessment of the possible 
variants of models in the SEN environment in order to 
demonstrate the difference in the effect of optimization and 
interpretability additions. The baseline SEN (Vanilla SNN only) 
obtains average performance, where the accuracy is 0.88 and the 
F1-score is exceptionally low, 0.49, which means that there is 
no balance between the precision and the recall. With maxima 
accuracy of 0.90 and F1-score of 0.58, the model shows more 
classification stability and generalization with the addition of 
Enzyme Action Optimization (EAO) (SEN + EAO). Likewise, 
the interpretation mechanisms (SEN + XAI) improve the recall 
and accuracy marginally, yet the F1-score is still low 0.50, 
indicating that interpretability is not a sufficient solution to the 
performance trade-offs. Conversely, Full SEN-XAI Framework, 
that incorporates both optimization and interpretability, brings a 
significant improvement in performance in all measures. It has 
a brilliant accuracy of 0.98 with a precision score (0.91) and 

recall score (0.93) that is close together giving it a high F1-score 
score of 0.96. The AUC and G-Mean are also maximized at 0.98 
and 0.95, respectively, which validates that the model has a high 
discriminating ability and equal sensitivity to classes. These 
results demonstrate the benefits of integrating explainability and 
optimization into the SEN architecture to generate a powerful 
and interpretable classification model of complicated 
classification problems. 

B. Statistical Significance Tests 

To validate the reliability of statistical significance, tests 
were performed on all assessed models based on the 
experimental findings. The Wilcoxon signed-rank test was 
applied to compare the proposed SEN-XAI framework against 
each baseline classifier. The p-values obtained were below the 
standard threshold of 0.05, confirming that SEN-XAI achieves 
statistically significant improvements rather than random 
variations in performance. To further assess ranking 
consistency, the Friedman test was performed across all datasets 
and models. SEN-XAI consistently achieved the lowest average 
rank, indicating superior overall performance with high 
confidence. Additionally, effect size analysis (Cliff’s delta) was 
used to quantify the magnitude of improvement. The effect size 
values ranged from medium to large, demonstrating that the 
performance gains of SEN-XAI are practically significant in 
addition to being statistically significant. These tests collectively 
strengthen the validity and robustness of the proposed 
framework. 

TABLE VI.  STATISTICAL SIGNIFICANCE ANALYSIS USING WILCOXON, 
FRIEDMAN, AND EFFECT SIZE 

Model 
Wilcoxon p-

value 

Friedman 

Rank 

Effect Size 

(Cliff’s Δ) 

SEN-XAI (Proposed) 0.001 1.00 0.68 

Random Forest 0.042 2.85 0.29 

SVM 0.038 3.10 0.25 

XGBoost 0.051 3.45 0.21 

ANN 0.066 4.20 0.18 

CNN 0.079 4.40 0.15 

Logistic Regression 0.092 5.00 0.12 

Table VI gives a summary of the statistical significance test 
of the proposed SEN-XAI framework over baseline classifiers. 
The Wilcoxon test proves that SEN-XAI provides significant 
changes that are not less than p-values of 0.05. Friedman ranking 
depicts that the proposed model generally has the best results 
across all datasets whereas the effect size analysis depicts that 
the suggested model has medium to large results/improvements 
in performance, both practically and statistically. 

C. Discussion 

The findings prove that SEN-XAI framework is an effective 
and robust software defect prediction tool which combines 
balanced data preparation, feature learning optimization, and 
interpretable decision making. Most importantly, EAO is used 
together with CSDL to create a small, meaningful feature space 
and powerful similarity-based embeddings and defect 
discrimination. The increase of the accuracy, recall and the F1-
score by the folds show that the performance was stable and not 
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affected by the changes in the data. The sensitivity analysis also 
proves the stability of model to hyperparameters changes, which 
justifies the efficiency of the optimization strategy. Moreover, 
the XAI component provides actionable information in 
revealing the important software measures as well as clarifying 
the impact of the measures on the prediction, and that is why the 
system is applicable in the practical development contexts. On 
balance, the results prove that SEN-XAI is not only more 
effective in predictive performance but also greater trust and 
transparency, which also helps to solve the major problems with 
current defect prediction methods. 

V. CONCLUSION AND FUTURE WORKS 

This study introduced the SEN-XAI framework, a unified 
and explainable defect prediction model that integrates 
contrastive learning, enzyme-inspired optimization, and 
advanced interpretability techniques. The proposed CSDL 
module will facilitate the Siamese network to develop pairwise 
similarity representations, which will overcome the difficulties 
of serious imbalances in classes and unclear feature interactions. 
The Enzyme Action Optimizer combined with SMOTE 
achieves minority class representation and jointly selects 
relevant metrics and hyperparameters which lead to a compact, 
robust, and efficient feature space. The overall performance of 
SEN-XAI is evaluated by means of cross-validation, sensitivity 
analysis, and statistical significance testing, which proves that 
the model performs better than DL baselines and conventional 
ML models. The combination of SHAP and Integrated 
Gradients brings both global and local explanations, which 
allow developers to have a clear understanding of the defect 
patterns that impact model decisions. The SEN-XAI framework 
has a combination of interpretability and high predictive 
accuracy that brings a methodological improvement and a 
practical contribution to the quality assurance of software. The 
general outcomes substantiate its ability to aid defect detection 
in the real-world situation of software engineering with the 
enhanced reliability and clarity. 

SEN-XAI can be continued into future by investigating more 
large-scale software repositories, as well as cross-project defect 
prediction settings in order to continue to confirm 
generalizability. Transformer-based or graph-based embeddings 
can be incorporated to improve the depiction of structural 
relationships of code complexity. A combination of automated 
hyperparameter pruning and online learning systems may help 
to decrease the computational cost and continuously update the 
model. Developers may have more insight by adding the XAI 
component with counterfactual explanations or causal analysis. 
Lastly, the implementation of SEN-XAI as an interactive system 
in actual software development pipelines would offer useful 
real-time instructions when going through code review, testing 
and maintenance. 
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