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Abstract—This study presents a multi-scale ROI-aligned deep
learning framework designed to advance automated road
damage detection and severity assessment using high-resolution
roadway imagery. The proposed architecture integrates
hierarchical feature extraction, a road-damage proposal
network, and refined ROI-aligned encoding to capture both fine-
grained local anomalies and broader contextual patterns across
diverse pavement conditions. Leveraging the RDD2020 dataset,
the model effectively identifies multiple defect categories,
including longitudinal cracks, transverse cracks, alligator
cracking, and potholes, achieving strong convergence behavior
and stable generalization across training and validation phases.
Quantitative evaluations reveal high detection accuracy and
smooth loss reduction over 500 learning epochs, while qualitative
visualizations demonstrate precise localization and robust
classification of damages under varying environmental and
structural complexities. The framework consistently maintains
performance in challenging scenes featuring shadows, cluttered
backgrounds, low contrast, or irregular defect geometries,
underscoring the benefits of multi-scale fusion and ROI
alignment mechanisms. Although slight fluctuations in validation
metrics indicate the presence of inherently difficult samples, the
overall results affirm the model’s capability to support large-
scale, real-time road monitoring systems. The findings highlight
the potential of the proposed approach to significantly enhance
intelligent transportation infrastructure, offering an efficient and
reliable solution for proactive pavement maintenance and
improved roadway safety.
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L INTRODUCTION

The rapid deterioration of road infrastructure, influenced by
increasing traffic volumes, climatic variability, and extended
pavement lifecycles, has intensified the global demand for
automated road-damage monitoring systems capable of
supporting timely and cost-effective maintenance planning [1].
Traditional inspection approaches, including manual surveys
and specialized monitoring vehicles, remain labor-intensive,
subjective, and difficult to scale, which often results in
inconsistent assessments across municipalities and road
networks [2]. With the advancement of computer vision and
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deep learning, data-driven frameworks have begun to offer
more reliable, efficient, and high-throughput alternatives,
enabling automatic extraction of discriminative visual cues
from imagery captured via smartphones, dash-mounted
cameras, and unmanned aerial systems [3]. However, real-
world road environments introduce considerable complexity
due to varying illumination conditions, inconsistent viewing
angles, heterogeneous materials, and the high morphological
diversity of damages such as potholes, longitudinal and
transverse cracks, rutting, and faded markings [4]. These
variations make precise localization and classification
challenging, particularly when the goal extends beyond mere
detection toward severity estimation, a critical requirement for
prioritizing repairs within modern asset-management pipelines

[5].

To confront these difficulties, multi-scale deep feature
representations have emerged as an effective strategy capable
of capturing both localized texture irregularities and larger
contextual patterns that characterize road defects [6].
Complementary components such as Region-of-Interest
alignment have further enhanced detection reliability by
maintaining geometric fidelity when mapping proposal regions
into fixed-resolution feature embeddings [7]. Nonetheless,
many existing systems treat detection and severity assessment
as separate steps, creating multi-stage pipelines that suffer from
error  propagation, reduced robustness, and limited
generalizability in diverse deployment conditions [8].
Addressing these shortcomings, the present study introduces a
unified deep learning architecture that integrates multi-scale
feature extraction, a dedicated damage-proposal network, ROI-
aligned feature encoding, and a global context branch within a
cohesive end-to-end framework [9]. By embedding severity
regression directly into the detection head, the proposed model
ensures smoother information flow, higher stability, and
improved adaptability across heterogeneous road environments
[10].

This integrated approach is designed to deliver more
accurate, interpretable, and scalable road-damage analytics,
supporting smarter maintenance strategies and enhancing
roadway safety within intelligent transportation systems.
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II.  RELATED WORKS

A. Deep Learning for Road Damage Detection

Deep learning has transformed the landscape of automated
road inspection, enabling models to learn discriminative
patterns from large, heterogeneous datasets rather than relying
on handcrafted features [11]. Early convolutional neural
network (CNN) approaches demonstrated the feasibility of
detecting potholes and cracks under varied environmental
conditions, but they struggled with generalization when faced
with complex urban scenes or low-contrast defects [12].
Subsequent advancements introduced deeper architectures and
residual blocks that enhanced feature extraction, yet the rigid
receptive fields of conventional CNNs limited their capacity to
capture spatial relationships between damages and surrounding
road structures [13]. Studies leveraging multi-path
convolutional backbones reported improved robustness to
texture variations and illumination changes, highlighting the
need for richer multi-dimensional representations [14].
However, despite notable performance gains, these
architectures often remained sensitive to camera viewpoint
shifts and struggled to distinguish small-scale defects from
background noise, emphasizing the need for more context-
aware frameworks [15].

B. Multi-Scale Feature Representation

A substantial body of research has attempted to address the
limitations of single-scale feature extraction through multi-
scale learning strategies [16]. Techniques such as feature
pyramid networks (FPNs) enabled hierarchical fusion of high-
resolution and semantically rich feature maps, substantially
strengthening the detection of small, sparse, or elongated
damages like longitudinal cracks [17]. Multi-resolution
approaches also enhanced model resilience against scale
variations introduced by diverse camera heights, road widths,
and sensing platforms [18]. More recent works explored dilated
convolutions, deformable kernels, and progressive feature
aggregation to enlarge the effective receptive field without
compromising spatial precision [19]. These efforts collectively
demonstrated that multi-scale representations improve both
recall and localization accuracy, although their integration with
downstream detection heads remained computationally
demanding, especially in real-time settings [20]. The persistent
challenge has been designing architectures that balance rich
hierarchical information with inference efficiency suitable for
widespread deployment [21].

C. Region-Based Detection and ROI Alignment

Region-based detection frameworks have become a
cornerstone for road-damage analysis due to their ability to
generate structured proposals and refine spatial boundaries
with high precision [22]. Region Proposal Networks (RPNs)
introduced in object detection literature have been adapted to
road-damage tasks to isolate candidate areas and reduce false
positives stemming from shadows, lane markings, and water
patches [23]. However, traditional pooling operations in these
frameworks often introduce misalignment between feature
maps and ROI coordinates, negatively affecting bounding box
regression accuracy [24]. ROI Align, an improved pooling
mechanism, mitigated these distortions by applying bilinear
interpolation, significantly enhancing the detection of small
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defects and improving overall confidence scores [25].
Integrating ROI-aligned heads into road-damage pipelines also
facilitated more coherent multi-task learning, but these models
frequently struggled when global context was insufficiently
modeled, limiting performance in cluttered or visually
ambiguous settings [26].

D. Global Context and Attention Mechanisms

Global context modeling has emerged as a critical
advancement for interpreting complex road environments
where damages may be partially occluded or visually blended
with textured surfaces [27]. Attention-based architectures
introduced powerful mechanisms to dynamically weight
important regions while suppressing irrelevant background
features, thereby improving class discrimination and structural
consistency [28]. Self-attention modules, particularly those
used in large-scale vision transformers, enabled models to
capture long-range dependencies across entire road scenes,
outperforming CNN-based architectures in  nuanced
segmentation tasks [29]. Hybrid approaches combining
convolutional backbones with transformer-based context
branches further enriched semantic understanding while
maintaining computational feasibility [30]. Despite these
breakthroughs, attention-heavy networks often require
extensive computational resources and large labeled datasets,
which remain challenging for municipalities and research
groups with limited annotation budgets [31].

E. Severity Assessment and Multi-Task Frameworks

Severity estimation has become an emerging research
frontier, as infrastructure maintenance strategies increasingly
demand quantifiable assessments rather than simple binary
detection [32]. Early attempts relied on handcrafted geometric
measurements derived from segmentation masks, but these
approaches were highly sensitive to noise and often lacked
robustness across different pavement types [33]. Multi-task
learning frameworks introduced joint optimization of detection,
classification, and severity regression, demonstrating
substantial gains in predictive stability and interpretability [34].
More advanced systems integrated depth cues, global context,
and hierarchical feature fusion to better capture structural
deformation patterns associated with severe potholes and deep
cracks [35]. Nevertheless, existing models frequently treat
severity prediction as a loosely coupled auxiliary task, resulting
in fragmented pipelines with limited generalizability across
diverse geographic and environmental conditions [36].
Addressing these challenges requires unified end-to-end
architectures capable of harmonizing multi-scale feature
extraction, ROl-aligned representations, and contextual
reasoning to produce reliable and actionable severity estimates
for real-world road networks [37].

III. MATERIALS AND METHODS

The methodological foundation of this study is built upon a
unified multi-scale deep learning framework designed to detect
and assess the severity of heterogeneous road surface damages
using high-resolution RGB imagery. As illustrated in Fig. 1,
the proposed pipeline integrates a hierarchical feature
extraction backbone, a dedicated road-damage proposal
module, ROI-aligned feature encoding, and a dual-branch
detection head capable of jointly performing classification,
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localization, and severity regression. This architecture was
engineered to capture both fine-grained local texture
irregularities and broader contextual structures across multiple
spatial resolutions, ensuring reliable performance under diverse
environmental conditions and complex road geometries. The
subsequent subsections provide a detailed exposition of the
datasets, preprocessing procedures, network architecture,
mathematical formulations, and training strategy that
collectively enable the model’s robust and scalable operation.

A. Data Preprocessing

The proposed framework is designed for large-scale road-
damage detection and severity estimation using RGB images
captured from vehicle-mounted cameras. All images were
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resized to 1024x1024 pixels,
normalization defined as:

followed by per-channel

Inorm (x’ y’ c) = I(x’ y,O_C) — #C 4

c

)

where, [ (x, y,c) is the pixel intensity at position (x, y)
and channel ¢ and 4., O, represent the dataset mean and

standard deviation for each channel. To enhance
generalization, the dataset was augmented using random
horizontal flipping, illumination shifts, Gaussian noise
injection, and perspective warping.

Stage 1 Stage 2 Global g Convolutional layer
Conv,+ BN+ & Rasidual > context FOI/ROI Align
RELU, strid 2 blockx N branch / ;

Input road image

Fully connected layer

Fig. 1.

B. Multi-Scale Backbone Network

The architecture begins with an input image processed by
Stage 1, consisting of a convolutional layer with batch
normalization and ReLU activation. The convolutional output
is defined as:

F, =Re LU(BN(W, *1)), @)

With stride § = 2. Stage 2 extends the backbone using N
residual blocks, each formulated as:

F,, =H(F), 3)

- N
Detection
head
Mu|ti_sca|e 80X 80 20)(20 10)(10
feature maps o -
Road Damage Detection head Damage cclass
proposal network > prediction
Fc pothole, crack,
Y rutting, faded
ROI Align 17x7 marking, background
Bounding box x, v, w, h),
X7 . . ;
and severity regression severity score
Road Damage & J
proposal network Optional
J
Y

Image level road
damage likellhood

The proposed multi-scale ROI-aligned deep learning architecture for automated road damage detection and severity assessment.

where, H () is a two-layer residual mapping with
convolution, normalization, and activation.

Feature maps are extracted at resolutions 80x80 ,

40%x40 , 20x20, and 10x10 enabling hierarchical
representations. Multi-scale fusion is performed using:

K
F, (i)=Y a, -Upsample(F,),

k=1

3)

where, &, are learnable weights normalized via softmax.
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C. Road Damage Proposal Network

The Road Damage Proposal Network (RDPN) generates
candidate bounding boxes using anchors at multiple scales. For
an anchor a, the proposal p is computed as:

p= O'(WPTFmS), @)

Proposals are processed through Non-Maximum
Suppression (NMS) with IoU threshold:

loU(4 B)=M (5)
|4’

D. ROI Align and Feature Encoding

Selected proposals are transformed into fixed-size 7 x 7
aligned feature grids using ROI Align. For a sampling location
(x, y), the aligned feature value is obtained through bilinear
interpolation:

FROI(x’y)Z Wi'Fms(xnyi)’ (6)

M-

i=l1
where, W, are interpolation weights.

E. Detection Head and Severity Regression

The detection head processes the aligned feature tensor
through a fully connected layer:

z= ¢(Wf 'vec(FROI)—i-bf), (7)

where, ¢ is ReLU. Damage classification outputs

probabilities for damage types (pothole, crack, rutting, etc.) via
softmax:

Plclz)==—, (8)

a.
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Bounding box regression is optimized using Smooth-L1
loss:

0.5d), |d|<1

, ©)
|d | —0.5, otherwise

bbox

where, d is the difference between predicted and ground-
truth parameters.

Severity is estimated using a continuous regression head:

(10)

s=w z+b,,
Scaled to the interval [0,1].

F. Image-Level Damage Likelihood (Optional Module)

An optional global severity estimator aggregates proposal-
level scores:

1M
L =—>»g¢ 11
MZ (11)

where, M is the number of detected damages.

IV. DATA

The experiments conducted in this study utilize the
RDD2020 dataset [38], a large, multi-national benchmark
curated for automated road damage detection and analysis.
This dataset aggregates road-surface imagery from Japan,
India, and the Czech Republic, thereby capturing a wide
spectrum of pavement materials, climatic conditions, traffic
densities, and road maintenance standards. Such geographical
diversity introduces substantial variance in texture,
illumination, camera perspectives, and background clutter,
making RDD2020 a rigorous and representative testbed for
developing robust deep learning models. The dataset consists
of thousands of annotated RGB images with varying
resolutions, each manually labeled using standardized defect
categories to ensure consistency across all contributing regions.

c. d.

Fig.2. Sample road-surface images from the RDD2020 dataset illustrating diverse damage categories including longitudinal cracks (D00), transverse cracks
(D10), alligator cracks (D20), and potholes (D40).

Fig. 2 presents a representative illustration of the visual
characteristics found within RDD2020, showcasing the
complex structural patterns and environmental variability
inherent in real-world road scenes. The dataset emphasizes four

primary categories of surface distress. Longitudinal cracks
(D00) typically appear parallel to the direction of vehicle
movement and arise from thermal or mechanical stresses.
Transverse cracks (D10), oriented perpendicular to the
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roadway axis, commonly reflect seasonal temperature
fluctuations or subgrade instability. Alligator cracks (D20)
exhibit highly fractured, mesh-like patterns indicative of
advanced pavement fatigne and are among the most
challenging anomalies to detect due to their irregular
morphology. Potholes (D40), formed through progressive
surface degradation and moisture infiltration, represent critical
safety hazards requiring immediate intervention. These
categories collectively encapsulate the most prevalent damage
modes encountered across global road networks.

V. COMPUTATIONAL ENVIRONMENT AND EQUIPMENT

The training and evaluation of the proposed multi-scale
ROIl-aligned framework were conducted using a high-
performance computing environment optimized for large-scale
deep learning workloads. The core computational hardware
consisted of a workstation equipped with an NVIDIA RTX
4090 GPU featuring 24 GB of GDDR6X memory, enabling
efficient processing of high-resolution road-surface imagery
and supporting extensive backpropagation through multi-
branch neural architectures. The system operated on an AMD
Ryzen 9 multi-core processor with 64 GB of DDR5 RAM,
providing the necessary throughput for concurrent data
preprocessing, augmentations, and model inference operations.
All experiments were executed under a 64-bit Ubuntu Linux
environment, ensuring stable driver support and optimized
CUDA kemel performance for GPU-accelerated tensor
computations.

TABLEI. HARDWARE AND SOFTWARE SPECIFICATIONS FOR MODEL
TRAINING
Component Specification
GPU NVIDIA RTX 4090 (24 GB GDDR6X)
CPU AMD Ryzen 9 (multi-core)

System Memory 64 GB DDR5 RAM

Operating System Ubuntu Linux 64-bit

Deep Leamning Framework PyTorch 2.x

GPU Accelerators CUDA + cuDNN

Additional Libraries OpenCV, NumPy, Matplotlib

Training Precision Mixed-precision (FP16/FP32)

Data Loading Multi-threaded PyTorch DataLoader

The computational configuration used in this study is
summarized in Table I, which outlines the hardware and
software components that supported all training and evaluation
procedures. This setup provided sufficient GPU memory,
processing capability, and optimized deep learning libraries to
ensure efficient model convergence and stable experimental
reproducibility.

VI. EVALUATION PARAMETERS

To quantitatively assess the performance of the proposed
multi-scale  ROI-aligned framework, several standard
evaluation metrics were employed to capture detection
accuracy, localization precision, and regression stability. The
primary metric for object-level correspondence was the
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Intersection over Union (IoU) [39], defined for a predicted
bounding box Bp and a ground-truth box Bg as:

lM
L =—>»5s 12
MZ (12)

which determines whether a predicted instance is
considered a true positive under a fixed threshold (typically
0.5). Building on IoU-based assignment, the framework’s
classification quality was measured using Precision, Recall,
and F1-score [40-42], defined respectively as:

recision = L (13)
P TP+ FP’
recall = L (14)
TP+ FN
Fl—score—2 precistion- recall (15)

. . b
precision+ recall

where, TP, FP , and FN denote true positives, false

positives, and false negatives. These metrics collectively
quantify the model’s ability to correctly identify damaged areas
while minimizing erroneous detections.

To evaluate localization accuracy, we employed the Mean
Average Precision (mAP) across all defect categories. For a
class ¢, the Average Precision (AP) [43] is computed as the

numerical integral of the precision—recall curve:

1
AP, = I precision, (recall)d(recall),  (16)
0

and mARP is obtained by averaging AP across the four RDD
damage classes:

C
mAP=%ZAPC, (17)
c=1

with C' =4 for D00, D10, D20, and D40. This provides a
unified measure of how well the model performs across
heterogeneous defect types.

For severity estimation, the regression head was evaluated
using the Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE), formulated as:

1 ¢ A
MAE=—Z|si—S[ , (18)
N3
where, §; and §i represent the ground-truth and predicted

severity scores. These metrics quantify how accurately the
framework models the continuous severity scale, penalizing
both small deviations and larger estimation errors.
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Together, these evaluation parameters ensure a
comprehensive assessment of the proposed model’s detection
reliability, spatial accuracy, and severity prediction
capabilities.

VII. RESULTS

The results obtained from the proposed multi-scale ROI-
aligned framework provide a comprehensive evaluation of its
effectiveness in detecting and assessing road surface damages
across diverse real-world environments. This section presents
both quantitative findings, including accuracy, loss
convergence, and evaluation metrics, as well as qualitative
analyses that illustrate the model’s ability to robustly localize
and classify various defect categories [44-46]. Through
detailed visual examples and performance curves, the results
highlight the stability, generalization capability, and practical
relevance of the developed system, offering clear evidence of
its potential for deployment in automated road inspection and
maintenance applications.

Fig. 3 illustrates the evolution of training and validation
accuracy across 500 learning epochs, demonstrating the
progressive convergence and stability of the proposed model.
Both accuracy curves exhibit a rapid initial increase during the
first 50 epochs, indicating efficient learning of fundamental
feature representations. As training progresses, the curves
gradually transition into a slower, asymptotic improvement
phase, ultimately approaching values near 0.95, which reflects
strong generalization capability. The close alignment between
training and validation accuracy throughout the optimization
process suggests that the model -effectively mitigates
overfitting, maintaining consistent performance on unseen
data. Minor fluctuations in the validation curve, particularly in
the mid-to-late epochs, are expected in complex, real-world
datasets but remain within a narrow range, further confirming
the robustness and stability of the learning process. Overall,
Fig. 3 validates the efficacy of the model architecture and
training strategy in achieving high detection accuracy over
extended training iterations.

Fig. 4 presents the training and validation loss trajectories
over 500 epochs, offering insight into the optimization
dynamics and convergence behavior of the proposed model.
Both curves exhibit a steep decline during the initial epochs,
indicating rapid minimization of prediction error as the model
assimilates core structural patterns within the training data. As
training progresses, the loss values continue to decrease
gradually, ultimately approaching near-zero levels, which
reflects strong model fitting and stable learning. The validation
loss closely follows the training loss throughout the entire
learning process, with only minor fluctuations, suggesting that
the model maintains good generalization performance without
exhibiting notable overfitting tendencies. These small
oscillations in the validation curve are characteristic of real-
world datasets containing diverse road textures and variable
environmental conditions, yet their narrow amplitude further
reinforces the robustness of the proposed architecture. Overall,
Fig. 4 provides compelling evidence that the training strategy
effectively drives loss reduction while ensuring consistent
validation performance across extended training durations.
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Fig. 5 illustrates representative qualitative outcomes
produced by the proposed multi-scale ROI-aligned detection
framework, showcasing its ability to accurately localize and
classify diverse categories of road surface anomalies under
varying environmental and structural conditions. Across all six
sample scenes, the model successfully identifies potholes,
damaged paint, alligator cracks, and manhole covers with
appropriately colored bounding boxes and confidence scores,
demonstrating robust feature extraction even in scenarios with
shadows, complex backgrounds, and perspective distortions.
The predictions remain consistent across both residential and
urban roadway settings, suggesting strong generalization
capability beyond a single visual domain. Notably, the model
maintains reliable detection performance on small or visually
subtle defects, such as faded markings or shallow depressions,
which often pose challenges for conventional detection
algorithms. The presence of minimal false positives and
accurately delineated damage regions further reflects the
effectiveness of the integrated multi-scale architecture and the
ROI-aligned refinement process. Overall, Fig. 5 provides
compelling visual evidence that the proposed method achieves
high detection precision and interpretability across a broad
range of real-world road conditions.
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Fig.3. Training and validation accuracy curves over 500 learning epochs.
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Fig. 4. Training and validation loss curves over 500 learning epochs.
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Fig. 6. Ground-truth annotated samples illustrating diverse road-damage categories across the dataset.
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Fig. 6 presents a comprehensive visualization of the
ground-truth annotations used in the dataset, illustrating the
variety and distribution of road-surface damage classes
considered in the evaluation. Fig. 6(a) to Fig. 6(h) depicts a
distinct roadway environment, labeled with manually annotated
bounding boxes corresponding to specific defect categories,
including longitudinal cracks (D00, DO1), lateral cracks (D10,
D11), alligator cracking (D20), potholes and rutting (D40),
crosswalk blur (D43), and white-line blur (D44). The
consistent placement and scale of the annotations across
varying lighting conditions, traffic presence, and road textures

- - .

POTHOLE . potHOLE
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highlight the diversity and complexity of the dataset. These
examples demonstrate the challenges posed by subtle crack
patterns, varying orientations, background clutter, and
occlusions, which collectively underscore the necessity for
robust multi-scale feature extraction in automated detection
systems. The accompanying legend provides standardized class
definitions, ensuring clarity in understanding the annotation
schema. Overall, Fig. 6 illustrates the diversity and annotation
precision of the dataset, serving as a crucial benchmark for
assessing the model’s capability to detect heterogeneous road
damages in real-world scenarios.

POTHOLE

" POTHOLE

Fig. 7. Qualitative pothole detection results produced by the proposed model across diverse road environments.

Fig. 7 presents qualitative detection results demonstrating
the proposed model’s capability to accurately localize potholes
across diverse roadway environments. The images depict
multiple real-world scenarios, including highways, suburban
roads, and rural pathways, each containing potholes of varying
shapes, depths, and illumination conditions. The model
consistently identifies these defects with clearly delineated red
bounding boxes, indicating strong robustness to background
clutter, shadow interference, and changes in surface texture.
Notably, even in challenging scenes involving small, partially
occluded, or low-contrast potholes, the detection outputs
remain precise and well-aligned with the actual damaged
regions, highlighting the effectiveness of the multi-scale
feature extraction and region refinement mechanisms
embedded in the architecture. These visual results substantiate
the model’s capacity to generalize beyond training conditions
and reliably detect critical road surface anomalies that pose
safety risks in real-world settings.

VIII. DiSCUSSION

The results obtained in this study demonstrate the
effectiveness of the proposed multi-scale ROI-aligned deep
leaming framework for automated road damage detection and

severity  assessment, highlighting several important
observations regarding model performance and real-world
applicability. Quantitative evaluations revealed that both
accuracy and loss curves converged smoothly over prolonged
training, indicating stable optimization dynamics and strong
generalization across heterogeneous image conditions. The
close alignment between training and validation metrics
suggests that the model successfully mitigates overfitting,
despite being trained on a dataset characterized by high intra-
class variability and diverse environmental contexts [47]. This
stability is further reinforced by the gradual reduction of
validation loss, demonstrating the model’s resilience to noise,
viewpoint changes, and illumination fluctuations that
commonly challenge road damage detection systems.

The qualitative results presented in Fig. 5 to Fig. 7 further
substantiate the robustness of the proposed approach. The
model effectively identified a wide spectrum of damage types,
including longitudinal cracks, lateral cracks, alligator cracking,
potholes, and degraded markings, even in visually complex
scenes with occlusions and shadow interference. The accurate
delineation of damage boundaries across different road textures
underscores the contribution of multi-scale feature fusion and
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ROI alignment mechanisms [48], which enable precise
localization of both small-scale and structurally subtle
anomalies. Notably, the system exhibited strong performance
in identifying potholes, a critical defect class associated with
significant safety risks, implying that the architecture is well
suited for deployment in intelligent transportation and roadway
maintenance systems.

Despite these promising outcomes, certain limitations
warrant further investigation. Minor fluctuations in validation
accuracy and loss indicate the presence of challenging samples
that remain difficult to classify consistently, particularly in
cases involving extremely faded markings or overlapping
damage categories. Additionally, while the model
demonstrated strong performance under daylight conditions, its
robustness under nighttime, rainy, and low-visibility scenarios
requires systematic evaluation to ensure reliable large-scale
deployment. Future work could incorporate multimodal
sensing, such as thermal or depth imaging, and explore
transformer-based architectural enhancements to further
improve contextual reasoning and structural awareness.
Overall, the findings affirm the model’s potential to serve as a
reliable component in automated road inspection pipelines,
offering substantial benefits for proactive maintenance
planning and infrastructure safety management.

IX. CONCLUSION

In conclusion, this study introduced a multi-scale ROI-
aligned deep learning framework designed to address the
complexities of automated road damage detection and severity
assessment across diverse real-world environments. The
proposed architecture demonstrated consistent and robust
performance, exhibiting strong convergence behavior, high
detection accuracy, and stable generalization between training
and validation datasets. By integrating hierarchical feature
extraction, a dedicated proposal network, and refined ROI-
aligned feature encoding, the model effectively captured both
fine-grained structural anomalies and broader contextual
patterns essential for reliable defect identification. Qualitative
results further underscored the system’s ability to delineate
various damage types, including cracks, potholes, and
degraded markings, even under challenging conditions
involving cluttered backgrounds, shadows, and texture
irregularities. Although minor fluctuations in validation metrics
suggest opportunities for refinement, particularly in cases
involving subtle or overlapping damage categories, the overall
performance affirms the model’s suitability for deployment in
intelligent transportation infrastructures and road maintenance
monitoring systems. Future research may focus on enhancing
robustness under adverse environmental conditions,
incorporating multimodal sensing, or leveraging advanced
transformer-based architectures for improved contextual
awareness. Collectively, the findings highlight the substantial
potential of the proposed approach to support scalable,
accurate, and efficient road inspection processes, thereby
contributing to safer and more resilient urban mobility
ecosystems.
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