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Abstract—This study presents a multi-scale ROI-aligned deep 

learning framework designed to advance automated road 

damage detection and severity assessment using high-resolution 

roadway imagery. The proposed architecture integrates 

hierarchical feature extraction, a road-damage proposal 

network, and refined ROI-aligned encoding to capture both fine-

grained local anomalies and broader contextual patterns across 

diverse pavement conditions. Leveraging the RDD2020 dataset, 

the model effectively identifies multiple defect categories, 

including longitudinal cracks, transverse cracks, alligator 

cracking, and potholes, achieving strong convergence behavior 

and stable generalization across training and validation phases. 

Quantitative evaluations reveal high detection accuracy and 

smooth loss reduction over 500 learning epochs, while qualitative 

visualizations demonstrate precise localization and robust 

classification of damages under varying environmental and 

structural complexities. The framework consistently maintains 

performance in challenging scenes featuring shadows, cluttered 

backgrounds, low contrast, or irregular defect geometries, 

underscoring the benefits of multi-scale fusion and ROI 

alignment mechanisms. Although slight fluctuations in validation 

metrics indicate the presence of inherently difficult samples, the 

overall results affirm the model’s capability to support large-

scale, real-time road monitoring systems. The findings highlight 

the potential of the proposed approach to significantly enhance 

intelligent transportation infrastructure, offering an efficient and 

reliable solution for proactive pavement maintenance and 

improved roadway safety. 
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I. INTRODUCTION 

The rapid deterioration of road infrastructure, influenced by 
increasing traffic volumes, climatic variability, and extended 
pavement lifecycles, has intensified the global demand for 
automated road-damage monitoring systems capable of 
supporting timely and cost-effective maintenance planning [1]. 
Traditional inspection approaches, including manual surveys 
and specialized monitoring vehicles, remain labor-intensive, 
subjective, and difficult to scale, which often results in 
inconsistent assessments across municipalities and road 
networks [2]. With the advancement of computer vision and 

deep learning, data-driven frameworks have begun to offer 
more reliable, efficient, and high-throughput alternatives, 
enabling automatic extraction of discriminative visual cues 
from imagery captured via smartphones, dash-mounted 
cameras, and unmanned aerial systems [3]. However, real-
world road environments introduce considerable complexity 
due to varying illumination conditions, inconsistent viewing 
angles, heterogeneous materials, and the high morphological 
diversity of damages such as potholes, longitudinal and 
transverse cracks, rutting, and faded markings [4]. These 
variations make precise localization and classification 
challenging, particularly when the goal extends beyond mere 
detection toward severity estimation, a critical requirement for 
prioritizing repairs within modern asset-management pipelines 
[5]. 

To confront these difficulties, multi-scale deep feature 
representations have emerged as an effective strategy capable 
of capturing both localized texture irregularities and larger 
contextual patterns that characterize road defects [6]. 
Complementary components such as Region-of-Interest 
alignment have further enhanced detection reliability by 
maintaining geometric fidelity when mapping proposal regions 
into fixed-resolution feature embeddings [7]. Nonetheless, 
many existing systems treat detection and severity assessment 
as separate steps, creating multi-stage pipelines that suffer from 
error propagation, reduced robustness, and limited 
generalizability in diverse deployment conditions [8]. 
Addressing these shortcomings, the present study introduces a 
unified deep learning architecture that integrates multi-scale 
feature extraction, a dedicated damage-proposal network, ROI-
aligned feature encoding, and a global context branch within a 
cohesive end-to-end framework [9]. By embedding severity 
regression directly into the detection head, the proposed model 
ensures smoother information flow, higher stability, and 
improved adaptability across heterogeneous road environments 
[10]. 

This integrated approach is designed to deliver more 
accurate, interpretable, and scalable road-damage analytics, 
supporting smarter maintenance strategies and enhancing 
roadway safety within intelligent transportation systems. 

*Corresponding authors. 
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II. RELATED WORKS 

A. Deep Learning for Road Damage Detection 

Deep learning has transformed the landscape of automated 
road inspection, enabling models to learn discriminative 
patterns from large, heterogeneous datasets rather than relying 
on handcrafted features [11]. Early convolutional neural 
network (CNN) approaches demonstrated the feasibility of 
detecting potholes and cracks under varied environmental 
conditions, but they struggled with generalization when faced 
with complex urban scenes or low-contrast defects [12]. 
Subsequent advancements introduced deeper architectures and 
residual blocks that enhanced feature extraction, yet the rigid 
receptive fields of conventional CNNs limited their capacity to 
capture spatial relationships between damages and surrounding 
road structures [13]. Studies leveraging multi-path 
convolutional backbones reported improved robustness to 
texture variations and illumination changes, highlighting the 
need for richer multi-dimensional representations [14]. 
However, despite notable performance gains, these 
architectures often remained sensitive to camera viewpoint 
shifts and struggled to distinguish small-scale defects from 
background noise, emphasizing the need for more context-
aware frameworks [15]. 

B. Multi-Scale Feature Representation 

A substantial body of research has attempted to address the 
limitations of single-scale feature extraction through multi-
scale learning strategies [16]. Techniques such as feature 
pyramid networks (FPNs) enabled hierarchical fusion of high-
resolution and semantically rich feature maps, substantially 
strengthening the detection of small, sparse, or elongated 
damages like longitudinal cracks [17]. Multi-resolution 
approaches also enhanced model resilience against scale 
variations introduced by diverse camera heights, road widths, 
and sensing platforms [18]. More recent works explored dilated 
convolutions, deformable kernels, and progressive feature 
aggregation to enlarge the effective receptive field without 
compromising spatial precision [19]. These efforts collectively 
demonstrated that multi-scale representations improve both 
recall and localization accuracy, although their integration with 
downstream detection heads remained computationally 
demanding, especially in real-time settings [20]. The persistent 
challenge has been designing architectures that balance rich 
hierarchical information with inference efficiency suitable for 
widespread deployment [21]. 

C. Region-Based Detection and ROI Alignment 

Region-based detection frameworks have become a 
cornerstone for road-damage analysis due to their ability to 
generate structured proposals and refine spatial boundaries 
with high precision [22]. Region Proposal Networks (RPNs) 
introduced in object detection literature have been adapted to 
road-damage tasks to isolate candidate areas and reduce false 
positives stemming from shadows, lane markings, and water 
patches [23]. However, traditional pooling operations in these 
frameworks often introduce misalignment between feature 
maps and ROI coordinates, negatively affecting bounding box 
regression accuracy [24]. ROI Align, an improved pooling 
mechanism, mitigated these distortions by applying bilinear 
interpolation, significantly enhancing the detection of small 

defects and improving overall confidence scores [25]. 
Integrating ROI-aligned heads into road-damage pipelines also 
facilitated more coherent multi-task learning, but these models 
frequently struggled when global context was insufficiently 
modeled, limiting performance in cluttered or visually 
ambiguous settings [26]. 

D. Global Context and Attention Mechanisms 

Global context modeling has emerged as a critical 
advancement for interpreting complex road environments 
where damages may be partially occluded or visually blended 
with textured surfaces [27]. Attention-based architectures 
introduced powerful mechanisms to dynamically weight 
important regions while suppressing irrelevant background 
features, thereby improving class discrimination and structural 
consistency [28]. Self-attention modules, particularly those 
used in large-scale vision transformers, enabled models to 
capture long-range dependencies across entire road scenes, 
outperforming CNN-based architectures in nuanced 
segmentation tasks [29]. Hybrid approaches combining 
convolutional backbones with transformer-based context 
branches further enriched semantic understanding while 
maintaining computational feasibility [30]. Despite these 
breakthroughs, attention-heavy networks often require 
extensive computational resources and large labeled datasets, 
which remain challenging for municipalities and research 
groups with limited annotation budgets [31]. 

E. Severity Assessment and Multi-Task Frameworks 

Severity estimation has become an emerging research 
frontier, as infrastructure maintenance strategies increasingly 
demand quantifiable assessments rather than simple binary 
detection [32]. Early attempts relied on handcrafted geometric 
measurements derived from segmentation masks, but these 
approaches were highly sensitive to noise and often lacked 
robustness across different pavement types [33]. Multi-task 
learning frameworks introduced joint optimization of detection, 
classification, and severity regression, demonstrating 
substantial gains in predictive stability and interpretability [34]. 
More advanced systems integrated depth cues, global context, 
and hierarchical feature fusion to better capture structural 
deformation patterns associated with severe potholes and deep 
cracks [35]. Nevertheless, existing models frequently treat 
severity prediction as a loosely coupled auxiliary task, resulting 
in fragmented pipelines with limited generalizability across 
diverse geographic and environmental conditions [36]. 
Addressing these challenges requires unified end-to-end 
architectures capable of harmonizing multi-scale feature 
extraction, ROI-aligned representations, and contextual 
reasoning to produce reliable and actionable severity estimates 
for real-world road networks [37]. 

III. MATERIALS AND METHODS 

The methodological foundation of this study is built upon a 
unified multi-scale deep learning framework designed to detect 
and assess the severity of heterogeneous road surface damages 
using high-resolution RGB imagery. As illustrated in Fig. 1, 
the proposed pipeline integrates a hierarchical feature 
extraction backbone, a dedicated road-damage proposal 
module, ROI-aligned feature encoding, and a dual-branch 
detection head capable of jointly performing classification, 
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localization, and severity regression. This architecture was 
engineered to capture both fine-grained local texture 
irregularities and broader contextual structures across multiple 
spatial resolutions, ensuring reliable performance under diverse 
environmental conditions and complex road geometries. The 
subsequent subsections provide a detailed exposition of the 
datasets, preprocessing procedures, network architecture, 
mathematical formulations, and training strategy that 
collectively enable the model’s robust and scalable operation. 

A. Data Preprocessing 

The proposed framework is designed for large-scale road-
damage detection and severity estimation using RGB images 
captured from vehicle-mounted cameras. All images were 

resized to 1024×1024 pixels, followed by per-channel 
normalization defined as: 
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where, ( )cyxI ,,  is the pixel intensity at position ( )yx,  

and channel c  and c , c  represent the dataset mean and 

standard deviation for each channel. To enhance 
generalization, the dataset was augmented using random 
horizontal flipping, illumination shifts, Gaussian noise 
injection, and perspective warping. 

 
Fig. 1. The proposed multi-scale ROI-aligned deep learning architecture for automated road damage detection and severity assessment . 

B. Multi-Scale Backbone Network 

The architecture begins with an input image processed by 
Stage 1, consisting of a convolutional layer with batch 
normalization and ReLU activation. The convolutional output 
is defined as: 

( )( )IWBNLUF = 11 Re                   () 

With stride 2=s . Stage 2 extends the backbone using N  

residual blocks, each formulated as: 
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where, ( )H  is a two-layer residual mapping with 

convolution, normalization, and activation. 

Feature maps are extracted at resolutions 8080 , 

4040 , 2020 , and 1010  enabling hierarchical 

representations. Multi-scale fusion is performed using: 
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where, k  are learnable weights normalized via softmax. 
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C. Road Damage Proposal Network 

The Road Damage Proposal Network (RDPN) generates 
candidate bounding boxes using anchors at multiple scales. For 
an anchor a , the proposal p  is computed as: 

( )ms

T

p Fwp =                        () 

Proposals are processed through Non-Maximum 
Suppression (NMS) with IoU threshold: 
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D. ROI Align and Feature Encoding 

Selected proposals are transformed into fixed-size 77
aligned feature grids using ROI Align. For a sampling location 

( )yx, , the aligned feature value is obtained through bilinear 

interpolation: 
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where, iw  are interpolation weights. 

E. Detection Head and Severity Regression 

The detection head processes the aligned feature tensor 
through a fully connected layer: 

( )( )fROIf bFvecWz +=                   () 

where,   is ReLU. Damage classification outputs 

probabilities for damage types (pothole, crack, rutting, etc.) via 
softmax: 
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Bounding box regression is optimized using Smooth-L1 
loss: 
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where, d  is the difference between predicted and ground-

truth parameters. 

Severity is estimated using a continuous regression head: 

s
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Scaled to the interval  1,0 . 

F. Image-Level Damage Likelihood (Optional Module) 

An optional global severity estimator aggregates proposal-
level scores: 
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where, M  is the number of detected damages. 

IV. DATA 

The experiments conducted in this study utilize the 
RDD2020 dataset [38], a large, multi-national benchmark 
curated for automated road damage detection and analysis. 
This dataset aggregates road-surface imagery from Japan, 
India, and the Czech Republic, thereby capturing a wide 
spectrum of pavement materials, climatic conditions, traffic 
densities, and road maintenance standards. Such geographical 
diversity introduces substantial variance in texture, 
illumination, camera perspectives, and background clutter, 
making RDD2020 a rigorous and representative testbed for 
developing robust deep learning models. The dataset consists 
of thousands of annotated RGB images with varying 
resolutions, each manually labeled using standardized defect 
categories to ensure consistency across all contributing regions. 

 
Fig. 2. Sample road-surface images from the RDD2020 dataset illustrating diverse damage categories including longitudinal cracks (D00), transverse cracks 

(D10), alligator cracks (D20), and potholes (D40). 

Fig. 2 presents a representative illustration of the visual 
characteristics found within RDD2020, showcasing the 
complex structural patterns and environmental variability 
inherent in real-world road scenes. The dataset emphasizes four 

primary categories of surface distress. Longitudinal cracks 
(D00) typically appear parallel to the direction of vehicle 
movement and arise from thermal or mechanical stresses. 
Transverse cracks (D10), oriented perpendicular to the 
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roadway axis, commonly reflect seasonal temperature 
fluctuations or subgrade instability. Alligator cracks (D20) 
exhibit highly fractured, mesh-like patterns indicative of 
advanced pavement fatigue and are among the most 
challenging anomalies to detect due to their irregular 
morphology. Potholes (D40), formed through progressive 
surface degradation and moisture infiltration, represent critical 
safety hazards requiring immediate intervention. These 
categories collectively encapsulate the most prevalent damage 
modes encountered across global road networks. 

V. COMPUTATIONAL ENVIRONMENT AND EQUIPMENT 

The training and evaluation of the proposed multi-scale 
ROI-aligned framework were conducted using a high-
performance computing environment optimized for large-scale 
deep learning workloads. The core computational hardware 
consisted of a workstation equipped with an NVIDIA RTX 
4090 GPU featuring 24 GB of GDDR6X memory, enabling 
efficient processing of high-resolution road-surface imagery 
and supporting extensive backpropagation through multi-
branch neural architectures. The system operated on an AMD 
Ryzen 9 multi-core processor with 64 GB of DDR5 RAM, 
providing the necessary throughput for concurrent data 
preprocessing, augmentations, and model inference operations. 
All experiments were executed under a 64-bit Ubuntu Linux 
environment, ensuring stable driver support and optimized 
CUDA kernel performance for GPU-accelerated tensor 
computations. 

TABLE I.  HARDWARE AND SOFTWARE SPECIFICATIONS FOR MODEL 

TRAINING 

Component Specification 

GPU NVIDIA RTX 4090 (24 GB GDDR6X) 

CPU AMD Ryzen 9 (multi-core) 

System Memory 64 GB DDR5 RAM 

Operating System Ubuntu Linux 64-bit 

Deep Learning Framework PyTorch 2.x 

GPU Accelerators CUDA + cuDNN 

Additional Libraries OpenCV, NumPy, Matplotlib 

Training Precision Mixed-precision (FP16/FP32) 

Data Loading Multi-threaded PyTorch DataLoader 

The computational configuration used in this study is 
summarized in Table I, which outlines the hardware and 
software components that supported all training and evaluation 
procedures. This setup provided sufficient GPU memory, 
processing capability, and optimized deep learning libraries to 
ensure efficient model convergence and stable experimental 
reproducibility. 

VI. EVALUATION PARAMETERS 

To quantitatively assess the performance of the proposed 
multi-scale ROI-aligned framework, several standard 
evaluation metrics were employed to capture detection 
accuracy, localization precision, and regression stability. The 
primary metric for object-level correspondence was the 

Intersection over Union (IoU) [39], defined for a predicted 

bounding box 
pB  and a ground-truth box 

gB  as: 
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which determines whether a predicted instance is 
considered a true positive under a fixed threshold (typically 
0.5). Building on IoU-based assignment, the framework’s 
classification quality was measured using Precision, Recall, 
and F1-score [40-42], defined respectively as: 
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where, TP , FP , and FN  denote true positives, false 

positives, and false negatives. These metrics collectively 
quantify the model’s ability to correctly identify damaged areas 
while minimizing erroneous detections. 

To evaluate localization accuracy, we employed the Mean 
Average Precision (mAP) across all defect categories. For a 
class c , the Average Precision (AP) [43] is computed as the 

numerical integral of the precision–recall curve: 
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and mAP is obtained by averaging AP across the four RDD 
damage classes: 
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with 4=C  for D00, D10, D20, and D40. This provides a 

unified measure of how well the model performs across 
heterogeneous defect types. 

For severity estimation, the regression head was evaluated 
using the Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE), formulated as: 
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where, is  and iŝ  represent the ground-truth and predicted 

severity scores. These metrics quantify how accurately the 
framework models the continuous severity scale, penalizing 
both small deviations and larger estimation errors. 
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Together, these evaluation parameters ensure a 
comprehensive assessment of the proposed model’s detection 
reliability, spatial accuracy, and severity prediction 
capabilities. 

VII. RESULTS 

The results obtained from the proposed multi-scale ROI-
aligned framework provide a comprehensive evaluation of its 
effectiveness in detecting and assessing road surface damages 
across diverse real-world environments. This section presents 
both quantitative findings, including accuracy, loss 
convergence, and evaluation metrics, as well as qualitative 
analyses that illustrate the model’s ability to robustly localize 
and classify various defect categories [44-46]. Through 
detailed visual examples and performance curves, the results 
highlight the stability, generalization capability, and practical 
relevance of the developed system, offering clear evidence of 
its potential for deployment in automated road inspection and 
maintenance applications. 

Fig. 3 illustrates the evolution of training and validation 
accuracy across 500 learning epochs, demonstrating the 
progressive convergence and stability of the proposed model. 
Both accuracy curves exhibit a rapid initial increase during the 
first 50 epochs, indicating efficient learning of fundamental 
feature representations. As training progresses, the curves 
gradually transition into a slower, asymptotic improvement 
phase, ultimately approaching values near 0.95, which reflects 
strong generalization capability. The close alignment between 
training and validation accuracy throughout the optimization 
process suggests that the model effectively mitigates 
overfitting, maintaining consistent performance on unseen 
data. Minor fluctuations in the validation curve, particularly in 
the mid-to-late epochs, are expected in complex, real-world 
datasets but remain within a narrow range, further confirming 
the robustness and stability of the learning process. Overall, 
Fig. 3 validates the efficacy of the model architecture and 
training strategy in achieving high detection accuracy over 
extended training iterations. 

Fig. 4 presents the training and validation loss trajectories 
over 500 epochs, offering insight into the optimization 
dynamics and convergence behavior of the proposed model. 
Both curves exhibit a steep decline during the initial epochs, 
indicating rapid minimization of prediction error as the model 
assimilates core structural patterns within the training data. As 
training progresses, the loss values continue to decrease 
gradually, ultimately approaching near-zero levels, which 
reflects strong model fitting and stable learning. The validation 
loss closely follows the training loss throughout the entire 
learning process, with only minor fluctuations, suggesting that 
the model maintains good generalization performance without 
exhibiting notable overfitting tendencies. These small 
oscillations in the validation curve are characteristic of real-
world datasets containing diverse road textures and variable 
environmental conditions, yet their narrow amplitude further 
reinforces the robustness of the proposed architecture. Overall, 
Fig. 4 provides compelling evidence that the training strategy 
effectively drives loss reduction while ensuring consistent 
validation performance across extended training durations. 

Fig. 5 illustrates representative qualitative outcomes 
produced by the proposed multi-scale ROI-aligned detection 
framework, showcasing its ability to accurately localize and 
classify diverse categories of road surface anomalies under 
varying environmental and structural conditions. Across all six 
sample scenes, the model successfully identifies potholes, 
damaged paint, alligator cracks, and manhole covers with 
appropriately colored bounding boxes and confidence scores, 
demonstrating robust feature extraction even in scenarios with 
shadows, complex backgrounds, and perspective distortions. 
The predictions remain consistent across both residential and 
urban roadway settings, suggesting strong generalization 
capability beyond a single visual domain. Notably, the model 
maintains reliable detection performance on small or visually 
subtle defects, such as faded markings or shallow depressions, 
which often pose challenges for conventional detection 
algorithms. The presence of minimal false positives and 
accurately delineated damage regions further reflects the 
effectiveness of the integrated multi-scale architecture and the 
ROI-aligned refinement process. Overall, Fig. 5 provides 
compelling visual evidence that the proposed method achieves 
high detection precision and interpretability across a broad 
range of real-world road conditions. 

 
Fig. 3. Training and validation accuracy curves over 500 learning epochs. 

 
Fig. 4. Training and validation loss curves over 500 learning epochs. 
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Fig. 5. Qualitative road damage detection results produced by the proposed multi-scale ROI-aligned framework across diverse roadway scenes. 

 
Fig. 6. Ground-truth annotated samples illustrating diverse road-damage categories across the dataset. 
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Fig. 6 presents a comprehensive visualization of the 
ground-truth annotations used in the dataset, illustrating the 
variety and distribution of road-surface damage classes 
considered in the evaluation. Fig. 6(a) to Fig. 6(h) depicts a 
distinct roadway environment, labeled with manually annotated 
bounding boxes corresponding to specific defect categories, 
including longitudinal cracks (D00, D01), lateral cracks (D10, 
D11), alligator cracking (D20), potholes and rutting (D40), 
crosswalk blur (D43), and white-line blur (D44). The 
consistent placement and scale of the annotations across 
varying lighting conditions, traffic presence, and road textures 

highlight the diversity and complexity of the dataset. These 
examples demonstrate the challenges posed by subtle crack 
patterns, varying orientations, background clutter, and 
occlusions, which collectively underscore the necessity for 
robust multi-scale feature extraction in automated detection 
systems. The accompanying legend provides standardized class 
definitions, ensuring clarity in understanding the annotation 
schema. Overall, Fig. 6 illustrates the diversity and annotation 
precision of the dataset, serving as a crucial benchmark for 
assessing the model’s capability to detect heterogeneous road 
damages in real-world scenarios. 

 
Fig. 7. Qualitative pothole detection results produced by the proposed model across diverse road environments . 

Fig. 7 presents qualitative detection results demonstrating 
the proposed model’s capability to accurately localize potholes 
across diverse roadway environments. The images depict 
multiple real-world scenarios, including highways, suburban 
roads, and rural pathways, each containing potholes of varying 
shapes, depths, and illumination conditions. The model 
consistently identifies these defects with clearly delineated red 
bounding boxes, indicating strong robustness to background 
clutter, shadow interference, and changes in surface texture. 
Notably, even in challenging scenes involving small, partially 
occluded, or low-contrast potholes, the detection outputs 
remain precise and well-aligned with the actual damaged 
regions, highlighting the effectiveness of the multi-scale 
feature extraction and region refinement mechanisms 
embedded in the architecture. These visual results substantiate 
the model’s capacity to generalize beyond training conditions 
and reliably detect critical road surface anomalies that pose 
safety risks in real-world settings. 

VIII. DISCUSSION 

The results obtained in this study demonstrate the 
effectiveness of the proposed multi-scale ROI-aligned deep 
learning framework for automated road damage detection and 

severity assessment, highlighting several important 
observations regarding model performance and real-world 
applicability. Quantitative evaluations revealed that both 
accuracy and loss curves converged smoothly over prolonged 
training, indicating stable optimization dynamics and strong 
generalization across heterogeneous image conditions. The 
close alignment between training and validation metrics 
suggests that the model successfully mitigates overfitting, 
despite being trained on a dataset characterized by high intra-
class variability and diverse environmental contexts [47]. This 
stability is further reinforced by the gradual reduction of 
validation loss, demonstrating the model’s resilience to noise, 
viewpoint changes, and illumination fluctuations that 
commonly challenge road damage detection systems. 

The qualitative results presented in Fig. 5 to Fig. 7 further 
substantiate the robustness of the proposed approach. The 
model effectively identified a wide spectrum of damage types, 
including longitudinal cracks, lateral cracks, alligator cracking, 
potholes, and degraded markings, even in visually complex 
scenes with occlusions and shadow interference. The accurate 
delineation of damage boundaries across different road textures 
underscores the contribution of multi-scale feature fusion and 
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ROI alignment mechanisms [48], which enable precise 
localization of both small-scale and structurally subtle 
anomalies. Notably, the system exhibited strong performance 
in identifying potholes, a critical defect class associated with 
significant safety risks, implying that the architecture is well 
suited for deployment in intelligent transportation and roadway 
maintenance systems. 

Despite these promising outcomes, certain limitations 
warrant further investigation. Minor fluctuations in validation 
accuracy and loss indicate the presence of challenging samples 
that remain difficult to classify consistently, particularly in 
cases involving extremely faded markings or overlapping 
damage categories. Additionally, while the model 
demonstrated strong performance under daylight conditions, its 
robustness under nighttime, rainy, and low-visibility scenarios 
requires systematic evaluation to ensure reliable large-scale 
deployment. Future work could incorporate multimodal 
sensing, such as thermal or depth imaging, and explore 
transformer-based architectural enhancements to further 
improve contextual reasoning and structural awareness. 
Overall, the findings affirm the model’s potential to serve as a 
reliable component in automated road inspection pipelines, 
offering substantial benefits for proactive maintenance 
planning and infrastructure safety management. 

IX. CONCLUSION 

In conclusion, this study introduced a multi-scale ROI-
aligned deep learning framework designed to address the 
complexities of automated road damage detection and severity 
assessment across diverse real-world environments. The 
proposed architecture demonstrated consistent and robust 
performance, exhibiting strong convergence behavior, high 
detection accuracy, and stable generalization between training 
and validation datasets. By integrating hierarchical feature 
extraction, a dedicated proposal network, and refined ROI-
aligned feature encoding, the model effectively captured both 
fine-grained structural anomalies and broader contextual 
patterns essential for reliable defect identification. Qualitative 
results further underscored the system’s ability to delineate 
various damage types, including cracks, potholes, and 
degraded markings, even under challenging conditions 
involving cluttered backgrounds, shadows, and texture 
irregularities. Although minor fluctuations in validation metrics 
suggest opportunities for refinement, particularly in cases 
involving subtle or overlapping damage categories, the overall 
performance affirms the model’s suitability for deployment in 
intelligent transportation infrastructures and road maintenance 
monitoring systems. Future research may focus on enhancing 
robustness under adverse environmental conditions, 
incorporating multimodal sensing, or leveraging advanced 
transformer-based architectures for improved contextual 
awareness. Collectively, the findings highlight the substantial 
potential of the proposed approach to support scalable, 
accurate, and efficient road inspection processes, thereby 
contributing to safer and more resilient urban mobility 
ecosystems. 

ACKNOWLEDGMENT 

This research has been funded by the Science Committee of 
the Ministry of Science and Higher Education of the Republic 

of Kazakhstan with the grant project "Development of a real-
time road damage detection system with using computer vision 
and artificial intelligence" (Grant No. AP23487192). 

REFERENCES 

[1] Iparraguirre, O., Iturbe-Olleta, N., Brazalez, A., & Borro, D. (2022). 

Road marking damage detection based on deep learning for 

infrastructure evaluation in emerging autonomous driving. IEEE 

Transactions on Intelligent Transportation Systems, 23(11), 22378-

22385. 

[2] Yin, T., Zhang, W., Kou, J., & Liu, N. (2024). Promoting automatic 

detection of road damage: A high-resolution dataset, a  new approach, 

and a new evaluation criterion. IEEE Transactions on Automation 

Science and Engineering, 22, 2472-2484. 

[3] Khan, M. W., Obaidat, M. S., Mahmood, K., Batool, D., Badar, H. M. 

S., Aamir, M., & Gao, W. (2024). Real-time road damage detection and 

infrastructure evaluation leveraging unmanned aerial vehicles and tiny 

machine learning. IEEE Internet of Things Journal, 11(12), 21347-

21358. 

[4] Ramkumar. R., Sureshkumar Nagarajan, Dinesh Prasanth Ganapathi, 

"Enhanced Deep Learning Framework for Tamil Slang Classification 

with Multi-task Learning and Attention Mechanisms", International 

Journal of Information Technology and Computer Science(IJITCS), 

Vol.17, No.6, pp.29-51, 2025. DOI:10.5815/ijitcs.2025.06.02 

[5] Ma, Y., Ghanbari, H., Huang, T., Irv in, J., Brady, O., Zalouk, S., ... & 

Narsude, M. (2023). A System for Automated Vehicle Damage 

Localization and Severity Estimation Using Deep Learning. IEEE 

Transactions on Intelligent Transportation Systems, 25(6), 5627-5639. 

[6] Zhang, H., Wu, Z., Qiu, Y., Zhai, X., Wang, Z., Xu, P., ... & Jiang, N. 

(2022). A new road damage detection baseline with attention learning. 

Applied Sciences, 12(15), 7594. 

[7] Silva, L. A., Leithardt, V. R. Q., Batista, V. F. L., Gonzalez, G. V., & 

Santana, J. F. D. P. (2023). Automated road damage detection using 

UAV images and deep learning techniques. IEEE access, 11, 62918-

62931. 

[8] Kortmann, F., Fassmeyer, P., Funk, B., & Drews, P. (2022). Watch out, 

pothole! featuring road damage detection in an end-to-end system for 

autonomous driving. Data & Knowledge Engineering, 142, 102091. 

[9] Ha, J., Kim, D., & Kim, M. (2022). Assessing severity of road cracks 

using deep learning-based segmentation and detection. The Journal of 

Supercomputing, 78(16), 17721-17735. 

[10] Iyinoluwa M. Oyelade, Olutayo K. Boyinbode, Olumide S. Adewale, 

Emmanuel O. Ibam, "Farmland Intrusion Detection using Internet of 

Things and Computer Vision Techniques", International Journal of 

Information Technology and Computer Science(IJITCS), Vol.16, No.2, 

pp.32-44, 2024. DOI:10.5815/ijitcs.2024.02.03  

[11] Amodu, O. D., Lottu, O., Imran, R., & Shaban, A. (2025). Automated 

Vehicle Damage Inspection: A Comprehensive Evaluation of Deep 

Learning Models and Real-World Applicability. SN Computer Science, 

6(5), 525. 

[12] Shim, S., Kim, J., Lee, S. W., & Cho, G. C. (2022). Road damage 

detection using super-resolution  and semi-supervised learning with 

generative adversarial network. Automation in construction, 135, 

104139. 

[13] Van Ruitenbeek, R. E., & Bhulai, S. (2022). Convolutional Neural 

Networks for vehicle damage detection. Machine Learning with 

Applications, 9, 100332. 

[14] Omarov, B., Altayeva, A., Turganbayeva, A., Abdulkarimova, G., 

Gusmanova, F., Sarbasova, A., ... & Omarov, N. (2018, November). 

Agent based modeling of smart grids in smart cities. In International 

Conference on Electronic Governance and Open Society: Challenges in  

Eurasia (pp. 3-13). Cham: Springer International Publishing. 

[15] Sami, A. A., Sakib, S., Deb, K., & Sarker, I. H. (2023). Improved 

YOLOv5-based real-time road pavement damage detection in road 

infrastructure management. Algorithms, 16(9), 452. 

[16] Rathee, M., Bačić, B., & Doborjeh, M. (2023). Automated road defect 

and anomaly detection for traffic safety: A systematic review. Sensors, 

23(12), 5656. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 12, 2025 

1126 | P a g e  
www.ijacsa.thesai.org 

[17] Lin, C., Tian, D., Duan, X., Zhou, J., Zhao, D., & Cao, D. (2022). DA-

RDD: Toward domain adaptive road damage detection across different 

countries. IEEE Transactions on Intelligent Transportation Systems, 

24(3), 3091-3103. 

[18] Omarov, B., Omarov, B., Rakhymzhanov, A., Niyazov, A., Sultan, D., 

& Baikuvekov, M. (2024). Development of an artificial intelligence-

enabled non-invasive digital stethoscope for monitoring the heart 

condition of athletes in real-t ime. Retos: nuevas tendencias en educación 

física, deporte y recreación, (60), 1169-1180.  

[19] Qaddour, J., & Siddiqa, S. A. (2023). Automatic damaged vehicle 

estimator using enhanced deep learning algorithm. Intelligent Systems 

with Applications, 18, 200192. 

[20] Wan, F., Sun, C., He, H., Lei, G., Xu, L., & Xiao, T. (2022). YOLO-

LRDD: A lightweight method for road damage detection based on 

improved YOLOv5s. EURASIP Journal on Advances in Signal 

Processing, 2022(1), 98. 

[21] Bisrat Betru, Fekade Getahun, "Ontology-driven Intelligent IT Incident 

Management Model", International Journal of Information Technology 

and Computer Science(IJITCS), Vol.15, No.1, pp.30-41, 2023. 

DOI:10.5815/ijitcs.2023.01.04  

[22] Al Noman, M. A., Zhai, L., Almukhtar, F. H., Rahaman, M. F., Omarov, 

B., Ray, S., ... & Wang, C. (2023). A computer vision-based lane 

detection technique using gradient threshold and hue-lightness-

saturation value for an autonomous vehicle. International Journal of 

Electrical and Computer Engineering, 13(1), 347.  

[23] Cano-Ortiz, S., I glesias, L. L., del Árbol, P. M. R., Lastra -González, P., 

& Castro-Fresno, D. (2024). An end-to-end computer vision system 

based on deep learning for pavement distress detection and 

quantification. Construction and Building Materials, 416, 135036. 

[24] Duran, B., Emory, D., Azam, Y. E., & Linzell, D. G. (2025). A novel 

CNN architecture for robust structural damage identification via strain 

measurements and its validation via full-scale experiments. 

Measurement, 239, 115393. 

[25] Youwai, S., Chaiyaphat, A., & Chaipetch, P. (2024). YOLO9tr: a 

lightweight model for pavement damage detection utilizing a 

generalized efficient layer aggregation network and attention 

mechanism. Journal of Real-Time Image Processing, 21(5), 163. 

[26] Deepa, D., & Sivasangari, A. (2023). An effective detection and 

classification of road damages using hybrid deep learning framework. 

Multimedia Tools and Applications, 82(12), 18151-18184. 

[27] Inam, H., Islam, N. U., Akram, M. U., & Ullah, F. (2023). Smart and 

automated infrastructure management: A deep learning approach for 

crack detection in bridge images. Sustainability, 15(3), 1866. 

[28] Zhang, Y., Zuo, Z., Xu, X., Wu, J., Zhu, J., Zhang, H., ... & Tian, Y. 

(2022). Road damage detection using UAV images based on multi-level 

attention mechanism. Automation in construction, 144, 104613. 

[29] Omarov, B., Suliman, A., Kush ibar, K. Face recognition using artificial 

neural networks in parallel architecture. Journal of Theoretical and 

Applied Information Technology 91 (2), pp. 238-248. Open Access. 

[30] Kang, S., Wu, Y. C., David, D. S., & Ham, S. (2022). Rapid damage 

assessment of concrete bridge deck leveraging an automated double-

sided bounce system. Automation in Construction, 138, 104244. 

[31] Jalaj Pateria, Laxmi Ahuja, Subhranil Som, Ash ish Seth, "Apply ing 

Clustering to Predict  Attackers Trace in  Deceptive Ecosystem by 

Harmonizing Mult iple Decoys Interactions Logs", International Journal 

of Information Technology and Computer Science(IJITCS), Vol.15, 

No.5, pp.35-44, 2023. DOI:10.5815/ijitcs.2023.05.04  

[32] Salcedo, E., Jaber, M., & Carrión, J. R. (2022). A novel road 

maintenance prioritisation system based on computer vision and 

crowdsourced reporting. Journal of Sensor and Actuator Networks, 

11(1), 15. 

[33] Crognale, M., De Iuliis, M., Rinaldi, C., & Gattulli, V. (2023). Damage 

detection with image processing: a comparative study. Earthquake 

Engineering and Engineering Vibration, 22(2), 333-345. 

[34] Altayeva, A., Omarov, B., Jeong, H. C., & Im Cho, Y. (2016). Multi-

step face recognition for improving face detection and recognition rate. 

Far East Journal of Electronics and Communications, 16(3), 471. 

[35] Li, Z., Lan, Y., & Lin, W. (2024). Footbridge damage detection using 

smartphone-recorded responses of micromobility and convolutional 

neural networks. Automation in Construction, 166, 105587. 

[36] Deepa, D., & Sivasangari, A. (2024). ESSR -GAN: Enhanced super and 

semi supervised remora resolution based generative adversarial learning 

framework model for smartphone based road damage detection. 

multimedia Tools and Applications, 83(2), 5099-5129. 

[37] Omarov, B., Omarov, B., Shekerbekova, S., Gusmanova, F., Oshanova, 

N., Sarbasova, A., ... & Sultan, D. (2019, October). Applying face 

recognition in video surveillance security systems. In International 

Conference on Objects, Components, Models and Patterns (pp. 271-

280). Cham: Springer International Publishing.  

[38] Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., & Sekimoto, Y. 

(2024). RDD2022: A multi‐national image dataset for automatic road 

damage detection. Geoscience Data Journal, 11(4), 846-862.  

[39] Benallal, M. A., & Tayeb, M. S. (2023). An image-based convolutional 

neural network system for road defects detection. IAES International 

Journal of Artificial Intelligence, 12(2), 577. 

[40] Omarov, B., Batyrbekov, A., Dalbekova, K., Abdulkarimova, G., 

Berkimbaeva, S., Kenzhegulova, S., ... & Omarov, B. (2020, December). 

Electronic stethoscope for heartbeat abnormality detection. In 

International Conference on Smart Computing and Communication (pp. 

248-258). Cham: Springer International Publishing.  

[41] Agyemang, I. O., Zhang, X., Adjei-Mensah, I., Acheampong, D., 

Fiasam, L. D., Sey, C., ... & Effah, D. (2023). Automated vision-based 

structural health inspection and assessment for post-construction civil 

infrastructure. Automation in Construction, 156, 105153. 

[42] Li, J., Liu, T., Wang, X., & Yu, J. (2022). Automated asphalt pavement 

damage rate detection based on optimized GA-CNN. Automation in 

Construction, 136, 104180. 

[43] Omarov, N., Omarov, B., Azhibekova, Z., & Omarov, B. (2024). 

Applying an augmented reality game-based learning environment in 

physical education classes to enhance sports motivation. Retos, 60, 269-

278.  

[44] Deep Karan Singh, Nisha Rawat, "Decoding Optimization Algorithms 

for Convolutional Neural Networks in Time Series Regression Tasks", 

International Journal of Information Technology and Computer 

Science(IJITCS), Vol.15, No.6, pp.37-49, 2023. 

DOI:10.5815/ijitcs.2023.06.04  

[45] Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, 

Y., & Aknazarov, S. (2020, November). Electronic stethoscope for 

detecting heart abnormalities in athletes. In 2020 21st International Arab 

Conference on Information Technology (ACIT) (pp. 1-5). IEEE. 

[46] Li, Z., Lin, W., & Zhang, Y. (2023, January). Real-time drive-by bridge 

damage detection using deep auto-encoder. In Structures (Vol. 47, pp. 

1167-1181). Elsevier. 

[47] Han, Q., Yan, S., Wang, L., & Kawaguchi, K. I. (2023). Ceiling damage 

detection and safety assessment in large public build ings using semantic 

segmentation. Journal of Building Engineering, 80, 107961. 

[48] Sjölander, A., Belloni, V., Ansell, A., & Nordström, E. (2023). Towards 

automated inspections of tunnels: A review of optical inspections and 

autonomous assessment of concrete tunnel linings. Sensors, 23(6), 3189. 

 


