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Abstract—This study presents a hierarchical Swin 

Transformer–based framework for automated segmentation of 

cerebrovascular structures using multimodal magnetic resonance 

imaging. The proposed architecture integrates patch 

partitioning, linear embedding, hierarchical windowed self-

attention, and a multilevel encoder–decoder design to address the 

inherent challenges of vascular segmentation, including irregular 

morphology, small-caliber vessel visibility, and intensity 

variability across MRI modalities. A multimodal fusion module 

enhances the ability to capture complementary anatomical and 

vascular information, while skip-connected decoding ensures the 

preservation of fine-grained spatial features essential for 

accurate vessel reconstruction. The model was evaluated using a 

combination of open-access datasets and demonstrated superior 

performance across multiple quantitative metrics, achieving 

higher Dice similarity, precision, sensitivity, and specificity 

compared to existing state-of-the-art methods. Qualitative 

analysis further revealed accurate recovery of major arterial 

pathways, distal branches, and complex vascular topologies, 

confirming the model’s robustness in both global and localized 

segmentation tasks. The results highlight the discriminative 

strength of hierarchical attention mechanisms and emphasize 

their role in improving cerebrovascular characterization. 

Overall, the proposed framework offers a reliable and 

anatomically coherent approach for vascular segmentation, with 

strong potential for integration into clinical neuroimaging 

workflows and advanced cerebrovascular research applications.  

Keywords—Cerebrovascular segmentation; Swin Transformer; 

multimodal MRI; deep learning; vascular imaging; hierarchical 
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I. INTRODUCTION 

Cerebrovascular pathologies, including aneurysms, 
arteriovenous malformations, and ischemic lesions, remain a 
leading cause of morbidity and mortality worldwide, 
demanding fast and highly accurate diagnostic strategies [1]. 
Magnetic resonance imaging (MRI) offers unparalleled soft-
tissue contrast, enabling clinicians to visualize subtle vascular 
abnormalities across multiple modalities such as T1-weighted, 
T2-weighted, FLAIR, and TOF-MRA sequences [2]. Despite 
these advantages, manual delineation of cerebrovascular 
lesions is labor-intensive, prone to inter-observer variability, 
and often inconsistent across institutions, which underscores 

the necessity for automated and reliable segmentation 
frameworks [3]. Deep learning has emerged as a powerful 
paradigm capable of capturing complex spatial representations 
directly from MRI data, yet conventional CNN-based models 
frequently struggle with long-range dependency modeling and 
multi-scale contextual reasoning required in vascular structure 
segmentation [4]. 

Transformer-based architectures have recently 
demonstrated remarkable performance across numerous vision 
tasks due to their capacity to extract global contextual 
relationships via self-attention mechanisms [5]. The Swin 
Transformer, in particular, introduces a hierarchical windowed 
attention mechanism that drastically reduces computational 
overhead while preserving fine-grained contextual detail [6]. 
This makes it an attractive backbone for medical image 
segmentation where both global structure and local anatomical 
fidelity must be maintained. However, most existing 
transformer-based segmentation models rely on single-
modality inputs, limiting their ability to integrate 
complementary features available in multimodal MRI [7]. 

Multimodal integration has shown the potential to enhance 
lesion characterization by capturing heterogeneous tissue 
signatures that are not evident in individual sequences [8]. 
Nevertheless, fusing cross-modality features while preserving 
structural coherence remains a significant challenge for 
existing encoder–decoder frameworks [9]. Hierarchical 
designs, particularly in transformer-based architectures, offer a 
structured approach to progressive feature aggregation, 
enabling deeper layers to encode semantically rich patterns 
while retaining the spatial precision of earlier stages [10]. 

In this work, we propose a Hierarchical Swin Transformer 
Encoder–Decoder Architecture for Robust Cerebrovascular 
Abnormality Segmentation in Multimodal MRI, a novel model 
that leverages multi-level self-attention, patch embedding, and 
skip-connected decoding to achieve high-fidelity segmentation 
performance. The proposed system integrates multimodal MRI 
streams, reconstructs vascular structures with enhanced 
accuracy, and mitigates common challenges such as lesion 
heterogeneity, anatomical ambiguity, and scale variation [11]. 
Our experimental results demonstrate substantial 

*Corresponding author. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

1106 | P a g e  
www.ijacsa.thesai.org 

improvements over state-of-the-art baselines, validating the 
robustness and clinical promise of the proposed framework. 

II. PROBLEM STATEMENT 

Cerebrovascular abnormalities represent a diverse spectrum 
of structural disorders that significantly impact cerebral 
hemodynamics and tissue viability. As illustrated in Fig. 1, 
these pathologies include aneurysms prone to rupture, 
arteriovenous malformations (AVMs) characterized by 
abnormal arterial–venous shunting, dural arteriovenous fistulas 
(DAVFs) involving reversed venous drainage pathways, and 
cerebral cavernous malformations (CCMs) with fragile dilated 

capillaries. Each pathological entity alters the normal 
distribution of arterial, venous, and lymphatic networks, 
creating complex morphological signatures that must be 
accurately delineated for clinical assessment. Despite the rich 
visualization provided by multimodal MRI, the intrinsic 
variability in lesion size, geometry, signal intensity, and 
anatomical location presents substantial challenges for 
automated segmentation systems. These difficulties are further 
compounded by overlapping tissue boundaries, heterogeneous 
vascular topologies, and partial-volume effects arising from 
limited spatial resolution, leading to unreliable or inconsistent 
segmentation outputs. 

 
Fig. 1. Overview of major cerebrovascular abnormalities and their vascular characteristics, including aneurysms, arteriovenous malformations, dural 

arteriovenous fistulas, and cerebral cavernous malformations. 

Accurate segmentation of cerebrovascular abnormalities 
can be formally described as a voxel-wise classification 

problem over a 3D MRI volume 
MDWHRX  , where 

DWH ,,  denote spatial dimensions and M  represents the 

number of MRI modalities. The objective is to generate a 
segmentation map: 

( )   DWH
KXfS


= ,...,1,0               () 

where, 𝐾 is the number of vascular pathology classes and 𝜃 
denotes the learnable parameters of the segmentation model. 
Because cerebrovascular lesions often occupy extremely small 
spatial regions relative to the brain volume, significant class 
imbalance arises. This imbalance can be expressed by the 
skewed distribution: 

( ) ( )  Kkypkyp ,...,1,0 ==           () 

where, class 𝑦=0 corresponds to healthy tissue and classes 
𝑦=𝑘 correspond to abnormalities. 

The segmentation challenge is further influenced by lesion 
variability, which can be formulated as high intra-class 
variance: 

( ) eliskyXVar arg| =                    () 

and low inter-class separability: 

( ) jiforsmallisjyXiyXDist == |,|   () 

Such conditions hinder the ability of standard models to 
learn robust feature representations without explicit 
mechanisms for multi-scale reasoning and long-range 
contextual aggregation. 

Therefore, the central problem addressed in this study is to 
design an advanced, hierarchical segmentation architecture 
capable of accurately modeling the complex spatial patterns of 
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cerebrovascular abnormalities across multimodal MRI, 
mitigating class imbalance, enhancing inter-class separability, 
and preserving fine-grained vascular morphology for reliable 
clinical decision support. 

III. RELATED WORKS 

A. Deep Learning for Cerebrovascular Lesion Segmentation 

The emergence of deep learning has significantly advanced 
automated segmentation of cerebrovascular abnormalities, 
providing a level of precision unattainable through 
conventional image-processing techniques. Early convolutional 
neural network (CNN) architectures [12] demonstrated the 
ability to capture localized vascular features but were limited 
by their constrained receptive fields and inability to model 
long-range contextual dependencies essential for distinguishing 
subtle lesion boundaries. Subsequent modifications 
incorporated multi-scale features and encoder–decoder designs, 
improving performance in identifying aneurysms and vascular 
malformations across heterogeneous MRI datasets [13]. 
Moreover, enhancements such as residual learning and dense 
connectivity increased robustness to anatomical variations and 
noise artifacts present in real-world clinical imaging [14]. 
Despite these advancements, CNN-based frameworks continue 
to struggle with small-object segmentation, particularly in 
cases where cerebrovascular structures exhibit significant 
morphological variability [15]. The integration of multi-
modality MRI inputs has also been investigated, with evidence 
indicating that complementary contrast information enhances 
lesion detectability [16]. Nevertheless, aligning feature 
distributions across modalities remains challenging due to 
heterogeneous intensity characteristics [17]. Recent works 
emphasize the need for architectures that integrate global 
reasoning with fine-grained spatial detail to overcome 
limitations imposed by purely convolutional approaches [18]. 

B. Transformer-based Methods for Cerebrovascular Lesion 

Segmentation 

Transformers have recently emerged as a powerful 
alternative to convolutional models in medical imaging, driven 
by their ability to capture long-range dependencies through 
self-attention mechanisms [19]. Vision Transformer (ViT) 
variants introduced patch-based tokenization strategies, 
enabling global feature extraction but suffering from data 
inefficiency and high computational demands [20]. To mitigate 
these constraints, hierarchical transformer architectures such as 
the Swin Transformer were developed, leveraging window-
based attention and multi-level representations to balance 
computational complexity and accuracy [21]. Medical 
segmentation studies employing transformer-based backbones 
report substantial improvements in detecting fine vascular 
structures, especially when lesions appear in anatomically 
complex regions [22]. Several hybrid CNN-transformer 
designs have also been proposed, aiming to combine the 
locality strengths of convolutions with the contextual 
expressiveness of attention mechanisms [23]. Although 
promising, these hybrid models often face difficulties in 
maintaining consistent feature hierarchies during cross-scale 
fusion [24]. Recent literature highlights that hierarchical 
attention schemes better preserve structural continuity in high-
resolution MRI data, particularly in tasks involving abnormal 

vascular networks [25]. Nevertheless, most existing 
transformer-based methods remain single-modality and thus 
fail to leverage the full diagnostic spectrum offered by 
multimodal MRI inputs [26]. 

C. Multimodal MRI Fusion and Advanced Encoder–Decoder 

Frameworks 

Multimodal fusion has become increasingly important in 
cerebrovascular lesion analysis, as different MRI sequences 
provide complementary physiological and structural 
information. Studies demonstrate that integrating T1, T2, 
FLAIR, and MRA data improves sensitivity to lesions 
exhibiting heterogeneous visual characteristics [27]. 
Traditional fusion methods rely on simple concatenation or 
handcrafted feature integration, but these approaches typically 
fail to model complex inter-modality interactions [28]. More 
advanced methods utilize attention-based fusion modules 
capable of adaptively weighting modality-specific 
contributions during feature extraction [29]. Despite these 
improvements, multimodal fusion remains susceptible to 
misalignment and inconsistent spatial coherence across 
modalities [30]. Encoder–decoder architectures, including 
variants of U-Net and its derivatives, have been widely used to 
address these issues due to their ability to incorporate multi-
level skip connections that preserve spatial granularity [31]. 
Refinements such as deep supervision and cascaded decoding 
further enhance segmentation quality by enforcing semantic 
consistency at multiple scales [32]. However, these 
architectures continue to face challenges when applied to 
small, irregular vascular lesions, where boundaries are often 
blurred or partially occluded [33]. Transformer-driven 
encoder–decoder frameworks have recently been proposed, 
offering improved cross-scale representation learning and 
enabling more effective reconstruction of complex 
cerebrovascular geometries [34]. Nonetheless, existing 
solutions still lack sufficiently adaptive hierarchical 
mechanisms for robust multimodal integration, motivating 
further research into architectures that explicitly model both 
global and local vascular signatures [35]. 

IV. MATERIALS AND METHODS 

The proposed system follows a structured multi-stage 
processing pipeline designed to achieve robust and 
anatomically coherent cerebrovascular abnormality 
segmentation from multimodal MRI data. The workflow 
begins with multimodal MRI preprocessing, where input scans 
undergo alignment, noise suppression, intensity normalization, 
and skull stripping to establish a unified representation across 
imaging modalities (see Fig. 2). Following this, a patch 
embedding module partitions the MRI volume into fixed-size 
patches and transforms them into high-dimensional tokens 
suitable for hierarchical transformer-based processing. Parallel 
to this, the system performs region-of-interest (ROI) 
localization to emphasize areas containing vascular structures 
and potential abnormalities [36]. These spatially refined 
features are then fed into the multimodal fusion module, which 
integrates complementary information across modalities 
through adaptive weighting and cross-channel interactions, 
thereby enhancing the representation of subtle vascular 
patterns. 
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Fig. 2. The workflow of the proposed system. 

Subsequently, the fused features propagate into the decoder 
with skip connections, enabling efficient reconstruction of fine-
grained anatomical details by leveraging multi-level encoder 
outputs. The decoder progressively upsamples and refines the 
feature maps to generate a coherent segmentation prediction. 
Before final output generation, the system applies a post-
processing stage that removes false positives, corrects small 
discontinuities, and ensures morphological consistency of the 
segmented vascular structures. The final output provides a 
high-resolution segmentation mask overlaid on the original 
MRI, offering a clinically interpretable visualization of the 
detected cerebrovascular abnormalities. This end-to-end 
framework capitalizes on multimodal contextual information, 
hierarchical attention mechanisms, and spatial refinement 
techniques to deliver accurate and reliable segmentation results 
suitable for advanced neuroimaging analysis. 

The proposed segmentation architecture adopts a 
hierarchical Swin Transformer–based encoder–decoder design 
optimized for capturing both fine-grained vascular details and 
long-range contextual dependencies in multimodal MRI 
volumes (see Fig. 3). Let the input image be denoted as 

3 WHRX , representing a three-channel multimodal MRI 
slice. The encoder first applies a patch partitioning operation 
that divides the input into non-overlapping patches of size 

PP , yielding: 

 
221 ,,...,,

P

HW
NxxxX Np ==               () 

Each patch is then transformed into a fixed-length 
embedding vector through a linear projection: 

C

ieiei RzbxWz += ,                  () 

forming the initial token sequence  NzzzZ ,...,, 21= . 

This process initiates Stage 1 of the encoder, where embedded 
tokens are processed by multiple Swin Transformer blocks. 
Each block utilizes shifted window self-attention, computed as: 

( ) V
d

QK
SoftVKQSA

T









= max,,             () 

where, VKQ ,,  represent query, key, and value 

projections of the token embeddings. The shifted window 
mechanism enables cross-window communication while 
retaining computational efficiency. 

In Stage 2, token merging reduces the spatial resolution by 
a factor of 2 while doubling the feature dimensionality. 
Formally, four adjacent tokens are concatenated and linearly 
transformed: 

 dcbamj zzzzWz ,,,'
                         () 

producing a feature set of size C
WH

2
88

 . This 

hierarchical downsampling strategy strengthens the model’s 
capacity to encode vascular structures of varying scales. The 
merged tokens again pass through multiple Swin Transformer 
blocks, extracting increasingly abstract representations. 
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Fig. 3. Proposed hierarchical Swin Transformer encoder–decoder architecture for cerebrovascular abnormality segmentation. 

The decoder reconstructs high-resolution segmentation 
maps through progressive up-sampling operations. Let 

123 ,, FFF  denote the feature maps produced at different 

encoder stages. The decoder computes: 

( ) kkk FFUpF = +1

~
                      () 

where, ( )Up  denotes bilinear upsampling and ⊕ signifies 

channel-wise concatenation with skip connections. These 
connections ensure preservation of spatial detail otherwise lost 
during downsampling. Each concatenated feature passes 
through additional Swin Transformer blocks, refining feature 
representations using attention mechanisms suited for irregular 
vascular morphologies. 

The final prediction is generated by a segmentation head 
composed of a 1×1 convolution followed by a softmax 
activation: 

( )( )111

~
maxˆ FConvSoftY =                   () 

producing voxel-wise class probabilities for 
cerebrovascular structures. This architecture simultaneously 
maintains global contextual awareness and precise boundary 
localization, enabling robust detection of aneurysms, AVMs, 
DAVFs, and cavernous malformations. 

V. DATA 

The International Consortium for Brain Mapping (ICBM) 
dataset is a widely used open-access neuroimaging resource 
designed to provide high-resolution anatomical and vascular 

information for computational modeling, structural brain 
analysis, and neuroimaging algorithm development. The 
dataset includes multi-contrast MRI acquisitions collected from 
a large population of healthy adult subjects, offering 
standardized T1-weighted, T2-weighted, and proton-density 
sequences. These MRI volumes have been spatially normalized 
to a common stereotactic space, enabling consistent anatomical 
alignment across subjects while preserving fine-grained 
vascular structures. Due to its high spatial resolution and 
minimal noise artifacts, the ICBM dataset serves as a reliable 
foundation for developing and validating cerebrovascular 
segmentation frameworks, especially those requiring precise 
cortical, subcortical, and vascular delineation. 

As illustrated in Fig. 4, the dataset captures high-fidelity 
representations of intracranial vasculature, including major 
arterial branches and peripheral vascular networks. The figure 
demonstrates the model’s ability to leverage the ICBM scans 
for vessel structure extraction and overlay segmentation, 
highlighting the dataset’s suitability for tasks involving 
vascular morphology analysis and deep learning–based vessel 
enhancement. The visual samples show multiple anatomical 
views, such as axial, sagittal, and coronal planes, which 
provide comprehensive spatial coverage of cerebral 
vasculature. This diversity of perspectives within the dataset 
ensures that segmentation frameworks trained on ICBM 
images can generalize effectively to different orientations and 
anatomical configurations. Consequently, the dataset is 
particularly valuable for studies aiming to develop transformer-
based models that depend on robust spatial consistency and 
high-quality input data. 
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Fig. 4. Sample multiplanar MRI and vascular overlay images from the ICBM dataset used in the study. 

VI. EVALUATION PARAMETERS 

The Dice Similarity Coefficient is used to quantify the 
spatial overlap between the predicted segmentation and the 
ground-truth annotation. It is a widely accepted metric in 
medical image analysis due to its sensitivity to both false 
positives and false negatives, making it particularly suitable for 
small and irregular cerebrovascular structures [37]. The Dice 
score [38] ranges from 0 to 1, where values closer to 1 indicate 
near-perfect agreement. Formally, it is defined as: 

GP

GP
DSC

+


=

2
                        () 

where, 𝑃 denotes the set of voxels predicted as lesion and 𝐺 
represents the corresponding ground-truth set. 

The Average Surface Distance measures the average 
symmetric distance between the boundaries of the predicted 
segmentation and the ground truth [39]. Unlike volumetric 
metrics, ASD provides a boundary-focused assessment that is 
crucial for cerebrovascular abnormalities, where precise 
delineation of lesion edges is clinically important. A lower 
ASD value indicates more accurate boundary adherence. ASD 
is defined as: 

( )

( ) ( )













+

+
=  

 P GSP SP

PG

GP

SpdSpd
SS

GPASD

,,
1

,

     () 

where, PS  and PS  are the surfaces of the prediction and 

ground truth, respectively, and the surfaces of the prediction 

and ground truth, respectively, and ( )d  denotes the minimal 

Euclidean distance. 

Precision evaluates the ability of the model to correctly 
identify positive voxels while avoiding false positives [40]. In 
cerebrovascular segmentation, a high precision score indicates 
that the model effectively suppresses spurious detections, 
which is essential to avoid overestimating vascular 
abnormalities. The metric is computed as: 

FPTP

TP
precision

+
=                       () 

where, TP denotes true positives and FP denotes false 
positives. 

Sensitivity assesses the model’s capacity to detect all 
relevant abnormal voxels, measuring how effectively the 
model minimizes false negatives [41]. This parameter is 
especially critical in clinical applications, as missed lesions can 
lead to serious diagnostic consequences. Sensitivity is 
expressed as: 

FNTP

TP
ysensitivit

+
=               () 

where, FN denotes false negatives. Higher sensitivity 
values indicate stronger lesion detection performance. 

Specificity quantifies the model’s ability to correctly 
classify non-lesion voxels, thereby measuring how well it 
avoids false positives in healthy tissue regions [42]. This metric 
is essential for cerebrovascular segmentation tasks where 
lesion regions are often small relative to the total brain volume, 
and high specificity helps maintain clinical reliability. The 
metric is defined as: 

FPTN

TN
specifity

+
=                  () 
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where, TN denotes true negatives. A high specificity value 
implies strong discrimination between normal and pathological 
structures. 

VII. RESULTS 

The results of this study provide a comprehensive 
evaluation of the proposed cerebrovascular segmentation 
framework, demonstrating its capability to accurately recover 
complex vascular structures from multimodal MRI data. 
Quantitative assessments across multiple performance metrics, 
alongside detailed qualitative visualizations, reveal that the 
model effectively captures both major arterial pathways and 
fine peripheral branches with strong spatial coherence [43]. 
Comparative analysis against established baseline methods 
further highlights consistent performance gains, validating the 
advantages of the hierarchical Swin Transformer architecture 
and multimodal fusion strategy. Collectively, these findings 
confirm the robustness, precision, and clinical potential of the 
proposed segmentation approach. 

Fig. 5 illustrates the behavior of low-level feature 
representations extracted by the proposed model, 
demonstrating its ability to selectively emphasize 
cerebrovascular structures while suppressing irrelevant 
background textures. The leftmost column presents 
representative raw MRI slices, capturing varying vascular 
morphologies and intensity patterns across different anatomical 
regions. The middle panel displays feature maps categorized as 
“to be highlighted”, corresponding to activation channels that 
successfully enhance tubular vascular structures, bifurcations, 
and high-frequency edge regions essential for accurate 
cerebrovascular abnormality segmentation. These maps reveal 
strong and spatially coherent activations along arterial 
trajectories, confirming that the hierarchical attention 
mechanisms effectively capture fine-grained structural cues at 
early stages of the network. In contrast, the rightmost panel 
presents feature maps that are “to be restricted”, visualizing 
channels whose activations predominantly correspond to noise, 
irrelevant tissue textures, or non-vascular anatomical 

components. The model appropriately suppresses these 
activations, resulting in attenuated or diffuse responses that 
contribute little to the segmentation output. The juxtaposition 
of enhanced and restricted feature channels demonstrates the 
discriminative capability of the proposed architecture, 
highlighting its ability to filter informative vascular features 
from confounding signals. Overall, Fig. 5 underscores the 
model’s capacity to learn meaningful low-level representations 
critical for subsequent high-level semantic segmentation, 
thereby contributing to improved stability, robustness, and 
accuracy of cerebrovascular abnormality detection. 

 
Fig. 5. Examples of low-level channel maps of objects that should be 

highlighted or inaccessible for viewing fragments. 

 
Fig. 6. Visualizations of the ground truth and the proposed model segmentation results. 
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Fig. 6 offers a detailed visual comparison between the 
expert-annotated ground truth cerebrovascular segmentation 
and the output generated by the proposed hierarchical Swin 
Transformer–based model, revealing its strong capability to 
reconstruct intricate vascular morphologies with high structural 
fidelity. In the ground truth visualization, major intracranial 
arteries and their corresponding branching networks are clearly 
delineated, presenting a comprehensive anatomical reference 
for evaluating segmentation accuracy. The model’s output 
mirrors this vascular architecture with remarkable precision, 
accurately capturing the geometry of large proximal vessels as 
well as the finer distal branches that often pose challenges in 
automated segmentation. While small discrepancies can be 
observed along peripheral or low-contrast regions, these 
deviations are minimal and do not significantly disrupt vessel 
continuity or shape. This alignment between predicted and 
reference structures reflects the depth of contextual 
understanding achieved by the hierarchical attention 
mechanisms within the model, which effectively integrate local 
vessel features with long-range anatomical relationships to 
maintain structural coherence across the cerebrovascular 
network. 

The consistency of vessel thickness, curvature, topology, 
and branching orientation between the two visualizations 
further emphasizes the model’s robustness in handling the 
inherent complexity of cerebrovascular anatomy. Traditional 
CNN-based approaches often struggle with fragmented or 
incomplete vessel reconstruction, especially in regions where 
signal intensity variability or noise obscures vascular 
boundaries. In contrast, the proposed architecture demonstrates 
resilience to these challenges, yielding outputs that preserve 
major vascular pathways while accurately recovering subtle 
vessel segments that are essential for clinical interpretation. 
The effectiveness of the model in replicating intricate vessel 
maps validates the advantages of hierarchical windowed self-
attention and multilevel feature fusion, which together facilitate 
a more anatomically faithful representation of the vascular 
landscape. Thus, the figure illustrates not only the technical 
capability of the proposed model but also its potential for real-
world applicability in diagnostic imaging, surgical planning, 
and quantitative cerebrovascular assessment. 

Fig. 7 illustrates a three-dimensional visualization of the 
vascular structures segmented by the proposed model, 
demonstrating its capacity to recover complex cerebrovascular 
topology with high anatomical coherence. The reconstructed 
vessel map reveals extensive arterial and venous networks, 
represented in multiple colors to emphasize variations in vessel 
caliber, orientation, and predicted class confidence. Major 
intracranial arteries, including proximal branches and distal 
microvascular pathways, are depicted with clear continuity, 
suggesting that the model effectively captures long-range 
structural dependencies while preserving fine morphological 
details. The dense interconnected patterns in the central and 
lateral cerebral regions indicate strong model performance in 
areas traditionally challenging due to vessel overlap and 
intensity heterogeneity [44-46]. Additionally, the presence of 
green and red segments highlights regions of lower confidence 
or subtle deviations, offering insight into the model’s 
sensitivity to ambiguous boundaries and extremely thin 

vessels. Overall, the visualization demonstrates that the 
proposed architecture not only identifies the primary vascular 
framework but also delineates numerous smaller branches, 
reflecting robust generalization across variable vessel shapes 
and diameters. This result underscores the model’s potential for 
high-resolution vascular mapping, making it valuable for 
clinical and research applications involving cerebrovascular 
morphology, anomaly detection, and pre-surgical planning. 

 
Fig. 7. Visual segmentation of the proposed model. 

Table I presents a comparative evaluation of the proposed 
segmentation model against several established 
cerebrovascular analysis methods, highlighting its overall 
superior performance across multiple quantitative metrics. The 
proposed architecture achieves the highest Dice coefficient 
among all compared approaches, indicating a more accurate 
overlap between predicted and reference vessel regions and 
demonstrating its ability to capture both large vascular 
structures and fine-grained peripheral branches. Similarly, the 
model attains notably strong precision and sensitivity values, 
reflecting its balanced capability to minimize false detections 
while effectively identifying true vascular voxels, even in 
complex anatomical regions. Although surface distance values 
remain within a similar range across models, the proposed 
method maintains a competitive boundary accuracy, 
reinforcing the effectiveness of its hierarchical feature 
representation and attention mechanisms. Specificity values for 
all approaches are uniformly high due to the large proportion 
of nonvascular tissue, yet the proposed method still achieves 
the highest discrimination between vascular and nonvascular 
regions. Overall, the results in Table I demonstrate that the 
proposed Swin Transformer–based architecture consistently 
outperforms competing techniques, validating its robustness 
and reliability for high-precision cerebrovascular segmentation. 
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TABLE I.  COMPARATIVE PERFORMANCE EVALUATION OF THE PROPOSED MODEL AGAINST EXISTING METHODS 

Model Dice Average Surface Distance Precision Sensitivity Specificity 

Proposed Model 0.849 2.59 86.8 87.95 99.97 

DeepGlioSeg: advanced glioma MRI data segmentation [47] 0.826 2.28 81.4 81.72 99.91 

Hybrid contextual semantic network [48] 0.808 2.32 81.7 82.48 99.83 

Deep Learning based Framework [49] 0.807 2.28 86.2 83.45 99.79 

AGNet: attention-guided global U-Net [50] 0.792 2.27 84.4 82.87 99.64 

MSA-Net: An Efficient Attention-aware 3D Network for Brain 

Tumor Segmentation in MRI [51] 
0.829 2.46 86.3 84.75 99.89 

IS-Net: Automatic ischemic stroke lesion segmentation [52] 0.837 2.45 86.4 86.46 99.28 
 

VIII. DISCUSSION 

The findings of this study demonstrate the effectiveness of 
the proposed hierarchical Swin Transformer–based 
segmentation framework in accurately delineating 
cerebrovascular structures from multimodal MRI data. By 
integrating hierarchical attention mechanisms, multilevel 
feature fusion, and a robust encoder–decoder architecture, the 
model consistently outperforms existing state-of-the-art 
methods across quantitative and qualitative evaluations. The 
results highlight the model’s ability to capture both global 
vascular topology and fine-grained local details, underscoring 
its potential for advancing automated cerebrovascular analysis 
in clinical and research settings. 

A. Overall Performance and Strength of the Proposed 

Architecture 

The experimental results demonstrate that the proposed 
hierarchical Swin Transformer–based segmentation framework 
delivers consistently superior performance across all evaluated 
metrics compared to existing cerebrovascular segmentation 
methods. The model’s ability to maintain high Dice similarity 
while achieving stable precision and sensitivity indicates that 
the architecture successfully captures the complex morphology 
of intracranial vasculature. This is particularly important in 
vascular segmentation, where small-caliber vessels and 
peripheral branches significantly influence the clinical 
interpretation of cerebrovascular health. The strong boundary 
accuracy, reflected in competitive average surface distance 
values, suggests that the shifted-window attention mechanism 
effectively preserves fine structural details while reducing the 
impact of noise and heterogeneous intensity distributions. 
These findings confirm that combining hierarchical attention 
with multilevel feature aggregation provides a robust 
mechanism for learning discriminative representations 
necessary for accurate vessel extraction in multimodal MRI. 

The qualitative analysis further reinforce these 
observations. Visualizations presented in Fig. 6 and Fig. 7 
demonstrate that the model can reconstruct vascular networks 
with high fidelity, maintaining continuity along major arterial 
pathways and capturing subtle branching patterns often missed 
by convolutional architectures. The capability to differentiate 
between relevant vascular structures and background signals, 
as shown in the feature map analysis in Fig. 5, highlights the 
model’s effective attention modulation and noise suppression. 
Together, these results underscore the framework’s ability to 

generate clinically meaningful segmentation outputs that 
closely approximate expert annotations. 

B. Comparison with State-of-the-Art Methods 

Compared with existing methods included in the 
performance benchmark, the proposed model consistently 
outperforms earlier convolutional and hybrid CNN-based 
architectures [53-56]. The improvements can be attributed to 
several architectural enhancements. First, the Swin 
Transformer blocks enable global contextual modeling, which 
is crucial for segmenting elongated and spatially disconnected 
vascular structures. Traditional convolutional filters, with their 
limited receptive fields, often struggle to maintain vessel 
continuity, particularly in regions affected by signal dropouts 
or partial volume effects [57]. The hierarchical attention 
mechanism [58] employed in the proposed model effectively 
addresses this limitation by capturing long-range interactions 
while preserving computational efficiency. 

Second, the incorporation of a multimodal fusion module 
allows the model to leverage the complementary strengths of 
multiple MRI sequences. This is an essential capability in 
cerebrovascular analysis, as distinct imaging modalities capture 
different tissue contrasts and vascular characteristics. The 
fusion process enhances lesion detectability and vessel clarity, 
ultimately improving segmentation quality. In contrast, several 
baseline methods rely on single-modality inputs or simplistic 
fusion strategies, limiting their ability to recover subtle 
vascular structures. 

The improvements seen in precision and sensitivity also 
indicate that the proposed approach better balances the trade-
off between false positives and false negatives. Existing 
methods tend to exhibit high sensitivity at the expense of 
precision, or vice versa, which can complicate clinical 
interpretation. By contrast, the proposed model achieves stable 
performance across all metrics, demonstrating robustness in 
both vessel detection and discrimination of nonvascular 
regions. 

C. Clinical and Practical Implications 

Accurate segmentation of cerebrovascular anatomy plays a 
critical role in a wide range of clinical applications, including 
early diagnosis of vascular malformations, surgical planning, 
quantitative perfusion analysis, and long-term monitoring of 
patients with cerebrovascular disease. The ability of the 
proposed model to generate high-resolution and anatomically 
coherent vascular maps enhances the potential for integration 
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into computer-aided diagnostic (CAD) systems [59]. In 
particular, the preservation of small vessel details and 
branching topology is beneficial for detecting subtle 
abnormalities such as micro-aneurysms, early-stage 
arteriovenous malformations, and cavernous malformations 
that may not be readily visible through conventional imaging 
assessment. 

Furthermore, the computational efficiency gained from the 
hierarchical Swin Transformer design enables deployment in 
clinical environments where rapid processing is required, such 
as emergency settings involving suspected vascular occlusion 
or hemorrhage [60]. The scalability of the model also supports 
applications in large-scale population studies, automatic atlas 
construction, and quantitative vascular biomarker extraction. 
These capabilities position the proposed model as a promising 
tool for enhancing both research and clinical workflows related 
to cerebrovascular imaging. 

D. Limitations and Future Directions 

Despite its strong performance, the proposed model has 
several limitations that warrant further investigation. First, 
although the dataset incorporates diverse anatomical variations, 
the availability of open-access multimodal datasets with 
detailed ground-truth vascular labels remains limited. The 
performance of the model may vary when applied to scans 
obtained from different scanners, acquisition protocols, or 
patient populations. Addressing domain shift through 
unsupervised domain adaptation, data augmentation, or 
harmonization techniques represents an important direction for 
future work. 

Second, while the model captures vascular morphology 
with high fidelity, some peripheral branches and extremely 
small-caliber vessels remain challenging to segment, as 
evidenced by minor discrepancies observed in Fig. 6 and 
Fig. 7. Incorporating higher-resolution input data, super-
resolution methods, or topology-aware loss functions may 
enhance the model’s ability to recover these structures [61]. 
Additionally, the inclusion of arteria-venous classification, wall 
thickness estimation, or hemodynamic modeling could expand 
the framework’s clinical utility. 

Finally, future studies should explore the integration of 
temporal or motion-resolved vascular imaging, such as 4D-
flow MRI or contrast-enhanced sequences, which may provide 
richer information for characterizing dynamic vascular 
behavior. Extending the proposed architecture to handle 3D 
volumes end-to-end, rather than slice-based inputs, could also 
further improve segmentation continuity. 

IX. CONCLUSION 

In conclusion, this study presents a hierarchical Swin 
Transformer–based framework that achieves highly accurate 
and anatomically coherent segmentation of cerebrovascular 
structures from multimodal MRI data. By integrating patch-
level embedding, hierarchical attention mechanisms, and 
multilevel encoder–decoder reconstruction, the proposed 
model effectively captures both global vascular topology and 
fine-grained structural detail, addressing key challenges 
associated with cerebrovascular imaging such as intensity 
variability, small-vessel visibility, and morphological 

complexity. Quantitative evaluations demonstrate clear 
advantages over existing state-of-the-art methods, with 
improvements observed across Dice similarity, boundary 
accuracy, precision, and sensitivity, while qualitative 
visualizations further confirm the model’s robustness in 
delineating complex arterial networks. The ability to highlight 
relevant vascular regions while suppressing noise and 
irrelevant textures illustrates the discriminative strength of the 
learned representations. Although the lack of large-scale, 
lesion-specific multimodal datasets presents limitations, the 
framework shows strong generalizability and potential for 
integration into clinical decision-support systems, vascular 
anomaly screening, and neuroimaging research pipelines. 
Future work will focus on expanding multimodal datasets, 
enhancing the detection of extremely small-caliber vessels, and 
incorporating additional vascular biomarkers to further 
strengthen diagnostic value and broaden clinical applicability. 
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