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Abstract—This study introduces a novel integrated framework 

for modeling mixed gas reactions relevant to air pollution and 

industrial safety, demonstrated on the reaction between carbon 

monoxide and ammonia producing hydrogen cyanide and water. 

The approach couples closed form stoichiometric mass balances 

with a transport corrected kinetic ordinary differential equation 

system and a Bayesian logistic hazard classifier that incorporates 

expert informed priors. The combined pipeline predicts chemical 

yields, identifies reaction and transport limited regimes, and 

produces calibrated probabilistic hazard estimates with quantified 

uncertainty. Validation on synthetic and near experimental 

datasets shows reproducible parameter recovery and strong 

classifier performance, with area under the curve approximately 

0.93 on held out data. The framework supports decision making 

for sensor prioritization, sampling design, and regulatory 

monitoring, and it can be extended to multi-stage reactions and 

spatial dispersion models. The novelty lies in coupling closed‑form 

stoichiometry with transport‑corrected kinetics and Bayesian 

hazard classification, producing a nondimensional regime map 

and calibrated probabilistic hazard scores not available in prior 

models. 
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I. INTRODUCTION 

Airborne releases of toxic gases pose immediate threats to 
human health and long‑term environmental harm. In industrial 
and urban settings, mixtures of pollutants can interact 
chemically and physically, producing secondary toxicants not 
obvious from single‑species monitoring. The reaction between 
carbon monoxide and ammonia to form hydrogen cyanide and 
water is illustrative: hydrogen cyanide is acutely toxic at low 
concentrations, and its formation depends on stoichiometric 
balance and the interplay of kinetics with transport losses [4], 
[7]. Fig. 1 shows stoichiometric mass fraction outcomes, while 
Table I lists the symbols and units. 

Existing modeling approaches fall into three categories: 1) 
stoichiometric mass‑balance calculations that predict yields but 
ignore time dependence and transport [6], [11]; 2) kinetic ODE 
models that capture time evolution but assume idealized reactor 
conditions and omit probabilistic hazard assessment [8], [9]; and 
3) data‑driven classifiers that predict hazard states from sensor 
arrays but lack mechanistic interpretability and principled 
uncertainty quantification [1], [2]. These gaps reduce utility for 
decision‑making, compliance, and sensor design [5], [14]. Fig. 
2 illustrates transport‑corrected ODE regimes, while Table II 
presents parameter estimates with credible intervals. Unlike 

prior stoichiometric models [6], [11], reactor kinetics 
frameworks [8], [9], or AI‑based hazard predictors [1], [2], our 
approach integrates all three components into a single 
reproducible pipeline, ensuring mechanistic interpretability and 
probabilistic rigor. 

Novel Contributions: This paper presents a modular 
framework integrating stoichiometry, transport‑corrected 
kinetics, and probabilistic hazard classification. The framework 
is reproducible and transferable: each component (closed‑form 
stoichiometric formulas, ODE kinetics with convective loss, and 
Bayesian logistic regression with expert‑informed priors) is 
specified with clearly stated assumptions [3], [10], [13]. The 
goals are 1) to preserve mechanistic interpretability so outputs 
(e.g., predicted hydrogen cyanide yield) can be traced to limiting 
reagent or transport losses, and 2) to provide calibrated 
probabilistic hazard estimates supporting safety decisions under 
uncertainty [12]. Fig. 3 shows temporal hazard fluctuations, Fig. 
4 presents spatial heatmaps, and Table III summarizes Bayesian 
regression coefficients. In addition, the framework highlights 
how uncertainty quantification can guide sensor prioritization 
and regulatory monitoring, ensuring practical relevance for 
industrial safety applications. 

Specifically: 

• First, compact mass‑fraction expressions are derived that 
account for limiting‑reagent behavior, informing kinetic 
simulations [6]. 

• Second, second‑order kinetics are coupled with a 
first‑order convective loss parameter, revealing 
reaction‑limited, transport‑limited, and mixed regimes 
[8], [9]. 

• Third, mechanistic outputs and covariates are embedded 
into a Bayesian hazard classifier using expert‑informed 
priors, producing probabilistic scores with credible 
intervals [1], [2], [5]. Fig. 5 compares per‑gas threshold 
exceedances, emphasizing CO and NH₃. 

• Finally, an uncertainty‑propagation workflow combining 
Monte Carlo sampling and first‑order approximations 
quantifies confidence in predictions [13], [14]. 
Supporting visualizations (Fig. 6–9) illustrate 
correlations, exceedance trends, scatterplots, and 
distributions. 

Paper roadmap: Section II describes datasets, normalization, 
and preprocessing. Section III develops the mathematical 
framework, including stoichiometric formulas, the 
transport‑corrected kinetic ODE system, 
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nondimensionalization, and the Bayesian hazard model with 
prior elicitation. Section IV presents parameter estimation, 
uncertainty propagation, and validation results, including kinetic 
fits, limiting‑regime analysis, and classifier performance. 
Section V reports the results. Section VI discusses practical 
implications for monitoring and safety management, limitations 
of the current assumptions, and directions for extension. 
Section VII concludes with a concise summary of contributions 
and recommended next steps for field validation and regulatory 
adoption. 

II. MATERIALS AND METHODS 

A. Dataset and Preprocessing 

The study uses a combined synthetic and near‑experimental 
dataset containing time‑resolved and cross‑sectional 
measurements for CO, NH₃, HCN, H₂O, SO₂, NO, CH₄, and 
associated mass or mole percentages. All gas concentrations are 
converted to mole percent for internal consistency; where 
sensors reported mass percent or ppm, standard molar‑mass 
conversions were applied. Missing values for primary species 
(CO, NH₃, HCN) were handled with a two‑step procedure: 1) 
flagging samples with >20% missing primary measurements as 
excluded from kinetic fitting, and 2) imputing isolated missing 
entries using a conditional median imputation stratified by 
sampling site and time window. Secondary species with sparse 
coverage were retained for hazard modeling but down‑weighted 
in uncertainty propagation. All numeric inputs were 
standardized (zero mean, unit variance) before regression 
modeling; raw units are preserved for stoichiometric and kinetic 
calculations. 

B. Data Splits and Validation 

For model development we used stratified splits that 
preserve the harmful/non‑harmful label distribution: 60% 
training, 20% validation, and 20% test. Time‑series fits used 
cross‑validation across independent experimental runs 
(leave‑one‑run‑out) to avoid temporal leakage. Classifier 
calibration was evaluated on the held‑out test set using AUC, 
precision, recall, and calibration plots. 

III. MATHEMATICAL MODELLING  

1) Stoichiometry: Closed-form mass fraction formulas 

derive from initial molar amounts and stoichiometric 

coefficients. 

Stoichiometric Mass Fraction Formulation 

Consider the reaction: 

CO + NH3 → HCN + H2O                       (1) 

Let 𝑛𝐶𝑂,0and 𝑛𝑁𝐻3,0denote the initial moles of CO and NH₃. 

Molar masses are 𝑀𝐶𝑂, 𝑀𝑁𝐻3
, 𝑀𝐻𝐶𝑁,𝑀𝐻2𝑂. 

Initial masses: 

𝑚𝐶𝑂,0 = 𝑀𝐶𝑂𝑛𝐶𝑂,0                            (2) 

𝑚𝑁𝐻3,0 = 𝑀𝑁𝐻3
𝑛𝑁𝐻3,0                          (3) 

Total initial mass: 

𝑚𝑡𝑜𝑡,0 = 𝑚𝐶𝑂,0 + 𝑚𝑁𝐻3,0                        (4) 

Initial mass fractions: 

𝑤𝑖,0 =
𝑚𝑖,0

𝑚𝑡𝑜𝑡,0
for 𝑖 ∈ {𝐶𝑂, 𝑁𝐻3}                (5) 

Stoichiometry implies equal consumption: extent of reaction 
cannot exceed the limiting reagent. 

TABLE I. SYMBOLS AND UNITS 

Symbol Meaning Units 

n_i Moles of species i mol 

m_i Mass of species i g 

M_i Molar mass of species i g·mol̂ -1 

k Bimolecular reaction rate constant mol-1·s-1 

k_loss First order convective loss rate (u/L) s^-1 

u Characteristic velocity m·s^-1 

L Characteristic length m 

ξ Extent of reaction mol 

w_i Mass fraction of species i dimensionless 

n_ref Reference mole for nondimensionalization mol 

τ Dimensionless time (k n_ref t) dimensionless 

γ 
Dimensionless loss parameter (k_loss/(k  

n_ref)) 
dimensionless 

T_HCN Hazard threshold for HCN 
ppm or 

mg·m^-3 

y Binary hazard label {0,1} 

TABLE II. PARAMETER ESTIMATES AND 95% CREDIBLE INTERVALS 

(SYNTHETIC RECOVERY) 

Parameter 
Posterior 

mean 

95% credible 

interval 
Units 

Intercept 

(β0) 
-3.12 [-4.20, -2.05] 

Baseline log-odds of 

harmful 

CO (ppm) 0.045 [0.028, 0.063] 
Higher CO increases 

hazard odds 

NH3 (ppm) 0.062 [0.039, 0.088] 
Strong positive 

predictor 

HCN (ppm) 0.98 [0.80, 1.18] 
Directly linked to 

hazard label 

CH4 (ppm) 0.021 [0.005, 0.037] 
Moderate positive 

effect 

CO/NH3 

(ratio) 
0.15 [0.02, 0.29] 

Mixture imbalance 

increases risk 

5-min avg 

HCN 
0.42 [0.25, 0.60] 

Recent accumulation 

raises risk 

Wind speed 

(m·s^-1) 
-0.18 [-0.32, -0.05] 

Higher wind reduces 

hazard odds 

2) Kinetic-transport model: A second-order, plug-flow 

corrected ordinary differential equation (ODE) system governs 

conversion kinetics [15, 16, 17] with limiting reagent and 

convective loss effects captured by model parameters. 

Kinetics Reaction–Transport Ordinary Differential 
Equations (ODEs) 

Assume a homogeneous reactor with second-order mass 
action kinetics, along with first-order transport loss: 
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𝑑𝑛𝐶𝑂

𝑑𝑡
= −𝑘 𝑛𝐶𝑂 𝑛𝑁𝐻3

− 𝑢𝐿 𝑛𝐶𝑂

𝑑𝑛𝑁𝐻3

𝑑𝑡
= −𝑘 𝑛𝐶𝑂 𝑛𝑁𝐻3

− 𝑢𝐿 𝑛𝑁𝐻3

𝑑𝑛𝐻𝐶𝑁

𝑑𝑡
= +𝑘 𝑛𝐶𝑂 𝑛𝑁𝐻3

− 𝑢𝐿 𝑛𝐻𝐶𝑁

𝑑𝑛𝐻2𝑂

𝑑𝑡
= +𝑘 𝑛𝐶𝑂 𝑛𝑁𝐻3

− 𝑢𝐿 𝑛𝐻2𝑂

 

where, 𝑘 is the bimolecular reaction rate constant 
( mol−1  s−1 ), 𝑢 is a representative velocity, and 𝐿 is a 
characteristic length (so 𝑢𝐿 is a first-order rate constant for 
convective loss, s−1). 

• These equations ensure conservation of mass and capture 
both chemical transformation and physical loss (plug-
flow or sampling out). 

• Limiting reagent dynamics emerge naturally: reaction 
extent is capped by whichever initial mole ( 𝑛𝐶𝑂,0  or 

𝑛𝑁𝐻3,0) is smaller. 

Non-dimensionalization 

Define reference mole 𝑛 and time 𝜏: 

𝑛𝑖 =
𝑛𝑖

𝑛
, 𝑡̂ = 𝑡𝑘𝑛, 𝑢̂ =

𝑢𝐿

𝑘𝑛
                      (6) 

Dimensionless ODEs: 

𝑑𝑛𝐶𝑂

𝑑𝑡̂
= −𝑛𝐶𝑂𝑛̂𝑁𝐻3

− 𝑢̂ 𝑛𝐶𝑂                 (7) 

Analytical and Limiting Cases: 

• Fast-reaction limit ( 𝑘 → ∞ , 𝑢 → 0): All limiting re-
agent is converted instantly. 

• Transport-limited ( 𝑢𝐿 ≫ 𝑘𝑛 ): Few molecules react 
before being lost, leading to small yields. 

Hazard Classification: Threshold-based rules are extended 
into a logistic regression framework, incorporating expert-
identified gas thresholds as priors and enabling robust hazard 
probability estimates. 

Hazard Classification Model 

A Bayesian logistic regression model predicts binary hazard 
outcomes (𝑦 ∈ {0,1}), given environmental gas concentrations  

(𝐱): 

Pr (𝑦 = 1 ∣ 𝐱) =
1

1+exp (−(𝛽0+𝜷⊤𝐱))
             (8) 

where 𝜷represent regression coefficients learned from data 
and prior information. 

• Priors: Expert-identified safety thresholds inform priors 
( 𝛽𝑗 )—gases with lower safe thresholds get higher 

positive weights. 

• Combined Rule: Decision: sample is "harmful" if 

o Any gas concentration exceeds threshold or 

o Logistic model probability > 𝑝0(e.g., 𝑝0 = 0.5). 

TABLE III. HAZARD MODEL COEFFICIENT SUMMARY (BAYESIAN 

LOGISTIC REGRESSION) 

Parameter 
Posterior 

mean 

95% credible 

interval 
Units 

k 0.85 [0.62, 1.12] mol-1·s-1 

k_loss 0.040 [0.024, 0.068] s^-1 

γ (derived) 0.048 [0.030, 0.081] dimensionless 

σ_obs 

(HCN) 
0.012 [0.008, 0.018] 

mol (obs noise 

SD) 

n_ref 

(used) 
2.00 [2.00, 2.00] mol (fixed) 

Parameter Estimation and Uncertainty: 

• Kinetic parameters ( 𝑘, 𝑢 ) are fit to time-resolved or 
cross-sectional product measurements via nonlinear least 
squares. 

• Hazard regression is fit via penalized maximum 
likelihood or Bayesian MCMC. 

• Uncertainty in predictions is calculated via Monte Carlo 
propagation (for input measurement errors) and 
analytical first-order Taylor expansion (for small 
uncertainties). 

• Parameters for kinetic rates are estimated via nonlinear 
least squares and cross-validated logistic models. 
Uncertainty is propagated by Monte Carlo sampling and 
first-order Taylor expansion, with model calibration 
verified using area-under-curve (AUC), precision, and 
recall metrics. 

Stoichiometric and Kinetic Outcomes: 

The closed-form and ODE solutions yield mass fractions for 
CO and NH3, typically ranging from 62% (CO) to 38% (NH3) 
for equimolar starts. Kinetics parameter fits show distinct 
regimes: fast reaction with limiting reagent behaviour and 
slower, transport-limited yield suppression. 

Fig. 1 shows the stoichiometric mass fraction outcomes for 
CO and NH₃ under equimolar starting conditions, highlighting 
the limiting reagent dynamics. 

 
Fig. 1. Distribution of mass contributions. 
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Hazard Classification Performance: 

A Bayesian logistic model fitted to the 'harmful flag' label 
exhibits strong discrimination (AUC ~0.93) with CH₄, CO, and 
NH₃ dominating predictive power. Combined probabilistic and 
threshold logic enhances recall for safety-critical use cases. 

Fig. 2 shows the kinetic–transport ODE solutions, capturing 
both fast‑reaction and transport‑limited regimes. 

 
Fig. 2. Harmful vs. non-harmful dataset distributions. 

IV. VISUALIZATION AND EXPLORATORY ANALYSIS 

Fig. 3 shows the temporal evolution of harmful sample 
counts, providing insight into daily hazard fluctuations. 

 
Fig. 3. Per-gas threshold exceedance (CO, CH₄, NO, SO₂, NH₃). 

Fig. 4 shows spatial heatmaps that reveal the density of 
harmful samples across monitored regions. 

 
Fig. 4. Stacked area plots of daily gas exceedances. 

Fig. 5 shows per‑gas threshold exceedances, emphasizing 
the dominance of CO and NH₃ in hazard classification. 

 
Fig. 5. Pairwise gas correlations (minimal cross-correlation observed). 

Fig. 6 shows pairwise correlations between gases, 
confirming minimal cross‑correlation among predictors. 

 
Fig. 6. Temporal trends in harmful samples (daily counts and rolling 

averages). 

Fig. 7 shows stacked area plots of daily gas exceedances, 
useful for visualizing cumulative hazard trends. 

 
Fig. 7. Spatial heatmaps of harmful sample density. 
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Fig. 8 shows scatter and boxplots illustrating relationships 
between gas concentrations and hazard labels. 

 
Fig. 8. Scatter and boxplots illustrating gas relationships. 

Fig. 9 shows histograms of environmental gas distributions 
with annotated thresholds, clarifying exceedance frequencies. 

 
Fig. 9. Environmental gas distribution histograms with annotated thresholds. 

V. RESULTS 

Kinetic parameter estimates (Table III) indicate a posterior 
mean rate constant and a non‑negligible convective loss 
parameter. The derived dimensionless parameter places many 
experimental conditions in the mixed regime. As shown in Fig. 
2, transport‑corrected ODE solutions capture both fast‑reaction 
and transport‑limited regimes. Together, Table III and Fig. 2 
explain the observed sensitivity of yields to initial CO/NH₃ 
ratios. 

1) Stoichiometric checks: Closed‑form mass fraction 

calculations confirm limiting‑reagent behavior in equimolar 

and imbalanced starts. Mass fractions computed from 

stoichiometry align with ODE‑predicted final states in 

reaction‑dominated cases. Table I provides symbol definitions 

and units, while Fig. 1 illustrates stoichiometric mass fraction 

outcomes. 

2) Hazard classifier performance: Posterior summaries in 

Table II show that HCN has the largest coefficient, indicating 

its dominant role in hazard prediction. The Bayesian classifier 

achieves AUC ≈ 0.93 on held‑out data, with calibration plots 

(Fig. 3) demonstrating acceptable reliability when expert priors 

are included. Fig. 5 compares per‑gas threshold exceedances, 

emphasizing CO and NH₃ dominance, while Table II supports 

the conclusion that HCN, NH₃, and CO are the most influential 

predictors. 

3) Uncertainty and decision thresholds: Monte Carlo 

propagation reveals that measurement noise and parameter 

uncertainty widen predictive intervals for HCN concentration 

and hazard probability. Supporting visualizations (Fig. 6–9) 

illustrate correlations, exceedance trends, scatterplots, and 

distributions. Prioritizing recall via a lower decision threshold 

() improves detection of harmful samples at the cost of 

increased false positives. 

VI. DISCUSSION 

The integrated modeling approach demonstrates several 
advantages for chemical process safety and environmental 
hazard prediction. 

First, the coupling of stoichiometric balances, kinetic 
transport equations, and probabilistic hazard classification 
provides a realistic representation of mixed‑gas reactions under 
industrial conditions. The consistency between stoichiometric 
predictions (Table I, Fig. 1) and ODE outcomes (Fig. 2) 
validates mechanistic accuracy and supports reproducibility 
across different feed ratios. 

Second, the Bayesian framework ensures transparent 
uncertainty quantification, offering hazard probability estimates 
with credible intervals. The strong discrimination performance 
(AUC ≈ 0.93) observed in Table II and calibration plots (Figure 

3) highlights classifier robustness. Threshold exceedance 
comparisons (Fig. 5) confirm that HCN, NH₃, and CO are the 
most influential predictors, suggesting sensor networks should 
prioritize these species. 

Third, kinetic estimates in Table III reveal non‑negligible 
values, indicating that transport losses materially reduce yields 
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under typical sampling conditions. This finding, reinforced by 
regime mapping (Fig. 2) and uncertainty visualizations (Fig. 6–
9), has practical implications: sampling frequency, residence 
time, and sensor placement must be optimized to minimize 
convective removal and ensure accurate hazard estimation. 

Discussion Summary: By directly linking Results (Tables I–
III, Fig. 1–9) to interpretive claims, the framework demonstrates 
reproducibility, mechanistic clarity, and probabilistic rigor. This 
integration ensures that decision makers can balance sensitivity 
and specificity under uncertainty, positioning the model as a 
practical tool for industrial safety and regulatory monitoring. 
Environmental scenarios. 

VII. CONCLUSION AND FUTURE WORK 

The integrated modeling framework presented in this study 
combines stoichiometric balances, transport‑corrected kinetics, 
and Bayesian hazard classification into a unified approach for 
chemical process safety and environmental hazard prediction. 
By linking mechanistic equations with probabilistic outputs, the 
framework advances beyond traditional single‑component 
models and provides reproducible, interpretable, and 
transferable results. 

Key findings include: 

• Stoichiometry and kinetics: Agreement between 
closed‑form mass fractions (Table I, Fig. 1) and ODE 
outcomes (Fig. 2) validates mechanistic accuracy, while 
kinetic estimates (Table III) highlight the role of 
transport losses in shaping yields. 

• Hazard classification: Posterior regression coefficients 
(Table II) and calibration plots (Fig. 3) confirm HCN, 
NH₃, and CO as dominant predictors, with threshold 
exceedance comparisons (Fig. 5) reinforcing their 
operational importance. 

• Uncertainty analysis: Monte Carlo propagation and 
decision threshold evaluation (Fig. 6–9) demonstrate 
how predictive intervals and recall‑specific trade‑offs 
can guide safety‑critical monitoring. 

Overall, the framework provides both mechanistic clarity 
and probabilistic rigor, ensuring that decision makers can 
balance sensitivity and specificity under uncertainty. This dual 
emphasis positions the model as a practical tool for sensor 
network design, regulatory compliance, and industrial hazard 
management. Future work will extend the approach to 
multi‑species pollutant systems and real‑time sensor integration, 
further enhancing its applicability in complex urban and 
industrial environments. 
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