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Abstract—This study presents a hierarchical Swin
Transformer—based framework for automated segmentation of
cerebrovascular structures using multimodal magnetic resonance
imaging. The proposed architecture integrates patch
partitioning, linear embedding, hierarchical windowed self-
attention, and a multilevel encoder—decoder design to address the
inherent challenges of vascular segmentation, including irregular
morphology, small-caliber vessel visibility, and intensity
variability across MRI modalities. A multimodal fusion module
enhances the ability to capture complementary anatomical and
vascular information, while skip-connected decoding ensures the
preservation of fine-grained spatial features essential for
accurate vessel reconstruction. The model was evaluated using a
combination of open-access datasets and demonstrated superior
performance across multiple quantitative metrics, achieving
higher Dice similarity, precision, sensitivity, and specificity
compared to existing state-of-the-art methods. Qualitative
analysis further revealed accurate recovery of major arterial
pathways, distal branches, and complex vascular topologies,
confirming the model’s robustness in both global and localized
segmentation tasks. The results highlight the discriminative
strength of hierarchical attention mechanisms and emphasize
their role in improving cerebrovascular characterization.
Overall, the proposed framework offers a reliable and
anatomically coherent approach for vascular segmentation, with
strong potential for integration into clinical neuroimaging
workflows and advanced cerebrovascular research applications.
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L INTRODUCTION

Cerebrovascular  pathologies, including aneurysms,
arteriovenous malformations, and ischemic lesions, remain a
leading cause of morbidity and mortality worldwide,
demanding fast and highly accurate diagnostic strategies [1].
Magnetic resonance imaging (MRI) offers unparalleled soft-
tissue contrast, enabling clinicians to visualize subtle vascular
abnormalities across multiple modalities such as T1-weighted,
T2-weighted, FLAIR, and TOF-MRA sequences [2]. Despite
these advantages, manual delineation of cerebrovascular
lesions is labor-intensive, prone to inter-observer variability,
and often inconsistent across institutions, which underscores
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the necessity for automated and reliable segmentation
frameworks [3]. Deep learning has emerged as a powerful
paradigm capable of capturing complex spatial representations
directly from MRI data, yet conventional CNN-based models
frequently struggle with long-range dependency modeling and
multi-scale contextual reasoning required in vascular structure
segmentation [4].

Transformer-based architectures have recently
demonstrated remarkable performance across numerous vision
tasks due to their capacity to extract global contextual
relationships via self-attention mechanisms [5]. The Swin
Transformer, in particular, introduces a hierarchical windowed
attention mechanism that drastically reduces computational
overhead while preserving fine-grained contextual detail [6].
This makes it an attractive backbone for medical image
segmentation where both global structure and local anatomical

fidelity must be maintained. However, most existing
transformer-based segmentation models rely on single-
modality inputs, limiting their ability to integrate

complementary features available in multimodal MRI [7].

Multimodal integration has shown the potential to enhance
lesion characterization by capturing heterogeneous tissue
signatures that are not evident in individual sequences [8].
Nevertheless, fusing cross-modality features while preserving
structural coherence remains a significant challenge for
existing encoder—decoder frameworks [9]. Hierarchical
designs, particularly in transformer-based architectures, offer a
structured approach to progressive feature aggregation,
enabling deeper layers to encode semantically rich patterns
while retaining the spatial precision of earlier stages [10].

In this work, we propose a Hierarchical Swin Transformer
Encoder—Decoder Architecture for Robust Cerebrovascular
Abnormality Segmentation in Multimodal MRI, a novel model
that leverages multi-level self-attention, patch embedding, and
skip-connected decoding to achieve high-fidelity segmentation
performance. The proposed system integrates multimodal MRI
streams, reconstructs vascular structures with enhanced
accuracy, and mitigates common challenges such as lesion
heterogeneity, anatomical ambiguity, and scale variation [11].
Our  experimental results demonstrate  substantial
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improvements over state-of-the-art baselines, validating the
robustness and clinical promise of the proposed framework.

II. PROBLEM STATEMENT

Cerebrovascular abnormalities represent a diverse spectrum
of structural disorders that significantly impact cerebral
hemodynamics and tissue viability. As illustrated in Fig. 1,
these pathologies include aneurysms prone to rupture,
arteriovenous malformations (AVMs) characterized by
abnormal arterial-venous shunting, dural arteriovenous fistulas
(DAVFs) involving reversed venous drainage pathways, and
cerebral cavernous malformations (CCMs) with fragile dilated

A Brain and meningeal vasculature B Aneurysm and

rupture
Superior sagittal sinus
Dural lymphatics
Cerebral veins

Middle cerebral
artery

Transverse
sinus

Lymphatics
Arteries
Veins

Dural arteriovenous , - - - - = - - = - - - - -
fistula (DAVF)

‘
'
'
'
 Cerebral vein
]
1
)
1
]

-
1l

N =%
Reversed ~Cerebral vein,
!} drainage

Vol. 16, No. 12, 2025

capillaries. Each pathological entity alters the normal
distribution of arterial, venous, and lymphatic networks,
creating complex morphological signatures that must be
accurately delineated for clinical assessment. Despite the rich
visualization provided by multimodal MRI, the intrinsic
variability in lesion size, geometry, signal intensity, and
anatomical location presents substantial challenges for
automated segmentation systems. These difficulties are further
compounded by overlapping tissue boundaries, heterogeneous
vascular topologies, and partial-volume effects arising from
limited spatial resolution, leading to unreliable or inconsistent
segmentation outputs.
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Fig. 1. Overview of major cerebrovascular abnormalities and their vascular characteristics, including aneurysms, arteriovenous malformations, dural
arteriovenous fistulas, and cerebral cavernous malformations.

Accurate segmentation of cerebrovascular abnormalities
can be formally described as a voxel-wise classification

problem over a 3D MRI volume X € R  where
H,W,D denote spatial dimensions and M represents the
number of MRI modalities. The objective is to generate a
segmentation map:
S=f,(x)e{ol,.. K", (1)
where, K is the number of vascular pathology classes and 6
denotes the learnable parameters of the segmentation model.
Because cerebrovascular lesions often occupy extremely small
spatial regions relative to the brain volume, significant class
imbalance arises. This imbalance can be expressed by the
skewed distribution:

p(yzk)<< p(yzO), ke{l,...,K}, ()

where, class y=0 corresponds to healthy tissue and classes
y=k correspond to abnormalities.

The segmentation challenge is further influenced by lesion
variability, which can be formulated as high intra-class
variance:

Var(X ly= k) is large , (3)

and low inter-class separability:
Dist(X|y=i,X|y=j)is small fori#j, (4)

Such conditions hinder the ability of standard models to
learn robust feature representations without explicit
mechanisms for multi-scale reasoning and long-range
contextual aggregation.

Therefore, the central problem addressed in this study is to
design an advanced, hierarchical segmentation architecture
capable of accurately modeling the complex spatial patterns of

1106 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

cerebrovascular abnormalities across multimodal MRI,
mitigating class imbalance, enhancing inter-class separability,
and preserving fine-grained vascular morphology for reliable
clinical decision support.

III. RELATED WORKS

A. Deep Learning for Cerebrovascular Lesion Segmentation

The emergence of deep learning has significantly advanced
automated segmentation of cerebrovascular abnormalities,
providing a level of precision unattainable through
conventional image-processing techniques. Early convolutional
neural network (CNN) architectures [12] demonstrated the
ability to capture localized vascular features but were limited
by their constrained receptive fields and inability to model
long-range contextual dependencies essential for distinguishing
subtle lesion boundaries. Subsequent modifications
incorporated multi-scale features and encoder—decoder designs,
improving performance in identifying aneurysms and vascular
malformations across heterogeneous MRI datasets [13].
Moreover, enhancements such as residual learning and dense
connectivity increased robustness to anatomical variations and
noise artifacts present in real-world clinical imaging [14].
Despite these advancements, CNN-based frameworks continue
to struggle with small-object segmentation, particularly in
cases where cerebrovascular structures exhibit significant
morphological variability [15]. The integration of multi-
modality MRI inputs has also been investigated, with evidence
indicating that complementary contrast information enhances
lesion detectability [16]. Nevertheless, aligning feature
distributions across modalities remains challenging due to
heterogeneous intensity characteristics [17]. Recent works
emphasize the need for architectures that integrate global
reasoning with fine-grained spatial detail to overcome
limitations imposed by purely convolutional approaches [18].

B. Transformer-based Methods for Cerebrovascular Lesion
Segmentation

Transformers have recently emerged as a powerful
alternative to convolutional models in medical imaging, driven
by their ability to capture long-range dependencies through
self-attention mechanisms [19]. Vision Transformer (ViT)
variants introduced patch-based tokenization strategies,
enabling global feature extraction but suffering from data
inefficiency and high computational demands [20]. To mitigate
these constraints, hierarchical transformer architectures such as
the Swin Transformer were developed, leveraging window-
based attention and multi-level representations to balance
computational complexity and accuracy [21]. Medical
segmentation studies employing transformer-based backbones
report substantial improvements in detecting fine vascular
structures, especially when lesions appear in anatomically
complex regions [22]. Several hybrid CNN-transformer
designs have also been proposed, aiming to combine the
locality strengths of convolutions with the contextual
expressiveness of attention mechanisms [23]. Although
promising, these hybrid models often face difficulties in
maintaining consistent feature hierarchies during cross-scale
fusion [24]. Recent literature highlights that hierarchical
attention schemes better preserve structural continuity in high-
resolution MRI data, particularly in tasks involving abnormal
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vascular networks [25]. Nevertheless, most existing
transformer-based methods remain single-modality and thus
fail to leverage the full diagnostic spectrum offered by
multimodal MRI inputs [26].

C. Multimodal MRI Fusion and Advanced Encoder—Decoder
Frameworks

Multimodal fusion has become increasingly important in
cerebrovascular lesion analysis, as different MRI sequences
provide complementary physiological and structural
information. Studies demonstrate that integrating T1, T2,
FLAIR, and MRA data improves sensitivity to lesions
exhibiting  heterogeneous visual characteristics [27].
Traditional fusion methods rely on simple concatenation or
handcrafied feature integration, but these approaches typically
fail to model complex inter-modality interactions [28]. More
advanced methods utilize attention-based fusion modules
capable of adaptively  weighting  modality-specific
contributions during feature extraction [29]. Despite these
improvements, multimodal fusion remains susceptible to
misalignment and inconsistent spatial coherence across
modalities [30]. Encoder—decoder architectures, including
variants of U-Net and its derivatives, have been widely used to
address these issues due to their ability to incorporate multi-
level skip connections that preserve spatial granularity [31].
Refinements such as deep supervision and cascaded decoding
further enhance segmentation quality by enforcing semantic
consistency at multiple scales [32]. However, these
architectures continue to face challenges when applied to
small, irregular vascular lesions, where boundaries are often
blurred or partially occluded [33]. Transformer-driven
encoder—decoder frameworks have recently been proposed,
offering improved cross-scale representation leaming and

enabling more effective reconstruction of complex
cerebrovascular geometries [34]. Nonetheless, existing
solutions  still lack sufficiently adaptive hierarchical

mechanisms for robust multimodal integration, motivating
further research into architectures that explicitly model both
global and local vascular signatures [35].

IV. MATERIALS AND METHODS

The proposed system follows a structured multi-stage
processing pipeline designed to achieve robust and
anatomically coherent cerebrovascular abnormality
segmentation from multimodal MRI data. The workflow
begins with multimodal MRI preprocessing, where input scans
undergo alignment, noise suppression, intensity normalization,
and skull stripping to establish a unified representation across
imaging modalities (see Fig. 2). Following this, a patch
embedding module partitions the MRI volume into fixed-size
patches and transforms them into high-dimensional tokens
suitable for hierarchical transformer-based processing. Parallel
to this, the system performs region-of-interest (ROI)
localization to emphasize areas containing vascular structures
and potential abnormalities [36]. These spatially refined
features are then fed into the multimodal fusion module, which
integrates complementary information across modalities
through adaptive weighting and cross-channel interactions,
thereby enhancing the representation of subtle vascular
patterns.
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Fig.2. The workflow of the proposed system.

Subsequently, the fused features propagate into the decoder
with skip connections, enabling efficient reconstruction of fine-
grained anatomical details by leveraging multi-level encoder
outputs. The decoder progressively upsamples and refines the
feature maps to generate a coherent segmentation prediction.
Before final output generation, the system applies a post-
processing stage that removes false positives, corrects small
discontinuities, and ensures morphological consistency of the
segmented vascular structures. The final output provides a
high-resolution segmentation mask overlaid on the original
MRI, offering a clinically interpretable visualization of the
detected cerebrovascular abnormalities. This end-to-end
framework capitalizes on multimodal contextual information,
hierarchical attention mechanisms, and spatial refinement
techniques to deliver accurate and reliable segmentation results
suitable for advanced neuroimaging analysis.

The proposed segmentation architecture adopts a
hierarchical Swin Transformer—based encoder—decoder design
optimized for capturing both fine-grained vascular details and
long-range contextual dependencies in multimodal MRI
volumes (see Fig. 3). Let the input image be denoted as

X e R | tepresenting a three-channel multimodal MRI
slice. The encoder first applies a patch partitioning operation
that divides the input into non-overlapping patches of size
Px P, yielding:

HW
p2

Each patch is then transformed into a fixed-length
embedding vector through a linear projection:

X, = (¥, XXy N= , (4)

z,=W,x, +b,, z,eR", (5)

forming the initial token sequence Z = [Zl,Zz,...,ZN] .
This process initiates Stage 1 of the encoder, where embedded

tokens are processed by multiple Swin Transformer blocks.
Each block utilizes shifted window self-attention, computed as:

SAQ,K,V)= Softmax[ OK” jV , (6)

Jd

where, O,K,V represent query, key, and value

projections of the token embeddings. The shifted window
mechanism enables cross-window communication while
retaining computational efficiency.

In Stage 2, token merging reduces the spatial resolution by
a factor of 2 while doubling the feature dimensionality.
Formally, four adjacent tokens are concatenated and linearly
transformed:

ZVij[Za’Zb’Zc’Zd]’ (7)

. . H W .
producing a feature set of size §><§><2C . This

hierarchical downsampling strategy strengthens the model’s
capacity to encode vascular structures of varying scales. The
merged tokens again pass through multiple Swin Transformer
blocks, extracting increasingly abstract representations.
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Fig. 3. Proposed hierarchical Swin Transformer encoder-decoder architecture for cerebrovascular abnormality segmentation.

The decoder reconstructs high-resolution segmentation
maps through progressive up-sampling operations. Let

F,,F,,F, denote the feature maps produced at different
encoder stages. The decoder computes:

ﬁk:Up(Flm—l)@Fk’ (8)

where, Up(-) denotes bilinear upsampling and @ signifies

channel-wise concatenation with skip connections. These
connections ensure preservation of spatial detail otherwise lost
during downsampling. Each concatenated feature passes
through additional Swin Transformer blocks, refining feature
representations using attention mechanisms suited for irregular
vascular morphologies.

The final prediction is generated by a segmentation head
composed of a 1x1 convolution followed by a softmax
activation:

Y= Soft max(Convlxl (ﬁl )) )

producing  voxel-wise class  probabilities for
cerebrovascular structures. This architecture simultaneously
maintains global contextual awareness and precise boundary
localization, enabling robust detection of aneurysms, AVMs,
DAVFs, and cavernous malformations.

V. DATA

The International Consortium for Brain Mapping (ICBM)
dataset is a widely used open-access neuroimaging resource
designed to provide high-resolution anatomical and vascular

information for computational modeling, structural brain
analysis, and neuroimaging algorithm development. The
dataset includes multi-contrast MRI acquisitions collected from
a large population of healthy adult subjects, offering
standardized TI1-weighted, T2-weighted, and proton-density
sequences. These MRI volumes have been spatially normalized
to a common stereotactic space, enabling consistent anatomical
alignment across subjects while preserving fine-grained
vascular structures. Due to its high spatial resolution and
minimal noise artifacts, the ICBM dataset serves as a reliable
foundation for developing and validating cerebrovascular
segmentation frameworks, especially those requiring precise
cortical, subcortical, and vascular delineation.

As illustrated in Fig. 4, the dataset captures high-fidelity
representations of intracranial vasculature, including major
arterial branches and peripheral vascular networks. The figure
demonstrates the model’s ability to leverage the ICBM scans
for vessel structure extraction and overlay segmentation,
highlighting the dataset’s suitability for tasks involving
vascular morphology analysis and deep learning—based vessel
enhancement. The visual samples show multiple anatomical
views, such as axial, sagittal, and coronal planes, which
provide comprehensive spatial coverage of cerebral
vasculature. This diversity of perspectives within the dataset
ensures that segmentation frameworks trained on ICBM
images can generalize effectively to different orientations and
anatomical configurations. Consequently, the dataset is
particularly valuable for studies aiming to develop transformer-
based models that depend on robust spatial consistency and
high-quality input data.
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Fig. 4. Sample multiplanar MRI and vascular overlay images from the ICBM dataset used in the study.

VI. EVALUATION PARAMETERS

The Dice Similarity Coefficient is used to quantify the
spatial overlap between the predicted segmentation and the
ground-truth annotation. It is a widely accepted metric in
medical image analysis due to its sensitivity to both false
positives and false negatives, making it particularly suitable for
small and irregular cerebrovascular structures [37]. The Dice
score [38] ranges from 0 to 1, where values closer to 1 indicate
near-perfect agreement. Formally, it is defined as:

= (10)

where, P denotes the set of voxels predicted as lesion and G
represents the corresponding ground-truth set.

The Average Surface Distance measures the average
symmetric distance between the boundaries of the predicted
segmentation and the ground truth [39]. Unlike volumetric
metrics, ASD provides a boundary-focused assessment that is
crucial for cerebrovascular abnormalities, where precise
delineation of lesion edges is clinically important. A lower
ASD value indicates more accurate boundary adherence. ASD
is defined as:

ASD(P, G)

> d(p.S
|S |+|S | PeSp PESG
where, S, and S}, are the surfaces of the prediction and
ground truth, respectively, and the surfaces of the prediction
and ground truth, respectively, and d ) denotes the minimal
Euclidean distance.

Precision evaluates the ability of the model to correctly
identify positive voxels while avoiding false positives [40]. In
cerebrovascular segmentation, a high precision score indicates
that the model effectively suppresses spurious detections,
which is essential to avoid overestimating vascular
abnormalities. The metric is computed as:

.. TP
precision= m (12)

where, TP denotes true positives and FP denotes false
positives.

Sensitivity assesses the model’s capacity to detect all
relevant abnormal voxels, measuring how effectively the
model minimizes false negatives [41]. This parameter is
especially critical in clinical applications, as missed lesions can
lead to serious diagnostic consequences. Sensitivity is
expressed as:

sensitivity = % (13)
+

where, FN denotes false negatives. Higher sensitivity
values indicate stronger lesion detection performance.

Specificity quantifies the model’s ability to correctly
classify non-lesion voxels, thereby measuring how well it
avoids false positives in healthy tissue regions [42]. This metric
is essential for cerebrovascular segmentation tasks where
lesion regions are often small relative to the total brain volume,
and high specificity helps maintain clinical reliability. The
metric is defined as:

TN

specifity = TN+ FP’ (14)
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where, TN denotes true negatives. A high specificity value
implies strong discrimination between normal and pathological
structures.

VII. RESULTS

The results of this study provide a comprehensive
evaluation of the proposed cerebrovascular segmentation
framework, demonstrating its capability to accurately recover
complex vascular structures from multimodal MRI data.
Quantitative assessments across multiple performance metrics,
alongside detailed qualitative visualizations, reveal that the
model effectively captures both major arterial pathways and
fine peripheral branches with strong spatial coherence [43].
Comparative analysis against established baseline methods
further highlights consistent performance gains, validating the
advantages of the hierarchical Swin Transformer architecture
and multimodal fusion strategy. Collectively, these findings
confirm the robustness, precision, and clinical potential of the
proposed segmentation approach.

Fig. 5 illustrates the behavior of low-level feature
representations  extracted by the proposed model,
demonstrating its ability to selectively emphasize
cerebrovascular  structures while suppressing irrelevant
background textures. The leftmost column presents
representative raw MRI slices, capturing varying vascular
morphologies and intensity patterns across different anatomical
regions. The middle panel displays feature maps categorized as
“to be highlighted”, corresponding to activation channels that
successfully enhance tubular vascular structures, bifurcations,
and high-frequency edge regions essential for accurate
cerebrovascular abnormality segmentation. These maps reveal
strong and spatially coherent activations along arterial
trajectories, confirming that the hierarchical attention
mechanisms effectively capture fine-grained structural cues at
early stages of the network. In contrast, the rightmost panel
presents feature maps that are “to be restricted”, visualizing
channels whose activations predominantly correspond to noise,
irrelevant  tissue textures, or non-vascular anatomical

Ground truth

Vol. 16, No. 12, 2025

components. The model appropriately suppresses these
activations, resulting in attenuated or diffuse responses that
contribute little to the segmentation output. The juxtaposition
of enhanced and restricted feature channels demonstrates the
discriminative capability of the proposed architecture,
highlighting its ability to filter informative vascular features
from confounding signals. Overall, Fig. 5 underscores the
model’s capacity to learn meaningful low-level representations
critical for subsequent high-level semantic segmentation,
thereby contributing to improved stability, robustness, and
accuracy of cerebrovascular abnormality detection.

N

.

Raw slices

Feature maps to be highlighted

Feature maps to be restricted

Fig. 5. Examples of low-level channel maps of objects that should be
highlighted or inaccessible for viewing fragments.

Proposed model

Fig. 6. Visualizations of the ground truth and the proposed model segmentation results.
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Fig. 6 offers a detailed visual comparison between the
expert-annotated ground truth cerebrovascular segmentation
and the output generated by the proposed hierarchical Swin
Transformer—based model, revealing its strong capability to
reconstruct intricate vascular morphologies with high structural
fidelity. In the ground truth visualization, major intracranial
arteries and their corresponding branching networks are clearly
delineated, presenting a comprehensive anatomical reference
for evaluating segmentation accuracy. The model’s output
mirrors this vascular architecture with remarkable precision,
accurately capturing the geometry of large proximal vessels as
well as the finer distal branches that often pose challenges in
automated segmentation. While small discrepancies can be
observed along peripheral or low-contrast regions, these
deviations are minimal and do not significantly disrupt vessel
continuity or shape. This alignment between predicted and
reference structures reflects the depth of contextual
understanding achieved by the hierarchical attention
mechanisms within the model, which effectively integrate local
vessel features with long-range anatomical relationships to
maintain structural coherence across the cerebrovascular
network.

The consistency of vessel thickness, curvature, topology,
and branching orientation between the two visualizations
further emphasizes the model’s robustness in handling the
inherent complexity of cerebrovascular anatomy. Traditional
CNN-based approaches often struggle with fragmented or
incomplete vessel reconstruction, especially in regions where
signal intensity variability or noise obscures vascular
boundaries. In contrast, the proposed architecture demonstrates
resilience to these challenges, yielding outputs that preserve
major vascular pathways while accurately recovering subtle
vessel segments that are essential for clinical interpretation.
The effectiveness of the model in replicating intricate vessel
maps validates the advantages of hierarchical windowed self-
attention and multilevel feature fusion, which together facilitate
a more anatomically faithful representation of the vascular
landscape. Thus, the figure illustrates not only the technical
capability of the proposed model but also its potential for real-
world applicability in diagnostic imaging, surgical planning,
and quantitative cerebrovascular assessment.

Fig. 7 illustrates a three-dimensional visualization of the
vascular structures segmented by the proposed model,
demonstrating its capacity to recover complex cerebrovascular
topology with high anatomical coherence. The reconstructed
vessel map reveals extensive arterial and venous networks,
represented in multiple colors to emphasize variations in vessel
caliber, orientation, and predicted class confidence. Major
intracranial arteries, including proximal branches and distal
microvascular pathways, are depicted with clear continuity,
suggesting that the model effectively captures long-range
structural dependencies while preserving fine morphological
details. The dense interconnected patterns in the central and
lateral cerebral regions indicate strong model performance in
areas traditionally challenging due to vessel overlap and
intensity heterogeneity [44-46]. Additionally, the presence of
green and red segments highlights regions of lower confidence
or subtle deviations, offering insight into the model’s
sensitivity to ambiguous boundaries and extremely thin

Vol. 16, No. 12, 2025

vessels. Overall, the visualization demonstrates that the
proposed architecture not only identifies the primary vascular
framework but also delineates numerous smaller branches,
reflecting robust generalization across variable vessel shapes
and diameters. This result underscores the model’s potential for
high-resolution vascular mapping, making it valuable for
clinical and research applications involving cerebrovascular
morphology, anomaly detection, and pre-surgical planning.

Fig. 7. Visual segmentation of the proposed model.

Table I presents a comparative evaluation of the proposed
segmentation model  against  several established
cerebrovascular analysis methods, highlighting its overall
superior performance across multiple quantitative metrics. The
proposed architecture achieves the highest Dice coefficient
among all compared approaches, indicating a more accurate
overlap between predicted and reference vessel regions and
demonstrating its ability to capture both large wvascular
structures and fine-grained peripheral branches. Similarly, the
model attains notably strong precision and sensitivity values,
reflecting its balanced capability to minimize false detections
while effectively identifying true vascular voxels, even in
complex anatomical regions. Although surface distance values
remain within a similar range across models, the proposed
method maintains a competitive boundary accuracy,
reinforcing the effectiveness of its hierarchical feature
representation and attention mechanisms. Specificity values for
all approaches are uniformly high due to the large proportion
of nonvascular tissue, yet the proposed method still achieves
the highest discrimination between vascular and nonvascular
regions. Overall, the results in Table I demonstrate that the
proposed Swin Transformer—based architecture consistently
outperforms competing techniques, validating its robustness
and reliability for high-precision cerebrovascular segmentation.
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TABLEI. COMPARATIVE PERFORMANCE EVALUATION OF THE PROPOSED MODEL AGAINST EXISTING METHODS
Model Dice Average Surface Distance Precision Sensitivity Specificity

Proposed Model 0.849 2.59 86.8 87.95 99.97
DeepGlioSeg: advanced glioma MRI data segmentation [47] 0.826 2.28 814 81.72 99.91
Hybrid contextual semantic network [48] 0.808 2.32 81.7 82.48 99.83
Deep Leaming based Framework [49] 0.807 2.28 86.2 83.45 99.79
AGNet: attention-guided global U-Net [50] 0.792 2.27 84.4 82.87 99.64
MSA-Net: An Efficifent Attention-aware 3D Network for Brain 0.829 546 36.3 84.75 99 89
Tumor Segmentation in MRI [51]

IS-Net: Automatic ischemic stroke lesion segmentation [52] 0.837 245 86.4 86.46 99.28

VIII. DISCUSSION

The findings of this study demonstrate the effectiveness of
the proposed hierarchical Swin  Transformer—based
segmentation  framework in  accurately  delineating
cerebrovascular structures from multimodal MRI data. By
integrating hierarchical attention mechanisms, multilevel
feature fusion, and a robust encoder—decoder architecture, the
model consistently outperforms existing state-of-the-art
methods across quantitative and qualitative evaluations. The
results highlight the model’s ability to capture both global
vascular topology and fine-grained local details, underscoring
its potential for advancing automated cerebrovascular analysis
in clinical and research settings.

A. Overall Performance and Strength of the Proposed
Architecture

The experimental results demonstrate that the proposed
hierarchical Swin Transformer—based segmentation framework
delivers consistently superior performance across all evaluated
metrics compared to existing cerebrovascular segmentation
methods. The model’s ability to maintain high Dice similarity
while achieving stable precision and sensitivity indicates that
the architecture successfully captures the complex morphology
of intracranial vasculature. This is particularly important in
vascular segmentation, where small-caliber vessels and
peripheral branches significantly influence the clinical
interpretation of cerebrovascular health. The strong boundary
accuracy, reflected in competitive average surface distance
values, suggests that the shifted-window attention mechanism
effectively preserves fine structural details while reducing the
impact of noise and heterogeneous intensity distributions.
These findings confirm that combining hierarchical attention
with multilevel feature aggregation provides a robust
mechanism for leaming discriminative representations
necessary foraccurate vessel extraction in multimodal MRL

The qualitative analysis further reinforce these
observations. Visualizations presented in Fig. 6 and Fig. 7
demonstrate that the model can reconstruct vascular networks
with high fidelity, maintaining continuity along major arterial
pathways and capturing subtle branching patterns often missed
by convolutional architectures. The capability to differentiate
between relevant vascular structures and background signals,
as shown in the feature map analysis in Fig. 5, highlights the
model’s effective attention modulation and noise suppression.
Together, these results underscore the framework’s ability to

generate clinically meaningful segmentation outputs that
closely approximate expert annotations.

B. Comparison with State-of-the-Art Methods

Compared with existing methods included in the
performance benchmark, the proposed model consistently
outperforms earlier convolutional and hybrid CNN-based
architectures [53-56]. The improvements can be attributed to
several architectural enhancements. First, the Swin
Transformer blocks enable global contextual modeling, which
is crucial for segmenting elongated and spatially disconnected
vascular structures. Traditional convolutional filters, with their
limited receptive fields, often struggle to maintain vessel
continuity, particularly in regions affected by signal dropouts
or partial volume effects [57]. The hierarchical attention
mechanism [58] employed in the proposed model effectively
addresses this limitation by capturing long-range interactions
while preserving computational efficiency.

Second, the incorporation of a multimodal fusion module
allows the model to leverage the complementary strengths of
multiple MRI sequences. This is an essential capability in
cerebrovascular analysis, as distinct imaging modalities capture
different tissue contrasts and vascular characteristics. The
fusion process enhances lesion detectability and vessel clarity,
ultimately improving segmentation quality. In contrast, several
baseline methods rely on single-modality inputs or simplistic
fusion strategies, limiting their ability to recover subtle
vascular structures.

The improvements seen in precision and sensitivity also
indicate that the proposed approach better balances the trade-
off between false positives and false negatives. Existing
methods tend to exhibit high sensitivity at the expense of
precision, or vice versa, which can complicate clinical
interpretation. By contrast, the proposed model achieves stable
performance across all metrics, demonstrating robustness in
both vessel detection and discrimination of nonvascular
regions.

C. Clinical and Practical Implications

Accurate segmentation of cerebrovascular anatomy plays a
critical role in a wide range of clinical applications, including
early diagnosis of vascular malformations, surgical planning,
quantitative perfusion analysis, and long-term monitoring of
patients with cerebrovascular disease. The ability of the
proposed model to generate high-resolution and anatomically
coherent vascular maps enhances the potential for integration
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into computer-aided diagnostic (CAD) systems [59]. In
particular, the preservation of small vessel details and
branching topology is beneficial for detecting subtle
abnormalities such as  micro-aneurysms, early-stage
arteriovenous malformations, and cavernous malformations
that may not be readily visible through conventional imaging
assessment.

Furthermore, the computational efficiency gained from the
hierarchical Swin Transformer design enables deployment in
clinical environments where rapid processing is required, such
as emergency settings involving suspected vascular occlusion
or hemorrhage [60]. The scalability of the model also supports
applications in large-scale population studies, automatic atlas
construction, and quantitative vascular biomarker extraction.
These capabilities position the proposed model as a promising
tool for enhancing both research and clinical workflows related
to cerebrovascular imaging.

D. Limitations and Future Directions

Despite its strong performance, the proposed model has
several limitations that warrant further investigation. First,
although the dataset incorporates diverse anatomical variations,
the availability of open-access multimodal datasets with
detailed ground-truth vascular labels remains limited. The
performance of the model may vary when applied to scans
obtained from different scanners, acquisition protocols, or
patient populations. Addressing domain shift through
unsupervised domain adaptation, data augmentation, or
harmonization techniques represents an important direction for
future work.

Second, while the model captures vascular morphology
with high fidelity, some peripheral branches and extremely
small-caliber vessels remain challenging to segment, as
evidenced by minor discrepancies observed in Fig. 6 and
Fig. 7. Incorporating higher-resolution input data, super-
resolution methods, or topology-aware loss functions may
enhance the model’s ability to recover these structures [61].
Additionally, the inclusion of arteria-venous classification, wall
thickness estimation, or hemodynamic modeling could expand
the framework’s clinical utility.

Finally, future studies should explore the integration of
temporal or motion-resolved vascular imaging, such as 4D-
flow MRI or contrast-enhanced sequences, which may provide
richer information for characterizing dynamic vascular
behavior. Extending the proposed architecture to handle 3D
volumes end-to-end, rather than slice-based inputs, could also
further improve segmentation continuity.

IX. CONCLUSION

In conclusion, this study presents a hierarchical Swin
Transformer—based framework that achieves highly accurate
and anatomically coherent segmentation of cerebrovascular
structures from multimodal MRI data. By integrating patch-
level embedding, hierarchical attention mechanisms, and
multilevel encoder—decoder reconstruction, the proposed
model effectively captures both global vascular topology and
fine-grained structural detail, addressing key challenges
associated with cerebrovascular imaging such as intensity
variability, small-vessel visibility, and morphological

Vol. 16, No. 12, 2025

complexity. Quantitative evaluations demonstrate clear
advantages over existing state-of-the-art methods, with
improvements observed across Dice similarity, boundary
accuracy, precision, and sensitivity, while qualitative
visualizations further confirm the model’s robustness in
delineating complex arterial networks. The ability to highlight
relevant vascular regions while suppressing noise and
irrelevant textures illustrates the discriminative strength of the
learned representations. Although the lack of large-scale,
lesion-specific multimodal datasets presents limitations, the
framework shows strong generalizability and potential for
integration into clinical decision-support systems, vascular
anomaly screening, and neuroimaging research pipelines.
Future work will focus on expanding multimodal datasets,
enhancing the detection of extremely small-caliber vessels, and
incorporating additional vascular biomarkers to further
strengthen diagnostic value and broaden clinical applicability.
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