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Abstract—Efficient and accurate automated diagnosis of plant
diseases remains a challenge for deployment on resource-
constrained edge devices. While hybrid vision transformers like
GCViT balance accuracy and efficiency, they often lose critical
high-frequency details such as fine lesion textures and leaf
margins that are essential for fine-grained disease classification.
To address this gap, we propose the Enhanced High-Frequencies
Global Context Visual Transformer (EHF-GCViT), a novel
hybrid architecture designed to explicitly enhance high-
frequency feature retention within a lightweight framework. The
core innovations of EHF-GCVIiT include: first, a customized,
lightweight convolutional refinement block based on depthwise
separable operations that acts as a learnable pre-processor to
preserve discriminative spatial details before
tokenization; second, a gated convolutional block that replaces
the final transformer stage, reducing the model memory
footprint from 4636 MB to 34.48 MB; and third, an adaptive
normalization strategy to stabilize the training of the integrated
heterogeneous layers. Extensive experiments on the PlantVillage
tomato disease dataset demonstrate that EHF-GCViT achieves
superior performance, surpassing the baseline GCViT, standard
Vision Transformers (ViT), and CNN benchmarks (e.g., ResNet)
in accuracy, precision, recall, and F1-score. These results validate
that explicitly modeling high-frequency features within a hybrid
transformer design provides a more memory-
efficient and accurate backbone for practical plant disease
detection systems targeting edge deployment.

Keywords—Hybrid transformer architecture; convolutional
refinement block; gated convolution; edge devices; high-frequency
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L INTRODUCTION

Climate change is significantly increasing the incidence,
severity, and geographic range of plant diseases. Studies, such
as [1], have demonstrated that shifting climate patterns are
altering host-pathogen interactions, often accelerating disease
cycles and allowing pathogens to invade new agricultural
zones. Among the affected crops, the tomato—widely
cultivated and of high economic importance—is particularly
susceptible to various foliar diseases. These infections can lead
to substantial yield losses, as highlighted by the World
Processing Tomato Council (WPTC), which projects an 11.5%
drop in yields for processing tomatoes in 2025 [2].

In response to these pressing challenges, researchers and
policymakers are increasingly turning to artificial intelligence
(AI) to improve plant health monitoring. Investment in Al-
driven technologies aims to develop scalable, automated
systems capable of diagnosing plant diseases directly from leaf
images.

Convolutional Neural Networks (CNNs) are highly
effective at capturing local spatial patterns through
convolutional operations. However, their limited receptive
field restricts their capacity for modeling long-range
dependencies, which is critical for understanding global
context in complex agricultural environments. In contrast,
Vision Transformers (ViTs) excel at modeling global
relationships via self-attention mechanisms but are often reliant
on large datasets and substantial computational resources,
making them less suitable for many real-world, resource-
constrained applications. This limitation has spurred the
emergence of hybrid architectures, which combine the local
feature extraction strengths of CNNs with the global
representation capabilities of Transformers. This design offers
a balanced compromise between precision, efficiency, and
generalization. By integrating convolutional inductive biases
with transformer-based contextual leamning, hybrid models
achieve superior accuracy and robustness—a critical advantage
in domains characterized by subtle visual variations like plant
disease detection. Therefore, developing efficient hybrid
backbones that can adapt to challenges like varying lighting,
leaf orientation, and disease symptom presentation is essential.
These innovative frameworks not only promise superior results
in specialized domains like agriculture but also establish a
foundational benchmark for future progress in broader object
detection research.

In this paper, we introduce a novel hybrid model, Hybrid
HF GCVIT, designed to enhance the high frequencies for
better classification. In this architecture, we introduce a new
lightweight convolution block that is intended to be placed
between the original GCVIT [3] blocks, enhancing the
detection of high frequencies within the extracted features and
thereby improving accuracy. We present a new normalization
strategy to improve the quality of training and the accuracy of
our model. This synergy yields a model that is both accurate
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and computationally efficient, making it well-suited for real-
time applications and potential deployment on low-power
hardware platforms. We built GCViT with modularity in mind,
unlike many prior models that optimize solely for
classification. Its architecture is intended not only to perform
tomato disease classification with high precision but also to
serve as a robust backbone for more complex tasks, including
object detection, segmentation, and anomaly localization in
agricultural contexts. Experimental evaluations on publicly
available tomato disease datasets validate the proposed model’s
superior performance in terms of accuracy, generalization, and
computational efficiency of GCViT, surpassing that of state-of-
the-art CNNs, ViTs, and hybrid networks. These results
suggest that GCViT offers a practical and scalable solution for
smart farming applications, especially where on-device
intelligence is considered.

II.  RELATED WORK

A. CNN-Based Models

Convolutional Neural Networks (CNNs) have established
themselves as a foundational approach for plant disease
classification, showing their strong capabilities in extracting
hierarchical visual features from images. A significant body of
research focuses on customizing CNN architectures to enhance
accuracy and efficiency for agricultural applications.

Early work demonstrated the potential of CNNs with high
parameter counts and data augmentation. For instance,
Guerrero-Ibafiez and Reyes-Mufioz [4] presented a high-
performance CNN model trained on a dataset enriched with
real and GAN-generated synthetic images, achieving 99.64%
validation accuracy for tomato leaf diseases. While
demonstrating high performance, this approach relies heavily
on extensive data augmentation rather than intrinsic
architectural innovation, and its computational complexity
limits suitability for resource-constrained edge devices.

Subsequent research addressed challenges like dataset
imbalance and subtle inter-class differences through
architectural modifications. Zhang et al. [5] proposed a
lightweight dual-attention model (LDAMNet), integrating a
dual-attention convolution block to achieve 98.71% average
accuracy. However, while LDAMNet reduces model
complexity, it operates within the conventional CNN paradigm
and lacks the capacity for global context modeling, which is
crucial for understanding long-range spatial dependencies in
disease patterns.

The pursuit of deployable models has driven the adoption
of efficient architectures and transfer learning. Sultan [6]
employed a modified Xception architecture with deep transfer
leamning, achieving 98% accuracy for multiple crops while
optimizing for edge deployment. Transfer learning, however, is
constrained by features leammed from generic datasets like
ImageNet, which may not optimally capture disease-specific,
high-frequency details such as fine lesion textures.

Radocaj et al. [7] introduced the novel IncMB module,
integrating an Inception structure with the Mish activation
function into MobileNetV2, achieving 97.78% accuracy and
confirming potential for mobile platforms.
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Similarly, Vivek Anandh et al. [8] showed a transfer-
learned MobileNetV2 model could attain 99.49% accuracy for
tomato leaf disease classification on IoT platforms. While these
models achieve efficiency through depthwise separable
convolutions, they prioritize overall parameter reduction over
the explicit preservation of high-frequency spatial details,
which can result in the loss of discriminative fine-grained
features essential for distinguishing visually similar diseases.

This principle of lightweight design extends to highly
optimized, purpose-built CNNs. FL-ToLeD [9] leverages soft
attention and depthwise separable convolutions to achieve
99.04% accuracy with only 221,594 parameters. Critically, its
attention mechanism operates on downsampled feature maps,
inherently discarding high-frequency details before they can be
weighed a fundamental limitation for fine-grained
classification.

Ashurov et al. [10] integrated Squeeze-and-Excitation (SE)
blocks into a Depthwise CNN, achieving 98% accuracy.
Although SE blocks enhance channel-wise feature
recalibration, they do not explicitly preserve high-frequency
spatial information, which can be suppressed if not statistically
dominant across channels.

The success of efficient CNNs has proven generalizable
across crops, with specialized models achieving high accuracy
for rice (99.81%) [11], potato (99.3%) [12], and multiple
vegetables (97.12%) [13]. While demonstrating task
adaptability, these models are typically optimized for single-
crop scenarios and lack architectural mechanisms for explicit
high-frequency feature enhancement.

To address data scarcity, data-centric approaches have
emerged. Ramadan et al. [14] used CycleGAN for synthetic
image generation to enable a MobileNetV2 model to achieve
perfect wheat disease classification accuracy.

Joseph et al. [15] constructed real-time multi-crop datasets
and proposed the MRW-CNN, achieving 97.04%—-98.08%
accuracy. These methods improve performance through
augmentation rather than architectural innovation for feature
preservation, and their reliance on synthetic data adds pre-
processing complexity ill-suited for streamlined edge
deployment.

Critical Gap in CNN-Based Approaches: While CNNs
excel at local feature extraction and have been successfully
optimized for edge deployment, they fundamentally struggle
with modeling long-range dependencies and global context.
More critically, aggressive model compression techniques
(e.g., depthwise convolutions) often sacrifice high-frequency
feature retention, leading to reduced discriminative power for
fine-grained disease classification where subtle texture
differences are paramount. No existing CNN approach
explicitly models high-frequency spatial features as a core,
learnable architectural component prior to feature abstraction.

B. Vision Transformer (VIT)-Based Models

Vision Transformers (ViTs) address the global context
limitation of CNNs by capturing long-range spatial
relationships across entire images through self-attention
mechanisms.
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Karimanzira et al. [16] developed a ViT with cascaded
group attention (ViT-CGA), achieving top-tier accuracy and
robustness, enhanced with Explainable Al (XAI) and an LLM
for interpretability. However, pure ViT architectures typically
require large-scale datasets and substantial computational
resources for effective training, making them impractical for
scenarios with limited agricultural data and strict edge-device
constraints.

Efforts have been made to adapt ViTs for practical
deployment. Barman et al. [17] proposed ViT-SmartAgri, a
CNN-free Vision Transformer designed for smartphones,
attaining 90.99% accuracy for tomato leaf conditions. While
demonstrating mobile potential, this accuracy falls below
contemporary CNN benchmarks, suggesting that pure ViTs
may sacrifice critical local feature sensitivity, particularly the
high-frequency edge and texture information crucial for precise
disease boundary detection.

For object detection in complex environments, Wang and
Liu [18] introduced TomatoDet, a real-time model based on a
Swin Transformer variant, achieving a high mAP of 92.3% for
localizing tomato diseases. Although Swin Transformers
introduce local windowing to reduce computation, they
maintain substantial memory footprints and lack explicit
mechanisms to preserve high-frequency spatial details during
the patch embedding process, which can blur fine lesion
boundaries.

Critical Gap in ViT-Based Approaches: While ViTs excel
at global context modeling, they face critical limitations for
edge-deployed plant disease detection: 1) high computational
and memory requirements, 2) data hunger requiring extensive
training sets, and 3) inherent loss of high-frequency spatial
information during patch tokenization, where fine-grained
disease textures are smoothed or discarded.

C. Hybrid CNN-VIT-Based Models

Hybrid architectures have emerged to synergistically
combine the local feature sensitivity of CNNs with the global
context modeling of ViTs, aiming to balance both capabilities
for complex visual classification.

Sinamenye et al. [19] developed a  hybrid
EfficientNetV2B3+ViT model for potato disease detection,
achieving 85.06% accuracy—an 11.43% improvement over
prior methods. However, this architecture employs a simple
feature concatenation without addressing the fundamental issue
of high-frequency information loss during the ViT tokenization
stage, and its modest accuracy suggests suboptimal feature
integration.

Alwan and Alturfi [20] introduced a sophisticated
framework fusing EfficientNet-B8, a ViT, and a Knowledge
Graph (KG), achieving 99.3% accuracy across 38 disease
categories. While highly accurate, this approach relies on
ensemble complexity and external knowledge integration
rather than architectural efficiency, resulting in a model
unsuitable for edge deployment due to its substantial
computational overhead.

Li et al. [21] proposed the Convolution Self-Guided
Transformer (CSGT), merging CNN feature extraction with
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transformer context modeling to achieve 95.8%-96.9%
accuracy across multiple crops. Although demonstrating cross-
dataset robustness, CSGT does not explicitly address high-
frequency feature preservation, and its self-guided mechanism
adds architectural complexity that may hinder optimization for
memory-constrained devices.

Sun et al. [22] combines EfficientNetV2 with a Swin
Transformer and Coordinate Attention, achieving 99.70%
accuracy for tomato disease classification. Despite excellent
accuracy, the model retains the full transformer stack in later
stages, resulting in a large memory footprint (>45MB) that
exceeds practical limits for edge devices. Furthermore, it lacks
an explicit mechanism to enhance high-frequency features
before tokenization.

Chen et al. [23] proposed a comprehensive framework
combining a DenseNet-based Vision Transformer (DVT) with
a CycleGAN (CyTrGAN) for augmentation, achieving up to
99.45% accuracy with strong robustness. While effectively
addressing class imbalance through data augmentation, DVT
does not architecturally prioritize the retention of high-
frequency spatial details, and its reliance on GAN-based
preprocessing increases deployment complexity.

Critical Research Gap: Existing hybrid CNN-ViT
architectures demonstrate that combining local and global
feature modeling improves plant disease classification.
However, a unified solution remains clusive due to three
interconnected limitations:

1) High-frequency feature loss: Current hybrids do not
explicitly preserve fine-grained spatial details (e.g., lesion
edges, texture patterns) during the CNN-to-ViT transition, as
patch embedding and tokenization inherently smooth this
critical high-frequency information.

2) Memory inefficiency: Most models retain full
transformer stages, resulting in memory footprints (40-
S50MB+) that preclude deployment on resource-constrained
edge devices common in agriculture.

3) Training instability: The integration of heterogeneous
CNN and transformer layers often introduces optimization
challenges due to conflicting normalization requirements and
inconsistent gradient flow.

4) Our contribution: To directly address these gaps, we
propose EHF-GCViT (Edge-optimized High-Frequency Gated
Convolutional Vision Transformer).

Our novel architecture:

e Introduces a Lightweight High-Frequency Refinement
block before the transformer stage to explicitly enhance
and preserve discriminative fine-grained features,

e Replaces the final transformer stages with a Gated
Convolutional Neck, significantly reducing the memory
footprint while maintaining global context awareness,
and

e Employs Adaptive Layer Normalization to stabilize the
training of heterogeneous architectural components.
This design provides a balanced solution that achieves
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state-of-the-art accuracy with a memory profile
explicitly optimized for real-world edge deployment.

III.  PROPOSED METHODOLOGY

A. Asymmetric Depthwise Convolution Block

In this work, we propose a novel Asymmetric Depthwise
Convolution Block (ADCB) designed to enhance the detection
of high-frequency features, thereby improving the quality and
sharpness of the extracted features.

o F x F Depthwise
Convolution

'g_ F x n Depthwise A E.
) : NZ) 3
= Convolution &
L) n x F Depthwise
Convolution

Fig. 1. The asymmetric depth-wise convolution block.

As shown in Fig. 1, the proposed block can be viewed as a
lightweight variant of the Asymmetric Convolution Block
(ACB) [24] where classical convolution layers are replaced
with depthwise convolution layers to significantly reduce
computational cost during feature extraction. While
maintaining the conceptual structure of the original ACB, our
block consists of a symmetric depthwise convolution with
kemel size F x F to capture core spatial features and two
asymmetric depthwise convolutions with kernel sizes, F X F , F
x n and n x F where n < F unlike the original ACB, which
restricts n=1, we introduce flexibility in the choice of n,
allowing the creation of new asymmetric filters that can be
tuned to emphasize directional high-frequency components
with greater adaptability. The outputs of the three branches are
summed elementwise to produce the block’s final output. Like
the original ACB, the overall structure can be treated as a
single depthwise convolution layer with enhanced directional
sensitivity.

B. High-Frequency Depthwise Separable Convolution Block

The high-frequency depthwise separable convolution block
shown in Fig. 2, is a new variant of the depthwise separable
convolution block, which is the fundamental block of the
Mobilenet architecture [25]. We replace the classical depthwise
layer with our asymmetric depthwise convolution block to
sharpen the extracted features while retaining the 1x1
pointwise convolution for channel wise feature integration.
This modification preserves the efficient structure of
MobileNet while significantly improving its ability to capture
high-frequency and directionally aware spatial features.

We use a residual connection from the block’s input to its
output to preserve essential base features while selectively
refining details. This design enables the block to act as a
feature enhancement unit, correcting and sharpening
representations rather than replacing them outright. The
residual path ensures stability during training and helps the
refinement remain focused on informative residual patterns.
The resulting block balances efficiency and accuracy, offering
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enhanced descriptive power without significantly increasing
computational complexity, making it especially suitable for
resource constrained applications such as mobile and
embedded systems.

Me

Input
Conv2D1x 1
Output

Fig.2. The high-frequency depth-wise separable convolution block.

C. Normalization Strategy

In the proposed architecture, we apply Group
Normalization (GN) following depthwise convolutions and
Layer Normalization (LN) following 1x1 pointwise
convolutions, in accordance with the functional properties of
each normalization technique and the convolutional operations
they follow. Depthwise convolutions operate on each input
channel independently, making them inherently sparse in inter-
channel interaction. GN, which normalizes within groups of
channels rather than across the batch dimension, is well-suited
for this context. Unlike Batch Normalization (BN), Group
Normalization (GN) maintains performance with small batch
sizes and better preserves the spatial structure of feature maps,
making it more compatible with the independent-channel
nature of depthwise operations. Moreover, GN avoids the over-
smoothing behavior that Layer Normalization might induce in
spatially distributed features, as LN treats each feature vector.
Conversely, 1x1 convolutions perform intensive channel
mixing, aggregating information across all feature channels at
each spatial location. In this setting, LN proves advantageous
because it normalizes across the full set of channels for each
sample, offering sample-level consistency and effectively
stabilizing the dense transformations introduced by pointwise
convolutions. This dual strategy using GN with depthwise
layers and LN with pointwise layers ensures that normalization
remains functionally aligned with the nature of the operations it
follows, improving convergence stability and feature quality
without disrupting spatial integrity.

D. Gelu Channel Attention Fused MBC

In this work, we propose a novel modification of the
previously introduced LRCA Fused MBC block [26] referred
to as the GLCA MBC block. The term GLCA denotes the
integration of the GELU activation function in place of the
Leaky ReLU, applied consistently within both the channel
attention module and all constituents’ layers of the block.
Additionally, we replace the standard convolutional layer with
a dilated (atrous) convolution, which enlarges the receptive
field without increasing the number of parameters, thereby
enabling the network to capture broader contextual information
while preserving spatial resolution.

This replacement of conventional 5x5 convolutions with
dilated convolutions significantly reduces the computational
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burden while maintaining a high level of classification
precision. Through extensive experimentation, we demonstrate
that this configuration is particularly effective for plant disease
classification, offering a more computationally efficient
alternative to large kemel convolutions by achieving an
equivalent receptive field using smaller, dilated kernels.

Furthermore, we retain the same normalization strategy as
the HF depthwise separable convolution block, applying Group
Normalization (GN) after classical convolution layers and
Layer Normalization (LN) after 1 x 1 pointwise convolutions.
This targeted use of normalization improves stability and
enhances learning dynamics across the heterogeneous
components of the block. Fig. 3 illustrates the architectural
design of the proposed GLCA Fused MBC block.

Input
Conv2D1x1
Output

Fig.3. GLCA fused MBC block.

E. Enhanced High-Frequencies GCVIT Architecture

As previously stated, our architecture is a modified version
of the GCViTXXTiny model. We retain the initial patch
embedding block and the three hierarchical levels of the
original GCVIiT design. However, we introduce a key
enhancement: a refinement layer is inserted between each
pretrained pair of transformer stages as shown in Fig. 4.

Each refinement layer maintains the same input and output
dimensions, enabling the use of residual connections to
preserve and enrich the leamed feature representations. This
design helps enhance intermediate features without disrupting
the original flow of information. The asymmetric filter
dimensions were selected as F=5 and n=2 since through
experimental optimization this combination produces the most
favorable results.

Additionally, we replace the final transformer level of
GCViT with a GLCA Fused MBC block, which significantly
reduces the number of parameters while maintaining
competitive accuracy. This modification leads to a 25.62%
reduction in memory usage, making the model lightweight and
efficient for deployment on resource constrained devices.
Despite these changes, experimental results demonstrate that
modified architecture preserves strong performance across
evaluation metrics.

Fig. 4 shows the enhanced high-frequency hybrid
architecture (with the original GCVIT frozen layers in blue,
refinement layers in yellow, GLCA Fused MBC in green,
global average pooling in red and Conv 1x1 in pink ).

Table I provides a detailed description of the proposed
architecture, including the input and output sizes of each layer,
the stride values, and the number of groups used in Group
Normalization (GNorm).
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H.F. Depthwise
Separable conv
H.F. Depthwise

Separable conv
H.F. Depthwise

Separable conv

H.E. Depthwise
Separable conv
Conv2D1x1
Conv2D1x 1
Class

Fig. 4. The enhanced high-frequency hybrid architecture (with the original
GCVIT frozen layers in blue, refinement layers in yellow, GLCA Fused MBC
in green, global average pooling in red and Conv 1x1(classifier) in pink).

TABLEI. NETWORK ARCHITECTURE LAYERS WITH INPUT/OUTPUT
SHAPES AND PARAMETERS
Block Input Output G
Patch Embedding 2242 x 3 562 X 64 - 2
Dropout 56% X 64 56% X 64 - -
H.F D.W.S.Conv0 562 x 64 562 X 64 8 1
Level 0 562 X 64 282 x 128 - 2
H.F D.W.S.Convl 28% x 128 282 x 128 16 1
Level 1 282 x 128 14% x 256 - 2
H.F D.W.S.Conv2 14% x 256 142 x 256 32 |1
Level 2 142 x 256 72 x 512 - 2
H.F D.W.S.Conv3 72 X 512 72 x 512 32 |1
S/ﬁ;’gA Fused 72 x 512 72 x 512 32 |1
Ségll’i‘;lg Average 72 x 512 12 x 512 - -
Conv2D Ix1 12 x 512 12 x 1028 - 1
Conv2D 1x1 12 % 1028 12 x Class - 1
G=Group size and S=Stride
IV. RESULTS

In this section, we describe the experimental setup and the
different experiments conducted to rigorously evaluate our
model, as well as to compare our results with those obtained
from state-of-the-art architectures. In this section, we describe
the experimental setup and the different experiments conducted
to rigorously evaluate our model, as well as to compare our
results with those obtained from state-of-the-art architectures.

A. Dataset

To evaluate the performance of our proposed system, we
utilized a dataset of tomato leaf diseases extracted from the
PlantVillage [27] database, made available publicly through
the repository [28] .This dataset comprises 14,531 tomato leaf
images, covering both healthy specimens and those affected by
various diseases. Table II shows that the images are
categorized into ten distinct classes, which include nine disease
types: Bacterial Spot, Early Blight, Late Blight, Leaf Mold,
Septoria Leaf Spot, Target Spot, Tomato Mosaic Virus,
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Tomato Yellow Leaf Curl Virus, and Two-Spotted Spider
Mite, as well as one healthy class. Each image generally
depicts a single leaf captured against a uniform background,
providing a clean and consistent input for classification tasks.
Due to its scale and diversity, this dataset has become a widely
adopted benchmark for assessing the effectiveness of machine
leaming and deep learming models in plant disease diagnosis.
The version of the dataset we used includes five predefined
folds intended for cross-validation. Each fold is split into 80%
for training and 20% for testing, allowing for robust and
systematic evaluation across multiple runs. In our experiments,
we employed all five folds for cross-validation tests. For
ablation studies and comparative analysis with state-of-the-art
models, we used only the first fold to ensure consistency and
efficiency. During the training phase, we further allocated 10%
of the training subset from each fold for validation, while the
remaining 90% was used for model training.

TABLE II. NUMBER OF SAMPLES PER CLASS IN THE DATASET
Class Number of samples per class
Bacterial spot 1702
Early blight 800
Healthy 1272
Late blight 1528
Leaf Mold 762
Septoria leaf spot227 1417
Target Spot227 1124
Tomato mosaic virus227 299
Tomato Yellow Leaf Curl Virus227 4286
Two-spotted spider mite227 1341
Total number of images 14531
B. Metrics

In our work, we opted to use confusion matrix, Accuracy,
Precision, Recall, and F1-score as statistics to evaluate the
performance of our model. The confusion matrix is a matrix
that allows us to measure the performance of a system during a
classification task by providing information about the
comparison between original classes and predicted classes.
This information is classified into four categories:

True positive (TP): When the instance is positive, and the
model classifies it as positive.

True negative (TN): When the instance is negative, and the
model classifies it as negative.

False positive (FP): When the instance is negative, and the
model classifies it as positive.

False negative (FN): When the instance is positive, and the
model classifies it as negative.

Accuracy is the basic metric used in most evaluations, and
it shows the number of predictions over all predictions. It is
calculated by splitting the number of correct predictions by the
total number of predictions.

Vol. 16, No. 12, 2025

Tp+TN

Accuracy = ———
TP+FP+TN+FN

(M

Precision shows the number of true positive predictions
compared to the total number of all positive predictions.

Precision =

()

Recall measures the number of positive cases compared to
the total number of all the predictions classified as positive.

o 3)

TP+FN

TP+FP

Recall =

F1-score is a measure that we calculate as a harmonic mean
or the weighted average of precision and recall.

2XPrecisionXRecall
F1 — score = —=ocsiomxeas (4)

Precision+Recall

C. Training Strategy

To leverage the representational power of pre-trained
models while adapting them to our specific classification task,
we adopted a transfer learning strategy. The core layers and
blocks of the original GCViT architecture were frozen,
meaning their weights remained unchanged during training to
preserve features learned from large-scale datasets. We
integrated our custom blocks HF Depthwise Separable
Convolution, GLLCA, and Fused MBC, along with a
classification head specifically designed for our target task.
Only these newly added components were trained during the
training process. This selective training approach reduces
computational cost and helps prevent overfitting, particularly
when working with limited data. Optimization was performed
using the Weighted Adam (W.Adam) algorithm, an enhanced
version of Adam that incorporates weight-aware mechanisms
to improve both convergence speed and generalization
performance.

D. Ablation Study

To assess the individual contributions of key design choices
in our hybrid vision model, we conducted a structured ablation
study. This process involved systematically removing specific
components from our hybrid architecture to measure their
direct impact on performance. We focused on evaluating the
role of the HF depth-wise separable convolution block (Model
A) and the GLCA-Fused MBC (Model B) in improving
classification accuracy for plant disease detection.

From the training perspective as shown in Table III, all
variants achieved near-perfect accuracy, with losses
approaching zero. Model A and the Hybrid GCViT attained
99.92% and 9994% training accuracy, respectively,
accompanied by equally high validation accuracy (99.91% and
99.74%), indicating excellent learning capacity with no signs
of overfitting. Although Model B experienced a minor drop in
validation accuracy (99.31%) compared to its training accuracy
(99.92%), its performance remained competitive, especially
given its reduced model size (33.29 MB).

Table IV presents the testing performance on the testing
data set and shows that Model A achieved the highest accuracy
(99.55%) and F1 score (99.48%), closely followed by the
Hybrid GCViT (99.52% accuracy, 99.47% F1). Despite being
slightly smaller than Model A, the Hybrid model maintained
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nearly identical performance, suggesting that the combination
of both enhancements led to a well-balanced architecture.
Overall, this ablation study confirms that each modification
contributes positively, with the hybrid configuration offering
the best trade-off between accuracy, generalization, and model
efficiency.

Vol. 16, No. 12, 2025

among the folds further suggests that the model generalizes
well to unseen data and is not overly sensitive to the
composition of the training and validation subsets.

TABLE V. CROSS-VALIDATION TESTING PERFORMANCES
Fold Accuracy (%) | Precision (%) | Recall (%) Flg,f/i‘)’re
Fold 1 99.52 99.44 99.50 99.47
Fold 2 9921 99.00 98.92 98.95
Fold 3 99.66 99.49 99.65 99.57
Fold 4 99.55 99.42 99.47 99.44
Fold 5 99.24 99.04 99.17 99.10

TABLE III. TRAINING STATISTICS OF THE ABLATION STUDY
EXPERIMENTS
Model Train. Train. Val. Val. Size
ode Accuracy (%) Loss Accuracy (%) Loss (mb)
Original
GC VIT 99.29 0.02 99.05 0.05 | 46.36
Model A | 99.92 0.00 9991 0.01 | 48.55
Model B | 99.92 0.00 99.31 0.04 | 33.29
EHF-
GCViT 99.94 0.00 99.74 0.03 | 34.48
Train. = training and Val. = validation
TABLEIV. TESTING STATISTICS OF THE ABLATION STUDY EXPERIMENTS
Test. TSN o F1-score
Model Accuracy (%) Precision (%) | Recall (%) (%)
Original
GC VIT 98.49 98.08 98.25 98.15
Model A 99.55 99.45 99.52 99.48
Model B 99.45 99.30 99.28 99.29
EHF-
GCViT 99.52 99.44 99.50 99.47

Train. = training and Val. = validation

E. Cross-Validation Test

To ensure robust and unbiased evaluation of the proposed
model, a 5-fold cross-validation protocol was adopted using the
folds provided in the Mendeley dataset for tomato disease. This
dataset includes predefined training, validation, and testing
splits for each fold, enabling consistent and reproducible
assessments across multiple experiments. By rotating through
the five folds, each model is trained and tested on different
subsets of data, which helps mitigate the risk of overfitting and
provides a more reliable estimate of generalization
performance. This approach is particularly valuable in plant
disease classification, where dataset imbalance and subtle inter-
class variations can otherwise distort performance metrics if a
single train-test split is used. The use of standardized folds also
facilitates fair comparisons between models under identical
evaluation conditions.

The performance of the proposed model was assessed using
5-fold cross-validation , and the evaluation metrics
demonstrate consistently high classification quality across all
folds. Table V shows that accuracy ranged from 99.21% to
99.66%, with a mean above 99.4%, indicating the model’s
strong overall ability to correctly classify instances. Precision
values remained between 99.00% and 99.49%, suggesting that
the model maintains a low rate of false positives across the
different test splits. Similarly, recall values ranged from
98.92% to 99.65%, confirming that the model effectively
captures true positive cases with minimal false negatives. The
F1-score, which balances precision and recall, was consistently
high, above 98.9% in all folds, highlighting the robustness and
reliability of the model’s predictions. The low variability

F. Comparison with Other Models

To evaluate the performance of our proposed architecture,
we conducted a comparative analysis against a diverse set of
state-of-the-art models, encompassing convolutional neural
networks (CNNs), vision transformers (ViTs), and hybrid
architectures. We chose these models for comparison based on
their availability in the Keras API and their proven stability and
performance in image classification tasks. The deep leaming
community widely adopts these models, which provide reliable
implementations with pre-trained weights, making them
suitable for fair and reproducible benchmarking. The models
are described as follows:

1) ConvNeXt Base [18]: ConvNeXt is a modernized
convolutional architecture that integrates design principles
from vision transformers into traditional CNN frameworks.
Key enhancements include the use of large kernel sizes,
inverted bottlenecks, and Layer Normalization, aligning CNNs
more closely with transformer-based models.

2) EfficientNetV2-M [29]: EfficientNetV2-M is part of the
EfficientNetV2 family, which introduces a combination of
MBConv and Fused-MBConv blocks to improve training
speed and parameter efficiency. Architecture employs
progressive learning strategies, adjusting image size and
regularization during training to achieve better performance.

3) GCViT XXTiny: GCVIiT (Global Context Vision
Transformer) is a vision transformer designed to capture
global context efficiently. The XXTiny variant is an ultra-
lightweight model, making it suitable for resource-constrained
environments. Our proposed hybrid model draws inspiration
from this variant.

4) GCViT Base: The GCViT Base model expands upon
the XXTiny variant, offering a more substantial architecture
that balances performance and efficiency. It utilizes
hierarchical attention mechanisms to effectively model global
context in visual data.

5) ResNet100: ResNetl100 is a deep residual network that
employs skip connections to mitigate the vanishing gradient
problem, enabling the training of very deep networks. It serves
as a strong baseline for evaluating the performance of deep
CNNEs.

6) MobileNetV3-Large:  MobileNetV3-Large is an
efficient architecture optimized for mobile and embedded
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applications. It incorporates neural architecture search (NAS),
squeeze-and-excitation (SE) blocks, and novel activation
functions like h-swish to achieve a balance between accuracy
and latency.

7) ViT Base [30]: The Vision Transformer (ViT) Base
model applies trans-former architectures, originally developed
for natural language processing, to image classification tasks.
It divides images into patches and processes them using self-
attention mechanisms, demonstrating the viability of
transformer-based models in computer vision.

Table VI summarizes the training performance of all
evaluated models, showing the statistics of all evaluated
models during the training process.

Vol. 16, No. 12, 2025
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Fig. 6. Evolution of training and validation loss over epoch.

TABLE VI. PERFORMANCES OF ALL MODELS DURING THE TRAINING
PROCESS
Training .. Validation s
Model Accuracy Trlﬁjmmg Accuracy ValIleatlon
(%) 0SS (%) 0SS
ConvNeXt 100.0 0.0 98.88 0.079
Base
ffﬁC‘emNetvz' 99.32 0.023 97.42 0.106
GCViT XXTiny | 99.27 0.021 99.14 0.050
GCVIiT Base 99.51 0.018 99.48 0.055
ResNet100 99.98 0.001 98.02 0.156
MobileNetV3 | g9 g9 0.002 98.36 0.094
Large
ViT Base 100.0 0.0 98.8 0.075
EHF-GCViT 99.94 0.004 99.74 0.027

Fig. 5 shows the evolution of training and validation
accuracy during the training process.

Fig. 6 presents the evolution of training and validation loss
during the same process.

Table VII summarizes the testing performance of all
evaluated models, highlighting a comparison between the
proposed EHF hybrid GCVIT and selected state-of-the-art

approaches.

The confusion matrix presented in Fig. 7 illustrates the
classification performance of our model across 10 classes of
tomato leaf diseases.

100

0.95
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Accuracy and Val_Accuracy

0.80
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Fig. 5. Evolution of training and validation accuracy over epochs.

TABLE VII. PERFORMANCES OF ALL MODELS DURING THE TESTING PHASE
Model Atiiti:gcy Precision Recall F1-score
(%) (%) (%) (%)
g;’:;’NeXt 96.81 96.14 94.52 95.11
E/fﬁm“metvz' 96.67 95.64 95.94 95.73
GCViT XXTiny | 98.5 98.08 98.03 98.05
GCViT Base 99.18 98.69 99.12 98.88
ResNet100 97.25 96.38 96.87 96.60
i/[a‘;g;leNetw 96.87 95.87 96.04 95.93
ViT Base 98.45 97.91 98.27 98.08
EHF-GCVIT | 99.52 99.44 99.50 99.47
w0
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Fig. 7. Confusion matrix of plant tomato diseases classification results using
EHF hybrid GCVIT architecture.

Most classes achieved near-perfect classification, with
minimal confusion between categories. Notably, Target Spot
(858), Two-spotted spider mite (255), Tomato Yellow Leaf
Curl (268), and Late blight (153) were classified with perfect
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or near-perfect accuracy, demonstrating the model’s robustness
on these categories. Mi-nor misclassifications occurred for a
few classes, such as healthy leaf, which was occasionally
confused with Bacterial spot and Septoria leaf spot, and Early
blight, which had slight confusion with Septoria leaf spot.
Overall, the confusion matrix confirms strong discriminative
capability across all classes, with misclassifications being both
sparse and low in magnitude.

V. DISCUSSION

This research delivers an in-depth assessment of eight vit
and deep learning architectures for plant disease classification,
with a focus on both predictive accuracy and computational
efficiency. The training, validation, and testing outcomes offer
valuable perspectives on each model’s learning behavior,
generalization capability, and practicality for deployment in
real-world settings.

The results show that our proposed method (Hybrid
GCViT) consistently demonstrated the strongest overall
performance. It achieved the highest validation accuracy
(99.74%) and test accuracy (99.52%), along with excellent
precision (99.44%), recall (99.50%), and F1 score (99.47%).
Despite its lightweight size (3448 MB) and ranking second to
MobileNet V3 Large in memory efficiency, it surpassed all
other models across key metrics. This suggests that the
proposed hybridization of GCViT with convolutional
components effectively captures both local and global features,
enhancing both leamn-ing and generalization while remaining
computationally efficient.

The GCViT family, particularly GCViT Base and GCViT
XXTiny, also demonstrated excellent performance. GCViT
Base achieved a validation accuracy of 9948% and a test
accuracy of 99.18%, with high precision and recall. GCViT-
XXTiny, although more compact, maintained a competitive
test accuracy of 98.5%, highlighting the scalability of GCViT-
based designs for both high-end and resource-constrained
applications.

Within the classical convolutional and hybrid transformer
models, ViT Base and ConvNeXt Base achieved perfect
training accuracy (100%). However, their performance on the
validation and test datasets was slightly lower. This
discrepancy suggests a tendency toward overfitting,
particularly in ConvNeXt Base, which exhibited a noticeable
gap between training and test accuracy (100% vs 96.81%).
These findings underscore the importance of applying effective
regularization strategies when deploying highly expressive
model architectures.

ResNetl00 and  EfficientNetV2-M  showed  strong
performance, with test accuracy of 97.25% and 96.67%,
respectively. However, they were outperformed by the trans-
former-based models, particularly in terms of F1 score and
model compactness. Similarly, MobileNetV3 Large, known for
its efficiency, maintained a relatively high-test accuracy of
96.87%but was outclassed by more recent architectures in both
precision and recall.

Another key observation is the relationship between model
size and performance. Notably, Hybrid GCViT, despite being
the smallest model, delivered the best accuracy. This indicates
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that newer architectural designs can achieve superior
performance without significantly increasing computational
demands, which is critical for real-time or edge-based
agricultural applications.

In summary, the results highlight the superior performance
of transformer based and hybrid transformer-convolutional
architectures in classifying diseases in tomato plants. The
proposed Hybrid GCVIiT excels in accuracy and generalization
and offers practical advantages in terms of deployment
feasibility, making it a strong candidate for integration into
intelligent agricultural systems.

VI.  CONCLUSION AND FUTURE WORK

This work introduces EHF-GCVIiT, a novel lightweight
hybrid architecture for tomato leaf disease classification that
addresses a key limitation of existing hybrid vision
transformers: the loss of high-frequency spatial information
during feature abstraction, along with high memory demands
that hinder deployment on edge devices. By explicitly
enhancing fine-grained feature preservation within the GCViT
framework, the proposed approach achieves a more effective
balance between accuracy and computational efficiency.

The proposed architecture integrates three complementary
design strategies: (i) a customized lightweight convolutional
refinement mechanism that improves the extraction of high-
frequency discriminative details prior to transformer
processing; (ii) a gated convolutional replacement for the final
transformer stage that significantly reduces model memory
consumption from 4636 MB to 34.48 MB; and (iii) an
adaptive normalization strategy that stabilizes the training of
heterogeneous convolutional and transformer layers. Together,
these design choices enable efficient feature refinement
without compromising generalization capability.

Extensive experiments conducted on the PlantVillage
tomato disease dataset demonstrate that EHF-GCViT
consistently outperforms the baseline GCViT, standard Vision
Transformers, and representative CNN-based architectures.
The proposed model achieves a classification accuracy of
99.52%, confirming its suitability for resource-constrained
environments. Ablation studies further validate the contribution
of each architectural component and highlight the effectiveness
of the proposed design trade-offs.

Beyond performance gains, this study emphasizes the
importance of task-driven architectural design in hybrid
transformer models. The results show that explicitly modeling
high-frequency information rather than increasing model depth
or complexity can lead to more accurate and efficient solutions
for practical agricultural Al applications.

While the current evaluation demonstrates strong
performance on the PlantVillage dataset, several directions
warrant further investigation. Validation across diverse real-
world field conditions with varying lighting, occlusions, and
backgrounds would strengthen evidence of practical
robustness. Additionally, extending the approach to multiple
crop types and evaluating deployment performance on actual
edge hardware platforms would provide valuable insights into
the architecture’s generalizability and operational feasibility.
Moreover, the effectiveness of the proposed high-frequency

1135|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

refinement may be influenced by image resolution and noise
characteristics, which warrants further investigation under
diverse sensing conditions. These considerations represent
natural next steps in transitioning the model from controlled
evaluation to production agricultural systems.

Future work will focus on extending EHF-GCVIiT as a
general-purpose backbone for additional computer vision tasks,
such as object detection and semantic segmentation, as well as
systematic evaluation under real-world deployment scenarios.
Owing to its modular and lightweight design, the proposed
architecture holds promise for broader adoption in intelligent
agricultural systems and other edge-based visual perception
applications.
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