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Abstract—Continuous, accurate meteorological sensing
underpins many Internet of Things (IoT) applications, from smart
irrigation and urban heat-island monitoring to early weather
warnings, but data from distributed stations are often disrupted
by sensor faults, power loss, or communication noise, causing
missing values that degrade analytics and decisions. Existing data
imputation methods lose accuracy on small or irregular datasets
and adapt poorly to dynamic IoT settings. This study proposes a
reinforcement learning (RL)-based framework for missing-data
imputation that treats each gap as a sequential decision problem.
The authors develop and compare three RL architectures, two Q-
table methods and one Deep Q-learning model, to learn temporal
dependencies and optimize imputation via experience. A second
objective is to assess the feasibility and performance of RL for
imputation in domains related to robotics and autonomous
systems, where RL remains less explored. A third objective is to
validate the methods on real-world datasets and simulations,
supported by a user-friendly graphical interface for visualization
and performance monitoring. The proposed RL imputers
outperform state-of-the-art methods in accuracy and robustness:
the best RL configuration cuts MSE/MAE by 8.6%/5.9% vs. K-
Nearest Neighbors’ algorithm (KNN), 74.4%/75.6% vs.
autoencoder, 79.6%/79.9% vs. clustering, 89.0%/83.7% vs. mean,
89.5%/83.3% vs. median, and 94.2%/89.3% vs. most-frequent,
while raising the coefficient of determination (R*) by +0.023,
+0.532, +0.123, +0.407, +0.436, and +0.932, respectively. These
findings highlight RL as an effective paradigm for intelligent data
restoration in IoT-based sensing systems.

Keywords—Data imputation; reinforcement learning; machine
learning; deep learning; Internet of Things (IoT)

I INTRODUCTION

Industry and academia are both deeply interested in
maximizing the potential usefulness of the Internetof
Things (IoT), a system that links many millions of physical
devices to the Internet and, in doing so, generates unprecedented
volumes of data. Embedded sensors and actuators enable such
devices to sense relevant properties of their surroundings,
analyze and processinformationlocally, and exchange data with
peers or cloud services, enabling coordinated autonomous
decisions [1]. Advances in smart-sensor design, wireless
communication, and data-aggregation technologies have made
it possible to collect heterogeneous data streams from numerous
different sources such as environmental probes, industrial
machinery, surveillance cameras, and mobile devices [2]. Such
data drives predictive models that improve reliability,
efficiency, profitability, and overall performance in smart cities,
industrial automation, intelligent buildings, connected vehicles,
and environmental monitoring systems [3].

Despite the benefits, real-world deployment suffers from
missing or corrupted observations due to sensor faults, loss of
power, communication failures, long-term monitor fatigue,
battery depletion, and/or poorly defined boundaries in large-
scale network studies. Missing values can introduce bias,
complicate statistical analysis, and degrade model accuracy.
This missing value canbe imputed using machine learning (ML)
and deep learning (DL) algorithms.

Data imputation is defined as representing missing values in
a dataset or IoT stream, which presents a number of challenges
for data analysis as such values can increase the chance of
introducing errors, reduce analytic accuracy, and limit the
reliability of confidence intervals. Data Imputation can be done
via conventional machine learning (ML) algorithms, such as
hot-and cold-deck substitution, lastobservation carried forward,
mean, multiple or regression imputation, non-negative matrix
factorization, and stochastic methods, frequently reject useful
data or introduce bias [4]. IoT data will often include varied
forms including binary, categorical, numerical, ordinal, spatial,
and temporal, with each requiring its own specialized analysis.
Thus, recent research has moved toward data-driven and hybrid
approaches that are better able to adapt to heterogeneous data
inputs. As a result, imputation techniques may now be
differentiated into two broad groups which are machine
learning-based, and deep learning-based approaches.

Deep learning (DL) approaches, such as autoencoders and
convolutional neural networks (CNNs), show great potential for
coping with missing data [5], but often need substantial and
well-organized datasets to provide reliable performance.
Autoencoders provide suggestions for missing data by learning
compressed, noise-tolerant versions of the data and then
rebuildingthe original input, predicting absent values during the
decoding process. Multimodal, stacked and variational
autoencoders can enhance reconstruction accuracy for many
data types. CNN-based models are most effective when the data
can be reformed into multi-dimensional arrays such as matrices
or images, enabling the network to capture temporal or spatial
relationships. This makes CNNs suitable for imputing missing
values in, for example, traffic-sensor grids, medical records, or
spatiotemporal datasets which enable the study of the
maintenance of patterns over time and are particularly useful for
environmental data.

However, three major challenges remain. First, most
traditional machine learning and statistical imputation methods
provide limited accuracy when applied to real-world problems,
while modern DL-based approaches often require large training
datasets and their performance deteriorates when only small or
incompletedatasets areavailable. Second, although RL has been
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extensively explored in robotics and autonomous systems,
relativelylittleattentionhas beengiven to itspotential in the data
domain for imputing missing data, despite its successful
application to autonomous decision-making. Third, to the best
of the authors’ knowledge, there is still no standardized
workflow for simulating and deploying advanced imputation
models in realistic [oT environments or on a commercial scale.

To address such challenges, the authors propose a RL-based
imputation framework that makes each missing value a
sequential decision-making problem. This constitutes a first
contribution by explicitly formulating missing-data imputation
as a sequential decision-making task. This framework develops
and is evaluated via three progressively enhanced variants: 1) a
baseline Q-Table, 2) an improved Q-Table Version 2 (V2) with
optimized hyperparameter tuning,and 3) Deep Q-Learning (V3)
that utilizes neural networks for function approximation. This
systematic development enables a direct and controlled
comparison between tabular and deep RL architectures,
representing a second contribution of this work. These RL
variants are benchmarked against the widely used imputation
techniques: clustering, mean, most-frequent-value as well as
DL-based approaches such as autoencoders, and ML methods
such as K-Nearest Neighbors (KNN). The evaluations employ
multiple performance metrics such as Mean Squared Error
(MSE), Mean Absolute Error (MAE), and the coefficient of
determination (R?) to provide a comprehensive assessment of
accuracy and reliability. This proposed RL-based approach
should enhance imputation accuracy with limited data
availability to maintain accuracy of real-time analytics for
continuous, dynamic loT data streams by providing more robust
and scalable data.

The remainder of this study is organized as follows:
Literature Review discuss the state-of-the-art in this domain and
introduces the theoretical foundations of RL. Then,
Methodology discusses the design and implementation of the
proposed RL algorithms, including data preprocessing, missing-
data synthesis, model training, and simulation. The Results and
Discussion section presents and interprets the experimental
outcomes compared to relevant published works. Finally, the
Conclusion summarizesthe key findings and suggests directions
for future research.

II. LITERATURE REVIEW

Accurate and reliable imputation remains fundamental to
downstream analytics in IoT settings where streams are
heterogeneous, non-stationary, and frequently sparse (see
Fig. 1). Contemporary work spans two broad families: 1)
classical baselines prized for simplicity and speed, 2) deep
learning (DL) models that trade higher capacity for greater data
and training demands. The review below positions our chosen
approach within this landscape and explains why RL is a timely
alternative.

Large comparative studies consistently show that traditional
ML approaches such as KNN [6], clustering [ 7], mean [8],[9],
median, most frequent [6], and tree-based methods, such as
MissForest, outperform very simple imputers. However, while
clustering, mean, and most-frequent are convenient they are,
typically, weaker representations of patterns often found in IoT-
style datasets [8],[9]. A 2024 cohort analysis identifies KNN and
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Random Forest among the strongest practical baselines [9].
Similarly, a recent benchmark analysis paper evaluate the
performance of common methods of missing data imputation
reports that KNN and MIDAS, which is a denoising-
autoencoder approach, perform best at higher rates of random
data and block omissions, with substantial runtime differences
between methods [6].

| Missing Data Frames
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\ 4
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Sensor Value

Sensor Value
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Fig. 1. Data imputation reconstructs missing segments in IoT sensor time
series in real-time. The upper plot shows a typical sensor signal with a gap
between two dashed lines representing missing data frames caused by sensor
faults, packet loss, or power interruptions. The central block (arrow) denotes
the imputation algorithm, which processes the incomplete sequence. The
lower plot illustrates the imputed data frames (red curve) that reconstruct the
missing segment while preserving the original temporal trend and signal
continuity.

DL produces high accuracy rather than ML. One DL
method, Generative Adversarial Networks (GAN)-based
imputers, suchas GAIN and its variants, continue to evolve to
mitigate mode collapse and gradient instability [10]. A recent
study introduces trainingrefinements that improve both stability
and accuracy. The clusteringand classification-based generative
adversarial imputation network (CC-GAIN) features enhanced
couples clustering or classification with GANS to better handle
multivariate settings which were successfully used in missing
dataimputationin an electricity consumptionsystem [11]. There
is also evidence that the generative adversarial imputation
network (GAIN) in hybrid combination with convolutional
neural networks (CNNs) can be used for exploiting tensorized
representations to provide greater accuracy with sparse
multivariate data, but with heavier computational cost and
potential training instability compared to simpler baselines [12].
These works justify including DL Dbaselines beyond
autoencoders in comparisons while acknowledging their
practical trade-offs.

Auto encode (AE) is also a DL method and recent research
has refined denoising autoencoders (DAEs) specifically for
tabular imputation. DAE for missing data imputation has been
developed using a modified loss and a simple hyperparameter
rule [13]. It use across multiple UCI datasets and missingness
regimes has shown it to provide thorough ablations against
standard baselines and rank among the top performers, making
it a strong contender for use as an AE-style imputer for tables

[5].
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Beyond genericloT benchmarks, DAEs have been evaluated
in cases where the missingness was high (>40%) heterogeneous
biomedical datasets (with a mix of imaging, clinical, cognitive,
and genetic variables), which demonstrated where DAEs excel
and but also that they struggled under extreme sparsity typical
of real-world loT/health data sets [13]. Remasker, a recently
developed method, extended masked autoencoding to tabular
data by re-masking observed entries during training and
predicting them as a self-supervised target [ 1 5]. Competitive or
superior imputation fidelity/utilities across benchmarks were
reported, with released code and slides clarifying design choices
(simple masking strategy, strong performance as the missing
ratio grew) [14]. These properties make Remasker an
appropriate “modern DL” point of comparison alongside DAFs
in our study.

In summary, classical machine-learning methods provide
strong, efficient models that can operate at high speed. DL
models offer higher-capacity imputation but come with stability
and computational limitations, and they typically require
substantial trainingdata. Whensuch dataand careful training are
available, DL methods achieve state-of-the-art accuracy. In
contrast, RL-based imputation remains relatively under-
explored, particularly for streaming IoT time-series data
characterized by small sample sizes and block-missing patterns.
To address this gap, we formulate missing-data imputation as a
sequential decision-making problem, design an IoT-specific
state-action-reward structure, and conduct a systematic
comparison of tabular Q-learning and Deep Q-Learing within
aunified framework. The proposed approach is evaluated using
MSE, MAE, and R? to assess both accuracy and robustness
under realistic IoT data conditions.

III.  PROPOSED METHODS

A. Overview

RL provides a learning framework through interaction: an
agent repeatedly observes the current situation of the
environment, chooses an action, receives a numerical response,
and moves to a new situation. Over time, the agent defines and
then refines a policy, a mapping from observed situations to
actions taken, so thatthe long-term response is maximized. Two
internal estimates direct this process. State-value functions
provide a measure of how desirable a situation is, while
action-value functions estimate the effectiveness of taking a
specific action in a particular situation. Learning algorithms
such as Q-learning adjust the estimates by comparing the
predicted results with those observed after taking action.
Modern RL combines these approaches with deep neural
networks to providedeep RL, which can provide value functions
and policies directly from high-dimensional data. The volatility
that can arise when learning and decision-making take place
simultaneously is substantially reduced by using stabilizing
techniques such as experience replay, target networks, and the
e-greedy algorithm. Because RL learns directly from the
interactions rather than static examples, it is well-suited to
problems such as IoT data imputation, where the agent must
cope online with varying streaming inputs, noisy feedback, and
changing sensor conditions.

In this study, the authors develop a model that incorporates
three hyperparameterized methods to enhance imputation

Vol. 16, No. 12, 2025

accuracy. It integrates two variants of Q-Table-based RL and
one Deep Q-RL approach. The Q-Table RL is a model-free
algorithm that uses tabular representation to store and update
action-state values (Q-values). These values guide the agent in
selectingoptimalactions within a discrete environment based on
adefinedreward function. Althoughhavingthe benefits of being
simple and interpretable, Q-Table methods are limited in
scalability when the state-action space becomes large. To
address this, the model includes a second stage with
enhancements in exploration and value generalization. In
contrast, DQL extends the traditional Q-learning paradigm by
employing a deep neural network to approximate the Q-
function. This enables the agent to cope with high-dimensional
or continuousstatespaces moreeffectively. Combining the three
methods, this model expects to provide a more accurate and
robust imputation strategy than traditional techniques.

B. Data Preprocessing and Missing Data Synthesizing

In this study, the authors divided the Air-Quality dataset
(UCI ID 360) fromthe UCI Machine Learning Repository [15,
16] for training and testing the proposed algorithms and the
baseline methods for data imputation. The selected data source
is one of the most popular benchmark resources in the IoT
weather domain. It contains recorded responses from a gas
multisensory device that was deployed in a field in an Italian
city. Hourly average sensorreadings are provided together with
reference gas-concentration measurements obtained from a
certified analyzer. In total, the dataset comprises 9,357 hourly
averaged instances collected by an array of five metal-oxide
chemical sensors embedded in the air-quality multisensory
device, as shownin Table I. The device was positioned at road
level in a heavily polluted urban area. Data were gathered
continuously for one full year, from March2004 to
February 2005, yieldingthe longest freely availablerecording of
on-field air-quality chemical sensor responses. The sensing unit
comprised five metal-oxide (MOX) chemical sensors, each
nominally tuned to specific target gases, along with
environmental measurements. The dataset includes both the raw
sensor responses (PT08.S1-PT08.S5) and reference gas-
concentration measurements obtained from a co-located
certified analyzer. The measured and reference parameters are
summarized in Table L

The dataset was split into training and validation sets,
comprising 80% of the data, and a testing set comprising the
remaining 20%. The authors used this split to ensure a large
amount of data for training and validation, enabling better
generalization and reducing the risk of overfitting, while the
remaining 20% contained representative features sufficient for
reliable testing.

The data preprocessing pipeline begins by retrieving and
reviewing the dataset’s metadata, such as source, measurement
period, and definitions of variables, followed by generating
summary statistics and data-type profiles to verify completeness
and to detect potential anomalies. The column providing the
Date is deconstructed from the original MM/DD/YYY'Y string
format into a suitable datetime object, enabling the earliest and
latest sampling times to be recorded for temporal consistency
checks. All other numerical attributes (i.e., columns after the
first two identifier fields) are rescaled to the interval [0, 1] using
a Min-Max transformation to ensure comparable magnitudes to
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accelerate model convergence. Finally, two comma-separated
value (CSV) files are generated: one preserves the raw
measurements as collected, and the other stores the normalized
version to be supplied to the learning algorithm. This procedure
ensures that downstream analysis uses a clean, temporally
aligned, and scale-independent dataset but retains access to the
original records for auditing.
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the combined training/validation set and the test set, after which
the imputation model is trained and evaluated. This procedure
ensures a controlled, reproducible, and unbiased evaluation of
imputation performance under fixed-rate missing-data
conditions.

Algorithm 1 shows the proposed missing data synthesizing
via a fixed-rate missingness for train, validation and test splits.

TABLEI.  DATASET DESCRIPTION [15, 16] Algorithm 1: Proposed Missing Data Synthesizing Method
Attribute Description Unit Start Algorithm
Date Recording date DD/MM/YYYY Initialize complete dataset D
Define numeric column set C
Time Recording time HH.MM.SS Define missing fraction p = 0.20
co True hourly averaged Carbon mg/m’ Define number of CV folds k
Monoxide (CO) concentration Randomly split D into train/validation set (D_tv) and test set
PTIOS.SII Sensor response nominally targeted arbitrary unit (D_test) with 80 % / 20 % ratio
(Tin Oxide) El? C(L ; TNom Mot # Cross-validation phase
rue oury averagec Non-¥ eLiane , For each fold f in K-Fold(D_tv, k) do
NMHC Hydrocarbons (NMHC) | ug/m | SplitD_tv into training set (D_train) and validation set (D_val)
concentration plit D_tv into training set (D_train) and validation set (D_va
True hourly averaged Benzene for fold f
CeéHs . pg/m? . .. .
(CeHs) concentration | Create D_train_missing «<— copy of D_train
PT08.S2 Sensor response nominally targeted | . | Create D_val missing « copy of D_val
(Titania) to NMHC v | For each column ¢ € C do
NO. True hourly averaged Nitrogen b | | Foreachrowrin D_train_missing do
* Oxides (NOx) concentration pp | | | wu« Uniform(0, 1)
PT08.53 Sensor response nominally targeted . . | | | Ifu<pthen
(O"f;iggten to NOx arbitrary unit | | | | D_train missing[r, c] < NaN
True hourly averaged Nitrogen | | | EndIf
NO: Dioxide (NO2) concentration pg/m’ | | EndFor
PT0S.S4 i | | Repeatthe same masking process for D_val missing
(Tunésten Sensor response nominally targeted arbitrary unit | End For _val_
Oxide) to NO. |  Train imputation agent on (D_train_missing, D_train) and
PT08.S5 . validate on (D_val_missing, D_val)
. Sensor response nominally targeted . . - = -
(Indium arbitrary unit End For
Oxide) to Ozone (Os) 4 Final test oh
inal test phase
T Temperature (T) °C Create D_tv_missing < copy of D_tv
RH Relative Humidity (RH) % Create D_test missing «<— copy of D_test
AH Absolute Humidity (AH) gm> For cach column ¢ € Cdo
For each row rin D_tv_missing do

All experiments were conducted using a single missingness
procedure: entries in the numeric columns were masked
independently with a fixed probability of 0.2, applied separately
to the training, validation, and test partitions. This masking of
elements generated random gaps across the dataset,
guaranteeing that missing positions varied across folds and splits
in the data. Thus, model training and validation losses reflected
the reconstruction of the missing values, and final test metrics
quantified performance on a retained set subjected to the same
masking process (see Algorithm 1). With all models evaluated
consistently against this single, fixed masking strategy and
under the given setting (0.2). Algorithm 1 describes the
proposed procedure for synthesizing missing data at a fixed rate
across training, validation, and test splits. Starting from a
complete dataset, the data are first divided into
training/validation and test sets. During the cross-validation
phase, a fixed fraction of values is randomly masked as missing
in the numeric columns of bothtrainingand validation sets using
a uniform random process, ensuring consistent missingness
across folds. The imputation agent is trained on the masked
trainingdataand validated against the original uncorrupted data.
In the final phase, the same missingness strategy is applied to

|
| | u<« Uniform(0, 1)

| | Ifu<pthen

| | | D_tv_missing[r, c] < NaN

| | EndIf

| End For

|  Repeat the same masking process for D_test missing

End For

Train final imputation agent on (D_tv_missing, D_tv) and evaluate
on (D_test missing, D_test)

End Algorithm

C. Proposed Models’ Architecture

1) Reinforcement learning based on Q table: Fig.2
contrasts the end-to-end workflows for the two generations of
our reinforcement learning imputer. Version 1 (V1) begins by
injecting a user-specified ratio of synthetic gaps into the
training fold and then iterates column-by-column inside the
dashed box the Column Imputation Agent V1 represents each
decision state solely by the row index of the missing value;
contextual cues such as neighboring readings remain implicit.
Two baseline actions are always available to the &-greedy
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selector: the KNN fill and a feature-statistics fill (mean, median
or standard-deviation offset), while the remaining actions
correspond to previously learned Q-values for that index. After
an action is chosen, the reward is calculated as the negative
absolute error normalized by the column’s standard deviation;
this signal updates the Q(state, action) table and the per-epoch
MSE log. Once all gaps in the train-and-validation partitions
are imputed, fold-level metrics are recorded and the agent
proceeds to the next columnor cross-validation split, ultimately
producing a single Q-table per feature that is reused to fill the
held-out test set [see Fig. 2(a)].

Version 2 (V2) retains the outer train, validation, and test
scaffold, but tackles three limitations observed in V1. First, it
discretizes the numeric context: each previous value is binned,
and the jointbin index becomes the state, dramatically shrinking
and regularizing the state space. Second, it replaces the
absolute-error reward with a squared-error signal and logs both
trainingand validation MSE curves, enablingearly stoppingand
hyper-parameter tuning. Third, € in the e-greedy policy decays
across epochs, allowing aggressive exploration early on and
more deterministic exploitation later. Internally, four Q-tables
are maintained (one per context bin), each updated withthe same
loop ofreward calculation and valueiteration. Duringinference,
the agent consults the appropriate Q-table for the discretized
context of every missing cell, producing fills that are both
context-aware and data-driven [see Fig. 2(b)].
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2) Reinforcement learning based on deep Q: The proposed
imputation framework employs a Deep Q-Learning (DQN)
agent designed to learn optimal imputation strategies through
interaction with an environment representing missing-value
patterns. At each environment step, the agent observes a
scalarized state s corresponding to the normalized position of
the missing entry within a column and selects an action a €
{mean, median,random, knn} using an e-greedy policy.
The environment then returns a reward r proportional to the
negative normalized squared error between the imputed value
and the ground truth. The next state s’ reflects the subsequent
missingentry index. This transition tuple (s, a,r,s’) represents
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a single reinforcement learning experience used to update the
DQN model. To enhance stability and sample efficiency,
training is conducted using a batched replay mechanism.
Transitions accumulated during interaction are stored in a
replay buffer of finite capacity K. Instead of performing one
update per sample, we repeatedly sample B mini-batches from
the bufferandexecute U stochastic gradient descent updates for
each, thereby increasing the effective signal-to-noise ratio of
the temporal-difference (TD) gradients. This multi-batch,
multi-update schedule mitigates variance and reduces
dependency on freshdata collection, an essential property when
computational or data-access costs are constrained. For each
sampled transition iii, a bootstrap target is computed as:y; =
7. + ymax Qp — (s;,a”) whereyis the discount factorand 6 ~
denotesthe parameters of a slowly updated target network. The
online network parameters 0 are optimized to minimize the
mean-squared TD error: L(B) = B% Yily —
Qp (s;,a;)) 2using the Adam optimizer with learning rate a.
Following each outertraining epoch, both the exploration rate
€ and the coefficient for target update T decay according to
defined schedules: 6~ « (1 —1)0~ +1h This ensures
gradual policy refinement and stable convergence.

The Q-Networkarchitecture (Fig. 2) is acompact three-layer
feedforward model realized in PyTorch: an input normalization
layer, a fully connected layer with 64 ReLU-activated neurons,
and alinear output layer producing four Q-values corresponding
to the available imputation actions. This lightweight design
enables efficient on-device training and inference under limited
memory and computation constraints. Collectively, the
integration of replay memory, target-network stabilization, and
multi-update training yields a robust Deep Q-Learning agent
capable of acquiring context-adaptive imputation strategies for
heterogeneous data distributions. The overall training pipeline,
from dataset preparation and K-fold cross-validation to column-
wise DQN training and test-time inference, is shown in Fig. 3.

DQN model Architecture

Tuiaw/Test Spit + K-Told CV

Tnject Missing Values
TrianValTest

Train +Val

Input Sateindes
[ normalzed |

Linear (1> 64)

Tinal Traming on Traln | Val

‘ Tnitialize DON Agent ‘

Rel.U Acivation

e |

Tmpute Test Data Tmpute Missing Valne Using Traincd Agent
| Final Test Metrics ‘ | Select Action: mean , median, random , kun via Argmax(Q(s , a)) ‘ @

Train per column Q-Learuing
Loop

il

Linear (64> 4

Qs ,2): 4 action
(e
)

‘ Reward = {(imputed - true)istd)"2 Fvaluate MSE , MAF, R2

Q-Value Update via MSELoss

Fig.3. The modelstructure of the proposed deep Q method.

3) Proposed simulation for RL environment: The authors
developed an interactive grid-based simulation using the
Pygame Library, to illustrate how a RL agent might traverse an
air-quality dataset and impute missing values in real time (see
Algorithm 2). After loading a CSV file that contains numerical
features with artificially injected gaps, the data were
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normalized to the [0,1] range and mapped onto a 2-D grid
whose rows and columns correspond to samples and features,
respectively (see Fig. 4). Each cell is 100 px square: filled
observations appear in blue, missing entries in red, and their
numeric contents are over-printed “NA” for clarity. The green
agent starts at the upper-left corner [0,0] and can be moved by
the user using the arrow keys. When the agent is positioned on
a missing cell pressing the space bar triggers an “imputation
action”. In this demonstrator the action is a random draw from
[0,1],the ground-truthvalueis likewisemocked, and the reward
isthe negative absolute error, these values are stored in a simple
Q-table keyed by grid location. Although rudimentary, the
framework visualizes the essential RL loop: state perception
(color-coded grid), action selection (move or impute), reward
feedback, and value-function update, all occurringat 30 FPSon
an 800 x 600 canvas. This educational tool provides an
accessible first step towards integrating and debugging more
sophisticated, neural-based RL strategies for data-gap fillingon
edge-generated sensor streams. Algorithm 2 shows how the
pseudocode outlines the full flow: loading and normalizing a
dataset with missing values, drawing a color-coded grid, letting
the user navigate a green “agent” with arrow keys, and pressing
the space bar to impute and score missing entries. The Q-table
records per-cell rewards, providing a scaffold for replacing
random placeholders with a true reinforcement-learning policy
at a later stage.

Fig.4. RL Simulation for data imputation.

Algorithm 2 shows the pseudocode for Pygame RL-Style
Imputation Simulator.

Algorithm 2: Pygame RL-style Imputation Simulator
Start Algorithm

If D contains no NaN then Raise error “dataset complete”
Normalize D to [0, 1]

rows «— number of samples in D

cols < number of features in D

agent_pos « [0, 0] # row, col

Q_table « @ # (row,col) — reward
running <« True

While running do

| Clear WINDOW with BACKGROUND_COLOUR
| Fori=0 ... rows—1 do
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Forj=0 ... cols—1 do
| x <« jxCELL SIZE;y « ixCELL_SIZE

| If D[i,j] is NaN then

| | color « MISSING_COLOUR; label—“NA”

| Else

| | color < FILLED COLOUR,; label —

| | round(D[i,j],2)

| EndIf

| | Draw filled rectangle (x, y, CELL_SIZE, CELL SIZE)
|  with color

| Draw border rectangle with GRID COLOUR

| Render label in FONT_COLOUR at (x+10, y+10)
End For

End For

agent x « agent pos.col x CELL SIZE

agent y <« agent pos.row x CELL_SIZE

Draw rectangle (agent x, agent_y, CELL_SIZE, CELL_SIZE)
in AGENT_COLOUR

For each EVENT in pygame.event.get() do

| If EVENT.type = QUIT then

| | running < False

| Else If EVENT.type = KEYDOWN then

| | Case EVENTkey of

|
|
N
1

UP: If agent_pos.row > 0 then agent pos.row —= 1
DOWN: If agent pos.row <rows—1 then
agent pos.row +=1
LEFT: If agent_pos.col >0 then agent pos.col =1
| | RIGHT: If agent pos.col <cols—1 then
| | agent pos.col+=1
| | SPACE:
| | | 1< agent pos.row;j <« agent pos.col
| | | [IfD[i,j]is NaN then
| | | | true_vale<Uniform(0,1)
| | | | | imput vale—Uniform(0,1)
DI[i,j]«—imput_val
reward«— — |true_val — imput_val|
Q_table[(i,j)] « reward

# placeholder
# placeholder

| |

| |

| |

| | EndIf

| | End Case
End If

End For

Update WINDOW (pygame.display.flip())

Wait so frame-rate =30 FPS (clock.tick(30))

End While

pygame.quit()
End Algorithm

IV. RESULTS AND DISCUSSION

A. Tooling

The algorithms were developed in Python and used the
Keras, Matplotlib, NumPy, Pandas, PyTorch, Scikit-learn, and
TensorFlow data processing and ML libraries. Keras provides a
user-friendly, high-level neural-network API compatible with
both CPUs and GPUs. Matplotlib provides data visualization,
allowing patterns to be displayed as charts and plots. NumPy
offers a large collection of high-level mathematical functions
able to support efficient operations on multi-dimensional arrays
and matrices. Pandas provides data analysis and preprocessing,
high-level data structures and a rich set of tools for filtering,
combining, and grouping datasets before training. Py Torch is an
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extensive open-source software useful for natural language
processing (NLP) and computer vision. Scikit-learn provides a
wide range of supervised and unsupervised ML algorithms for
data mining and analysis. TensorFlow provides
high-performance computation for training and operating
deep-learning models.

The model was trained on the Google Colab cloud platform,
which provides a shared high-performance computing (HPC)
environment. The model training was carried out using two
virtual CPUs, with specs Intel Xeon, family 6, model 79,
clocked at2.20 GHz with a 56,320 kB cache, alongside an
NVIDIA T4 graphical processing unit (GPU) and 52 GB of
random-access memory (RAM). The model inference and
testing were executed on a local personal computer (PC)
equipped with a 6% generation Intel Corei7 processor (2.6-
2.8 GHz), an integrated Intel HD 520 GPU, 32 GB of RAM, and
a 1 TB solid-state drive (SSD).

B. Data Preprocessing and Missing Data Synthesizing

In Fig. 5, the histogram of KDE shows panels depicting the
empirical distributions of seven key features from the UCI
Air-Quality dataset. All are gases ground truth (GT), CO(GT),
NOx(GT),NO2(GT) and C6H6(GT), and all share a clear spike
at-200 units that marksthe dataset’s built-in sentinel for missing
or invalid sensor readings, and a pronounced positive skew
caused by occasional pollution surges.

Afterremovingthe -200flags, CO shows a verynarrow peak
while NOx displays a long right tail extending beyond
1 000 pgm3, whereas NO2 peaks much more narrowly around
140 ugm3. Benzene (C6H6) shows a compact distribution
around 7 pgm™ with a slight positive skew but virtually no
extreme outliers, reflecting the lower variability of this volatile
organic compound. In contrast, the meteorological variables
exhibit near-Gaussian behavior once the sentinel values are
discounted: temperature (T) clusters tightly between 15 °C and
30°C, relative humidity (RH) is centered near 70 %, and
absolute humidity (AH) forms an even tighter bell around
0.035kgm™. These contrasting shapes emphasize why a
one-size-fits-all imputation rule is inadequate: heavy-tailed,
zero-inflated gas measurements demand context-aware
reconstruction, whereas smoother climatic variables can tolerate
simpler statistical fillers.

Fig. 6 presents the pair-wise relationships among the five
metal-oxide sensor channels embedded in the Air-Quality
monitoringunit for CO,NMHC, NOx,NO2 and O3. Each panel
shows a plot of one sensor’s raw resistance (in ADC counts)
against each ofthe others, revealing several instructive patterns.
First, the tight, positively sloped clouds produced by linking
PT08.S1(CO) with PTO08.S2(NMHC) and PT08.S4(NO»)
indicate strong cross-sensitivities: when the CO sensor peaks,
the NMHC and NO: channels rise almost proportionally, a
hallmark of overlapping gas responses in metal-oxide arrays.
Second, PT08.S3(NOx) behaves quite differently; its
relationships with the other four channels produce a
downward-curving trajectory, signifying an inverse, non-linear
dependence due to its specificredox reaction mechanism. Third,
every scatter plot contains a dense cluster at the origin,
correspondingto the dataset’ssentinel value (-200 ADC), which
flags missing or invalid readings; because these artefacts sit far
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from the genuine signal manifold, any imputation model must
avoid naively averaging across them. Finally, the diagonal
panels showing lines remind us that each sensor reading is
highly self-correlated, providing an upper bound for imputation
accuracy.

(a) Distribution and KDE of COIGT) (e) Distribution and KDE of NOX(GT)
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Fig. 5. Distributions and kernel density estimates of the selected Air Quality
features: (a) CO(GT), (b) NOx(GT), (c) NO2(GT), (d) C6H6(GT), (e)
temperature (T), (f) relative humidity (RH), and (g) absolute humidity (AH).
The spike at -200 denotes the sensor-defined missing-value indicator, while
the skewed shapes and long right tails, particularly for gaseous pollutants,
reflect episodic concentration spikes and heterogeneous data characteristics.

PT08.S5 (Indium-oxide, nominally Os) exhibits curvilinear,
mostly inverse relationships with PT08.S3(NOx) and
PT08.S4(NO2), consistent with oxidizing reducing cross-
sensitivities typical of metal-oxidesensor arrays. Its scatterplots
with PT08.S1(CO) and PT08.S2(NMHC) appear weaker and
more dispersed, indicating lower direct coupling and stronger
modulation by environmental covariates such as temperature
(T), relative humidity (RH), and absolute humidity (AH). The
same -200 ADC sentinel cluster is also visible for PT08.S5 and
must be masked prior to training or imputation to prevent
distortion of the learned data manifold. For imputation tasks,
PTO08.S5 benefits particularly from non-linear models that can
exploit its monotonic segments with NOx and NO: while
conditioning on meteorological parameters, rather than relying
on simple linear correlations.
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Fig. 6. Pairwise scatter-matrix of the five metal-oxide sensor channels
(PT08.S1-S5). Blue dots represent valid observations.

Third, everyscatterplot contains a densecluster at the origin,
correspondingto the dataset’ssentinel value (-200 ADC), which
flags missing or invalid readings; because these artefacts sit far
from the genuine signal manifold, any imputation model must
avoid naively averaging across them. Finally, the diagonal
panels showing lines remind us that each sensor reading is
highly self-correlated, providing an upper bound for imputation
accuracy.

C. Models Training and Validation

Fig. 7 presentsthe relative training—validation loss dynamics
of the three RL approaches over 150 epochs (averaged across
folds). In Fig. 7(a), the DQN model exhibits low overall loss
values, with training and validation curves tracking closely after
an initial period of fluctuations. The validation loss shows more
pronounced oscillations than the training loss but without a
continuing divergence, suggesting stable learning with only
mild noise-induced variance on unseen data. Fig. 7(b) presents
Q-Learning V1, where, after aninitial period of relatively few
epochs, the training loss steadily decreases towards an MSE
value of 0.040 while the validation loss remains consistently
higher at an MSE value of about 0.045. This persistent
difference implies a degree of overfitting, where the learned
policy better fits the training environment than unseen samples.
In Fig. 7(c), Q-Learning V2 achieves very close alignment
betweentrainingand validationlosses after an initial decreasein
value. Both curves stabilize atan MSE value between 0.039 and
0.040 with minimal oscillation, indicating strong generalization
and absence of significant overfitting. Overall, these trends
demonstrate that while all three models converge to low loss
values, Q-Learning V2 maintaining the most consistent train—
validation alignment, DQN follows closely with small
validation variance, and Q-Learning V1 demonstrates a modest
but persistent generalization gap.
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a) DQN Train vs Validation Loss (Averaged over Folds) - 150 epochs
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Fig. 7. Training vs. validation loss (averaged over folds) across 150 epochs
for the proposed RL-based imputers: (a) Deep Q-Network (DQN), (b) Q-
Learning v1, and (c) Q-Leaming v2.

Table II shows the comparison between the proposed
algorithms and the state-of-the-art methods. In particular,
Traininglength has different effects on thethree RL approaches.
For QL Version 1 (V1), extending training from 10 to 150
epochs steadily lowers the mean-squared error from 0.0098 to
0.0092, and raises R? from 0.7655 to 0.7772, with only a slight
improvement in mean-absolute error from 0.0269 to 0.0204.
After about 50 epochs, gains taper off, indicating a performance
plateau. QL Version 2 (V2) behaves differently. At 10-epochs
this model reaches its lowest MSE value (0.00785) and the
highest R? (0.8041). Further training slightly worsens both
metrics, suggesting mild over-fitting once the dominant patterns
have been captured. DQL peaks at 50 epochs with an MSE of
0.0074,R?0f0.8053, and MAE of 0.0225, after which there is a
modest decline at 150 epochs, indicating stability with some
over-fitting. Comparing the RL models revealsa trade-off: V2
and DQN achieve lower MSE and stronger R?, with better
suppression of extreme deviations, but at the cost of a higher
MAE. On the other hand, V1 delivers more uniform point-wise
accuracy. Classical baselines can offer useful reference points
and we see KNN provides a balanced but unremarkable
performance (MSE = 0.0081, R? = 0.7822), whereas clustering
and autoencoder underperform markedly, and the simplest
imputations (mean, median, most-frequent) produce large errors
with poor R% confirming their unsuitability for continuous
environmental streams.

Considering all three metrics: QL V1 at 150 epochs offers
the bestbalance, with the smallest MAE, a respectable MSE, and
solid R% QL V2 at 10 epochs excels at limiting outliers shown
in its superior MSE; and DQN at 50 epochs combines strong R?
with low error and minimal over-fitting. Among non-RL
methods, only KNN approaches RL-level performance but fails
to surpass it. Consequently, the authors propose the use of RL
agents, especially V1-150 for consistent accuracy, V2-10 for
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outlier suppression,and DQN-50 for balanced generalization, as
the most practical solutions for real-time IoT imputation,
deliveringstrongaccuracy without prohibitive training demands
on edge hardware.

This early optimum of Q-Table V2 can be attributed to its
internal architectural modifications compared with V1. As
detailed in Fig. 2(b) (Section III), V2 discretizes the numeric
context into bins, reducing the size of the state-action space and
allowing the agent to learn stable Q-values within very few
epochs. It also employs a squared-error reward function instead
of the normalized absolute-error reward used in V1. This
squared-error formulation amplifies large deviations during the
initial learning phase, enabling rapid minimization of MSE but
also increasing the likelihood of mild over-adjustment once the
major error patterns have been corrected. Further, V2 produces
a decay in the exploration rate (€) within the g-greedy policy
with an increase in the number of epochs, which encourages
broad exploration during the first few epochs but quickly
transitions to exploitation. Once the policy stabilizes,
subsequent updates contribute little additional improvement and
can even marginally degrade test performance, reflecting
controlled over-specialization rather than instability.

In contrast, V1 relies on a continuous state representation
and a fixed e, which promotes slower but steadier convergence
and greater resilience to over-fitting. Consequently, V1 benefits
from extended training up to 150 epochs, progressively refining
its policy and reducing MAE without significant loss in
generalization. The different convergence behaviors of V1 and
V2 stem directly from their design philosophies; V2 prioritizes
fast convergence and computational efficiency, making it
suitable for lightweight IoT or edge deployments, whereas V1
favors gradual learning and robust generalization over longer
training cycles.

These findings confirm that the observed peak performance
of V2 at 10 epochs is a resultof its architecture rather than an
anomaly. The early convergence and subsequent plateau reflect
the intended trade-off between rapid policy stabilization and
marginal over-fitting within a highly compact state space.

The behavior of the Deep-Q Network (DQN) supports the
interpretation that the number of training epochs interacts with
model capacity. Unlike the tabular versions, DQN uses a neural
function approximator to estimate Q-values, enabling smoother
generalization across unseen states but introducing a higher
sensitivity to over-training. At around 50 epochs, the network
reaches an optimal balance between exploration and
convergence,achievingthe lowest MSE (0.0074) and highest R
(0.8053) while maintaining a relatively low MAE (0.0225).
Beyond 50 epochs, continued training leads to a slight
degradation in performance until, at 150 epochs, we have MSE
=0.0084 and R?=0.7855, primarily dueto over-fittingofthe Q-
value function and reduced stochastic exploration as the policy
becomes deterministic. Thus, 50 epochs with this model
represent the point of maximum generalization; the network has
learned sufficient value structure to minimize prediction error
without memorizing the training trajectories. This pattern is
consistent with typical DQN behavior, where moderate training
durations combined with early stopping yield the most stable
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convergenceofthe value function and the best trade -offbetween
bias and variance.

TABLE II. COMPARISON BETWEEN THE PROPOSED AND STATE-OF-THE-
ART METHODS
Method Epochs MSE MAE R?
Proposed Q Table V1 10 0.0098 0.0207 | 0.7655
Proposed Q Table V1 50 0.0098 0.0209 | 0.7693
Proposed Q Table V1 150 0.0092 0.0204 | 0.7772
Proposed Q Table V2 10 0.0078 0.0228 | 0.8041
Proposed Q Table V2 50 0.0084 0.0227 | 0.7883
Proposed Q Table V2 150 0.0081 0.0231 | 0.8014
Proposed Deep Q 10 0.0077 0.0237 0.7805
Proposed Deep Q 50 0.0074 0.0225 0.8053
Proposed Deep Q 150 0.0084 0.0234 | 0.7855
Autoencoder [13] - 0.0289 0.0923 | 0.2738
KNN [6] - 0.0081 0.0239 | 0.7822
Clustering [7] - 0.0362 0.1119 | 0.6828
Mean [9] - 0.0675 0.1379 | 0.3987
Most Frequent [6] - 0.1286 0.2095 -0.1271
Median [9] - 0.0708 0.1350 | 0.3688

Across all methods, the Deep-Q model at 50 epochs delivers
the best MSE (0.0074) and highest R? (0.8053), while the
strongest classical baseline KNN has an MSE = 0.0081 and R?
=(.7822. This represents a ~9% reduction in MSE and a +2.31
percentage-point increase in R%. For MAE, the best performer is
Q-Table V1 at 150 epochs (0.0204), improving on KNN
(0.0239) by ~14.5%. All RL variants clearly outperform the
simple statistical baselines and the tested Autoencoder, which
lags substantially on all metrics.

If the application prioritizes calibration and variance-
sensitive fidelity, such as forecasting or anomaly scoring
downstream, Deep-Q-50 epochs are the best choice (lowest
MSE, highest R?). If robustness to outliers and absolute
deviationmatter more, suchas thresholding deviations for alerts,
Q-Table V1 150 epochs is preferable (best MAE, ~9.3% lower
than Deep-Q-50). Q-Table V2 offers a middle ground with near-
Deep-Q R?but slightly weaker MAE, which might be attractive
when a simpler function approximation is desired.

The loss curves in Fig. 7 show rapid early convergence
followed by small, stable train-validation gaps for all three RL
variants, except for V2, where the curve stabilizes early due to
fast policy saturation within the discretized state space,
indicating controlled capacity and limited over-fitting. Deep-Q
shows optimum values for each of MAE, MSE, and R? at 50
epochs rather than 150, suggesting that light early stopping or
entropy/exploration annealing could further stabilize
performance. For the Q-Table models, longer horizons
consistently help MAE, supporting the view that policy
refinement through continued exploration benefits absolute-
error minimization.
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D. Simulation

Fig. 8 presents successive frames from the Pygame-based
simulation visualizer, illustrating a single decision cycle of the
RL imputation agent. In the first frame [Fig. 8(a)], the agent
(green square) is positioned next to a red “NA” cell representing
amissingvalue, while previously imputed entries appear in blue
with normalized magnitudes. Upon user action, the agent
imputes a value of 0.66 and receives a small negative reward
[Fig. 8(b)], reflecting a near-match to the hidden ground truth
(0.65).Inthe subsequent frame [Fig. 8(c)], theimputed cell turns
blue, confirming state update and storage in the replay buffer.
This visual transition highlights real-time gap resolution and
online learning, as rewards are logged to refine future actions,
with repeated cycles progressively filling the grid and
quantifying imputation accuracy interactively.

m 025 |08 [052 [022 044 [058

No action taken.
Imputed: 0.66, Reward: -0.02

(b)

Fig. 8. Consecutive frames from the Pygame imputation simulator. The
agent (green) selects an action on a red “NA” cell, where its ground truth was
0.65, fills it with the determined value (here 0.66), receives a small negative
reward (-0.02), and updates the grid, which turns the cell blue to indicate
imputation.

V. CONCLUSION AND FUTURE WORK

This work addressed the continuing problem of missing
values in edge-collected meteorological datastreams in an IoT
environment, caused by sensor faults, power interruptions, and
communication noise, which degrade downstream analytics and
time-critical decision support. To address this challenge, the
authors have developed a lightweight reinforcement-learning
imputation framework that formulates each gap as a sequential
decision problem, learns directly from sparsely populated
streams by utilizing cross-sensor temporal correlations, executes
within the compute and energy envelopes of embedded IoT
nodes, and is integrated with an interactive visual simulator
implemented in Pygame. Beyond reporting performance gains,
this work demonstrates that modeling missing-data imputation
as a sequential decision-making process constitutes a general
and effective paradigm for [oT data restoration, rather than a
purely static prediction task. Empirically, the RL approach
yields consistent gains under both block-missing and random-
missing regimes: relative to non-RL baselines, the best
configuration delivers 8.6 to 94.2% lower MSE and 5.9 to 89.3%
lower MAE, while lifting R> by +0.023 to +0.932; even against
the strongest baseline (KNN), it achieves 8.6%/5.9% error
reductions with +0.023 R?, underscoring robustness rather than
overfitting. These results support the overarching contribution
that sequential, policy-driven imputation can better adapt to

Vol. 16, No. 12, 2025

dynamic and data-scarce loT settings than other methods. This
simulator allows real-time visualization of the agent’s decision-
making process, each state, action, and reward, facilitating rapid
prototyping, policy debugging, and latency profiling during
development. Future work will incorporate uncertainty-aware
imputation, explore transfer and meta-learning for data-scarce
stations, and optimize energy-efficient on-device adaptation,
while hardening the edge stack through embedded profiling,
model compression, and physics-informed simulator
enhancements.
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