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Abstract—Efficient and accurate automated diagnosis of plant 

diseases remains a challenge for deployment on resource-

constrained edge devices. While hybrid vision transformers like 

GCViT balance accuracy and efficiency, they often lose critical 

high-frequency details such as fine lesion textures and leaf 

margins that are essential for fine-grained disease classification. 

To address this gap, we propose the Enhanced High-Frequencies 

Global Context Visual Transformer (EHF-GCViT), a novel 

hybrid architecture designed to explicitly enhance high-

frequency feature retention within a lightweight framework. The 

core innovations of EHF-GCViT include: first, a customized, 

lightweight convolutional refinement block based on depthwise 

separable operations that acts as a learnable pre-processor to 

preserve discriminative spatial details before 

tokenization; second, a gated convolutional block that replaces 

the final transformer stage, reducing the model memory 

footprint from 46.36 MB to 34.48 MB; and third, an adaptive 

normalization strategy to stabilize the training of the integrated 

heterogeneous layers. Extensive experiments on the PlantVillage 

tomato disease dataset demonstrate that EHF-GCViT achieves 

superior performance, surpassing the baseline GCViT, standard 

Vision Transformers (ViT), and CNN benchmarks (e.g., ResNet) 

in accuracy, precision, recall, and F1-score. These results validate 

that explicitly modeling high-frequency features within a hybrid 

transformer design provides a more memory-

efficient and accurate backbone for practical plant disease 

detection systems targeting edge deployment. 
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I. INTRODUCTION 

Climate change is significantly increasing the incidence, 
severity, and geographic range of plant diseases. Studies, such 
as [1], have demonstrated that shifting climate patterns are 
altering host-pathogen interactions, often accelerating disease 
cycles and allowing pathogens to invade new agricultural 
zones. Among the affected crops, the tomato—widely 
cultivated and of high economic importance—is particularly 
susceptible to various foliar diseases. These infections can lead 
to substantial yield losses, as highlighted by the World 
Processing Tomato Council (WPTC), which projects an 11.5% 
drop in yields for processing tomatoes in 2025 [2]. 

In response to these pressing challenges, researchers and 
policymakers are increasingly turning to artificial intelligence 
(AI) to improve plant health monitoring. Investment in AI-
driven technologies aims to develop scalable, automated 
systems capable of diagnosing plant diseases directly from leaf 
images. 

Convolutional Neural Networks (CNNs) are highly 
effective at capturing local spatial patterns through 
convolutional operations. However, their limited receptive 
field restricts their capacity for modeling long-range 
dependencies, which is critical for understanding global 
context in complex agricultural environments. In contrast, 
Vision Transformers (ViTs) excel at modeling global 
relationships via self-attention mechanisms but are often reliant 
on large datasets and substantial computational resources, 
making them less suitable for many real-world, resource-
constrained applications. This limitation has spurred the 
emergence of hybrid architectures, which combine the local 
feature extraction strengths of CNNs with the global 
representation capabilities of Transformers. This design offers 
a balanced compromise between precision, efficiency, and 
generalization. By integrating convolutional inductive biases 
with transformer-based contextual learning, hybrid models 
achieve superior accuracy and robustness—a critical advantage 
in domains characterized by subtle visual variations like plant 
disease detection. Therefore, developing efficient hybrid 
backbones that can adapt to challenges like varying lighting, 
leaf orientation, and disease symptom presentation is essential. 
These innovative frameworks not only promise superior results 
in specialized domains like agriculture but also establish a 
foundational benchmark for future progress in broader object 
detection research. 

In this paper, we introduce a novel hybrid model, Hybrid 
HF GCVIT, designed to enhance the high frequencies for 
better classification. In this architecture, we introduce a new 
lightweight convolution block that is intended to be placed 
between the original GCVIT [3] blocks, enhancing the 
detection of high frequencies within the extracted features and 
thereby improving accuracy. We present a new normalization 
strategy to improve the quality of training and the accuracy of 
our model. This synergy yields a model that is both accurate 
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and computationally efficient, making it well-suited for real-
time applications and potential deployment on low-power 
hardware platforms. We built GCViT with modularity in mind, 
unlike many prior models that optimize solely for 
classification. Its architecture is intended not only to perform 
tomato disease classification with high precision but also to 
serve as a robust backbone for more complex tasks, including 
object detection, segmentation, and anomaly localization in 
agricultural contexts. Experimental evaluations on publicly 
available tomato disease datasets validate the proposed model’s 
superior performance in terms of accuracy, generalization, and 
computational efficiency of GCViT, surpassing that of state-of-
the-art CNNs, ViTs, and hybrid networks. These results 
suggest that GCViT offers a practical and scalable solution for 
smart farming applications, especially where on-device 
intelligence is considered. 

II. RELATED WORK 

A. CNN-Based Models 

Convolutional Neural Networks (CNNs) have established 
themselves as a foundational approach for plant disease 
classification, showing their strong capabilities in extracting 
hierarchical visual features from images. A significant body of 
research focuses on customizing CNN architectures to enhance 
accuracy and efficiency for agricultural applications. 

Early work demonstrated the potential of CNNs with high 
parameter counts and data augmentation. For instance, 
Guerrero-Ibañez and Reyes-Muñoz [4] presented a high-
performance CNN model trained on a dataset enriched with 
real and GAN-generated synthetic images, achieving 99.64% 
validation accuracy for tomato leaf diseases. While 
demonstrating high performance, this approach relies heavily 
on extensive data augmentation rather than intrinsic 
architectural innovation, and its computational complexity 
limits suitability for resource-constrained edge devices. 

Subsequent research addressed challenges like dataset 
imbalance and subtle inter-class differences through 
architectural modifications. Zhang et al. [5] proposed a 
lightweight dual-attention model (LDAMNet), integrating a 
dual-attention convolution block to achieve 98.71% average 
accuracy. However, while LDAMNet reduces model 
complexity, it operates within the conventional CNN paradigm 
and lacks the capacity for global context modeling, which is 
crucial for understanding long-range spatial dependencies in 
disease patterns. 

The pursuit of deployable models has driven the adoption 
of efficient architectures and transfer learning. Sultan [6] 
employed a modified Xception architecture with deep transfer 
learning, achieving 98% accuracy for multiple crops while 
optimizing for edge deployment. Transfer learning, however, is 
constrained by features learned from generic datasets like 
ImageNet, which may not optimally capture disease-specific, 
high-frequency details such as fine lesion textures. 

Radočaj et al. [7] introduced the novel IncMB module, 
integrating an Inception structure with the Mish activation 
function into MobileNetV2, achieving 97.78% accuracy and 
confirming potential for mobile platforms. 

Similarly, Vivek Anandh et al. [8] showed a transfer-
learned MobileNetV2 model could attain 99.49% accuracy for 
tomato leaf disease classification on IoT platforms. While these 
models achieve efficiency through depthwise separable 
convolutions, they prioritize overall parameter reduction over 
the explicit preservation of high-frequency spatial details, 
which can result in the loss of discriminative fine-grained 
features essential for distinguishing visually similar diseases. 

This principle of lightweight design extends to highly 
optimized, purpose-built CNNs. FL-ToLeD  [9] leverages soft 
attention and depthwise separable convolutions to achieve 
99.04% accuracy with only 221,594 parameters. Critically, its 
attention mechanism operates on downsampled feature maps, 
inherently discarding high-frequency details before they can be 
weighed a fundamental limitation for fine-grained 
classification. 

Ashurov et al. [10] integrated Squeeze-and-Excitation (SE) 
blocks into a Depthwise CNN, achieving 98% accuracy. 
Although SE blocks enhance channel-wise feature 
recalibration, they do not explicitly preserve high-frequency 
spatial information, which can be suppressed if not statistically 
dominant across channels. 

The success of efficient CNNs has proven generalizable 
across crops, with specialized models achieving high accuracy 
for rice (99.81%) [11], potato (99.3%) [12], and multiple 
vegetables (97.12%) [13]. While demonstrating task 
adaptability, these models are typically optimized for single-
crop scenarios and lack architectural mechanisms for explicit 
high-frequency feature enhancement. 

To address data scarcity, data-centric approaches have 
emerged. Ramadan et al. [14] used CycleGAN for synthetic 
image generation to enable a MobileNetV2 model to achieve 
perfect wheat disease classification accuracy. 

Joseph et al. [15] constructed real-time multi-crop datasets 
and proposed the MRW-CNN, achieving 97.04%–98.08% 
accuracy. These methods improve performance through 
augmentation rather than architectural innovation for feature 
preservation, and their reliance on synthetic data adds pre-
processing complexity ill-suited for streamlined edge 
deployment. 

Critical Gap in CNN-Based Approaches: While CNNs 
excel at local feature extraction and have been successfully 
optimized for edge deployment, they fundamentally struggle 
with modeling long-range dependencies and global context. 
More critically, aggressive model compression techniques 
(e.g., depthwise convolutions) often sacrifice high-frequency 
feature retention, leading to reduced discriminative power for 
fine-grained disease classification where subtle texture 
differences are paramount. No existing CNN approach 
explicitly models high-frequency spatial features as a core, 
learnable architectural component prior to feature abstraction. 

B.  Vision Transformer (VIT)-Based Models 

Vision Transformers (ViTs) address the global context 
limitation of CNNs by capturing long-range spatial 
relationships across entire images through self-attention 
mechanisms. 
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Karimanzira et al. [16] developed a ViT with cascaded 
group attention (ViT-CGA), achieving top-tier accuracy and 
robustness, enhanced with Explainable AI (XAI) and an LLM 
for interpretability. However, pure ViT architectures typically 
require large-scale datasets and substantial computational 
resources for effective training, making them impractical for 
scenarios with limited agricultural data and strict edge-device 
constraints. 

Efforts have been made to adapt ViTs for practical 
deployment. Barman et al. [17] proposed ViT-SmartAgri, a 
CNN-free Vision Transformer designed for smartphones, 
attaining 90.99% accuracy for tomato leaf conditions. While 
demonstrating mobile potential, this accuracy falls below 
contemporary CNN benchmarks, suggesting that pure ViTs 
may sacrifice critical local feature sensitivity, particularly the 
high-frequency edge and texture information crucial for precise 
disease boundary detection. 

For object detection in complex environments, Wang and 
Liu [18] introduced TomatoDet, a real-time model based on a 
Swin Transformer variant, achieving a high mAP of 92.3% for 
localizing tomato diseases. Although Swin Transformers 
introduce local windowing to reduce computation, they 
maintain substantial memory footprints and lack explicit 
mechanisms to preserve high-frequency spatial details during 
the patch embedding process, which can blur fine lesion 
boundaries. 

Critical Gap in ViT-Based Approaches: While ViTs excel 
at global context modeling, they face critical limitations for 
edge-deployed plant disease detection: 1) high computational 
and memory requirements, 2) data hunger requiring extensive 
training sets, and 3) inherent loss of high-frequency spatial 
information during patch tokenization, where fine-grained 
disease textures are smoothed or discarded. 

C. Hybrid CNN-VIT-Based Models 

Hybrid architectures have emerged to synergistically 
combine the local feature sensitivity of CNNs with the global 
context modeling of ViTs, aiming to balance both capabilities 
for complex visual classification. 

Sinamenye et al. [19] developed a hybrid 
EfficientNetV2B3+ViT model for potato disease detection, 
achieving 85.06% accuracy—an 11.43% improvement over 
prior methods. However, this architecture employs a simple 
feature concatenation without addressing the fundamental issue 
of high-frequency information loss during the ViT tokenization 
stage, and its modest accuracy suggests suboptimal feature 
integration. 

Alwan and Alturfi [20] introduced a sophisticated 
framework fusing EfficientNet-B8, a ViT, and a Knowledge 
Graph (KG), achieving 99.3% accuracy across 38 disease 
categories. While highly accurate, this approach relies on 
ensemble complexity and external knowledge integration 
rather than architectural efficiency, resulting in a model 
unsuitable for edge deployment due to its substantial 
computational overhead. 

Li et al. [21] proposed the Convolution Self-Guided 
Transformer (CSGT), merging CNN feature extraction with 

transformer context modeling to achieve 95.8%–96.9% 
accuracy across multiple crops. Although demonstrating cross-
dataset robustness, CSGT does not explicitly address high-
frequency feature preservation, and its self-guided mechanism 
adds architectural complexity that may hinder optimization for 
memory-constrained devices. 

Sun et al. [22] combines EfficientNetV2 with a Swin 
Transformer and Coordinate Attention, achieving 99.70% 
accuracy for tomato disease classification. Despite excellent 
accuracy, the model retains the full transformer stack in later 
stages, resulting in a large memory footprint (>45MB) that 
exceeds practical limits for edge devices. Furthermore, it lacks 
an explicit mechanism to enhance high-frequency features 
before tokenization. 

Chen et al. [23] proposed a comprehensive framework 
combining a DenseNet-based Vision Transformer (DVT) with 
a CycleGAN (CyTrGAN) for augmentation, achieving up to 
99.45% accuracy with strong robustness. While effectively 
addressing class imbalance through data augmentation, DVT 
does not architecturally prioritize the retention of high-
frequency spatial details, and its reliance on GAN-based 
preprocessing increases deployment complexity. 

Critical Research Gap: Existing hybrid CNN-ViT 
architectures demonstrate that combining local and global 
feature modeling improves plant disease classification. 
However, a unified solution remains elusive due to three 
interconnected limitations: 

1) High-frequency feature loss: Current hybrids do not 

explicitly preserve fine-grained spatial details (e.g., lesion 

edges, texture patterns) during the CNN-to-ViT transition, as 

patch embedding and tokenization inherently smooth this 

critical high-frequency information. 

2) Memory inefficiency: Most models retain full 

transformer stages, resulting in memory footprints (40-

50MB+) that preclude deployment on resource-constrained 

edge devices common in agriculture. 

3) Training instability: The integration of heterogeneous 

CNN and transformer layers often introduces optimization 

challenges due to conflicting normalization requirements and 

inconsistent gradient flow. 

4) Our contribution: To directly address these gaps, we 

propose EHF-GCViT (Edge-optimized High-Frequency Gated 

Convolutional Vision Transformer). 

Our novel architecture: 

• Introduces a Lightweight High-Frequency Refinement 
block before the transformer stage to explicitly enhance 
and preserve discriminative fine-grained features, 

• Replaces the final transformer stages with a Gated 
Convolutional Neck, significantly reducing the memory 
footprint while maintaining global context awareness, 
and 

• Employs Adaptive Layer Normalization to stabilize the 
training of heterogeneous architectural components. 
This design provides a balanced solution that achieves 
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state-of-the-art accuracy with a memory profile 
explicitly optimized for real-world edge deployment. 

III. PROPOSED METHODOLOGY 

A. Asymmetric Depthwise Convolution Block 

In this work, we propose a novel Asymmetric Depthwise 
Convolution Block (ADCB) designed to enhance the detection 
of high-frequency features, thereby improving the quality and 
sharpness of the extracted features. 

 
Fig. 1. The asymmetric depth-wise convolution block. 

As shown in Fig. 1, the proposed block can be viewed as a 
lightweight variant of the Asymmetric Convolution Block 
(ACB) [24] where classical convolution layers are replaced 
with depthwise convolution layers to significantly reduce 
computational cost during feature extraction. While 
maintaining the conceptual structure of the original ACB, our 
block consists of a symmetric depthwise convolution with 
kernel size F × F to capture core spatial features and two 
asymmetric depthwise convolutions with kernel sizes, F × F , F 
× n and n × F where n < F unlike the original ACB, which 
restricts n=1, we introduce flexibility in the choice of n, 
allowing the creation of new asymmetric filters that can be 
tuned to emphasize directional high-frequency components 
with greater adaptability. The outputs of the three branches are 
summed elementwise to produce the block’s final output. Like 
the original ACB, the overall structure can be treated as a 
single depthwise convolution layer with enhanced directional 
sensitivity. 

B. High-Frequency Depthwise Separable Convolution Block 

The high-frequency depthwise separable convolution block 
shown in Fig. 2, is a new variant of the depthwise separable 
convolution block, which is the fundamental block of the 
Mobilenet architecture [25]. We replace the classical depthwise 
layer with our asymmetric depthwise convolution block to 
sharpen the extracted features while retaining the 1x1 
pointwise convolution for channel wise feature integration. 
This modification preserves the efficient structure of 
MobileNet while significantly improving its ability to capture 
high-frequency and directionally aware spatial features. 

We use a residual connection from the block’s input to its 
output to preserve essential base features while selectively 
refining details. This design enables the block to act as a 
feature enhancement unit, correcting and sharpening 
representations rather than replacing them outright. The 
residual path ensures stability during training and helps the 
refinement remain focused on informative residual patterns. 
The resulting block balances efficiency and accuracy, offering 

enhanced descriptive power without significantly increasing 
computational complexity, making it especially suitable for 
resource constrained applications such as mobile and 
embedded systems. 

 
Fig. 2. The high-frequency depth-wise separable convolution block. 

C. Normalization Strategy 

In the proposed architecture, we apply Group 
Normalization (GN) following depthwise convolutions and 
Layer Normalization (LN) following 1×1 pointwise 
convolutions, in accordance with the functional properties of 
each normalization technique and the convolutional operations 
they follow. Depthwise convolutions operate on each input 
channel independently, making them inherently sparse in inter-
channel interaction. GN, which normalizes within groups of 
channels rather than across the batch dimension, is well-suited 
for this context. Unlike Batch Normalization (BN), Group 
Normalization (GN) maintains performance with small batch 
sizes and better preserves the spatial structure of feature maps, 
making it more compatible with the independent-channel 
nature of depthwise operations. Moreover, GN avoids the over-
smoothing behavior that Layer Normalization might induce in 
spatially distributed features, as LN treats each feature vector. 
Conversely, 1x1 convolutions perform intensive channel 
mixing, aggregating information across all feature channels at 
each spatial location. In this setting, LN proves advantageous 
because it normalizes across the full set of channels for each 
sample, offering sample-level consistency and effectively 
stabilizing the dense transformations introduced by pointwise 
convolutions. This dual strategy using GN with depthwise 
layers and LN with pointwise layers ensures that normalization 
remains functionally aligned with the nature of the operations it 
follows, improving convergence stability and feature quality 
without disrupting spatial integrity. 

D. Gelu Channel Attention Fused MBC 

In this work, we propose a novel modification of the 
previously introduced LRCA Fused MBC block [26]  referred 
to as the GLCA MBC block. The term GLCA denotes the 
integration of the GELU activation function in place of the 
Leaky ReLU, applied consistently within both the channel 
attention module and all constituents’ layers of the block. 
Additionally, we replace the standard convolutional layer with 
a dilated (atrous) convolution, which enlarges the receptive 
field without increasing the number of parameters, thereby 
enabling the network to capture broader contextual information 
while preserving spatial resolution. 

This replacement of conventional 5×5 convolutions with 
dilated convolutions significantly reduces the computational 
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burden while maintaining a high level of classification 
precision. Through extensive experimentation, we demonstrate 
that this configuration is particularly effective for plant disease 
classification, offering a more computationally efficient 
alternative to large kernel convolutions by achieving an 
equivalent receptive field using smaller, dilated kernels. 

Furthermore, we retain the same normalization strategy as 
the HF depthwise separable convolution block, applying Group 
Normalization (GN) after classical convolution layers and 
Layer Normalization (LN) after 1 × 1 pointwise convolutions. 
This targeted use of normalization improves stability and 
enhances learning dynamics across the heterogeneous 
components of the block. Fig. 3 illustrates the architectural 
design of the proposed GLCA Fused MBC block. 

 
Fig. 3. GLCA fused MBC block. 

E. Enhanced High-Frequencies GCVIT Architecture 

As previously stated, our architecture is a modified version 
of the GCViTXXTiny model. We retain the initial patch 
embedding block and the three hierarchical levels of the 
original GCViT design. However, we introduce a key 
enhancement: a refinement layer is inserted between each 
pretrained pair of transformer stages as shown in Fig. 4.  

Each refinement layer maintains the same input and output 
dimensions, enabling the use of residual connections to 
preserve and enrich the learned feature representations. This 
design helps enhance intermediate features without disrupting 
the original flow of information. The asymmetric filter 
dimensions were selected as F=5 and n=2 since through 
experimental optimization this combination produces the most 
favorable results. 

Additionally, we replace the final transformer level of 
GCViT with a GLCA Fused MBC block, which significantly 
reduces the number of parameters while maintaining 
competitive accuracy. This modification leads to a 25.62% 
reduction in memory usage, making the model lightweight and 
efficient for deployment on resource constrained devices. 
Despite these changes, experimental results demonstrate that 
modified architecture preserves strong performance across 
evaluation metrics. 

Fig. 4 shows the enhanced high-frequency hybrid 
architecture (with the original GCVIT frozen layers in blue, 
refinement layers in yellow, GLCA Fused MBC in green, 
global average pooling in red and Conv 1x1 in pink ). 

Table I provides a detailed description of the proposed 
architecture, including the input and output sizes of each layer, 
the stride values, and the number of groups used in Group 
Normalization (GNorm). 

 
Fig. 4. The enhanced high-frequency hybrid architecture (with the original 

GCVIT frozen layers in blue, refinement layers in yellow, GLCA Fused MBC 

in green, global average pooling in red and Conv 1x1(classifier)  in pink). 

TABLE I.  NETWORK ARCHITECTURE LAYERS WITH INPUT/OUTPUT 

SHAPES AND PARAMETERS 

Block Input Output G  

Patch Embedding 2242 × 3 562 × 64 - 2 

Dropout 562 × 64 562 × 64 - - 

H.F D.W.S.Conv0 562 × 64 562 × 64 8 1 

Level 0 562 × 64 282 × 128 - 2 

H.F D.W.S.Conv1 282 × 128 282 × 128 16 1 

Level 1 282 × 128 142 × 256 - 2 

H.F D.W.S.Conv2 142 × 256 142 × 256 32 1 

Level 2 142 × 256 72 × 512  - 2 

H.F D.W.S.Conv3 72 × 512  72 × 512  32 1 

GL.CA Fused  

MBC 
72 × 512  72 × 512  32 1 

Global Average 

Pooling 
72 × 512  12 × 512  - - 

Conv2D 1×1 12 × 512  12 × 1028 - 1 

Conv2D 1×1 12 × 1028 12 × 𝐶𝑙𝑎𝑠𝑠  - 1 

G=Group size and S=Stride 

IV. RESULTS 

In this section, we describe the experimental setup and the 
different experiments conducted to rigorously evaluate our 
model, as well as to compare our results with those obtained 
from state-of-the-art architectures. In this section, we describe 
the experimental setup and the different experiments conducted 
to rigorously evaluate our model, as well as to compare our 
results with those obtained from state-of-the-art architectures. 

A. Dataset 

To evaluate the performance of our proposed system, we 
utilized a dataset of tomato leaf diseases extracted from the 
PlantVillage [27] database, made available publicly through 
the repository [28] .This dataset comprises 14,531 tomato leaf 
images, covering both healthy specimens and those affected by 
various diseases. Table II shows that the images are 
categorized into ten distinct classes, which include nine disease 
types: Bacterial Spot, Early Blight, Late Blight, Leaf Mold, 
Septoria Leaf Spot, Target Spot, Tomato Mosaic Virus, 
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Tomato Yellow Leaf Curl Virus, and Two-Spotted Spider 
Mite, as well as one healthy class. Each image generally 
depicts a single leaf captured against a uniform background, 
providing a clean and consistent input for classification tasks. 
Due to its scale and diversity, this dataset has become a widely 
adopted benchmark for assessing the effectiveness of machine 
learning and deep learning models in plant disease diagnosis. 
The version of the dataset we used includes five predefined 
folds intended for cross-validation. Each fold is split into 80% 
for training and 20% for testing, allowing for robust and 
systematic evaluation across multiple runs. In our experiments, 
we employed all five folds for cross-validation tests. For 
ablation studies and comparative analysis with state-of-the-art 
models, we used only the first fold to ensure consistency and 
efficiency. During the training phase, we further allocated 10% 
of the training subset from each fold for validation, while the 
remaining 90% was used for model training. 

TABLE II.  NUMBER OF SAMPLES PER CLASS IN THE DATASET 

Class Number of samples per class 

Bacterial spot 1702 

Early blight 800 

Healthy 1272 

Late blight 1528 

Leaf Mold 762 

Septoria leaf spot227 1417 

Target Spot227 1124 

Tomato mosaic virus227 299 

Tomato Yellow Leaf Curl Virus227 4286 

Two-spotted spider mite227 1341 

Total number of images 14531 

B. Metrics 

In our work, we opted to use confusion matrix, Accuracy, 
Precision, Recall, and F1-score as statistics to evaluate the 
performance of our model. The confusion matrix is a matrix 
that allows us to measure the performance of a system during a 
classification task by providing information about the 
comparison between original classes and predicted classes. 
This information is classified into four categories: 

True positive (TP): When the instance is positive, and the 
model classifies it as positive. 

True negative (TN): When the instance is negative, and the 
model classifies it as negative. 

False positive (FP): When the instance is negative, and the 
model classifies it as positive. 

False negative (FN): When the instance is positive, and the 
model classifies it as negative. 

Accuracy is the basic metric used in most evaluations, and 
it shows the number of predictions over all predictions. It is 
calculated by splitting the number of correct predictions by the 
total number of predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                       () 

Precision shows the number of true positive predictions 
compared to the total number of all positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑃+𝐹𝑃
                          () 

Recall measures the number of positive cases compared to 
the total number of all the predictions classified as positive. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑃+𝐹𝑁
                  () 

F1-score is a measure that we calculate as a harmonic mean 
or the weighted average of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               () 

C. Training Strategy 

To leverage the representational power of pre-trained 
models while adapting them to our specific classification task, 
we adopted a transfer learning strategy. The core layers and 
blocks of the original GCViT architecture were frozen, 
meaning their weights remained unchanged during training to 
preserve features learned from large-scale datasets. We 
integrated our custom blocks HF Depthwise Separable 
Convolution, GLLCA, and Fused MBC, along with a 
classification head specifically designed for our target task. 
Only these newly added components were trained during the 
training process. This selective training approach reduces 
computational cost and helps prevent overfitting, particularly 
when working with limited data. Optimization was performed 
using the Weighted Adam (W.Adam) algorithm, an enhanced 
version of Adam that incorporates weight-aware mechanisms 
to improve both convergence speed and generalization 
performance. 

D. Ablation Study 

To assess the individual contributions of key design choices 
in our hybrid vision model, we conducted a structured ablation 
study. This process involved systematically removing specific 
components from our hybrid architecture to measure their 
direct impact on performance. We focused on evaluating the 
role of the HF depth-wise separable convolution block (Model 
A) and the GLCA-Fused MBC (Model B) in improving 
classification accuracy for plant disease detection. 

From the training perspective as shown in Table III, all 
variants achieved near-perfect accuracy, with losses 
approaching zero. Model A and the Hybrid GCViT attained 
99.92% and 99.94% training accuracy, respectively, 
accompanied by equally high validation accuracy (99.91% and 
99.74%), indicating excellent learning capacity with no signs 
of overfitting. Although Model B experienced a minor drop in 
validation accuracy (99.31%) compared to its training accuracy 
(99.92%), its performance remained competitive, especially 
given its reduced model size (33.29 MB). 

Table IV presents the testing performance on the testing 
data set and shows that Model A achieved the highest accuracy 
(99.55%) and F1 score (99.48%), closely followed by the 
Hybrid GCViT (99.52% accuracy, 99.47% F1). Despite being 
slightly smaller than Model A, the Hybrid model maintained 
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nearly identical performance, suggesting that the combination 
of both enhancements led to a well-balanced architecture. 
Overall, this ablation study confirms that each modification 
contributes positively, with the hybrid configuration offering 
the best trade-off between accuracy, generalization, and model 
efficiency. 

TABLE III.  TRAINING STATISTICS OF THE ABLATION STUDY 

EXPERIMENTS 

Model 
Train. 

Accuracy (%) 

Train. 

Loss 

Val. 

Accuracy (%) 

Val. 

Loss 

Size 

(mb) 

Original 

GC VIT 
99.29 0.02 99.05 0.05 46.36 

Model A 99.92 0.00 99.91 0.01 48.55 

Model B 99.92 0.00 99.31 0.04 33.29 

EHF-

GCViT 
99.94 0.00 99.74 0.03 34.48 

 Train. = training and Val. = validation  

TABLE IV.   TESTING STATISTICS OF THE ABLATION STUDY EXPERIMENTS 

Model 
Test. 

Accuracy (%) 
Precision (%) Recall (%) 

F1-score 

(%) 

Original 

GC VIT 
98.49 98.08 98.25 98.15 

Model A 99.55 99.45 99.52 99.48 

Model B 99.45 99.30 99.28 99.29 

EHF-

GCViT 
99.52 99.44 99.50 99.47 

Train. = training and Val. = validation 

E. Cross-Validation Test 

To ensure robust and unbiased evaluation of the proposed 
model, a 5-fold cross-validation protocol was adopted using the 
folds provided in the Mendeley dataset for tomato disease. This 
dataset includes predefined training, validation, and testing 
splits for each fold, enabling consistent and reproducible 
assessments across multiple experiments. By rotating through 
the five folds, each model is trained and tested on different 
subsets of data, which helps mitigate the risk of overfitting and 
provides a more reliable estimate of generalization 
performance. This approach is particularly valuable in plant 
disease classification, where dataset imbalance and subtle inter-
class variations can otherwise distort performance metrics if a 
single train-test split is used. The use of standardized folds also 
facilitates fair comparisons between models under identical 
evaluation conditions. 

The performance of the proposed model was assessed using 
5-fold cross-validation , and the evaluation metrics 
demonstrate consistently high classification quality across all 
folds. Table V shows that accuracy ranged from 99.21% to 
99.66%, with a mean above 99.4%, indicating the model’s 
strong overall ability to correctly classify instances. Precision 
values remained between 99.00% and 99.49%, suggesting that 
the model maintains a low rate of false positives across the 
different test splits. Similarly, recall values ranged from 
98.92% to 99.65%, confirming that the model effectively 
captures true positive cases with minimal false negatives. The 
F1-score, which balances precision and recall, was consistently 
high, above 98.9% in all folds, highlighting the robustness and 
reliability of the model’s predictions. The low variability 

among the folds further suggests that the model generalizes 
well to unseen data and is not overly sensitive to the 
composition of the training and validation subsets. 

TABLE V.  CROSS-VALIDATION TESTING PERFORMANCES 

Fold Accuracy (%) Precision (%) Recall (%) 
F1-score 

(%) 

Fold 1 99.52 99.44 99.50 99.47 

Fold 2 99.21 99.00 98.92 98.95 

Fold 3 99.66 99.49 99.65 99.57 

Fold 4 99.55 99.42 99.47 99.44 

Fold 5 99.24 99.04 99.17 99.10 

F. Comparison with Other Models 

To evaluate the performance of our proposed architecture, 
we conducted a comparative analysis against a diverse set of 
state-of-the-art models, encompassing convolutional neural 
networks (CNNs), vision transformers (ViTs), and hybrid 
architectures. We chose these models for comparison based on 
their availability in the Keras API and their proven stability and 
performance in image classification tasks. The deep learning 
community widely adopts these models, which provide reliable 
implementations with pre-trained weights, making them 
suitable for fair and reproducible benchmarking. The models 
are described as follows: 

1) ConvNeXt Base [18]: ConvNeXt is a modernized 

convolutional architecture that integrates design principles 

from vision transformers into traditional CNN frameworks. 

Key enhancements include the use of large kernel sizes, 

inverted bottlenecks, and Layer Normalization, aligning CNNs 

more closely with transformer-based models. 

2) EfficientNetV2-M [29]: EfficientNetV2-M is part of the 

EfficientNetV2 family, which introduces a combination of 

MBConv and Fused-MBConv blocks to improve training 

speed and parameter efficiency. Architecture employs 

progressive learning strategies, adjusting image size and 

regularization during training to achieve better performance. 

3) GCViT XXTiny: GCViT (Global Context Vision 

Transformer) is a vision transformer designed to capture 

global context efficiently. The XXTiny variant is an ultra-

lightweight model, making it suitable for resource-constrained 

environments. Our proposed hybrid model draws inspiration 

from this variant. 

4) GCViT Base: The GCViT Base model expands upon 

the XXTiny variant, offering a more substantial architecture 

that balances performance and efficiency. It utilizes 

hierarchical attention mechanisms to effectively model global 

context in visual data. 

5) ResNet100: ResNet100 is a deep residual network that 

employs skip connections to mitigate the vanishing gradient 

problem, enabling the training of very deep networks. It serves 

as a strong baseline for evaluating the performance of deep 

CNNs. 

6) MobileNetV3-Large: MobileNetV3-Large is an 

efficient architecture optimized for mobile and embedded 
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applications. It incorporates neural architecture search (NAS), 

squeeze-and-excitation (SE) blocks, and novel activation 

functions like h-swish to achieve a balance between accuracy 

and latency. 

7) ViT Base [30]: The Vision Transformer (ViT) Base 

model applies trans-former architectures, originally developed 

for natural language processing, to image classification tasks. 

It divides images into patches and processes them using self-

attention mechanisms, demonstrating the viability of 

transformer-based models in computer vision. 

Table VI summarizes the training performance of all 
evaluated models, showing the statistics of all evaluated 
models during the training process. 

TABLE VI.  PERFORMANCES OF ALL MODELS DURING THE TRAINING 

PROCESS 

Model 

Training 

Accuracy 

(%) 

Training 

Loss 

Validation 

Accuracy 

(%) 

Validation 

Loss 

ConvNeXt 

Base 
100.0 0.0 98.88 0.079 

EfficientNetV2-

M 
99.32 0.023 97.42 0.106 

GCViT XXTiny 99.27 0.021 99.14 0.050 

GCViT Base 99.51 0.018 99.48 0.055 

ResNet100 99.98 0.001 98.02 0.156 

MobileNetV3 

Large 
99.99 0.002 98.36 0.094 

ViT Base 100.0 0.0 98.8 0.075 

EHF-GCViT 99.94 0.004 99.74 0.027 

Fig. 5 shows the evolution of training and validation 
accuracy during the training process. 

Fig. 6 presents the evolution of training and validation loss 
during the same process. 

Table VII summarizes the testing performance of all 
evaluated models, highlighting a comparison between the 
proposed EHF hybrid GCVIT and selected state-of-the-art 
approaches. 

The confusion matrix presented in Fig. 7 illustrates the 
classification performance of our model across 10 classes of 
tomato leaf diseases. 

 

Fig. 5. Evolution of training and validation accuracy over epochs. 

 
Fig. 6. Evolution of training and validation loss over epoch. 

TABLE VII.  PERFORMANCES OF ALL MODELS DURING THE TESTING PHASE 

Model 

Testing 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

ConvNeXt 

Base 
96.81 96.14 94.52 95.11 

EfficientNetV2-

M 
96.67 95.64 95.94 95.73 

GCViT XXTiny 98.5 98.08 98.03 98.05 

GCViT Base 99.18 98.69 99.12 98.88 

ResNet100 97.25 96.38 96.87 96.60 

MobileNetV3 

Large 
96.87 95.87 96.04 95.93 

ViT Base 98.45 97.91 98.27 98.08 

EHF-GCViT 99.52 99.44 99.50 99.47 

 
Fig. 7. Confusion matrix of plant tomato diseases classification results using 

EHF hybrid GCVIT architecture. 

Most classes achieved near-perfect classification, with 
minimal confusion between categories. Notably, Target Spot 
(858), Two-spotted spider mite (255), Tomato Yellow Leaf 
Curl (268), and Late blight (153) were classified with perfect 
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or near-perfect accuracy, demonstrating the model’s robustness 
on these categories. Mi-nor misclassifications occurred for a 
few classes, such as healthy leaf, which was occasionally 
confused with Bacterial spot and Septoria leaf spot, and Early 
blight, which had slight confusion with Septoria leaf spot. 
Overall, the confusion matrix confirms strong discriminative 
capability across all classes, with misclassifications being both 
sparse and low in magnitude. 

V. DISCUSSION 

This research delivers an in-depth assessment of eight vit 
and deep learning architectures for plant disease classification, 
with a focus on both predictive accuracy and computational 
efficiency. The training, validation, and testing outcomes offer 
valuable perspectives on each model’s learning behavior, 
generalization capability, and practicality for deployment in 
real-world settings. 

The results show that our proposed method (Hybrid 
GCViT) consistently demonstrated the strongest overall 
performance. It achieved the highest validation accuracy 
(99.74%) and test accuracy (99.52%), along with excellent 
precision (99.44%), recall (99.50%), and F1 score (99.47%). 
Despite its lightweight size (34.48 MB) and ranking second to 
MobileNet V3 Large in memory efficiency, it surpassed all 
other models across key metrics. This suggests that the 
proposed hybridization of GCViT with convolutional 
components effectively captures both local and global features, 
enhancing both learn-ing and generalization while remaining 
computationally efficient. 

The GCViT family, particularly GCViT Base and GCViT 
XXTiny, also demonstrated excellent performance. GCViT 
Base achieved a validation accuracy of 99.48% and a test 
accuracy of 99.18%, with high precision and recall. GCViT-
XXTiny, although more compact, maintained a competitive 
test accuracy of 98.5%, highlighting the scalability of GCViT-
based designs for both high-end and resource-constrained 
applications. 

Within the classical convolutional and hybrid transformer 
models, ViT Base and ConvNeXt Base achieved perfect 
training accuracy (100%). However, their performance on the 
validation and test datasets was slightly lower. This 
discrepancy suggests a tendency toward overfitting, 
particularly in ConvNeXt Base, which exhibited a noticeable 
gap between training and test accuracy (100% vs 96.81%). 
These findings underscore the importance of applying effective 
regularization strategies when deploying highly expressive 
model architectures. 

ResNet100 and EfficientNetV2-M showed strong 
performance, with test accuracy of 97.25% and 96.67%, 
respectively. However, they were outperformed by the trans-
former-based models, particularly in terms of F1 score and 
model compactness. Similarly, MobileNetV3 Large, known for 
its efficiency, maintained a relatively high-test accuracy of 
96.87%but was outclassed by more recent architectures in both 
precision and recall. 

Another key observation is the relationship between model 
size and performance. Notably, Hybrid GCViT, despite being 
the smallest model, delivered the best accuracy. This indicates 

that newer architectural designs can achieve superior 
performance without significantly increasing computational 
demands, which is critical for real-time or edge-based 
agricultural applications. 

In summary, the results highlight the superior performance 
of transformer based and hybrid transformer-convolutional 
architectures in classifying diseases in tomato plants. The 
proposed Hybrid GCViT excels in accuracy and generalization 
and offers practical advantages in terms of deployment 
feasibility, making it a strong candidate for integration into 
intelligent agricultural systems. 

VI. CONCLUSION AND FUTURE WORK 

This work introduces EHF-GCViT, a novel lightweight 
hybrid architecture for tomato leaf disease classification that 
addresses a key limitation of existing hybrid vision 
transformers: the loss of high-frequency spatial information 
during feature abstraction, along with high memory demands 
that hinder deployment on edge devices. By explicitly 
enhancing fine-grained feature preservation within the GCViT 
framework, the proposed approach achieves a more effective 
balance between accuracy and computational efficiency. 

The proposed architecture integrates three complementary 
design strategies: (i) a customized lightweight convolutional 
refinement mechanism that improves the extraction of high-
frequency discriminative details prior to transformer 
processing; (ii) a gated convolutional replacement for the final 
transformer stage that significantly reduces model memory 
consumption from 46.36 MB to 34.48 MB; and (iii) an 
adaptive normalization strategy that stabilizes the training of 
heterogeneous convolutional and transformer layers. Together, 
these design choices enable efficient feature refinement 
without compromising generalization capability. 

Extensive experiments conducted on the PlantVillage 
tomato disease dataset demonstrate that EHF-GCViT 
consistently outperforms the baseline GCViT, standard Vision 
Transformers, and representative CNN-based architectures. 
The proposed model achieves a classification accuracy of 
99.52%, confirming its suitability for resource-constrained 
environments. Ablation studies further validate the contribution 
of each architectural component and highlight the effectiveness 
of the proposed design trade-offs. 

Beyond performance gains, this study emphasizes the 
importance of task-driven architectural design in hybrid 
transformer models. The results show that explicitly modeling 
high-frequency information rather than increasing model depth 
or complexity can lead to more accurate and efficient solutions 
for practical agricultural AI applications. 

While the current evaluation demonstrates strong 
performance on the PlantVillage dataset, several directions 
warrant further investigation. Validation across diverse real-
world field conditions with varying lighting, occlusions, and 
backgrounds would strengthen evidence of practical 
robustness. Additionally, extending the approach to multiple 
crop types and evaluating deployment performance on actual 
edge hardware platforms would provide valuable insights into 
the architecture’s generalizability and operational feasibility.  
Moreover, the effectiveness of the proposed high-frequency 
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refinement may be influenced by image resolution and noise 
characteristics, which warrants further investigation under 
diverse sensing conditions. These considerations represent 
natural next steps in transitioning the model from controlled 
evaluation to production agricultural systems. 

Future work will focus on extending EHF-GCViT as a 
general-purpose backbone for additional computer vision tasks, 
such as object detection and semantic segmentation, as well as 
systematic evaluation under real-world deployment scenarios. 
Owing to its modular and lightweight design, the proposed 
architecture holds promise for broader adoption in intelligent 
agricultural systems and other edge-based visual perception 
applications. 
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