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Abstract—Continuous, accurate meteorological sensing 

underpins many Internet of Things (IoT) applications, from smart 

irrigation and urban heat-island monitoring to early weather 

warnings, but data from distributed stations are often disrupted 

by sensor faults, power loss, or communication noise, causing 

missing values that degrade analytics and decisions. Existing data 

imputation methods lose accuracy on small or irregular datasets 

and adapt poorly to dynamic IoT settings. This study proposes a 

reinforcement learning (RL)-based framework for missing-data 

imputation that treats each gap as a sequential decision problem. 

The authors develop and compare three RL architectures, two Q-

table methods and one Deep Q-learning model, to learn temporal 

dependencies and optimize imputation via experience. A second 

objective is to assess the feasibility and performance of RL for 

imputation in domains related to robotics and autonomous 

systems, where RL remains less explored. A third objective is to 

validate the methods on real-world datasets and simulations, 

supported by a user-friendly graphical interface for visualization 

and performance monitoring. The proposed RL imputers 

outperform state-of-the-art methods in accuracy and robustness: 

the best RL configuration cuts MSE/MAE by 8.6%/5.9% vs. K-

Nearest Neighbors’ algorithm (KNN), 74.4%/75.6% vs. 

autoencoder, 79.6%/79.9% vs. clustering, 89.0%/83.7% vs. mean, 

89.5%/83.3% vs. median, and 94.2%/89.3% vs. most-frequent, 

while raising the coefficient of determination (R²) by +0.023, 

+0.532, +0.123, +0.407, +0.436, and +0.932, respectively.  These 

findings highlight RL as an effective paradigm for intelligent data 

restoration in IoT-based sensing systems. 

Keywords—Data imputation; reinforcement learning; machine 

learning; deep learning; Internet of Things (IoT) 

I. INTRODUCTION 

Industry and academia are both deeply interested in 
maximizing the potential usefulness of the Internet of 
Things (IoT), a system that links many millions of physical 
devices to the Internet and, in doing so, generates unprecedented 
volumes of data. Embedded sensors and actuators enable such 
devices to sense relevant properties of their surroundings, 
analyze and process information locally, and exchange data with 
peers or cloud services, enabling coordinated autonomous 
decisions [1]. Advances in smart‑sensor design, wireless 
communication, and data‑aggregation technologies have made 
it possible to collect heterogeneous data streams from numerous 
different sources such as environmental probes, industrial 
machinery, surveillance cameras, and mobile devices [2]. Such 
data drives predictive models that improve reliability, 
efficiency, profitability, and overall performance in smart cities, 
industrial automation, intelligent buildings, connected vehicles, 
and environmental monitoring systems [3]. 

Despite the benefits, real-world deployment suffers from 
missing or corrupted observations due to sensor faults, loss of 
power, communication failures, long-term monitor fatigue, 
battery depletion, and/or poorly defined boundaries in large-
scale network studies. Missing values can introduce bias, 
complicate statistical analysis, and degrade model accuracy. 
This missing value can be imputed using machine learning (ML) 
and deep learning (DL) algorithms. 

Data imputation is defined as representing missing values in 
a dataset or IoT stream, which presents a number of challenges 
for data analysis as such values can increase the chance of 
introducing errors, reduce analytic accuracy, and limit the 
reliability of confidence intervals. Data Imputation can be done 
via conventional machine learning (ML) algorithms, such as 
hot- and cold-deck substitution, last observation carried forward, 
mean, multiple or regression imputation, non-negative matrix 
factorization, and stochastic methods, frequently reject useful 
data or introduce bias [4]. IoT data will often include varied 
forms including binary, categorical, numerical, ordinal, spatial, 
and temporal, with each requiring its own specialized analysis. 
Thus, recent research has moved toward data-driven and hybrid 
approaches that are better able to adapt to heterogeneous data 
inputs. As a result, imputation techniques may now be 
differentiated into two broad groups which are machine 
learning-based, and deep learning-based approaches. 

Deep learning (DL) approaches, such as autoencoders and 
convolutional neural networks (CNNs), show great potential for 
coping with missing data [5], but often need substantial and 
well-organized datasets to provide reliable performance. 
Autoencoders provide suggestions for missing data by learning 
compressed, noise-tolerant versions of the data and then 
rebuilding the original input, predicting absent values during the 
decoding process. Multimodal, stacked and variational 
autoencoders can enhance reconstruction accuracy for many 
data types. CNN-based models are most effective when the data 
can be reformed into multi-dimensional arrays such as matrices 
or images, enabling the network to capture temporal or spatial 
relationships. This makes CNNs suitable for imputing missing 
values in, for example, traffic-sensor grids, medical records, or 
spatiotemporal datasets which enable the study of the 
maintenance of patterns over time and are particularly useful for 
environmental data. 

However, three major challenges remain. First, most 
traditional machine learning and statistical imputation methods 
provide limited accuracy when applied to real-world problems, 
while modern DL-based approaches often require large training 
datasets and their performance deteriorates when only small or 
incomplete datasets are available. Second, although RL has been 
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extensively explored in robotics and autonomous systems, 
relatively little attention has been given to its potential in the data 
domain for imputing missing data, despite its successful 
application to autonomous decision-making. Third, to the best 
of the authors’ knowledge, there is still no standardized 
workflow for simulating and deploying advanced imputation 
models in realistic IoT environments or on a commercial scale. 

To address such challenges, the authors propose a RL-based 
imputation framework that makes each missing value a 
sequential decision-making problem. This constitutes a first 
contribution by explicitly formulating missing-data imputation 
as a sequential decision-making task. This framework develops 
and is evaluated via three progressively enhanced variants: 1) a 
baseline Q-Table, 2) an improved Q-Table Version 2 (V2) with 
optimized hyperparameter tuning, and 3) Deep Q-Learning (V3) 
that utilizes neural networks for function approximation. This 
systematic development enables a direct and controlled 
comparison between tabular and deep RL architectures, 
representing a second contribution of this work. These RL 
variants are benchmarked against the widely used imputation 
techniques: clustering, mean, most-frequent-value as well as 
DL-based approaches such as autoencoders, and ML methods 
such as K-Nearest Neighbors (KNN). The evaluations employ 
multiple performance metrics such as Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and the coefficient of 
determination (R²) to provide a comprehensive assessment of 
accuracy and reliability. This proposed RL-based approach 
should enhance imputation accuracy with limited data 
availability to maintain accuracy of real-time analytics for 
continuous, dynamic IoT data streams by providing more robust 
and scalable data. 

The remainder of this study is organized as follows: 
Literature Review discuss the state-of-the-art in this domain and 
introduces the theoretical foundations of RL. Then, 
Methodology discusses the design and implementation of the 
proposed RL algorithms, including data preprocessing, missing-
data synthesis, model training, and simulation. The Results and 
Discussion section presents and interprets the experimental 
outcomes compared to relevant published works. Finally, the 
Conclusion summarizes the key findings and suggests directions 
for future research. 

II. LITERATURE REVIEW 

Accurate and reliable imputation remains fundamental to 
downstream analytics in IoT settings where streams are 
heterogeneous, non-stationary, and frequently sparse (see 
Fig. 1). Contemporary work spans two broad families: 1) 
classical baselines prized for simplicity and speed, 2) deep 
learning (DL) models that trade higher capacity for greater data 
and training demands. The review below positions our chosen 
approach within this landscape and explains why RL is a timely 
alternative. 

Large comparative studies consistently show that traditional 
ML approaches such as KNN [6], clustering [7], mean [8],[9], 
median, most frequent [6], and tree-based methods, such as  
MissForest, outperform very simple imputers. However, while 
clustering, mean, and most-frequent are convenient they are, 
typically, weaker representations of patterns often found in IoT-
style datasets [8],[9]. A 2024 cohort analysis identifies KNN and 

Random Forest among the strongest practical baselines [9]. 
Similarly, a recent benchmark analysis paper evaluate the 
performance of common methods of missing data imputation 
reports that KNN and MIDAS, which is a denoising-
autoencoder approach, perform best at higher rates of random 
data and block omissions, with substantial runtime differences 
between methods [6]. 

 
Fig. 1. Data imputation reconstructs missing segments in IoT sensor time 

series in real-time. The upper plot shows a typical sensor signal with a gap 

between two dashed lines representing missing data frames caused by sensor 

faults, packet loss, or power interruptions. The central block (arrow) denotes 

the imputation algorithm, which processes the incomplete sequence. The 

lower plot illustrates the imputed data frames (red curve) that reconstruct the 

missing segment while preserving the original temporal trend and signal 

continuity. 

DL produces high accuracy rather than ML. One DL 
method, Generative Adversarial Networks (GAN)-based 
imputers, such as GAIN and its variants, continue to evolve to 
mitigate mode collapse and gradient instability [10]. A recent 
study introduces training refinements that improve both stability 
and accuracy. The clustering and classification-based generative 
adversarial imputation network (CC-GAIN) features enhanced 
couples clustering or classification with GANs to better handle 
multivariate settings which were successfully used in missing 
data imputation in an electricity consumption system [11]. There 
is also evidence that the generative adversarial imputation 
network (GAIN) in hybrid combination with convolutional 
neural networks (CNNs) can be used for exploiting tensorized 
representations to provide greater accuracy with sparse 
multivariate data, but with heavier computational cost and 
potential training instability compared to simpler baselines [12]. 
These works justify including DL baselines beyond 
autoencoders in comparisons while acknowledging their 
practical trade-offs. 

Auto encode (AE) is also a DL method and recent research 
has refined denoising autoencoders (DAEs) specifically for 
tabular imputation. DAE for missing data imputation has been 
developed using a modified loss and a simple hyperparameter 
rule [13]. It use across multiple UCI datasets and missingness 
regimes has shown it to provide thorough ablations against 
standard baselines and rank among the top performers, making 
it a strong contender for use as an AE-style imputer for tables 
[5]. 
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Beyond generic IoT benchmarks, DAEs have been evaluated 
in cases where the missingness was high (≥40%) heterogeneous 
biomedical datasets (with a mix of imaging, clinical, cognitive, 
and genetic variables), which demonstrated where DAEs excel 
and but also that they struggled under extreme sparsity typical 
of real-world IoT/health data sets [13]. Remasker, a recently 
developed method, extended masked autoencoding to tabular 
data by re-masking observed entries during training and 
predicting them as a self-supervised target [15]. Competitive or 
superior imputation fidelity/utilities across benchmarks were 
reported, with released code and slides clarifying design choices 
(simple masking strategy, strong performance as the missing 
ratio grew) [14]. These properties make Remasker an 
appropriate “modern DL” point of comparison alongside DAEs 
in our study. 

In summary, classical machine-learning methods provide 
strong, efficient models that can operate at high speed. DL 
models offer higher-capacity imputation but come with stability 
and computational limitations, and they typically require 
substantial training data. When such data and careful training are 
available, DL methods achieve state-of-the-art accuracy. In 
contrast, RL-based imputation remains relatively under-
explored, particularly for streaming IoT time-series data 
characterized by small sample sizes and block-missing patterns. 
To address this gap, we formulate missing-data imputation as a 
sequential decision-making problem, design an IoT-specific 
state-action-reward structure, and conduct a systematic 
comparison of tabular Q-learning and Deep Q-Learning within 
a unified framework. The proposed approach is evaluated using 
MSE, MAE, and R² to assess both accuracy and robustness 
under realistic IoT data conditions. 

III. PROPOSED METHODS 

A. Overview 

RL provides a learning framework through interaction: an 
agent repeatedly observes the current situation of the 
environment, chooses an action, receives a numerical response, 
and moves to a new situation. Over time, the agent defines and 
then refines a policy, a mapping from observed situations to 
actions taken, so that the long‑term response is maximized. Two 
internal estimates direct this process. State‑value functions 
provide a measure of how desirable a situation is, while 
action‑value functions estimate the effectiveness of taking a 
specific action in a particular situation. Learning algorithms 
such as Q‑learning adjust the estimates by comparing the 
predicted results with those observed after taking action. 
Modern RL combines these approaches with deep neural 
networks to provide deep RL, which can provide value functions 
and policies directly from high‑dimensional data. The volatility 
that can arise when learning and decision‑making take place 
simultaneously is substantially reduced by using stabilizing 
techniques such as experience replay, target networks, and the 
ε‑greedy algorithm. Because RL learns directly from the 
interactions rather than static examples, it is well-suited to 
problems such as IoT data imputation, where the agent must 
cope online with varying streaming inputs, noisy feedback, and 
changing sensor conditions. 

In this study, the authors develop a model that incorporates 
three hyperparameterized methods to enhance imputation 

accuracy. It integrates two variants of Q-Table-based RL and 
one Deep Q-RL approach. The Q-Table RL is a model-free 
algorithm that uses tabular representation to store and update 
action-state values (Q-values). These values guide the agent in 
selecting optimal actions within a discrete environment based on 
a defined reward function. Although having the benefits of being 
simple and interpretable, Q-Table methods are limited in 
scalability when the state-action space becomes large. To 
address this, the model includes a second stage with 
enhancements in exploration and value generalization. In 
contrast, DQL extends the traditional Q-learning paradigm by 
employing a deep neural network to approximate the Q-
function. This enables the agent to cope with high-dimensional 
or continuous state spaces more effectively. Combining the three 
methods, this model expects to provide a more accurate and 
robust imputation strategy than traditional techniques. 

B. Data Preprocessing and Missing Data Synthesizing 

In this study, the authors divided the Air-Quality dataset 
(UCI ID 360) from the UCI Machine Learning Repository [15, 
16] for training and testing the proposed algorithms and the 
baseline methods for data imputation. The selected data source 
is one of the most popular benchmark resources in the IoT 
weather domain. It contains recorded responses from a gas 
multisensory device that was deployed in a field in an Italian 
city. Hourly average sensor readings are provided together with 
reference gas‑concentration measurements obtained from a 
certified analyzer. In total, the dataset comprises 9,357 hourly 
averaged instances collected by an array of five metal‑oxide 
chemical sensors embedded in the air‑quality multisensory 
device, as shown in Table I. The device was positioned at road 
level in a heavily polluted urban area. Data were gathered 
continuously for one full year, from March 2004 to 
February 2005, yielding the longest freely available recording of 
on‑field air‑quality chemical sensor responses. The sensing unit 
comprised five metal-oxide (MOX) chemical sensors, each 
nominally tuned to specific target gases, along with 
environmental measurements. The dataset includes both the raw 
sensor responses (PT08.S1–PT08.S5) and reference gas-
concentration measurements obtained from a co-located 
certified analyzer. The measured and reference parameters are 
summarized in Table I. 

The dataset was split into training and validation sets, 
comprising 80% of the data, and a testing set comprising the 
remaining 20%. The authors used this split to ensure a large 
amount of data for training and validation, enabling better 
generalization and reducing the risk of overfitting, while the 
remaining 20% contained representative features sufficient for 
reliable testing. 

The data preprocessing pipeline begins by retrieving and 
reviewing the dataset’s metadata, such as source, measurement 
period, and definitions of variables, followed by generating 
summary statistics and data-type profiles to verify completeness 
and to detect potential anomalies. The column providing the 
Date is deconstructed from the original MM/DD/YYYY string 
format into a suitable datetime object, enabling the earliest and 
latest sampling times to be recorded for temporal consistency 
checks. All other numerical attributes (i.e., columns after the 
first two identifier fields) are rescaled to the interval [0, 1] using 
a Min-Max transformation to ensure comparable magnitudes to 
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accelerate model convergence. Finally, two comma-separated 
value (CSV) files are generated: one preserves the raw 
measurements as collected, and the other stores the normalized 
version to be supplied to the learning algorithm. This procedure 
ensures that downstream analysis uses a clean, temporally 
aligned, and scale‑independent dataset but retains access to the 
original records for auditing. 

TABLE I.  DATASET DESCRIPTION [15, 16] 

Attribute Description Unit 

Date Recording date DD/MM/YYYY 

Time Recording time HH.MM.SS 

CO 
True hourly averaged Carbon 

Monoxide (CO) concentration 
mg/m³ 

PT08.S1 

(Tin Oxide) 

Sensor response nominally targeted 

to CO 
arbitrary unit 

NMHC 

True hourly averaged Non-Methane 

Hydrocarbons (NMHC) 

concentration 

µg/m³ 

C₆H₆ 
True hourly averaged Benzene 

(C₆H₆) concentration 
µg/m³ 

PT08.S2 

(Titania) 

Sensor response nominally targeted 

to NMHC 
arbitrary unit 

NOₓ 
True hourly averaged Nitrogen  

Oxides (NOₓ) concentration 
ppb 

PT08.S3 

(Tungsten 

Oxide) 

Sensor response nominally targeted 

to NOₓ 
arbitrary unit 

NO₂ 
True hourly averaged Nitrogen  

Dioxide (NO₂) concentration 
µg/m³ 

PT08.S4 

(Tungsten 

Oxide) 

Sensor response nominally targeted 

to NO₂ 
arbitrary unit 

PT08.S5 

(Indium 

Oxide) 

Sensor response nominally targeted 

to Ozone (O₃) 
arbitrary unit 

T Temperature (T) °C 

RH Relative Humidity (RH) % 

AH Absolute Humidity (AH) g/m³ 

All experiments were conducted using a single missingness 
procedure: entries in the numeric columns were masked 
independently with a fixed probability of 0.2, applied separately 
to the training, validation, and test partitions. This masking of 
elements generated random gaps across the dataset, 
guaranteeing that missing positions varied across folds and splits 
in the data. Thus, model training and validation losses reflected 
the reconstruction of the missing values, and final test metrics 
quantified performance on a retained set subjected to the same 
masking process (see Algorithm 1). With all models evaluated 
consistently against this single, fixed masking strategy and 
under the given setting (0.2). Algorithm 1 describes the 
proposed procedure for synthesizing missing data at a fixed rate 
across training, validation, and test splits. Starting from a 
complete dataset, the data are first divided into 
training/validation and test sets. During the cross-validation 
phase, a fixed fraction of values is randomly masked as missing 
in the numeric columns of both training and validation sets using 
a uniform random process, ensuring consistent missingness 
across folds. The imputation agent is trained on the masked 
training data and validated against the original uncorrupted data. 
In the final phase, the same missingness strategy is applied to 

the combined training/validation set and the test set, after which 
the imputation model is trained and evaluated. This procedure 
ensures a controlled, reproducible, and unbiased evaluation of 
imputation performance under fixed-rate missing-data 
conditions. 

Algorithm 1 shows the proposed missing data synthesizing 
via a fixed-rate missingness for train, validation and test splits. 

Algorithm 1: Proposed Missing Data Synthesizing Method 

Start Algorithm 

Initialize complete dataset D 

Define numeric column set C 

Define missing fraction p = 0.20 

Define number of CV folds k 

Randomly split D into train/validation set (D_tv) and test set 
(D_test) with 80 % / 20 % ratio 

# Cross-validation phase 
For each fold f in K-Fold(D_tv, k) do 
| Split D_tv into training set (D_train) and validation set (D_val) 

for fold f 

|  Create D_train_missing ← copy of D_train  
|  Create D_val_missing ← copy of D_val 

|  For each column c ∈ C do 

|  |  For each row r in D_train_missing do 
|  |  |  u ← Uniform(0, 1) 

|  |  |  If u < p then 
|  |  |  | D_train_missing[r, c] ← NaN 
|  |  |  End If 
|  |  End For 

|  |  Repeat the same masking process for D_val_missing 

|  End For 
|  Train imputation agent on (D_train_missing, D_train) and 
validate on (D_val_missing, D_val) 

End For 

# Final test phase 

Create D_tv_missing ← copy of D_tv 

Create D_test_missing ← copy of D_test 

For each column c ∈ C do 

|  For each row r in D_tv_missing do 

|  |  u ← Uniform(0, 1) 

|  |  If u < p then 

|  |  | D_tv_missing[r, c] ← NaN 

|  |  End If 

|  End For 

|  Repeat the same masking process for D_test_missing 

End For 

Train final imputation agent on (D_tv_missing, D_tv) and evaluate 
on (D_test_missing, D_test) 

End Algorithm 

C. Proposed Models’ Architecture 

1) Reinforcement learning based on Q table: Fig. 2 

contrasts the end‑to‑end workflows for the two generations of 

our reinforcement learning imputer. Version 1 (V1) begins by 

injecting a user‑specified ratio of synthetic gaps into the 

training fold and then iterates column‑by‑column inside the 

dashed box the Column Imputation Agent V1 represents each 

decision state solely by the row index of the missing value; 

contextual cues such as neighboring readings remain implicit. 

Two baseline actions are always available to the ε‑greedy 
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selector: the KNN fill and a feature‑statistics fill (mean, median 

or standard‑deviation offset), while the remaining actions 

correspond to previously learned Q‑values for that index. After 

an action is chosen, the reward is calculated as the negative 

absolute error normalized by the column’s standard deviation; 

this signal updates the Q(state, action) table and the per‑epoch 

MSE log. Once all gaps in the train‑and‑validation partitions 

are imputed, fold‑level metrics are recorded and the agent 

proceeds to the next column or cross‑validation split, ultimately 

producing a single Q‑table per feature that is reused to fill the 

held‑out test set [see Fig. 2(a)]. 

Version 2 (V2) retains the outer train, validation, and test 
scaffold, but tackles three limitations observed in V1. First, it 
discretizes the numeric context: each previous value is binned, 
and the joint bin index becomes the state, dramatically shrinking 
and regularizing the state space. Second, it replaces the 
absolute‑error reward with a squared‑error signal and logs both 
training and validation MSE curves, enabling early stopping and 
hyper‑parameter tuning. Third, ε in the ε‑greedy policy decays 
across epochs, allowing aggressive exploration early on and 
more deterministic exploitation later. Internally, four Q‑tables 
are maintained (one per context bin), each updated with the same 
loop of reward calculation and value iteration. During inference, 
the agent consults the appropriate Q‑table for the discretized 
context of every missing cell, producing fills that are both 
context‑aware and data‑driven [see Fig. 2(b)]. 

 
Fig. 2. The model structure of the proposed Q table methods. 

2) Reinforcement learning based on deep Q: The proposed 

imputation framework employs a Deep Q-Learning (DQN) 

agent designed to learn optimal imputation strategies through 

interaction with an environment representing missing-value 

patterns. At each environment step, the agent observes a 

scalarized state 𝑠 corresponding to the normalized position of 

the missing entry within a column and selects an action  𝑎 ∈
 {𝑚𝑒𝑎𝑛, 𝑚𝑒𝑑𝑖𝑎𝑛, 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑘𝑛𝑛}  using an ε-greedy policy. 

The environment then returns a reward 𝑟 proportional to the 

negative normalized squared error between the imputed value 

and the ground truth. The next state 𝑠′ reflects the subsequent 

missing entry index. This transition tuple (𝑠, 𝑎, 𝑟, 𝑠’)  represents 

a single reinforcement learning experience used to update the 

DQN model. To enhance stability and sample efficiency, 

training is conducted using a batched replay mechanism. 

Transitions accumulated during interaction are stored in a 

replay buffer of finite capacity K. Instead of performing one 

update per sample, we repeatedly sample B mini-batches from 

the buffer and execute U stochastic gradient descent updates for 

each, thereby increasing the effective signal-to-noise ratio of 

the temporal-difference (TD) gradients. This multi-batch, 

multi-update schedule mitigates variance and reduces 

dependency on fresh data collection, an essential property when 

computational or data-access costs are constrained. For each 

sampled transition iii, a bootstrap target is computed as: 𝑦𝑖 =
 𝑟𝑖 + γ max

𝑎  ́
𝑄𝜃 − (𝑠𝑖

 ́  ,𝑎  ́) where γ is the discount factor and 𝜃− 

denotes the parameters of a slowly updated target network. The 

online network parameters θ are optimized to minimize the 

mean-squared TD error: 𝐿(𝜃) =
1

𝐵 
 ∑ ( 𝑦𝑖 𝑖 −

 𝑄𝜃  (𝑠𝑖 ,𝑎𝑖)) 2 using the Adam optimizer with learning rate α. 

Following each outer training epoch, both the exploration rate 

ϵ and the coefficient for target update τ decay according to 

defined schedules: 𝜃−  ← (1 − τ)𝜃− + τ𝜃  This ensures 

gradual policy refinement and stable convergence. 

The Q-Network architecture (Fig. 2) is a compact three-layer 
feedforward model realized in PyTorch: an input normalization 
layer, a fully connected layer with 64 ReLU-activated neurons, 
and a linear output layer producing four Q-values corresponding 
to the available imputation actions. This lightweight design 
enables efficient on-device training and inference under limited 
memory and computation constraints. Collectively, the 
integration of replay memory, target-network stabilization, and 
multi-update training yields a robust Deep Q-Learning agent 
capable of acquiring context-adaptive imputation strategies for 
heterogeneous data distributions. The overall training pipeline, 
from dataset preparation and K-fold cross-validation to column-
wise DQN training and test-time inference, is shown in Fig. 3. 

 
Fig. 3. The model structure of the proposed deep Q method. 

3) Proposed simulation for RL environment: The authors 

developed an interactive grid‑based simulation using the 

Pygame Library, to illustrate how a RL agent might traverse an 

air‑quality dataset and impute missing values in real time (see 

Algorithm 2). After loading a CSV file that contains numerical 

features with artificially injected gaps, the data were 
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normalized to the [0,1] range and mapped onto a 2‑D grid 

whose rows and columns correspond to samples and features, 

respectively (see Fig. 4). Each cell is 100 px square: filled 

observations appear in blue, missing entries in red, and their 

numeric contents are over‑printed “NA” for clarity. The green 

agent starts at the upper‑left corner [0,0] and can be moved by 

the user using the arrow keys. When the agent is positioned on 

a missing cell pressing the space bar triggers an “imputation 

action”. In this demonstrator the action is a random draw from 

[0,1], the ground‑truth value is likewise mocked, and the reward 

is the negative absolute error, these values are stored in a simple 

Q‑table keyed by grid location. Although rudimentary, the 

framework visualizes the essential RL loop: state perception 

(color‑coded grid), action selection (move or impute), reward 

feedback, and value‑function update, all occurring at 30 FPS on 

an 800 × 600 canvas. This educational tool provides an 

accessible first step towards integrating and debugging more 

sophisticated, neural‑based RL strategies for data‑gap filling on 

edge‑generated sensor streams. Algorithm 2 shows how the 

pseudocode outlines the full flow: loading and normalizing a 

dataset with missing values, drawing a color‑coded grid, letting 

the user navigate a green “agent” with arrow keys, and pressing 

the space bar to impute and score missing entries. The Q‑table 

records per‑cell rewards, providing a scaffold for replacing 

random placeholders with a true reinforcement‑learning policy 

at a later stage. 

 
Fig. 4. RL Simulation for data imputation. 

Algorithm 2 shows the pseudocode for Pygame RL‑Style 
Imputation Simulator. 

Algorithm 2: Pygame RL‑style Imputation Simulator 

Start Algorithm  
If D contains no NaN then Raise error “dataset complete”  

Normalize D to [0, 1] 

rows ← number of samples in D 

cols ← number of features in D 

𝑎𝑔𝑒𝑛𝑡_𝑝𝑜𝑠 ←  [0,  0]         # row, col 

𝑄_𝑡𝑎𝑏𝑙𝑒  ←  ∅                   # (row,col) → reward 

running   ← True 

While running do 

|     Clear WINDOW with BACKGROUND_COLOUR 

|     For i = 0 … rows−1 do 

|     |     For j = 0 … cols−1 do 

|     |     |     x ← j × CELL_SIZE; y ← i × CELL_SIZE 

|     |     |     If D[i,j] is NaN then 

|     |     |     |     color ← MISSING_COLOUR; label←“NA”  

|     |     |     Else 

|     |     |     |     color ← FILLED_COLOUR; label ←   

|     |     |     |     round(D[i,j],2) 

|     |     |     End If 

|     |     |     Draw filled rectangle (x, y, CELL_SIZE, CELL_SIZE)  

|     |     |     with color 

|     |     |     Draw border rectangle with GRID_COLOUR 

|     |     |     Render label in FONT_COLOUR at (x+10, y+10) 

|     |     End For 

|     End For 

|     agent_x ← agent_pos.col × CELL_SIZE 

|     agent_y ← agent_pos.row × CELL_SIZE 

|     Draw rectangle (agent_x, agent_y, CELL_SIZE, CELL_SIZE)  

|     in AGENT_COLOUR 

|     For each EVENT in pygame.event.get() do 

|     |     If EVENT.type = QUIT then 

|     |     |     running ← False 

|     |     Else If EVENT.type = KEYDOWN then 

|     |     |     Case EVENT.key of  

|     |     |     |    UP: If agent_pos.row > 0 then agent_pos.row −= 1  

|     |     |     |     DOWN: If agent_pos.row < rows−1    then  

|     |     |     |     agent_pos.row += 1 

|     |     |     |     LEFT: If agent_pos.col > 0 then agent_pos.col −= 1  

|     |     |     |     RIGHT: If agent_pos.col < cols−1    then  

|     |     |     |     agent_pos.col += 1 

|     |     |     |     SPACE: 

|     |     |     |     |     i ← agent_pos.row; j ← agent_pos.col 

|     |     |     |     |     If D[i,j] is NaN then 

|     |     |     |     |     |     true_val←Uniform(0,1)      # placeholder 

|     |     |     |     |     |     imput_val←Uniform(0,1)      # placeholder 

|     |     |     |     |     |     D[i,j]←imput_val 

|     |     |     |     |     |     reward← − |true_val − imput_val| 

|     |     |     |     |     |     Q_table[(i,j)] ← reward  

|     |     |     |     |     End If  

|     |     |     |     End Case 

|     |     End If 

|     End For 

|     Update WINDOW (pygame.display.flip()) 

|     Wait so frame‑rate = 30 FPS (clock.tick(30)) 

End While 

pygame.quit() 

End Algorithm 

IV. RESULTS AND DISCUSSION 

A. Tooling 

The algorithms were developed in Python and used the 
 Keras, Matplotlib, NumPy, Pandas,  PyTorch, Scikit‑learn, and 
TensorFlow data processing and ML libraries. Keras provides a 
user‑friendly, high‑level neural‑network API compatible with 
both CPUs and GPUs. Matplotlib provides data visualization, 
allowing patterns to be displayed as charts and plots. NumPy 
offers a large collection of high‑level mathematical functions 
able to support efficient operations on multi‑dimensional arrays 
and matrices. Pandas provides data analysis and preprocessing, 
high‑level data structures and a rich set of tools for filtering, 
combining, and grouping datasets before training. PyTorch is an 
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extensive open‑source software useful for natural language 
processing (NLP) and computer vision. Scikit‑learn provides a 
wide range of supervised and unsupervised ML algorithms for 
data mining and analysis. TensorFlow provides 
high‑performance computation for training and operating 
deep‑learning models. 

The model was trained on the Google Colab cloud platform, 
which provides a shared high‑performance computing (HPC) 
environment. The model training was carried out using two 
virtual CPUs, with specs Intel Xeon, family 6, model 79, 
clocked at 2.20 GHz with a 56,320 kB cache, alongside an 
NVIDIA T4 graphical processing unit (GPU) and 52 GB of 
random-access memory (RAM). The model inference and 
testing were executed on a local personal computer (PC) 
equipped with a 6th generation Intel Core i7 processor (2.6-
2.8 GHz), an integrated Intel HD  520 GPU, 32 GB of RAM, and 
a 1 TB solid‑state drive (SSD). 

B. Data Preprocessing and Missing Data Synthesizing 

In Fig. 5, the histogram of KDE shows panels depicting the 
empirical distributions of seven key features from the UCI 
Air‑Quality dataset. All are gases ground truth (GT), CO(GT), 
NOx(GT), NO2(GT) and C6H6(GT), and all share a clear spike 
at -200 units that marks the dataset’s built‑in sentinel for missing 
or invalid sensor readings, and a pronounced positive skew 
caused by occasional pollution surges. 

After removing the -200 flags, CO shows a very narrow peak 
while NOx displays a long right tail extending beyond 
1 000 µg m⁻³, whereas NO2 peaks much more narrowly around 
140 µg m⁻³. Benzene (C6H6) shows a compact distribution 
around 7 µg m⁻³ with a slight positive skew but v irtually no 
extreme outliers, reflecting the lower variability of this volatile 
organic compound. In contrast, the meteorological variables 
exhibit near‑Gaussian behavior once the sentinel values are 
discounted: temperature (T) clusters tightly between 15 °C and 
30 °C, relative humidity (RH) is centered near 70 %, and 
absolute humidity (AH) forms an even tighter bell around 
0.035 kg m⁻³. These contrasting shapes emphasize why a 
one‑size‑fits‑all imputation rule is inadequate: heavy‑tailed, 
zero‑inflated gas measurements demand context‑aware 
reconstruction, whereas smoother climatic variables can tolerate 
simpler statistical fillers. 

Fig. 6 presents the pair‑wise relationships among the five 
metal‑oxide sensor channels embedded in the Air‑Quality 
monitoring unit for CO, NMHC, NOx, NO2 and O3. Each panel 
shows a plot of one sensor’s raw resistance (in ADC counts) 
against each of the others, revealing several instructive patterns. 
First, the tight, positively sloped clouds produced by linking 
PT08.S1(CO) with PT08.S2(NMHC) and PT08.S4(NO₂) 
indicate strong cross‑sensitivities: when the CO sensor peaks, 
the NMHC and NO₂ channels rise almost proportionally, a 
hallmark of overlapping gas responses in metal‑oxide arrays. 
Second, PT08.S3(NOx) behaves quite differently; its 
relationships with the other four channels produce a 
downward‑curving trajectory, signifying an inverse, non‑linear 
dependence due to its specific redox reaction mechanism. Third, 
every scatter plot contains a dense cluster at the origin, 
corresponding to the dataset’s sentinel value (-200 ADC), which 
flags missing or invalid readings; because these artefacts sit far 

from the genuine signal manifold, any imputation model must 
avoid naively averaging across them. Finally, the diagonal 
panels showing lines remind us that each sensor reading is 
highly self‑correlated, providing an upper bound for imputation 
accuracy. 

 
Fig. 5. Distributions and kernel density estimates of the selected Air Quality 

features: (a) CO(GT), (b) NOx(GT), (c) NO2(GT), (d) C6H6(GT), (e) 

temperature (T), (f) relative humidity (RH), and (g) absolute humidity (AH). 

The spike at -200 denotes the sensor-defined missing-value indicator, while 

the skewed shapes and long right tails, particularly for gaseous pollutants, 

reflect episodic concentration spikes and heterogeneous data characteristics. 

PT08.S5 (Indium-oxide, nominally O₃) exhibits curvilinear, 
mostly inverse relationships with PT08.S3(NOx) and 
PT08.S4(NO₂), consistent with oxidizing reducing cross-
sensitivities typical of metal-oxide sensor arrays. Its scatter plots 
with PT08.S1(CO) and PT08.S2(NMHC) appear weaker and 
more dispersed, indicating lower direct coupling and stronger 
modulation by environmental covariates such as temperature 
(T), relative humidity (RH), and absolute humidity (AH). The 
same -200 ADC sentinel cluster is also visible for PT08.S5 and 
must be masked prior to training or imputation to prevent 
distortion of the learned data manifold. For imputation tasks, 
PT08.S5 benefits particularly from non-linear models that can 
exploit its monotonic segments with NOx and NO₂ while 
conditioning on meteorological parameters, rather than relying 
on simple linear correlations. 
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Fig. 6. Pairwise scatter‑matrix of the five metal‑oxide sensor channels 

(PT08.S1–S5). Blue dots represent valid observations. 

Third, every scatter plot contains a dense cluster at the origin, 
corresponding to the dataset’s sentinel value (-200 ADC), which 
flags missing or invalid readings; because these artefacts sit far 
from the genuine signal manifold, any imputation model must 
avoid naively averaging across them. Finally, the diagonal 
panels showing lines remind us that each sensor reading is 
highly self-correlated, providing an upper bound for imputation 
accuracy. 

C. Models Training and Validation 

Fig. 7 presents the relative training–validation loss dynamics 
of the three RL approaches over 150 epochs (averaged across 
folds). In Fig. 7(a), the DQN model exhibits low overall loss 
values, with training and validation curves tracking closely after 
an initial period of fluctuations. The validation loss shows more 
pronounced oscillations than the training loss but without a 
continuing divergence, suggesting stable learning with only 
mild noise-induced variance on unseen data. Fig. 7(b) presents 
Q-Learning V1, where, after an initial period of relatively few 
epochs, the training loss steadily decreases towards an MSE 
value of 0.040 while the validation loss remains consistently 
higher at an MSE value of about 0.045. This persistent 
difference implies a degree of overfitting, where the learned 
policy better fits the training environment than unseen samples. 
In Fig. 7(c), Q-Learning V2 achieves very close alignment 
between training and validation losses after an initial decrease in 
value. Both curves stabilize at an MSE value between 0.039 and 
0.040 with minimal oscillation, indicating strong generalization 
and absence of significant overfitting. Overall, these trends 
demonstrate that while all three models converge to low loss 
values, Q-Learning V2 maintaining the most consistent train–
validation alignment, DQN follows closely with small 
validation variance, and Q-Learning V1 demonstrates a modest 
but persistent generalization gap. 

 
Fig. 7. Training vs. validation loss (averaged over folds) across 150 epochs 

for the proposed RL-based imputers: (a) Deep Q-Network (DQN), (b) Q-

Learning v1, and (c) Q-Learning v2. 

Table II shows the comparison between the proposed 
algorithms and the state-of-the-art methods. In particular, 
Training length has different effects on the three RL approaches. 
For QL Version 1 (V1), extending training from 10 to 150 
epochs steadily lowers the mean-squared error from 0.0098 to 
0.0092, and raises R² from 0.7655 to 0.7772, with only a slight 
improvement in mean-absolute error from 0.0269 to 0.0204. 
After about 50 epochs, gains taper off, indicating a performance 
plateau. QL Version 2 (V2) behaves differently. At 10-epochs 
this model reaches its lowest MSE value (0.00785) and the 
highest R² (0.8041). Further training slightly worsens both 
metrics, suggesting mild over-fitting once the dominant patterns 
have been captured. DQL peaks at 50 epochs with an MSE of 
0.0074, R² of 0.8053, and MAE of 0.0225, after which there is a 
modest decline at 150 epochs, indicating stability with some 
over-fitting. Comparing the RL models reveals a trade-off: V2 
and DQN achieve lower MSE and stronger R², with better 
suppression of extreme deviations, but at the cost of a higher 
MAE. On the other hand, V1 delivers more uniform point-wise 
accuracy. Classical baselines can offer useful reference points 
and we see KNN provides a balanced but unremarkable 
performance (MSE = 0.0081, R² = 0.7822), whereas clustering 
and autoencoder underperform markedly, and the simplest 
imputations (mean, median, most-frequent) produce large errors 
with poor R², confirming their unsuitability for continuous 
environmental streams. 

Considering all three metrics: QL V1 at 150 epochs offers 
the best balance, with the smallest MAE, a respectable MSE, and 
solid R²; QL V2 at 10 epochs excels at limiting outliers shown 
in its superior MSE; and DQN at 50 epochs combines strong R² 
with low error and minimal over-fitting. Among non-RL 
methods, only KNN approaches RL-level performance but fails 
to surpass it. Consequently, the authors propose the use of RL 
agents, especially V1-150 for consistent accuracy, V2-10 for 
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outlier suppression, and DQN-50 for balanced generalization, as 
the most practical solutions for real-time IoT imputation, 
delivering strong accuracy without prohibitive training demands 
on edge hardware. 

This early optimum of Q-Table V2 can be attributed to its 
internal architectural modifications compared with V1. As 
detailed in Fig. 2(b) (Section III), V2 discretizes the numeric 
context into bins, reducing the size of the state-action space and 
allowing the agent to learn stable Q-values within very few 
epochs. It also employs a squared-error reward function instead 
of the normalized absolute-error reward used in V1. This 
squared-error formulation amplifies large deviations during the 
initial learning phase, enabling rapid minimization of MSE but 
also increasing the likelihood of mild over-adjustment once the 
major error patterns have been corrected. Further, V2 produces 
a decay in the exploration rate (ε) within the ε-greedy policy 
with an increase in the number of epochs, which encourages 
broad exploration during the first few epochs but quickly 
transitions to exploitation. Once the policy stabilizes, 
subsequent updates contribute little additional improvement and 
can even marginally degrade test performance, reflecting 
controlled over-specialization rather than instability. 

In contrast, V1 relies on a continuous state representation 
and a fixed ε, which promotes slower but steadier convergence 
and greater resilience to over-fitting. Consequently, V1 benefits 
from extended training up to 150 epochs, progressively refining 
its policy and reducing MAE without significant loss in 
generalization. The different convergence behaviors of V1 and 
V2 stem directly from their design philosophies; V2 prioritizes 
fast convergence and computational efficiency, making it 
suitable for lightweight IoT or edge deployments, whereas V1 
favors gradual learning and robust generalization over longer 
training cycles. 

These findings confirm that the observed peak performance 
of V2 at 10 epochs is a result of its architecture rather than an 
anomaly. The early convergence and subsequent plateau reflect 
the intended trade-off between rapid policy stabilization and 
marginal over-fitting within a highly compact state space. 

The behavior of the Deep-Q Network (DQN) supports the 
interpretation that the number of training epochs interacts with 
model capacity. Unlike the tabular versions, DQN uses a neural 
function approximator to estimate Q-values, enabling smoother 
generalization across unseen states but introducing a higher 
sensitivity to over-training. At around 50 epochs, the network 
reaches an optimal balance between exploration and 
convergence, achieving the lowest MSE (0.0074) and highest R² 
(0.8053) while maintaining a relatively low MAE (0.0225). 
Beyond 50 epochs, continued training leads to a slight 
degradation in performance until, at 150 epochs, we have MSE 
= 0.0084 and R² = 0.7855, primarily due to over-fitting of the Q-
value function and reduced stochastic exploration as the policy 
becomes deterministic. Thus, 50 epochs with this model 
represent the point of maximum generalization; the network has 
learned sufficient value structure to minimize prediction error 
without memorizing the training trajectories. This pattern is 
consistent with typical DQN behavior, where moderate training 
durations combined with early stopping yield the most stable 

convergence of the value function and the best trade-off between 
bias and variance. 

TABLE II.  COMPARISON BETWEEN THE PROPOSED AND STATE-OF-THE-
ART METHODS 

Method Epochs MSE MAE R2 

Proposed Q Table V1 10 0.0098 0.0207 0.7655 

Proposed Q Table V1 50 0.0098 0.0209 0.7693 

Proposed Q Table V1 150 0.0092 0.0204 0.7772 

Proposed Q Table V2 10 0.0078 0.0228 0.8041 

Proposed Q Table V2 50 0.0084 0.0227 0.7883 

Proposed Q Table V2 150 0.0081 0.0231 0.8014 

Proposed Deep Q 10 0.0077 0.0237 0.7805 

Proposed Deep Q 50 0.0074 0.0225 0.8053 

Proposed Deep Q 150 0.0084 0.0234 0.7855 

Autoencoder [13] - 0.0289 0.0923 0.2738 

KNN [6] - 0.0081 0.0239 0.7822 

Clustering [7] - 0.0362 0.1119 0.6828 

Mean [9] - 0.0675 0.1379 0.3987 

Most Frequent [6] - 0.1286 0.2095 -0.1271 

Median [9] - 0.0708 0.1350 0.3688 

Across all methods, the Deep-Q model at 50 epochs delivers 
the best MSE (0.0074) and highest R² (0.8053), while the 
strongest classical baseline KNN has an MSE = 0.0081 and R² 
= 0.7822. This represents a ~9% reduction in MSE and a +2.31 
percentage-point increase in R². For MAE, the best performer is 
Q-Table V1 at 150 epochs (0.0204), improving on KNN 
(0.0239) by ~14.5%. All RL variants clearly outperform the 
simple statistical baselines and the tested Autoencoder, which 
lags substantially on all metrics. 

If the application prioritizes calibration and variance-
sensitive fidelity, such as forecasting or anomaly scoring 
downstream, Deep-Q-50 epochs are the best choice (lowest 
MSE, highest R²). If robustness to outliers and absolute 
deviation matter more, such as thresholding deviations for alerts, 
Q-Table V1 150 epochs is preferable (best MAE, ~9.3% lower 
than Deep-Q-50). Q-Table V2 offers a middle ground with near-
Deep-Q R² but slightly weaker MAE, which might be attractive 
when a simpler function approximation is desired. 

The loss curves in Fig. 7 show rapid early convergence 
followed by small, stable train-validation gaps for all three RL 
variants, except for V2, where the curve stabilizes early due to 
fast policy saturation within the discretized state space, 
indicating controlled capacity and limited over-fitting. Deep-Q 
shows optimum values for each of MAE, MSE, and R² at 50 
epochs rather than 150, suggesting that light early stopping or 
entropy/exploration annealing could further stabilize 
performance. For the Q-Table models, longer horizons 
consistently help MAE, supporting the view that policy 
refinement through continued exploration benefits absolute-
error minimization. 
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D. Simulation 

Fig. 8 presents successive frames from the Pygame-based 
simulation visualizer, illustrating a single decision cycle of the 
RL imputation agent. In the first frame [Fig. 8(a)], the agent 
(green square) is positioned next to a red “NA” cell representing 
a missing value, while previously imputed entries appear in blue 
with normalized magnitudes. Upon user action, the agent 
imputes a value of 0.66 and receives a small negative reward 
[Fig. 8(b)], reflecting a near-match to the hidden ground truth 
(0.65). In the subsequent frame [Fig. 8(c)], the imputed cell turns 
blue, confirming state update and storage in the replay buffer. 
This visual transition highlights real-time gap resolution and 
online learning, as rewards are logged to refine future actions, 
with repeated cycles progressively filling the grid and 
quantifying imputation accuracy interactively. 

 

 
Fig. 8. Consecutive frames from the Pygame imputation simulator. The 

agent (green) selects an action on a red “NA” cell, where its ground truth was 

0.65, fills it with the determined value (here 0.66), receives a small negative 

reward (-0.02), and updates the grid, which turns the cell blue to indicate 

imputation. 

V. CONCLUSION AND FUTURE WORK 

This work addressed the continuing problem of missing 
values in edge-collected meteorological data streams in an IoT 
environment, caused by sensor faults, power interruptions, and 
communication noise, which degrade downstream analytics and 
time-critical decision support. To address this challenge, the 
authors have developed a lightweight reinforcement-learning 
imputation framework that formulates each gap as a sequential 
decision problem, learns directly from sparsely populated 
streams by utilizing cross-sensor temporal correlations, executes 
within the compute and energy envelopes of embedded IoT 
nodes, and is integrated with an interactive visual simulator 
implemented in Pygame. Beyond reporting performance gains, 
this work demonstrates that modeling missing-data imputation 
as a sequential decision-making process constitutes a general 
and effective paradigm for IoT data restoration, rather than a 
purely static prediction task. Empirically, the RL approach 
yields consistent gains under both block-missing and random-
missing regimes: relative to non-RL baselines, the best 
configuration delivers 8.6 to 94.2% lower MSE and 5.9 to 89.3% 
lower MAE, while lifting R² by +0.023 to +0.932; even against 
the strongest baseline (KNN), it achieves 8.6%/5.9% error 
reductions with +0.023 R², underscoring robustness rather than 
overfitting. These results support the overarching contribution 
that sequential, policy-driven imputation can better adapt to 

dynamic and data-scarce IoT settings than other methods. This 
simulator allows real-time visualization of the agent’s decision-
making process, each state, action, and reward, facilitating rapid 
prototyping, policy debugging, and latency profiling during 
development. Future work will incorporate uncertainty-aware 
imputation, explore transfer and meta-learning for data-scarce 
stations, and optimize energy-efficient on-device adaptation, 
while hardening the edge stack through embedded profiling, 
model compression, and physics-informed simulator 
enhancements. 
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