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Abstract—This study introduces a novel integrated framework
for modeling mixed gas reactions relevant to air pollution and
industrial safety, demonstrated on the reaction between carbon
monoxide and ammonia producing hydrogen cyanide and water.
The approach couples closed form stoichiometric mass balances
with a transport corrected Kkinetic ordinary differential equation
system and a Bayesian logistic hazard classifier that incorporates
expert informed priors. The combined pipeline predicts chemical
yields, identifies reaction and transport limited regimes, and
produces calibrated probabilistic hazard estimates with quantified
uncertainty. Validation on synthetic and near experimental
datasets shows reproducible parameter recovery and strong
classifier performance, with area under the curve approximately
0.93 on held out data. The framework supports decision making
for sensor prioritization, sampling design, and regulatory
monitoring, and it can be extended to multi-stage reactions and
spatial dispersion models. The novelty lies in coupling closed-form
stoichiometry with transport-corrected Kinetics and Bayesian
hazard classification, producing a nondimensional regime map
and calibrated probabilistic hazard scores not available in prior
models.
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kinetics; plug-flow transport correction; Bayesian hazard
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I INTRODUCTION

Airborne releases of toxic gases pose immediate threats to
human health and long-term environmental harm. In industrial
and urban settings, mixtures of pollutants can interact
chemically and physically, producing secondary toxicants not
obvious from single-species monitoring. The reaction between
carbon monoxide and ammonia to form hydrogen cyanide and
water is illustrative: hydrogen cyanide is acutely toxic at low
concentrations, and its formation depends on stoichiometric
balance and the interplay of kinetics with transport losses [4],
[7]. Fig. 1 shows stoichiometric mass fraction outcomes, while
Table I lists the symbols and units.

Existing modeling approaches fall into three categories: 1)
stoichiometric mass-balance calculations that predict yields but
ignore time dependence and transport [6], [11]; 2) kinetic ODE
models that capture time evolution but assume idealized reactor
conditions and omit probabilistic hazard assessment [8],[9];and
3) data-driven classifiers that predict hazard states from sensor
arrays but lack mechanistic interpretability and principled
uncertainty quantification [ 1], [2]. These gaps reduce utility for
decision-making, compliance, and sensordesign[5], [14]. Fig.
2 illustrates transport-corrected ODE regimes, while Table II
presents parameter estimates with credible intervals. Unlike

prior stoichiometric models [6], [11], reactor Kkinetics
frameworks [8], [9], or Al-based hazard predictors[1], [2], our
approach integrates all three components into a single
reproducible pipeline, ensuring mechanistic interpretability and
probabilistic rigor.

Novel Contributions: This paper presents a modular
framework integrating stoichiometry, transport-corrected
kinetics, and probabilistic hazard classification. The framework
is reproducible and transferable: each component (closed-form
stoichiometric formulas, ODEkinetics with convective loss, and
Bayesian logistic regression with expert-informed priors) is
specified with clearly stated assumptions [3], [10], [13]. The
goals are 1) to preserve mechanistic interpretability so outputs
(e.g., predictedhydrogen cyanide yield) can be traced to limiting
reagent or transport losses, and 2) to provide calibrated
probabilistic hazard estimates supporting safety decisions under
uncertainty [ 12]. Fig. 3 shows temporal hazard fluctuations, Fig.
4 presents spatial heatmaps, and Table IIl summarizes Bayesian
regression coefficients. In addition, the framework highlights
how uncertainty quantification can guide sensor prioritization
and regulatory monitoring, ensuring practical relevance for
industrial safety applications.

Specifically:

e First, compact mass-fraction expressions are derived that
account for limiting-reagent behavior, informing kinetic
simulations [6].

e Second, second-order kinetics are coupled with a
first-order convective loss parameter, revealing
reaction-limited, transport-limited, and mixed regimes

(8], [9].

e Third, mechanistic outputs and covariates are embedded
into a Bayesian hazard classifier using expert-informed
priors, producing probabilistic scores with credible
intervals [1],[2],[5]. Fig. 5 compares per-gas threshold
exceedances, emphasizing CO and NHa.

¢ Finally, anuncertainty-propagation workflow combining
Monte Carlo sampling and first-order approximations
quantifies confidence in predictions [13], [14].
Supporting visualizations (Fig. 6-9) illustrate
correlations, exceedance trends, scatterplots, and
distributions.

Paper roadmap: Section II describes datasets, normalization,
and preprocessing. Section III develops the mathematical
framework, including stoichiometric =~ formulas, the
transport-corrected kinetic ODE system,
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nondimensionalization, and the Bayesian hazard model with
prior elicitation. Section IV presents parameter estimation,
uncertainty propagation, and validationresults, including kinetic
fits, limiting-regime analysis, and classifier performance.
Section V reports the results. Section VI discusses practical
implications for monitoring and safety management, limitations
of the current assumptions, and directions for extension.
Section VII concludes with a concise summary of contributions
and recommended next steps for field validation and regulatory
adoption.

II. MATERIALS AND METHODS

A. Dataset and Preprocessing

The study uses a combined synthetic and near-experimental
dataset containing time-resolved and cross-sectional
measurements for CO, NHs, HCN, H20, SO, NO, CH4, and
associated mass ormole percentages. All gas concentrations are
converted to mole percent for internal consistency; where
sensors reported mass percent or ppm, standard molar-mass
conversions were applied. Missing values for primary species
(CO, NHs, HCN) were handled with a two-step procedure: 1)
flagging samples with >20% missing primary measurements as
excluded from kinetic fitting, and 2) imputing isolated missing
entries using a conditional median imputation stratified by
sampling site and time window. Secondary species with sparse
coverage were retained for hazard modeling but down-weighted
in uncertainty propagation. All numeric inputs were
standardized (zero mean, unit variance) before regression
modeling; raw units are preserved for stoichiometric and kinetic
calculations.

B. Data Splits and Validation

For model development we used stratified splits that
preserve the harmful/non-harmful label distribution: 60%
training, 20% validation, and 20% test. Time-series fits used
cross-validation across independent experimental runs
(leave-one-run-out) to avoid temporal leakage. Classifier
calibration was evaluated on the held-out test set using AUC,
precision, recall, and calibration plots.

III. MATHEMATICAL MODELLING

1) Stoichiometry: Closed-form mass fraction formulas
derive from initial molar amounts and stoichiometric
coefficients.

Stoichiometric Mass Fraction Formulation
Consider the reaction:
CO+ NH; - HCN + H,0 (D)

Letnggpand nyy, odenote the initial moles of CO and NHs.
Molar masses are Mo, Myy,, Mycn, My, o-

Initial masses:

Moo = McoNcop (2)
Myp,0 = Myp,Myago (3)

Total initial mass:
Meoto = Mcoo T Myp,0 (4)
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Initial mass fractions:

Mi0

Wi = fori € {CO,NH;} %)

Meot,0

Stoichiometry implies equal consumption: extent of reaction
cannot exceed the limiting reagent.

TABLEI. SYMBOLS AND UNITS
Symbol Meaning Units
n_i Moles of species i mol
m_i Mass of species i g
M_i Molar mass of species i g'mol-1
k Bimolecular reaction rate constant mol-1-s-1
k_loss First order convective loss rate (u/L) sh-1
u Characteristic velocity m-s™-1
L Characteristic length m
g Extent of reaction mol
w_i Mass fraction of species i dimensionless
n_ref Reference mole for nondimensionalization mol
T Dimensionless time (k n_ref t) dimensionless
Dimensionless loss parameter (k_loss/(k . .
% dimensionless
n_ref))
T_HCN | Hazard threshold for HCN ppm N or
mg-m”"-3
y Binary hazard label {0,1}
TABLE II. PARAMETER ESTIMATES AND 95% CREDIBLE INTERVALS
(SYNTHETIC RECOVERY)
. o .
Parameter Posterior 95 A; credible Units
mean interval
Intercept } : B Baseline log-odds of
(B0) 3.12 [-4.20, -2.05] harmful
Higher CO increases
CO (ppm) 0.045 [0.028,0.063] hazard odds
Strong positive
NH3 (ppm) 0.062 [0.039,0.088] predictor
Directly  linked to
HCN (ppm) | 098 [0.80,1.18] hazard label
Moderate  positive
CH4 (ppm) 0.021 [0.005,0.037] effect
CO{NHS 015 [0.02,029] Mlxture _ imbalance
(ratio) increases risk
S-min  avg Recent accumulation
HCN 0.42 [0.25,0.60] raises risk
Wind speed Higher wind reduces
(m-s”-1) 018 [:0.32,-0.03] hazard odds

2) Kinetic-transport model: A second-order, plug-flow
corrected ordinary differential equation (ODE) system governs
conversion kinetics [15, 16, 17] with limiting reagent and
convective loss effects captured by model parameters.

Kinetics Reaction—Transport Differential

Equations (ODEs)

Ordinary

Assume a homogeneous reactor with second-order mass
action kinetics, along with first-order transport loss:
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d;lgo = —kngonyy, —ulng,
% = —kngonyy, —ulnyy,
% = +kngo nyp, —uLnyey
dr;% =+kngy Nyy, —uLny,q

where, k is the bimolecular reaction rate constant
(mol~1s™1), uis a representative velocity, and L is a
characteristic length (so uLis a first-order rate constant for
convective loss, s™1).

e Theseequations ensure conservation of massand capture
both chemical transformation and physical loss (plug-
flow or sampling out).

e Limiting reagent dynamics emerge naturally: reaction
extent is capped by whichever initial mole (n¢ ¢ or
Nyp,,o) 18 smaller.

Non-dimensionalization

Define reference mole n and time t:

S

~ i 2 ~ ulL
n, ==t =thkn,i1=— 6
t n’ ! kn ( )
Dimensionless ODEs:
diico . A PN
2t col'why ~ UTco (7

Analytical and Limiting Cases:

e Fast-reaction limit (k — oo, u — 0): All limiting re-
agent is converted instantly.

e Transport-limited ( uL > kn): Few molecules react
before being lost, leading to small yields.

Hazard Classification: Threshold-based rules are extended
into a logistic regression framework, incorporating expert-
identified gas thresholds as priors and enabling robust hazard
probability estimates.

Hazard Classification Model

A Bayesian logistic regression model predicts binary hazard
outcomes (y € {0,1}), given environmental gas concentrations

(x):

Priy=11x)= !

—_— 8
1+exp (~(Bo+B X)) (8)

where frepresent regression coefficients learned from data
and prior information.

e Priors: Expert-identified safety thresholds inform priors
( Bj )—gases with lower safe thresholds get higher
positive weights.

e Combined Rule: Decision: sample is "harmful" if
o Any gas concentration exceeds threshold or

o Logistic model probability > p,(e.g., p, = 0.5).
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TABLE III. HAZARD MODEL COEFFICIENT SUMMARY (BAYESIAN
LOGISTIC REGRESSION)
Parameter Posterior 95% credible Units
mean interval

k 0.85 [0.62,1.12] mol-1-s-1
k_loss 0.040 [0.024,0.068] sh-1
v (derived) | 0.048 [0.030,0.081] dimensionless
c_obs mol (obs noise
(HCN) 0.012 [0.008,0.018] sD)
n_ref .
(used) 2.00 [2.00,2.00] mol (fixed)

Parameter Estimation and Uncertainty:

e Kinetic parameters (k, u) are fit to time-resolved or
cross-sectional product measurements via nonlinear least
squares.

e Hazard regression is fit via penalized maximum
likelihood or Bayesian MCMC.

e Uncertainty in predictions is calculated via Monte Carlo
propagation (for input measurement errors) and
analytical first-order Taylor expansion (for small
uncertainties).

e Parameters for kinetic rates are estimated via nonlinear
least squares and cross-validated logistic models.
Uncertainty is propagated by Monte Carlo sampling and
first-order Taylor expansion, with model calibration
verified using area-under-curve (AUC), precision, and
recall metrics.

Stoichiometric and Kinetic Outcomes:

The closed-form and ODE solutions yield mass fractions for
CO and NH3, typically ranging from 62% (CO) to 38% (NH3)
for equimolar starts. Kinetics parameter fits show distinct
regimes: fast reaction with limiting reagent behaviour and
slower, transport-limited yield suppression.

Fig. 1 shows the stoichiometric mass fraction outcomes for
CO and NHs under equimolar starting conditions, highlighting
the limiting reagent dynamics.

Distribution of Mass Contributions

f =1 COmass%
0.030 I NH3 mass %
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0005 NS , / “‘
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Fig. 1. Distribution of mass contributions.
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Hazard Classification Performance:

A Bayesian logistic model fitted to the 'harmful flag' label
exhibits strong discrimination (AUC ~0.93) with CHa, CO, and
NHs dominating predictive power. Combined probabilistic and
threshold logic enhances recall for safety-critical use cases.

Fig. 2 shows the kinetic—transport ODE solutions, capturing
both fast-reaction and transport-limited regimes.

Harmful vs Non-harmful Samples
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Fig. 2. Harmful vs. non-harmful dataset distributions.
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IV. VISUALIZATION AND EXPLORATORY ANALYSIS

Fig. 3 shows the temporal evolution of harmful sample
counts, providing insight into daily hazard fluctuations.
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Fig.3. Per-gas threshold exceedance (CO, CHs, NO, SOz, NH3).

Fig. 4 shows spatial heatmaps that reveal the density of
harmful samples across monitored regions.
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Fig. 4. Stacked area plots of daily gas exceedances.
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Fig. 5 shows per-gas threshold exceedances, emphasizing
the dominance of CO and NHs in hazard classification.
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Fig. 5. Pairwise gas correlations (minimal cross-correlation observed).

Fig. 6 shows pairwise correlations between gases,
confirming minimal cross-correlation among predictors.

Daily harmful sample counts and 7-day rolling average

400
300
'g' ~—— Daily hamful count
8 20 = 7-day rolling avg
100
0
g & @ g ¢
$ $ # § $
P P L4 7 D

Fig. 6. Temporal trends in harmful samples (daily counts and rolling
averages).

Fig. 7 shows stacked area plots of daily gas exceedances,
useful for visualizing cumulative hazard trends.

Spatial heatmap of harmful sample density (synthetic coord§)2 5
13.2

synthetic centers
-20
13.1 2
7}
c
o
® 13.0 - 159
© n
3129 =
10::3
E
©
12.8 |5 T
12.7
-0

773 774 7.5 776 T
Longitude

Fig. 7. Spatial heatmaps of harmful sample density.
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Fig. 8 shows scatter and boxplots illustrating relationships
between gas concentrations and hazard labels.

CO vs NH3 (log scale) colored by Harmful flag

NH3 (mol)
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Fig. 8. Scatter and boxplots illustrating gas relationships.

Fig. 9 shows histograms of environmental gas distributions
with annotated thresholds, clarifying exceedance frequencies.

Distrbution of SO2_pet Distrbution of NO pet

o | | i | | ped o
ol ¥ 2, It |
¢ 10000 ‘ ‘t‘: ¢ 10000 ~:
0 ! 0 I,
0 10 0 Bl 0 10 0 Kl
§02 pet (%) NO_pct (%)
Distrbution of CH4_pet Distribution of CO pet_env
 foow i ol l —_——
.l | e i
0 i, | 0 I
) i o LM Iili‘
0 0 | 60 0 10 20 N 4 9
CHA pet (%) CO_pet env (%)
Distrbution of NH3_pet_env
2 0000 i : === 11=100%
c | |
el .
Y u
N \

0 0 2 N 4
NH3 pet_env (%)

Fig. 9. Environmental gas distribution histograms with annotated thresholds.
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V. RESULTS

Kinetic parameter estimates (Table III) indicate a posterior
mean rate constant and a non-negligible convective loss
parameter. The derived dimensionless parameter places many
experimental conditions in the mixed regime. As shown in Fig,
2, transport-corrected ODE solutions capture both fast-reaction
and transport-limited regimes. Together, Table III and Fig. 2
explain the observed sensitivity of yields to initial CO/NHs
ratios.

1) Stoichiometric checks: Closed-form mass fraction
calculations confirm limiting-reagent behavior in equimolar
and imbalanced starts. Mass fractions computed from
stoichiometry align with ODE-predicted final states in
reaction-dominated cases. Table I provides symbol definitions
and units, while Fig. 1 illustrates stoichiometric mass fraction
outcomes.

2) Hazard classifier performance: Posterior summaries in
Table I show that HCN has the largest coefficient, indicating
its dominantrole in hazard prediction. The Bayesian classifier
achieves AUC =~ 0.93 on held-out data, with calibration plots
(Fig. 3) demonstrating acceptable reliability when expert priors
are included. Fig. 5 compares per-gas threshold exceedances,
emphasizing CO and NHs dominance, while Table II supports
the conclusion that HCN, NHs, and CO are the most influential
predictors.

3) Uncertainty and decision thresholds: Monte Carlo
propagation reveals that measurement noise and parameter
uncertainty widen predictive intervals for HCN concentration
and hazard probability. Supporting visualizations (Fig. 6-9)
illustrate correlations, exceedance trends, scatterplots, and
distributions. Prioritizing recall via a lower decision threshold
() improves detection of harmful samples at the cost of
increased false positives.

VI. DISCUSSION

The integrated modeling approach demonstrates several
advantages for chemical process safety and environmental
hazard prediction.

First, the coupling of stoichiometric balances, kinetic
transport equations, and probabilistic hazard classification
provides a realistic representation of mixed-gas reactions under
industrial conditions. The consistency between stoichiometric
predictions (Table I, Fig. 1) and ODE outcomes (Fig. 2)
validates mechanistic accuracy and supports reproducibility
across different feed ratios.

Second, the Bayesian framework ensures transparent
uncertainty quantification, offering hazard probability estimates
with credible intervals. The strong discrimination performance
(AUC = 0.93) observed in Table Iland calibration plots (Figure
3) highlights classifier robustness. Threshold exceedance
comparisons (Fig. 5) confirm that HCN, NHs, and CO are the
most influential predictors, suggesting sensor networks should
prioritize these species.

Third, kinetic estimates in Table III reveal non-negligible
values, indicating that transport losses materially reduce yields
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under typical sampling conditions. This finding, reinforced by
regime mapping (Fig. 2) and uncertainty visualizations (Fig. 6—
9), has practical implications: sampling frequency, residence
time, and sensor placement must be optimized to minimize
convective removal and ensure accurate hazard estimation.

Discussion Summary: By directly linking Results (Tables -
I, Fig. 1-9) to interpretive claims, the framework demonstrates
reproducibility, mechanistic clarity,and probabilisticrigor. This
integration ensures that decision makers can balance sensitivity
and specificity under uncertainty, positioning the model as a
practical tool for industrial safety and regulatory monitoring.
Environmental scenarios.

VII. CONCLUSION AND FUTURE WORK

The integrated modeling framework presented in this study
combines stoichiometric balances, transport-corrected kinetics,
and Bayesian hazard classification into a unified approach for
chemical process safety and environmental hazard prediction.
By linking mechanistic equations with probabilistic outputs, the
framework advances beyond traditional single-component
models and provides reproducible, interpretable, and
transferable results.

Key findings include:

e Stoichiometry and kinetics: Agreement between
closed-form mass fractions (Table I, Fig. 1) and ODE
outcomes (Fig. 2) validates mechanistic accuracy, while
kinetic estimates (Table III) highlight the role of
transport losses in shaping yields.

e Hazard classification: Posterior regression coefficients
(Table 1) and calibration plots (Fig. 3) confirm HCN,
NHs, and CO as dominant predictors, with threshold
exceedance comparisons (Fig. 5) reinforcing their
operational importance.

e Uncertainty analysis: Monte Carlo propagation and
decision threshold evaluation (Fig. 6—9) demonstrate
how predictive intervals and recall-specific trade-offs
can guide safety-critical monitoring.

Overall, the framework provides both mechanistic clarity
and probabilistic rigor, ensuring that decision makers can
balance sensitivity and specificity underuncertainty. This dual
emphasis positions the model as a practical tool for sensor
network design, regulatory compliance, and industrial hazard
management. Future work will extend the approach to
multi-species pollutant systems and real-time sensor integration,
further enhancing its applicability in complex urban and
industrial environments.
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