
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1095 | P a g e
www.ijacsa.thesai.org

Reinforcement Learning Framework for Missing Data

Imputation in IoT Environments

Ahmed M. Salama Salem, Sayed AbdelGaber A, Ahmed E. Yakoub

Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

Abstract—Continuous, accurate meteorological sensing

underpins many Internet of Things (IoT) applications, from smart

irrigation and urban heat-island monitoring to early weather

warnings, but data from distributed stations are often disrupted

by sensor faults, power loss, or communication noise, causing

missing values that degrade analytics and decisions. Existing data

imputation methods lose accuracy on small or irregular datasets

and adapt poorly to dynamic IoT settings. This study proposes a

reinforcement learning (RL)-based framework for missing-data

imputation that treats each gap as a sequential decision problem.

The authors develop and compare three RL architectures, two Q-

table methods and one Deep Q-learning model, to learn temporal

dependencies and optimize imputation via experience. A second

objective is to assess the feasibility and performance of RL for

imputation in domains related to robotics and autonomous

systems, where RL remains less explored. A third objective is to

validate the methods on real-world datasets and simulations,

supported by a user-friendly graphical interface for visualization

and performance monitoring. The proposed RL imputers

outperform state-of-the-art methods in accuracy and robustness:

the best RL configuration cuts MSE/MAE by 8.6%/5.9% vs. K-

Nearest Neighbors’ algorithm (KNN), 74.4%/75.6% vs.

autoencoder, 79.6%/79.9% vs. clustering, 89.0%/83.7% vs. mean,

89.5%/83.3% vs. median, and 94.2%/89.3% vs. most-frequent,

while raising the coefficient of determination (R²) by +0.023,

+0.532, +0.123, +0.407, +0.436, and +0.932, respectively. These

findings highlight RL as an effective paradigm for intelligent data

restoration in IoT-based sensing systems.

Keywords—Data imputation; reinforcement learning; machine

learning; deep learning; Internet of Things (IoT)

I. INTRODUCTION

Industry and academia are both deeply interested in
maximizing the potential usefulness of the Internet of
Things (IoT), a system that links many millions of physical
devices to the Internet and, in doing so, generates unprecedented
volumes of data. Embedded sensors and actuators enable such
devices to sense relevant properties of their surroundings,
analyze and process information locally, and exchange data with
peers or cloud services, enabling coordinated autonomous
decisions [1]. Advances in smart‑sensor design, wireless
communication, and data‑aggregation technologies have made
it possible to collect heterogeneous data streams from numerous
different sources such as environmental probes, industrial
machinery, surveillance cameras, and mobile devices [2]. Such
data drives predictive models that improve reliability,
efficiency, profitability, and overall performance in smart cities,
industrial automation, intelligent buildings, connected vehicles,
and environmental monitoring systems [3].

Despite the benefits, real-world deployment suffers from
missing or corrupted observations due to sensor faults, loss of
power, communication failures, long-term monitor fatigue,
battery depletion, and/or poorly defined boundaries in large-
scale network studies. Missing values can introduce bias,
complicate statistical analysis, and degrade model accuracy.
This missing value can be imputed using machine learning (ML)
and deep learning (DL) algorithms.

Data imputation is defined as representing missing values in
a dataset or IoT stream, which presents a number of challenges
for data analysis as such values can increase the chance of
introducing errors, reduce analytic accuracy, and limit the
reliability of confidence intervals. Data Imputation can be done
via conventional machine learning (ML) algorithms, such as
hot- and cold-deck substitution, last observation carried forward,
mean, multiple or regression imputation, non-negative matrix
factorization, and stochastic methods, frequently reject useful
data or introduce bias [4]. IoT data will often include varied
forms including binary, categorical, numerical, ordinal, spatial,
and temporal, with each requiring its own specialized analysis.
Thus, recent research has moved toward data-driven and hybrid
approaches that are better able to adapt to heterogeneous data
inputs. As a result, imputation techniques may now be
differentiated into two broad groups which are machine
learning-based, and deep learning-based approaches.

Deep learning (DL) approaches, such as autoencoders and
convolutional neural networks (CNNs), show great potential for
coping with missing data [5], but often need substantial and
well-organized datasets to provide reliable performance.
Autoencoders provide suggestions for missing data by learning
compressed, noise-tolerant versions of the data and then
rebuilding the original input, predicting absent values during the
decoding process. Multimodal, stacked and variational
autoencoders can enhance reconstruction accuracy for many
data types. CNN-based models are most effective when the data
can be reformed into multi-dimensional arrays such as matrices
or images, enabling the network to capture temporal or spatial
relationships. This makes CNNs suitable for imputing missing
values in, for example, traffic-sensor grids, medical records, or
spatiotemporal datasets which enable the study of the
maintenance of patterns over time and are particularly useful for
environmental data.

However, three major challenges remain. First, most
traditional machine learning and statistical imputation methods
provide limited accuracy when applied to real-world problems,
while modern DL-based approaches often require large training
datasets and their performance deteriorates when only small or
incomplete datasets are available. Second, although RL has been

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1096 | P a g e
www.ijacsa.thesai.org

extensively explored in robotics and autonomous systems,
relatively little attention has been given to its potential in the data
domain for imputing missing data, despite its successful
application to autonomous decision-making. Third, to the best
of the authors’ knowledge, there is still no standardized
workflow for simulating and deploying advanced imputation
models in realistic IoT environments or on a commercial scale.

To address such challenges, the authors propose a RL-based
imputation framework that makes each missing value a
sequential decision-making problem. This constitutes a first
contribution by explicitly formulating missing-data imputation
as a sequential decision-making task. This framework develops
and is evaluated via three progressively enhanced variants: 1) a
baseline Q-Table, 2) an improved Q-Table Version 2 (V2) with
optimized hyperparameter tuning, and 3) Deep Q-Learning (V3)
that utilizes neural networks for function approximation. This
systematic development enables a direct and controlled
comparison between tabular and deep RL architectures,
representing a second contribution of this work. These RL
variants are benchmarked against the widely used imputation
techniques: clustering, mean, most-frequent-value as well as
DL-based approaches such as autoencoders, and ML methods
such as K-Nearest Neighbors (KNN). The evaluations employ
multiple performance metrics such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), and the coefficient of
determination (R²) to provide a comprehensive assessment of
accuracy and reliability. This proposed RL-based approach
should enhance imputation accuracy with limited data
availability to maintain accuracy of real-time analytics for
continuous, dynamic IoT data streams by providing more robust
and scalable data.

The remainder of this study is organized as follows:
Literature Review discuss the state-of-the-art in this domain and
introduces the theoretical foundations of RL. Then,
Methodology discusses the design and implementation of the
proposed RL algorithms, including data preprocessing, missing-
data synthesis, model training, and simulation. The Results and
Discussion section presents and interprets the experimental
outcomes compared to relevant published works. Finally, the
Conclusion summarizes the key findings and suggests directions
for future research.

II. LITERATURE REVIEW

Accurate and reliable imputation remains fundamental to
downstream analytics in IoT settings where streams are
heterogeneous, non-stationary, and frequently sparse (see
Fig. 1). Contemporary work spans two broad families: 1)
classical baselines prized for simplicity and speed, 2) deep
learning (DL) models that trade higher capacity for greater data
and training demands. The review below positions our chosen
approach within this landscape and explains why RL is a timely
alternative.

Large comparative studies consistently show that traditional
ML approaches such as KNN [6], clustering [7], mean [8],[9],
median, most frequent [6], and tree-based methods, such as
MissForest, outperform very simple imputers. However, while
clustering, mean, and most-frequent are convenient they are,
typically, weaker representations of patterns often found in IoT-
style datasets [8],[9]. A 2024 cohort analysis identifies KNN and

Random Forest among the strongest practical baselines [9].
Similarly, a recent benchmark analysis paper evaluate the
performance of common methods of missing data imputation
reports that KNN and MIDAS, which is a denoising-
autoencoder approach, perform best at higher rates of random
data and block omissions, with substantial runtime differences
between methods [6].

Fig. 1. Data imputation reconstructs missing segments in IoT sensor time

series in real-time. The upper plot shows a typical sensor signal with a gap

between two dashed lines representing missing data frames caused by sensor

faults, packet loss, or power interruptions. The central block (arrow) denotes

the imputation algorithm, which processes the incomplete sequence. The

lower plot illustrates the imputed data frames (red curve) that reconstruct the

missing segment while preserving the original temporal trend and signal

continuity.

DL produces high accuracy rather than ML. One DL
method, Generative Adversarial Networks (GAN)-based
imputers, such as GAIN and its variants, continue to evolve to
mitigate mode collapse and gradient instability [10]. A recent
study introduces training refinements that improve both stability
and accuracy. The clustering and classification-based generative
adversarial imputation network (CC-GAIN) features enhanced
couples clustering or classification with GANs to better handle
multivariate settings which were successfully used in missing
data imputation in an electricity consumption system [11]. There
is also evidence that the generative adversarial imputation
network (GAIN) in hybrid combination with convolutional
neural networks (CNNs) can be used for exploiting tensorized
representations to provide greater accuracy with sparse
multivariate data, but with heavier computational cost and
potential training instability compared to simpler baselines [12].
These works justify including DL baselines beyond
autoencoders in comparisons while acknowledging their
practical trade-offs.

Auto encode (AE) is also a DL method and recent research
has refined denoising autoencoders (DAEs) specifically for
tabular imputation. DAE for missing data imputation has been
developed using a modified loss and a simple hyperparameter
rule [13]. It use across multiple UCI datasets and missingness
regimes has shown it to provide thorough ablations against
standard baselines and rank among the top performers, making
it a strong contender for use as an AE-style imputer for tables
[5].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1097 | P a g e
www.ijacsa.thesai.org

Beyond generic IoT benchmarks, DAEs have been evaluated
in cases where the missingness was high (≥40%) heterogeneous
biomedical datasets (with a mix of imaging, clinical, cognitive,
and genetic variables), which demonstrated where DAEs excel
and but also that they struggled under extreme sparsity typical
of real-world IoT/health data sets [13]. Remasker, a recently
developed method, extended masked autoencoding to tabular
data by re-masking observed entries during training and
predicting them as a self-supervised target [15]. Competitive or
superior imputation fidelity/utilities across benchmarks were
reported, with released code and slides clarifying design choices
(simple masking strategy, strong performance as the missing
ratio grew) [14]. These properties make Remasker an
appropriate “modern DL” point of comparison alongside DAEs
in our study.

In summary, classical machine-learning methods provide
strong, efficient models that can operate at high speed. DL
models offer higher-capacity imputation but come with stability
and computational limitations, and they typically require
substantial training data. When such data and careful training are
available, DL methods achieve state-of-the-art accuracy. In
contrast, RL-based imputation remains relatively under-
explored, particularly for streaming IoT time-series data
characterized by small sample sizes and block-missing patterns.
To address this gap, we formulate missing-data imputation as a
sequential decision-making problem, design an IoT-specific
state-action-reward structure, and conduct a systematic
comparison of tabular Q-learning and Deep Q-Learning within
a unified framework. The proposed approach is evaluated using
MSE, MAE, and R² to assess both accuracy and robustness
under realistic IoT data conditions.

III. PROPOSED METHODS

A. Overview

RL provides a learning framework through interaction: an
agent repeatedly observes the current situation of the
environment, chooses an action, receives a numerical response,
and moves to a new situation. Over time, the agent defines and
then refines a policy, a mapping from observed situations to
actions taken, so that the long‑term response is maximized. Two
internal estimates direct this process. State‑value functions
provide a measure of how desirable a situation is, while
action‑value functions estimate the effectiveness of taking a
specific action in a particular situation. Learning algorithms
such as Q‑learning adjust the estimates by comparing the
predicted results with those observed after taking action.
Modern RL combines these approaches with deep neural
networks to provide deep RL, which can provide value functions
and policies directly from high‑dimensional data. The volatility
that can arise when learning and decision‑making take place
simultaneously is substantially reduced by using stabilizing
techniques such as experience replay, target networks, and the
ε‑greedy algorithm. Because RL learns directly from the
interactions rather than static examples, it is well-suited to
problems such as IoT data imputation, where the agent must
cope online with varying streaming inputs, noisy feedback, and
changing sensor conditions.

In this study, the authors develop a model that incorporates
three hyperparameterized methods to enhance imputation

accuracy. It integrates two variants of Q-Table-based RL and
one Deep Q-RL approach. The Q-Table RL is a model-free
algorithm that uses tabular representation to store and update
action-state values (Q-values). These values guide the agent in
selecting optimal actions within a discrete environment based on
a defined reward function. Although having the benefits of being
simple and interpretable, Q-Table methods are limited in
scalability when the state-action space becomes large. To
address this, the model includes a second stage with
enhancements in exploration and value generalization. In
contrast, DQL extends the traditional Q-learning paradigm by
employing a deep neural network to approximate the Q-
function. This enables the agent to cope with high-dimensional
or continuous state spaces more effectively. Combining the three
methods, this model expects to provide a more accurate and
robust imputation strategy than traditional techniques.

B. Data Preprocessing and Missing Data Synthesizing

In this study, the authors divided the Air-Quality dataset
(UCI ID 360) from the UCI Machine Learning Repository [15,
16] for training and testing the proposed algorithms and the
baseline methods for data imputation. The selected data source
is one of the most popular benchmark resources in the IoT
weather domain. It contains recorded responses from a gas
multisensory device that was deployed in a field in an Italian
city. Hourly average sensor readings are provided together with
reference gas‑concentration measurements obtained from a
certified analyzer. In total, the dataset comprises 9,357 hourly
averaged instances collected by an array of five metal‑oxide
chemical sensors embedded in the air‑quality multisensory
device, as shown in Table I. The device was positioned at road
level in a heavily polluted urban area. Data were gathered
continuously for one full year, from March 2004 to
February 2005, yielding the longest freely available recording of
on‑field air‑quality chemical sensor responses. The sensing unit
comprised five metal-oxide (MOX) chemical sensors, each
nominally tuned to specific target gases, along with
environmental measurements. The dataset includes both the raw
sensor responses (PT08.S1–PT08.S5) and reference gas-
concentration measurements obtained from a co-located
certified analyzer. The measured and reference parameters are
summarized in Table I.

The dataset was split into training and validation sets,
comprising 80% of the data, and a testing set comprising the
remaining 20%. The authors used this split to ensure a large
amount of data for training and validation, enabling better
generalization and reducing the risk of overfitting, while the
remaining 20% contained representative features sufficient for
reliable testing.

The data preprocessing pipeline begins by retrieving and
reviewing the dataset’s metadata, such as source, measurement
period, and definitions of variables, followed by generating
summary statistics and data-type profiles to verify completeness
and to detect potential anomalies. The column providing the
Date is deconstructed from the original MM/DD/YYYY string
format into a suitable datetime object, enabling the earliest and
latest sampling times to be recorded for temporal consistency
checks. All other numerical attributes (i.e., columns after the
first two identifier fields) are rescaled to the interval [0, 1] using
a Min-Max transformation to ensure comparable magnitudes to

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1098 | P a g e
www.ijacsa.thesai.org

accelerate model convergence. Finally, two comma-separated
value (CSV) files are generated: one preserves the raw
measurements as collected, and the other stores the normalized
version to be supplied to the learning algorithm. This procedure
ensures that downstream analysis uses a clean, temporally
aligned, and scale‑independent dataset but retains access to the
original records for auditing.

TABLE I. DATASET DESCRIPTION [15, 16]

Attribute Description Unit

Date Recording date DD/MM/YYYY

Time Recording time HH.MM.SS

CO
True hourly averaged Carbon

Monoxide (CO) concentration
mg/m³

PT08.S1

(Tin Oxide)

Sensor response nominally targeted

to CO
arbitrary unit

NMHC

True hourly averaged Non-Methane

Hydrocarbons (NMHC)

concentration

µg/m³

C₆H₆
True hourly averaged Benzene

(C₆H₆) concentration
µg/m³

PT08.S2

(Titania)

Sensor response nominally targeted

to NMHC
arbitrary unit

NOₓ
True hourly averaged Nitrogen

Oxides (NOₓ) concentration
ppb

PT08.S3

(Tungsten

Oxide)

Sensor response nominally targeted

to NOₓ
arbitrary unit

NO₂
True hourly averaged Nitrogen

Dioxide (NO₂) concentration
µg/m³

PT08.S4

(Tungsten

Oxide)

Sensor response nominally targeted

to NO₂
arbitrary unit

PT08.S5

(Indium

Oxide)

Sensor response nominally targeted

to Ozone (O₃)
arbitrary unit

T Temperature (T) °C

RH Relative Humidity (RH) %

AH Absolute Humidity (AH) g/m³

All experiments were conducted using a single missingness
procedure: entries in the numeric columns were masked
independently with a fixed probability of 0.2, applied separately
to the training, validation, and test partitions. This masking of
elements generated random gaps across the dataset,
guaranteeing that missing positions varied across folds and splits
in the data. Thus, model training and validation losses reflected
the reconstruction of the missing values, and final test metrics
quantified performance on a retained set subjected to the same
masking process (see Algorithm 1). With all models evaluated
consistently against this single, fixed masking strategy and
under the given setting (0.2). Algorithm 1 describes the
proposed procedure for synthesizing missing data at a fixed rate
across training, validation, and test splits. Starting from a
complete dataset, the data are first divided into
training/validation and test sets. During the cross-validation
phase, a fixed fraction of values is randomly masked as missing
in the numeric columns of both training and validation sets using
a uniform random process, ensuring consistent missingness
across folds. The imputation agent is trained on the masked
training data and validated against the original uncorrupted data.
In the final phase, the same missingness strategy is applied to

the combined training/validation set and the test set, after which
the imputation model is trained and evaluated. This procedure
ensures a controlled, reproducible, and unbiased evaluation of
imputation performance under fixed-rate missing-data
conditions.

Algorithm 1 shows the proposed missing data synthesizing
via a fixed-rate missingness for train, validation and test splits.

Algorithm 1: Proposed Missing Data Synthesizing Method

Start Algorithm

Initialize complete dataset D

Define numeric column set C

Define missing fraction p = 0.20

Define number of CV folds k

Randomly split D into train/validation set (D_tv) and test set
(D_test) with 80 % / 20 % ratio

Cross-validation phase
For each fold f in K-Fold(D_tv, k) do
| Split D_tv into training set (D_train) and validation set (D_val)

for fold f

| Create D_train_missing ← copy of D_train
| Create D_val_missing ← copy of D_val

| For each column c ∈ C do

| | For each row r in D_train_missing do
| | | u ← Uniform(0, 1)

| | | If u < p then
| | | | D_train_missing[r, c] ← NaN
| | | End If
| | End For

| | Repeat the same masking process for D_val_missing

| End For
| Train imputation agent on (D_train_missing, D_train) and
validate on (D_val_missing, D_val)

End For

Final test phase

Create D_tv_missing ← copy of D_tv

Create D_test_missing ← copy of D_test

For each column c ∈ C do

| For each row r in D_tv_missing do

| | u ← Uniform(0, 1)

| | If u < p then

| | | D_tv_missing[r, c] ← NaN

| | End If

| End For

| Repeat the same masking process for D_test_missing

End For

Train final imputation agent on (D_tv_missing, D_tv) and evaluate
on (D_test_missing, D_test)

End Algorithm

C. Proposed Models’ Architecture

1) Reinforcement learning based on Q table: Fig. 2

contrasts the end‑to‑end workflows for the two generations of

our reinforcement learning imputer. Version 1 (V1) begins by

injecting a user‑specified ratio of synthetic gaps into the

training fold and then iterates column‑by‑column inside the

dashed box the Column Imputation Agent V1 represents each

decision state solely by the row index of the missing value;

contextual cues such as neighboring readings remain implicit.

Two baseline actions are always available to the ε‑greedy

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1099 | P a g e
www.ijacsa.thesai.org

selector: the KNN fill and a feature‑statistics fill (mean, median

or standard‑deviation offset), while the remaining actions

correspond to previously learned Q‑values for that index. After

an action is chosen, the reward is calculated as the negative

absolute error normalized by the column’s standard deviation;

this signal updates the Q(state, action) table and the per‑epoch

MSE log. Once all gaps in the train‑and‑validation partitions

are imputed, fold‑level metrics are recorded and the agent

proceeds to the next column or cross‑validation split, ultimately

producing a single Q‑table per feature that is reused to fill the

held‑out test set [see Fig. 2(a)].

Version 2 (V2) retains the outer train, validation, and test
scaffold, but tackles three limitations observed in V1. First, it
discretizes the numeric context: each previous value is binned,
and the joint bin index becomes the state, dramatically shrinking
and regularizing the state space. Second, it replaces the
absolute‑error reward with a squared‑error signal and logs both
training and validation MSE curves, enabling early stopping and
hyper‑parameter tuning. Third, ε in the ε‑greedy policy decays
across epochs, allowing aggressive exploration early on and
more deterministic exploitation later. Internally, four Q‑tables
are maintained (one per context bin), each updated with the same
loop of reward calculation and value iteration. During inference,
the agent consults the appropriate Q‑table for the discretized
context of every missing cell, producing fills that are both
context‑aware and data‑driven [see Fig. 2(b)].

Fig. 2. The model structure of the proposed Q table methods.

2) Reinforcement learning based on deep Q: The proposed

imputation framework employs a Deep Q-Learning (DQN)

agent designed to learn optimal imputation strategies through

interaction with an environment representing missing-value

patterns. At each environment step, the agent observes a

scalarized state 𝑠 corresponding to the normalized position of

the missing entry within a column and selects an action 𝑎 ∈
 {𝑚𝑒𝑎𝑛, 𝑚𝑒𝑑𝑖𝑎𝑛, 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑘𝑛𝑛} using an ε-greedy policy.

The environment then returns a reward 𝑟 proportional to the

negative normalized squared error between the imputed value

and the ground truth. The next state 𝑠′ reflects the subsequent

missing entry index. This transition tuple (𝑠, 𝑎, 𝑟, 𝑠’) represents

a single reinforcement learning experience used to update the

DQN model. To enhance stability and sample efficiency,

training is conducted using a batched replay mechanism.

Transitions accumulated during interaction are stored in a

replay buffer of finite capacity K. Instead of performing one

update per sample, we repeatedly sample B mini-batches from

the buffer and execute U stochastic gradient descent updates for

each, thereby increasing the effective signal-to-noise ratio of

the temporal-difference (TD) gradients. This multi-batch,

multi-update schedule mitigates variance and reduces

dependency on fresh data collection, an essential property when

computational or data-access costs are constrained. For each

sampled transition iii, a bootstrap target is computed as: 𝑦𝑖 =
 𝑟𝑖 + γ max

𝑎 ́
𝑄𝜃 − (𝑠𝑖

 ́ ,𝑎 ́) where γ is the discount factor and 𝜃−

denotes the parameters of a slowly updated target network. The

online network parameters θ are optimized to minimize the

mean-squared TD error: 𝐿(𝜃) =
1

𝐵
 ∑ (𝑦𝑖 𝑖 −

 𝑄𝜃 (𝑠𝑖 ,𝑎𝑖)) 2 using the Adam optimizer with learning rate α.

Following each outer training epoch, both the exploration rate

ϵ and the coefficient for target update τ decay according to

defined schedules: 𝜃− ← (1 − τ)𝜃− + τ𝜃 This ensures

gradual policy refinement and stable convergence.

The Q-Network architecture (Fig. 2) is a compact three-layer
feedforward model realized in PyTorch: an input normalization
layer, a fully connected layer with 64 ReLU-activated neurons,
and a linear output layer producing four Q-values corresponding
to the available imputation actions. This lightweight design
enables efficient on-device training and inference under limited
memory and computation constraints. Collectively, the
integration of replay memory, target-network stabilization, and
multi-update training yields a robust Deep Q-Learning agent
capable of acquiring context-adaptive imputation strategies for
heterogeneous data distributions. The overall training pipeline,
from dataset preparation and K-fold cross-validation to column-
wise DQN training and test-time inference, is shown in Fig. 3.

Fig. 3. The model structure of the proposed deep Q method.

3) Proposed simulation for RL environment: The authors

developed an interactive grid‑based simulation using the

Pygame Library, to illustrate how a RL agent might traverse an

air‑quality dataset and impute missing values in real time (see

Algorithm 2). After loading a CSV file that contains numerical

features with artificially injected gaps, the data were

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1100 | P a g e
www.ijacsa.thesai.org

normalized to the [0,1] range and mapped onto a 2‑D grid

whose rows and columns correspond to samples and features,

respectively (see Fig. 4). Each cell is 100 px square: filled

observations appear in blue, missing entries in red, and their

numeric contents are over‑printed “NA” for clarity. The green

agent starts at the upper‑left corner [0,0] and can be moved by

the user using the arrow keys. When the agent is positioned on

a missing cell pressing the space bar triggers an “imputation

action”. In this demonstrator the action is a random draw from

[0,1], the ground‑truth value is likewise mocked, and the reward

is the negative absolute error, these values are stored in a simple

Q‑table keyed by grid location. Although rudimentary, the

framework visualizes the essential RL loop: state perception

(color‑coded grid), action selection (move or impute), reward

feedback, and value‑function update, all occurring at 30 FPS on

an 800 × 600 canvas. This educational tool provides an

accessible first step towards integrating and debugging more

sophisticated, neural‑based RL strategies for data‑gap filling on

edge‑generated sensor streams. Algorithm 2 shows how the

pseudocode outlines the full flow: loading and normalizing a

dataset with missing values, drawing a color‑coded grid, letting

the user navigate a green “agent” with arrow keys, and pressing

the space bar to impute and score missing entries. The Q‑table

records per‑cell rewards, providing a scaffold for replacing

random placeholders with a true reinforcement‑learning policy

at a later stage.

Fig. 4. RL Simulation for data imputation.

Algorithm 2 shows the pseudocode for Pygame RL‑Style
Imputation Simulator.

Algorithm 2: Pygame RL‑style Imputation Simulator

Start Algorithm
If D contains no NaN then Raise error “dataset complete”

Normalize D to [0, 1]

rows ← number of samples in D

cols ← number of features in D

𝑎𝑔𝑒𝑛𝑡_𝑝𝑜𝑠 ← [0,  0] # row, col

𝑄_𝑡𝑎𝑏𝑙𝑒 ← ∅ # (row,col) → reward

running ← True

While running do

| Clear WINDOW with BACKGROUND_COLOUR

| For i = 0 … rows−1 do

| | For j = 0 … cols−1 do

| | | x ← j × CELL_SIZE; y ← i × CELL_SIZE

| | | If D[i,j] is NaN then

| | | | color ← MISSING_COLOUR; label←“NA”

| | | Else

| | | | color ← FILLED_COLOUR; label ←

| | | | round(D[i,j],2)

| | | End If

| | | Draw filled rectangle (x, y, CELL_SIZE, CELL_SIZE)

| | | with color

| | | Draw border rectangle with GRID_COLOUR

| | | Render label in FONT_COLOUR at (x+10, y+10)

| | End For

| End For

| agent_x ← agent_pos.col × CELL_SIZE

| agent_y ← agent_pos.row × CELL_SIZE

| Draw rectangle (agent_x, agent_y, CELL_SIZE, CELL_SIZE)

| in AGENT_COLOUR

| For each EVENT in pygame.event.get() do

| | If EVENT.type = QUIT then

| | | running ← False

| | Else If EVENT.type = KEYDOWN then

| | | Case EVENT.key of

| | | | UP: If agent_pos.row > 0 then agent_pos.row −= 1

| | | | DOWN: If agent_pos.row < rows−1 then

| | | | agent_pos.row += 1

| | | | LEFT: If agent_pos.col > 0 then agent_pos.col −= 1

| | | | RIGHT: If agent_pos.col < cols−1 then

| | | | agent_pos.col += 1

| | | | SPACE:

| | | | | i ← agent_pos.row; j ← agent_pos.col

| | | | | If D[i,j] is NaN then

| | | | | | true_val←Uniform(0,1) # placeholder

| | | | | | imput_val←Uniform(0,1) # placeholder

| | | | | | D[i,j]←imput_val

| | | | | | reward← − |true_val − imput_val|

| | | | | | Q_table[(i,j)] ← reward

| | | | | End If

| | | | End Case

| | End If

| End For

| Update WINDOW (pygame.display.flip())

| Wait so frame‑rate = 30 FPS (clock.tick(30))

End While

pygame.quit()

End Algorithm

IV. RESULTS AND DISCUSSION

A. Tooling

The algorithms were developed in Python and used the
 Keras, Matplotlib, NumPy, Pandas,  PyTorch, Scikit‑learn, and
TensorFlow data processing and ML libraries. Keras provides a
user‑friendly, high‑level neural‑network API compatible with
both CPUs and GPUs. Matplotlib provides data visualization,
allowing patterns to be displayed as charts and plots. NumPy
offers a large collection of high‑level mathematical functions
able to support efficient operations on multi‑dimensional arrays
and matrices. Pandas provides data analysis and preprocessing,
high‑level data structures and a rich set of tools for filtering,
combining, and grouping datasets before training. PyTorch is an

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1101 | P a g e
www.ijacsa.thesai.org

extensive open‑source software useful for natural language
processing (NLP) and computer vision. Scikit‑learn provides a
wide range of supervised and unsupervised ML algorithms for
data mining and analysis. TensorFlow provides
high‑performance computation for training and operating
deep‑learning models.

The model was trained on the Google Colab cloud platform,
which provides a shared high‑performance computing (HPC)
environment. The model training was carried out using two
virtual CPUs, with specs Intel Xeon, family 6, model 79,
clocked at 2.20 GHz with a 56,320 kB cache, alongside an
NVIDIA T4 graphical processing unit (GPU) and 52 GB of
random-access memory (RAM). The model inference and
testing were executed on a local personal computer (PC)
equipped with a 6th generation Intel Core i7 processor (2.6-
2.8 GHz), an integrated Intel HD  520 GPU, 32 GB of RAM, and
a 1 TB solid‑state drive (SSD).

B. Data Preprocessing and Missing Data Synthesizing

In Fig. 5, the histogram of KDE shows panels depicting the
empirical distributions of seven key features from the UCI
Air‑Quality dataset. All are gases ground truth (GT), CO(GT),
NOx(GT), NO2(GT) and C6H6(GT), and all share a clear spike
at -200 units that marks the dataset’s built‑in sentinel for missing
or invalid sensor readings, and a pronounced positive skew
caused by occasional pollution surges.

After removing the -200 flags, CO shows a very narrow peak
while NOx displays a long right tail extending beyond
1 000 µg m⁻³, whereas NO2 peaks much more narrowly around
140 µg m⁻³. Benzene (C6H6) shows a compact distribution
around 7 µg m⁻³ with a slight positive skew but v irtually no
extreme outliers, reflecting the lower variability of this volatile
organic compound. In contrast, the meteorological variables
exhibit near‑Gaussian behavior once the sentinel values are
discounted: temperature (T) clusters tightly between 15 °C and
30 °C, relative humidity (RH) is centered near 70 %, and
absolute humidity (AH) forms an even tighter bell around
0.035 kg m⁻³. These contrasting shapes emphasize why a
one‑size‑fits‑all imputation rule is inadequate: heavy‑tailed,
zero‑inflated gas measurements demand context‑aware
reconstruction, whereas smoother climatic variables can tolerate
simpler statistical fillers.

Fig. 6 presents the pair‑wise relationships among the five
metal‑oxide sensor channels embedded in the Air‑Quality
monitoring unit for CO, NMHC, NOx, NO2 and O3. Each panel
shows a plot of one sensor’s raw resistance (in ADC counts)
against each of the others, revealing several instructive patterns.
First, the tight, positively sloped clouds produced by linking
PT08.S1(CO) with PT08.S2(NMHC) and PT08.S4(NO₂)
indicate strong cross‑sensitivities: when the CO sensor peaks,
the NMHC and NO₂ channels rise almost proportionally, a
hallmark of overlapping gas responses in metal‑oxide arrays.
Second, PT08.S3(NOx) behaves quite differently; its
relationships with the other four channels produce a
downward‑curving trajectory, signifying an inverse, non‑linear
dependence due to its specific redox reaction mechanism. Third,
every scatter plot contains a dense cluster at the origin,
corresponding to the dataset’s sentinel value (-200 ADC), which
flags missing or invalid readings; because these artefacts sit far

from the genuine signal manifold, any imputation model must
avoid naively averaging across them. Finally, the diagonal
panels showing lines remind us that each sensor reading is
highly self‑correlated, providing an upper bound for imputation
accuracy.

Fig. 5. Distributions and kernel density estimates of the selected Air Quality

features: (a) CO(GT), (b) NOx(GT), (c) NO2(GT), (d) C6H6(GT), (e)

temperature (T), (f) relative humidity (RH), and (g) absolute humidity (AH).

The spike at -200 denotes the sensor-defined missing-value indicator, while

the skewed shapes and long right tails, particularly for gaseous pollutants,

reflect episodic concentration spikes and heterogeneous data characteristics.

PT08.S5 (Indium-oxide, nominally O₃) exhibits curvilinear,
mostly inverse relationships with PT08.S3(NOx) and
PT08.S4(NO₂), consistent with oxidizing reducing cross-
sensitivities typical of metal-oxide sensor arrays. Its scatter plots
with PT08.S1(CO) and PT08.S2(NMHC) appear weaker and
more dispersed, indicating lower direct coupling and stronger
modulation by environmental covariates such as temperature
(T), relative humidity (RH), and absolute humidity (AH). The
same -200 ADC sentinel cluster is also visible for PT08.S5 and
must be masked prior to training or imputation to prevent
distortion of the learned data manifold. For imputation tasks,
PT08.S5 benefits particularly from non-linear models that can
exploit its monotonic segments with NOx and NO₂ while
conditioning on meteorological parameters, rather than relying
on simple linear correlations.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1102 | P a g e
www.ijacsa.thesai.org

Fig. 6. Pairwise scatter‑matrix of the five metal‑oxide sensor channels

(PT08.S1–S5). Blue dots represent valid observations.

Third, every scatter plot contains a dense cluster at the origin,
corresponding to the dataset’s sentinel value (-200 ADC), which
flags missing or invalid readings; because these artefacts sit far
from the genuine signal manifold, any imputation model must
avoid naively averaging across them. Finally, the diagonal
panels showing lines remind us that each sensor reading is
highly self-correlated, providing an upper bound for imputation
accuracy.

C. Models Training and Validation

Fig. 7 presents the relative training–validation loss dynamics
of the three RL approaches over 150 epochs (averaged across
folds). In Fig. 7(a), the DQN model exhibits low overall loss
values, with training and validation curves tracking closely after
an initial period of fluctuations. The validation loss shows more
pronounced oscillations than the training loss but without a
continuing divergence, suggesting stable learning with only
mild noise-induced variance on unseen data. Fig. 7(b) presents
Q-Learning V1, where, after an initial period of relatively few
epochs, the training loss steadily decreases towards an MSE
value of 0.040 while the validation loss remains consistently
higher at an MSE value of about 0.045. This persistent
difference implies a degree of overfitting, where the learned
policy better fits the training environment than unseen samples.
In Fig. 7(c), Q-Learning V2 achieves very close alignment
between training and validation losses after an initial decrease in
value. Both curves stabilize at an MSE value between 0.039 and
0.040 with minimal oscillation, indicating strong generalization
and absence of significant overfitting. Overall, these trends
demonstrate that while all three models converge to low loss
values, Q-Learning V2 maintaining the most consistent train–
validation alignment, DQN follows closely with small
validation variance, and Q-Learning V1 demonstrates a modest
but persistent generalization gap.

Fig. 7. Training vs. validation loss (averaged over folds) across 150 epochs

for the proposed RL-based imputers: (a) Deep Q-Network (DQN), (b) Q-

Learning v1, and (c) Q-Learning v2.

Table II shows the comparison between the proposed
algorithms and the state-of-the-art methods. In particular,
Training length has different effects on the three RL approaches.
For QL Version 1 (V1), extending training from 10 to 150
epochs steadily lowers the mean-squared error from 0.0098 to
0.0092, and raises R² from 0.7655 to 0.7772, with only a slight
improvement in mean-absolute error from 0.0269 to 0.0204.
After about 50 epochs, gains taper off, indicating a performance
plateau. QL Version 2 (V2) behaves differently. At 10-epochs
this model reaches its lowest MSE value (0.00785) and the
highest R² (0.8041). Further training slightly worsens both
metrics, suggesting mild over-fitting once the dominant patterns
have been captured. DQL peaks at 50 epochs with an MSE of
0.0074, R² of 0.8053, and MAE of 0.0225, after which there is a
modest decline at 150 epochs, indicating stability with some
over-fitting. Comparing the RL models reveals a trade-off: V2
and DQN achieve lower MSE and stronger R², with better
suppression of extreme deviations, but at the cost of a higher
MAE. On the other hand, V1 delivers more uniform point-wise
accuracy. Classical baselines can offer useful reference points
and we see KNN provides a balanced but unremarkable
performance (MSE = 0.0081, R² = 0.7822), whereas clustering
and autoencoder underperform markedly, and the simplest
imputations (mean, median, most-frequent) produce large errors
with poor R², confirming their unsuitability for continuous
environmental streams.

Considering all three metrics: QL V1 at 150 epochs offers
the best balance, with the smallest MAE, a respectable MSE, and
solid R²; QL V2 at 10 epochs excels at limiting outliers shown
in its superior MSE; and DQN at 50 epochs combines strong R²
with low error and minimal over-fitting. Among non-RL
methods, only KNN approaches RL-level performance but fails
to surpass it. Consequently, the authors propose the use of RL
agents, especially V1-150 for consistent accuracy, V2-10 for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1103 | P a g e
www.ijacsa.thesai.org

outlier suppression, and DQN-50 for balanced generalization, as
the most practical solutions for real-time IoT imputation,
delivering strong accuracy without prohibitive training demands
on edge hardware.

This early optimum of Q-Table V2 can be attributed to its
internal architectural modifications compared with V1. As
detailed in Fig. 2(b) (Section III), V2 discretizes the numeric
context into bins, reducing the size of the state-action space and
allowing the agent to learn stable Q-values within very few
epochs. It also employs a squared-error reward function instead
of the normalized absolute-error reward used in V1. This
squared-error formulation amplifies large deviations during the
initial learning phase, enabling rapid minimization of MSE but
also increasing the likelihood of mild over-adjustment once the
major error patterns have been corrected. Further, V2 produces
a decay in the exploration rate (ε) within the ε-greedy policy
with an increase in the number of epochs, which encourages
broad exploration during the first few epochs but quickly
transitions to exploitation. Once the policy stabilizes,
subsequent updates contribute little additional improvement and
can even marginally degrade test performance, reflecting
controlled over-specialization rather than instability.

In contrast, V1 relies on a continuous state representation
and a fixed ε, which promotes slower but steadier convergence
and greater resilience to over-fitting. Consequently, V1 benefits
from extended training up to 150 epochs, progressively refining
its policy and reducing MAE without significant loss in
generalization. The different convergence behaviors of V1 and
V2 stem directly from their design philosophies; V2 prioritizes
fast convergence and computational efficiency, making it
suitable for lightweight IoT or edge deployments, whereas V1
favors gradual learning and robust generalization over longer
training cycles.

These findings confirm that the observed peak performance
of V2 at 10 epochs is a result of its architecture rather than an
anomaly. The early convergence and subsequent plateau reflect
the intended trade-off between rapid policy stabilization and
marginal over-fitting within a highly compact state space.

The behavior of the Deep-Q Network (DQN) supports the
interpretation that the number of training epochs interacts with
model capacity. Unlike the tabular versions, DQN uses a neural
function approximator to estimate Q-values, enabling smoother
generalization across unseen states but introducing a higher
sensitivity to over-training. At around 50 epochs, the network
reaches an optimal balance between exploration and
convergence, achieving the lowest MSE (0.0074) and highest R²
(0.8053) while maintaining a relatively low MAE (0.0225).
Beyond 50 epochs, continued training leads to a slight
degradation in performance until, at 150 epochs, we have MSE
= 0.0084 and R² = 0.7855, primarily due to over-fitting of the Q-
value function and reduced stochastic exploration as the policy
becomes deterministic. Thus, 50 epochs with this model
represent the point of maximum generalization; the network has
learned sufficient value structure to minimize prediction error
without memorizing the training trajectories. This pattern is
consistent with typical DQN behavior, where moderate training
durations combined with early stopping yield the most stable

convergence of the value function and the best trade-off between
bias and variance.

TABLE II. COMPARISON BETWEEN THE PROPOSED AND STATE-OF-THE-
ART METHODS

Method Epochs MSE MAE R2

Proposed Q Table V1 10 0.0098 0.0207 0.7655

Proposed Q Table V1 50 0.0098 0.0209 0.7693

Proposed Q Table V1 150 0.0092 0.0204 0.7772

Proposed Q Table V2 10 0.0078 0.0228 0.8041

Proposed Q Table V2 50 0.0084 0.0227 0.7883

Proposed Q Table V2 150 0.0081 0.0231 0.8014

Proposed Deep Q 10 0.0077 0.0237 0.7805

Proposed Deep Q 50 0.0074 0.0225 0.8053

Proposed Deep Q 150 0.0084 0.0234 0.7855

Autoencoder [13] - 0.0289 0.0923 0.2738

KNN [6] - 0.0081 0.0239 0.7822

Clustering [7] - 0.0362 0.1119 0.6828

Mean [9] - 0.0675 0.1379 0.3987

Most Frequent [6] - 0.1286 0.2095 -0.1271

Median [9] - 0.0708 0.1350 0.3688

Across all methods, the Deep-Q model at 50 epochs delivers
the best MSE (0.0074) and highest R² (0.8053), while the
strongest classical baseline KNN has an MSE = 0.0081 and R²
= 0.7822. This represents a ~9% reduction in MSE and a +2.31
percentage-point increase in R². For MAE, the best performer is
Q-Table V1 at 150 epochs (0.0204), improving on KNN
(0.0239) by ~14.5%. All RL variants clearly outperform the
simple statistical baselines and the tested Autoencoder, which
lags substantially on all metrics.

If the application prioritizes calibration and variance-
sensitive fidelity, such as forecasting or anomaly scoring
downstream, Deep-Q-50 epochs are the best choice (lowest
MSE, highest R²). If robustness to outliers and absolute
deviation matter more, such as thresholding deviations for alerts,
Q-Table V1 150 epochs is preferable (best MAE, ~9.3% lower
than Deep-Q-50). Q-Table V2 offers a middle ground with near-
Deep-Q R² but slightly weaker MAE, which might be attractive
when a simpler function approximation is desired.

The loss curves in Fig. 7 show rapid early convergence
followed by small, stable train-validation gaps for all three RL
variants, except for V2, where the curve stabilizes early due to
fast policy saturation within the discretized state space,
indicating controlled capacity and limited over-fitting. Deep-Q
shows optimum values for each of MAE, MSE, and R² at 50
epochs rather than 150, suggesting that light early stopping or
entropy/exploration annealing could further stabilize
performance. For the Q-Table models, longer horizons
consistently help MAE, supporting the view that policy
refinement through continued exploration benefits absolute-
error minimization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 12, 2025

1104 | P a g e
www.ijacsa.thesai.org

D. Simulation

Fig. 8 presents successive frames from the Pygame-based
simulation visualizer, illustrating a single decision cycle of the
RL imputation agent. In the first frame [Fig. 8(a)], the agent
(green square) is positioned next to a red “NA” cell representing
a missing value, while previously imputed entries appear in blue
with normalized magnitudes. Upon user action, the agent
imputes a value of 0.66 and receives a small negative reward
[Fig. 8(b)], reflecting a near-match to the hidden ground truth
(0.65). In the subsequent frame [Fig. 8(c)], the imputed cell turns
blue, confirming state update and storage in the replay buffer.
This visual transition highlights real-time gap resolution and
online learning, as rewards are logged to refine future actions,
with repeated cycles progressively filling the grid and
quantifying imputation accuracy interactively.

Fig. 8. Consecutive frames from the Pygame imputation simulator. The

agent (green) selects an action on a red “NA” cell, where its ground truth was

0.65, fills it with the determined value (here 0.66), receives a small negative

reward (-0.02), and updates the grid, which turns the cell blue to indicate

imputation.

V. CONCLUSION AND FUTURE WORK

This work addressed the continuing problem of missing
values in edge-collected meteorological data streams in an IoT
environment, caused by sensor faults, power interruptions, and
communication noise, which degrade downstream analytics and
time-critical decision support. To address this challenge, the
authors have developed a lightweight reinforcement-learning
imputation framework that formulates each gap as a sequential
decision problem, learns directly from sparsely populated
streams by utilizing cross-sensor temporal correlations, executes
within the compute and energy envelopes of embedded IoT
nodes, and is integrated with an interactive visual simulator
implemented in Pygame. Beyond reporting performance gains,
this work demonstrates that modeling missing-data imputation
as a sequential decision-making process constitutes a general
and effective paradigm for IoT data restoration, rather than a
purely static prediction task. Empirically, the RL approach
yields consistent gains under both block-missing and random-
missing regimes: relative to non-RL baselines, the best
configuration delivers 8.6 to 94.2% lower MSE and 5.9 to 89.3%
lower MAE, while lifting R² by +0.023 to +0.932; even against
the strongest baseline (KNN), it achieves 8.6%/5.9% error
reductions with +0.023 R², underscoring robustness rather than
overfitting. These results support the overarching contribution
that sequential, policy-driven imputation can better adapt to

dynamic and data-scarce IoT settings than other methods. This
simulator allows real-time visualization of the agent’s decision-
making process, each state, action, and reward, facilitating rapid
prototyping, policy debugging, and latency profiling during
development. Future work will incorporate uncertainty-aware
imputation, explore transfer and meta-learning for data-scarce
stations, and optimize energy-efficient on-device adaptation,
while hardening the edge stack through embedded profiling,
model compression, and physics-informed simulator
enhancements.

REFERENCES

[1] I. Ficili, M. Giacobbe, G. Tricomi, and A. Puliafito, "From Sensors to

Data Intelligence: Leveraging IoT, Cloud, and Edge Computing with AI,"

Sensors, vol. 25, no. 2025.

[2] A. Choudhary, "Internet of Things: a comprehensive overview,

architectures, applications, simulation tools, challenges and future

directions," Discover Internet of Things, vol. 4, no. 1, p. 31, 2024.

[3] A. Dauda, O. Flauzac, and F. Nolot, "A Survey on IoT Application

Architectures," Sensors, vol. 24, no. 16, pp. 5320, 2024.

[4] S. Jäger, A. Allhorn, and F. Bießmann, "A Benchmark for Data

Imputation Methods", Frontiers in Big Data, Original Research vol.4,

2021.

[5] M. Liu et al., "Handling missing values in healthcare data: A systematic

review of deep learning-based imputation techniques," Artificial

Intelligence in Medicine, vol. 142, p. 102587, 2023.

[6] P. Prakash, K. Street, S. Narayanan, B. A. Fernandez, Y. Shen, and C.

Shu, "Benchmarking Machine Learning Missing Data Imputation

Methods in Large-Scale Mental Health Survey Databases," medRxiv,

2024.

[7] C.-H. Cheng and S.-F. Huang, "A novel clustering-based purity and

distance imputation for handling medical data with missing values," Soft

Computing, vol. 25, no. 17, pp. 11781-11801, 2021.

[8] L. O. Joel, W. Doorsamy, and B. S. Paul, "A comparative study of

imputation techniques for missing values in healthcare diagnostic

datasets" Int Jou of Data Science and Analytics, vol.20, no.7, pp.6357-

6373, 2025.

[9] J. Li et al., "Comparison of the effects of imputation methods for missing

data in predictive modelling of cohort study datasets," (in eng), BMC Med

Res Methodol, vol. 24, no. 1, p. 41, Feb 16 2024.

[10] X. Qin and et al. "Improved generative adversarial imputation networks

for missing data," Applied Intelligence, vol. 54, no. 21, pp. 11068-11082,

2024.

[11] J. Hwang and D. Suh, "CC-GAIN: Clustering and classification-based

generative adversarial imputation network for missing electricity

consumption data imputation," Expert Systems with Applications,

vol.255, p.124507, 2024.

[12] L. Zhang and et al. "Generative Adversarial Networks for Imputing

Sparse Learning Performance," in Pattern Recognition, Cham, A.

Antonacopoulos, S. Chaudhuri, R. Chellappa, C.-L. Liu, S. Bhattacharya,

and U. Pal, Eds., 2025: Springer, pp. 381-396.

[13] N. T. Haridas, J. M. Sanchez-Bornot, P. L. McClean, and K. Wong-Lin,

"Autoencoder imputation of missing heterogeneous data for Alzheimer's

disease classification," (in eng), Healthc Technol Lett, vol. 11, no. 6, pp.

452-460, 2024.

[14] T. Du, L. Melis, and T. Wang, "Remasker: Imputing tabular data with

masked autoencoding," presented at the International Conference on

Learning Representations, Vienna, Austria, 2024, 2024

[15] S. Vito. Air quality, UCI Machine Learning Repository, 2008

[16] S. De Vito and et al., "On field calibration of an electronic nose for

benzene estimation in an urban pollution monitoring scenario," Sensors

and Actuators B: Chemical, vol. 129, no. 2, pp. 750-7

