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Abstract—The Traveling Salesman Problem (TSP) remains
a fundamental challenge in combinatorial optimization with
applications in logistics, routing, and network design. Classical
local search methods face a trade-off between solution quality
and computational efficiency: while 3-opt delivers better solutions
than 2-opt, its O(n®) complexity renders it impractical for
large instances. This paper presents a reinforcement learning
(RL) approach that addresses this challenge through intelligent
guidance of local search operators. Our method employs a
simple one-dimensional Q-table that learns to identify poorly
positioned cities and directs 2-opt and 3-opt operations toward
the most promising tour segments. We evaluate the approach
on 55 TSPLIB benchmark instances ranging from 51 to 18,512
cities. For instances up to 1,000 cities, RL-guided 3-opt (RL-3opt)
achieves optimality gaps of 0.9-2.2% compared to 3.8-4.3% for
classical 3-opt, with execution times reduced from hours to under
one second and speedups reaching 32,323x. For instances between
1,000-5,000 cities, RL-3opt maintains computational efficiency
(100-30,000x speedups) while achieving competitive 6.3% gaps.
Both RL-20pt and RL-3opt execute in sub-second to a few
seconds even on problems with over 18,000 cities. All experiments
run on standard CPU hardware without GPU acceleration,
demonstrating that effective TSP optimization remains accessible
without specialized resources.

Keywords—Traveling salesman problem; reinforcement learn-
ing; Q-Learning; local search; 2-opt; 3-opt

I. INTRODUCTION

The Traveling Salesman Problem (TSP) asks for the short-
est route visiting each city exactly once before returning to
the origin [1]. Given n cities with distances d;; between pairs,
the objective is to find a permutation 7 = {s1,82,...,8,}
minimizing:

n—1
D depsiiy +ds,e- (1)

k=1

Despite this simple formulation, the TSP is NP-hard [2], with
(n—1)!/2 possible tours for symmetric instances where d;; =
d;;. This computational difficulty has motivated decades of
research, with applications spanning logistics, manufacturing,
circuit design, and delivery routing [3]. TSP solution methods
have evolved through several generations. Classical heuristics
combine construction methods with local search operators and
remain widely used for their simplicity and reliability. Meta-
heuristic algorithms offer more sophisticated search strategies
that balance exploration and exploitation through mechanisms
such as population evolution, adaptive search, and strategic
diversification. More recently, machine learning techniques,
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particularly deep neural networks and RL, have shown they can
learn solution strategies directly from data [4], [5]. Researchers
have also developed hybrid methods that combine classical
algorithms with learning components [6], [7].

Despite these advances, two fundamental challenges per-
sist. Most learning-based approaches require substantial com-
putational resources [8], [9]. Deep learning methods typi-
cally need GPU acceleration and extensive training on large
datasets [10]. Even simpler learning frameworks often em-
ploy multi-dimensional state representations that scale poorly
with problem size. This limits their accessibility for users
without high-performance computing infrastructure, including
small businesses, educational institutions, and organizations in
developing regions. At the same time, classical local search
methods face an inherent trade-off between speed and solution
quality. The 2-opt operator runs quickly but often settles
at poor local minima because it only examines a limited
neighborhood around the current solution. The 3-opt operator
explores substantially larger neighborhoods and typically finds
better solutions, but at much higher computational cost. On
large instances, 3-opt can require hours or even days to
complete. This creates a practical dilemma: users must choose
between fast but suboptimal solutions, or high-quality solutions
that may be computationally prohibitive.

We address both challenges through a simple RL frame-
work designed for efficiency. Our method uses a one-
dimensional Q-table indexed by cities rather than state-action
pairs, reducing memory complexity from O(n?) to O(n).
During tour improvement, the table learns which cities are
poorly positioned based on their involvement in successful
optimization moves. These learned priorities then guide both
2-opt and 3-opt operators to focus on tour segments most
likely to benefit from modification. This design combines the
simplicity and accessibility of classical methods with the adap-
tive intelligence of learning-based approaches. Three principles
shape our work: prioritize algorithmic simplicity, learn during
optimization rather than through offline training, and execute
on standard CPU hardware without GPU acceleration.

We validate the approach on 55 TSPLIB benchmark in-
stances [11] ranging from 51 to 18,512 cities. To directly
measure the contribution of RL, we include systematic compar-
isons against classical baselines: nearest neighbor construction,
classical 2-opt, and classical 3-opt. Results demonstrate that
RL-guided methods outperform their classical counterparts in
solution quality for instances up to 1,000 cities. For larger
instances (1,000-5,000 cities), RL-3opt achieves competitive
quality (6.3% gap) compared to classical 3-opt (5.5% gap)
while running 100 to over 30,000 times faster, effectively

www.ijacsa.thesai.org

1193 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

transforming hours or days into seconds on large instances.
Both RL-2opt and RL-3o0pt complete in a few seconds even
on problems with over 18,000 cities, where classical 3-opt
becomes entirely impractical. All experiments run on standard
CPU hardware, confirming that the approach requires no
specialized computing resources.

This research aims to: 1) develop an efficient RL-guided
framework reducing O(n?) complexity while maintaining so-
lution quality, 2) ensure accessibility through a minimalist one-
dimensional Q-table operating on standard CPU hardware, 3)
demonstrate scalability across 51 to 18,512-city instances, 4)
achieve sub-second to few-second execution times for real-time
applications, and 5) quantify quality-time trade-offs compared
to classical methods.

The paper proceeds as follows. Section II reviews related
work on TSP solution methods and learning-based optimiza-
tion. Section III describes our approach in detail, including
RL fundamentals, classical local search methods, and our RL-
guided framework. Section IV presents experimental method-
ology and comprehensive results on 55 TSPLIB benchmarks.
Section V concludes the paper.

II. RELATED WORK

The TSP has been extensively studied through classi-
cal heuristics, metaheuristics, and modern learning-based ap-
proaches. This section reviews key methodologies relevant to
our hybrid framework.

A. Classical Heuristics and Local Search

Classical heuristics provide rapid initial solutions. The
nearest neighbor heuristic [12] constructs tours by iteratively
selecting the closest unvisited city. Zuhanda et al. [13] demon-
strated that hybrid methods consistently outperform pure
heuristics on TSPLIB benchmarks. Alkafaween et al. [14] pro-
posed an iterative approximate method achieving polynomial-
time solutions with competitive quality.

Local search operators refine initial tours through edge
exchanges. The k-opt family [15], [16], particularly 2-opt
and 3-opt, systematically improves tours by removing and
reconnecting edges. The Lin-Kernighan-Helsgaun algorithm
[17], [18] represents the state-of-the-art, employing variable
k-opt moves with intelligent candidate selection to achieve
near-optimal solutions on large instances.

B. Metaheuristic Approaches

Metaheuristic algorithms escape local optima through di-
versified search mechanisms. Genetic algorithms [19] employ
evolutionary principles, with Al-Ibrahim [20] demonstrating
near-optimal solutions through specialized crossover opera-
tors. Bio-inspired methods have shown promise: Abd Algani
[21] applied African Buffalo Optimization to TSP, while
Ant Colony Optimization [22] uses pheromone-based search
strategies.

Swarm intelligence techniques offer efficient optimization
across domains. Kou and Wei [23] combined particle swarm
optimization with grey wolf algorithm for improved conver-
gence. Wu et al. [24] developed dynamic multi-population PSO
for complex trajectory planning. Recent applications by Zhou

Vol. 16, No. 12, 2025

[25] and Bai [26] to resource allocation problems demonstrate
the versatility of these approaches.

C. Learning-Based Approaches

Deep learning has introduced end-to-end TSP solving.
Kafakthong and Sinapiromsaran [27] proposed deep atten-
tion mechanisms predicting near-optimal tours directly from
distance matrices. Pointer Networks [28] and actor-critic ar-
chitectures [29] generate tours without supervised training.
Graph Neural Networks [30] and Transformers [31] capture
complex inter-node relationships. However, these approaches
typically require substantial GPU resources and extensive
training, limiting their accessibility for resource-constrained
environments.

RL addresses sequential decision-making in combinatorial
optimization. Wang et al. [32] showed Double Q-Learning
outperforms traditional Q-Learning and SARSA for TSP. Pan
et al. [33] proposed hierarchical RL scaling to instances with
thousands of nodes, though computational requirements remain
significant.

D. Hybrid Methods

Hybrid approaches combine classical and learning-based
techniques. d’O Costa et al. [34] trained policy models to
guide 2-opt operations. Zheng et al. [35] integrated Q-learning
into LKH, forming Reinforced LKH with strong TSPLIB
performance. NeuroLKH [7] uses neural networks to predict
edge candidates without modifying LKH’s core structure.

El Jaghaoui et al. [36], [37] explored adaptive exploration-
exploitation strategies and combined Q-learning with ACO,
demonstrating improved convergence on benchmarks. Ruan
et al. [38] merged RL with genetic algorithms for enhanced
solution discovery.

E. Positioning of this Work

Existing hybrid methods often rely on complex architec-
tures or multi-dimensional Q-tables that scale poorly. Deep
learning approaches typically demand GPU acceleration and
extensive computational resources, limiting their accessibil-
ity for resource-constrained environments. Our approach ad-
dresses these limitations through a minimalist one-dimensional
Q-table indexed by cities, drastically reducing memory and
computational requirements. The method operates efficiently
on standard CPU-only hardware without requiring GPUs or
specialized equipment. Unlike methods requiring extensive
offline training, our framework learns dynamically during
optimization. By combining nearest neighbor initialization
with RL-guided 2-opt and 3-opt operators, we demonstrate
that effective TSP optimization is achievable on commodity
hardware across 55 TSPLIB instances.

III. METHODOLOGY

We propose a hybrid framework that combines Q-learning
with local search methods for solving the TSP. The key
contribution is the use of RL to intelligently guide edge
selection in 2-opt and 3-opt operators. This section presents
the RL fundamentals (Section III-A), classical local search
methods (Section III-B), and our proposed RL-2opt and RL-
3opt algorithms (Section III-C).
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A. Reinforcement Learning Fundamentals

RL [39] is a machine learning paradigm in which an
agent learns to make optimal decisions through interaction
with an environment. This process is formalized as a Markov
Decision Process (MDP), defined by the tuple (S, A, P, R),
where S is the state space, A the action space, P the transition
probabilities, and R the reward function. The agent seeks to
maximize cumulative reward by learning an optimal policy
m : S — A. Q-learning is a model-free RL algorithm that
learns the Q-function, representing the expected return of
taking action a in state s. The Q-values are updated using
the Bellman equation:

Q(s;a) = Q(s,a) +a |r+ymaxQ(s',a') = Q(s,a)| , (2)

where o € (0,1] is the learning rate, v € [0, 1] the discount
factor, r the immediate reward, and s’ the resulting state.

B. Local Search Methods

Local search methods iteratively improve solutions by
exploring neighborhoods through local modifications. For the
TSP, k-opt operators [16] represent the most prominent local
search techniques, where k denotes the number of edges
removed and reconnected.

The 2-opt operator removes two non-adjacent edges and
reconnects the path segments in an alternative configuration.
With O(n?) complexity per iteration, 2-opt quickly improves
solutions but often converges to mediocre local optima [15].

The 3-opt operator extends this by removing three edges
and evaluating multiple reconnection patterns [16]. While
producing superior solutions, its O(n?) complexity becomes
prohibitive for large instances. Section III-C presents our RL-
guided approach that addresses this computational bottleneck.

C. RL-Guided Local Search Framework

Given an initial TSP tour, we apply a Q-learning-guided
local search procedure to iteratively refine the solution. This
framework integrates RL with classical k-opt operators to in-
telligently guide edge selection. The following sections present
two algorithms: RL-2opt (Section III-C1), which combines
Q-learning with 2-opt, and RL-3opt (Section III-C2), which
extends the approach to 3-opt operators.

1) RL-20pt algorithm: We propose an RL-guided variant of
the 2-opt algorithm in which a Q-learning agent learns to iden-
tify promising city pairs for edge swaps. Unlike classical 2-opt,
which exhaustively examines all possible swaps, our approach
prioritizes cities that are more likely to yield improvements
based on accumulated experience.

a) Q-Learning Components: The RL framework is de-
fined as follows:

e  State: The current tour 7', represented as an ordered
sequence of cities.

e Action: Select two non-adjacent cities (¢,7) and per-
form a 2-opt swap by reversing the tour segment
between them.

e Reward: » = lencyment — l€Npew, Where lengymen: and
len,ey, are the tour lengths before and after the swap.

Vol. 16, No. 12, 2025

The reward is positive if the swap shortens the tour;
otherwise, 7 = 0 and the swap is rejected.

e (Q-Table: A one-dimensional array ) € R™, where
each entry Q[i] estimates the expected benefit when
city 7 participates in a swap. This compact representa-
tion avoids the computational overhead of a full state-
action Q-table.

b) Action Selection Strategy: City selection follows an
e-greedy policy that balances exploration and exploitation:

e  Exploration (probability ¢): Select two distinct cities
(4,7) uniformly at random.

e  Exploitation (probability 1 — ¢): Choose the city with
the highest Q-value, i = arg maxy, Q[k], then select a
second city j # ¢ randomly.

The underlying intuition is that well-positioned cities yield
minimal improvement when swapped, maintaining low Q-
values. Conversely, poorly positioned cities produce significant
gains when swapped, accumulating higher Q-values over time.
This mechanism naturally directs the search toward unstable
tour regions where improvements are most likely.

c) Efficient Tour Update: The 2-opt swap removes
edges (i,succ(i)) and (j,succ(j)) and adds edges (4,5) and
(succ(i), succ(j)), where succ(i) denotes the successor of city
¢ in tour 7'. The tour length change can be computed locally
without recalculating the entire tour:

distremoved = d(4, succ(4)) + d(j, succ(j)), 3)
distadged = d(i,7) + d(succ(i), succ(j)), 4)
lennew = lencurrem - diStremoved + diStadded~ (5)

This localized computation ensures O(1) update complex-
ity per swap, critical for scalability to large instances.

d) Q-Value Update: After each swap attempt, the Q-
values of the involved cities are updated using a simplified
temporal difference rule:

Qli] = Qlil+a(r—Qli]), Qlj] + Qlil+alr—Qlj]), 6)

where o € (0,1] is the learning rate. No discount factor
v is used since each iteration involves a single immediate
decision with no delayed consequences, eliminating the need
for multi-step credit assignment. The complete procedures are
formalized in Algorithms 1 and 2.
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Algorithm 1 2-opt Swap Operation
Input: 7': current tour, d: distance matrix, lencyen: tour length,
i,7: cities to swap
Output: T}, updated tour, leny: new tour length
1: function SWAP-20PT(T', d, lencyrrent, %, J)
2: diStremoved < d(7, succ(z)) + d(j, succ(j))

3 distaqaed — d(i, j) + d(succ(i), succ(j)

4. if distygdgeq > diStremovea then

5: return 7', lengyrent > No improvement

6: else

7 lennew <~ lencunem - diStremoved + diStadded

8: Reverse tour segment between succ(i) and j to
obtain 7 ey

9: return 7.y, lengey

10: end if

11: end function

Algorithm 2 RL-2opt Algorithm

Input: n: number of cities, d: distance matrix, Ti;: initial
tour, len;y;: initial length, a: learning rate, €: exploration rate,
TNepisodes: NUMber of episodes

Output: Tj.: best tour found, lenye: best length

1: function RL-20PT(n, d, Tisit, leniyit, 0, €, Nepisodes)

2 Thest < Tinit, lenpesy <— leniyi

3: Q<+ 0, > Initialize Q-table
4 for episode = 1 t0 nepisodes dO

5: Select cities (i, j) using e-greedy:

6: if random() < ¢ then > Exploration
7: 1,7 < two random distinct cities

8 else > Exploitation
9: i + arg maxy, Q[k]

10: j < random city with j # i

11: end if

12: Thew, lenpew <— Swap-20pt(Thes, d, lenpes, 7, j)

13: 74— leNpest — 1€Npey

14: Update Q-values:

is Qli] < Qlil + alr — Qi)

16 Qljl « QU + alr — QL)

17: if » > 0 then > Accept improvement
18: Tbest <~ TneW7 1enbesl — lennew

19: end if

20: end for
21: return ey, lenpeg

22: end function

2) RL-3opt algorithm: We extend the RL-guided approach
to the more powerful 3-opt operator, which explores a sig-
nificantly larger neighborhood than 2-opt. While 2-opt re-
moves two edges and performs a single reconnection, 3-
opt removes three edges and evaluates multiple reconnection
patterns, potentially yielding higher-quality solutions at the
cost of increased computational complexity.

a) Q-Learning Components: The RL framework for
3-opt follows the same structure as RL-2opt, with the key
difference being the action space:

e  State: The current tour 7.

e  Action: Select three cities ¢ < j < k in tour 7', remove
the edges (4,succ(z)), (j,succ(j)), and (k,succ(k)),
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and evaluate all valid reconnection patterns to find the
best configuration.

e Reward: r = diStremovea — diStagdea(m™), Where m* is
the best reconnection pattern among the seven non-
trivial configurations.

e  (Q-Table: The same one-dimensional array () € R™ as
in RL-2opt, where Q[¢] estimates the expected benefit
when city i is involved in a 3-opt move.

b) 3-opt Reconnection Patterns: Removing three edges
(i,succ(?)), (4,succ(j)), and (k,succ(k)) partitions the tour
into three segments:

e S;: from succ(?) to j,
e Sy from succ(j) to k,

e S3: from succ(k) to 1.

Each segment can be traversed forward or reversed, yielding
23 = 8 total combinations. The first configuration (all segments
in original orientation) is trivial and yields no change. The
remaining seven configurations are evaluated. Table I lists all
eight cases and their corresponding edge insertions.

TABLE I. THE 8 RECONNECTION PATTERNS IN 3-OPT AND THEIR
INSERTED EDGES. CONFIGURATION 1 IS THE IDENTITY AND IS IGNORED.
NOTATION: © INDICATES SEGMENT REVERSAL

Case | Segment orientation
1 S1 — S — 53
SO = Sy — S
51— 89 — 83
Sp — Sz — S¢
5O 89 — 85
SO — Sy — 89
S — 89 = 89
SO = 89 — 89

Inserted edges

Identity (ignored)

(i, 4), (suce(4), suce(5)), (k, succ(k))
(i, suce(2)), (4, k), (suce(7), succ(k))
(4, suce(d)), (4, succ(j)), (k, 1)

(i, 3), (suce(z), k), (succ(j), succ(k))
(2, k), (suce(z), succ(3)), (4, succ(k))
(i, succ(2)), (4, k), (suce(4), 2)

(i, k), (succ(4), 5), (suce(j), succ(k))

el B R

c) Efficient Configuration Evaluation: To avoid recom-
puting the full tour length for each configuration, we use local
distance calculations:

diStremoved = d (7, suce(2)) +d(j, succ(j)) +d(k, succ(k)), (7)

distaaged(m) = d(y1) + d(y2) + d(ys), (®)

where (y1,ys2,ys3) are the three edges inserted in configuration
m € {2,...,8}. The best configuration m* is:

di Stadded (m) . (9)

m* =arg min
me{2,...,8}

If distyggea(m™) < diStremoved, the move improves the tour and
is accepted:

lennew - 1encurrent - diStremoved + diStadded(m*)7 (10)
r= diStremoved - diStadded(m*)~ (1 1)
Otherwise, the tour remains unchanged and r = 0.

d) Q-Value Update: After each move attempt, the Q-
values of all three involved cities are updated:

Qlel < Qlel +a(r = Q[d]), Vee{i,jk}.  (12)
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e) Action Selection Strategy: City selection follows
the same e-greedy policy as RL-2opt: with probability ¢
(exploration), we select three distinct cities ¢, j, k uniformly
at random; with probability 1 — ¢ (exploitation), we choose
i = argmax.Q|c|, then randomly select two additional
distinct cities j # i and k # 4,j. The complete procedures
are formalized in Algorithms 3 and 4.

Algorithm 3 3-opt Swap Operation

Input: 7': current tour, d: distance matrix, lencyen: tour length,
1,7, k: cities with ¢ < j < k
Output: 7)., updated tour, len,,: new tour length
1: function SWAP-30PT(T, d, lencyrent, %, 7, k)
2: distremovea < d(i,succ(?)) + d(4,succ(j)) +
d(k,succ(k))

3: Thest < 0

4: Thew + Ta lengew ¢ lencurrent

5: for each configuration m € {2,...,8} do

6: (y1,y2,y3) < edges inserted in configuration m
(from Table I)

7: distagdea +— d(y1) + d(y2) + d(y3)

8: T diStremnved - diStadded

9 if r > 7pe then

10: Thest < T

11: lennew — 1encurrent - diStremoved + diStadded

12: Thew < tour reassembled according to config-
uration m

13: end if

14: end for

15: return 7 ey, len,ey

16: end function

Having presented the detailed mechanisms of both RL-
2opt and RL-3opt algorithms, Fig. 1 provides a unified visual
representation of the complete framework.

Input: Initial TSP Tour T

Initialize Q-Table
Set Q[i] = O for all citiesi=1,2,...,n

City Selection (e-greedy)

Begin L ing Lt
(Rep:a?tl?oref?;::‘gu:\z‘;rof « With probability €: Select random cities
. \ « With probability (1-g): Select city i with highest Q[i]

RL-20pt: select 2 cities (ij) | RL-3opt: select 3 cities (ij,k)

Calculate Reward Apply Local Optimization
r = len, < - len, RL-2opt: Remove 2 edges, reconnect | RL-3opt: Remove 3
curren e edges, reconnect
Acc(?rpt N_?w Tour| YES lsr>0? NO Reject Swap
€ Thew e R Keep T

Q-Learning Update
For each selected city i:
Qli] « Q[i] + a(r - QL)

NO All Episodes YES
Completed?

Fig. 1. Flowchart of the Q-learning guided local search framework.

Output: Best Tour Found
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Algorithm 4 RL-3opt Algorithm

Input: n: number of cities, d: distance matrix, Ti,: initial
tour, len;y;;: initial length, a: learning rate, €: exploration rate,
TNepisodes: NUMber of episodes

Output: Ti.y: best tour found, lenyey: best length

1: function RL-30PT(n, d, Tis, leniy, o, €, Nepisodes)

2 Thest <= Thnit, leNpest — leniyy

3 Q<+ 0, > Initialize Q-table

4 for episode = 1 t0 Nepisodes dO

5: Select cities (i, j, k) using c-greedy:

6: if random() < ¢ then > Exploration

7 1, J, k < three random distinct cities

8 else > Exploitation

9: i < arg max, Q|c|

10: j,k < two random distinct cities with j #
ik#i,j#k

11: end if

12: TnBW7 lenpew Swap'?’opt(Tbesta da ]enbesta i ja k)

13: 7 4 lenpegy — lenpey

14: Update Q-values:

15: for c € {i,j,k} do

16: Qld] < Qlc] + a(r — Q)

17: end for

18: if » > 0 then > Accept improvement

19: Thest <= Thew, l€Npest < leNpey

20: end if

21: end for

22: return ey, lenpeg

23: end function

1V. EXPERIMENTAL EVALUATION

This section presents the experimental protocol, parameter
configuration, and comprehensive performance analysis of the
proposed RL-guided local search framework.

A. Experimental Setup

a) Implementation and Hardware: All algorithms were
implemented in C and executed on an HP laptop equipped with
an Intel® Core™ i5-8265U CPU (1.6 GHz base frequency)
and 16 GB of RAM. No parallelization or GPU acceleration
was used, ensuring a fair comparison based on single-threaded
performance.

b) Benchmark Instances: We evaluate our approach on
55 symmetric instances from the TSPLIB repository [11],
ranging from 51 to 18,512 cities. All instances use the Eu-
clidean distance metric (EUC_2D), ensuring consistency in
distance calculations across experiments. Table II lists all
tested instances with their optimal solutions.

c) Experimental Protocol: For each instance, the fol-
lowing three-stage workflow is applied:

1)  Initialization: Generate an initial tour using the Near-
est Neighbor (NN) heuristic starting from a randomly
selected city.

2)  Refinement: Apply RL-2opt or RL-3opt indepen-
dently to improve the initial tour. Each RL algorithm
is executed for 10,000 episodes.
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3) Baseline Comparison: Evaluate against classical 2-opt
and 3-opt local search using the same initial tour to
ensure fair comparison.

To ensure statistical reliability, each RL algorithm is exe-
cuted 20 independent runs per instance with different random
seeds. We report the best solution across these runs, along with
a variability metric (GAP%) defined as:

20 —
2—10 > izq(len; —len)?

lenmin

GAP% = 100 x , (13)

where len; is the tour length in run 4, len is the average
length, and len,,;, is the best length observed. Lower GAP%
values indicate more consistent performance across runs.

d) Hyperparameters: All RL experiments use fixed
hyperparameters to ensure reproducibility: number of episodes
Nepisodes = 10,000, learning rate o = 0.1, discount factor v = 0
(immediate rewards only), and exploration rate £ = 0.1. These
values remain constant across all instances.

e) Performance Metrics: We evaluate algorithms using
three metrics:

e  Solution Quality: Gap percentage from known optimal
or best-known solutions:
Solution — Optimal
Optimal

Gap(%) = x 100. (14)
e  Computational Time: Wall-clock execution time in
seconds, excluding I/O operations.

e  Stability: Variability across runs measured by GAP%
as shown in Equation (13).

B. Results and Analysis

Table II presents comprehensive results for all 55 instances,
including optimal values, tour lengths, computation times, and
variability metrics for each method. Classical 3-opt becomes
computationally impractical for the largest instances (indicated
by —), requiring estimated days of computation time.

Before analyzing these results in detail, we contextualize
our approach relative to existing TSP methods. Specialized
solvers like LKH [17], [18] represent the state of the art for
solution quality. We compared our approach with LKH ver-
sion 3.0.6 (default parameters, run until convergence), which
systematically produces the highest-quality solutions across all
instances. However, execution time differences are particularly
pronounced on large instances: while LKH systematically
achieves the highest quality solutions through extensive com-
putation (hours), our framework provides near-optimal results
orders of magnitude faster (seconds). This confirms our posi-
tioning: our framework is not designed to replace specialized
solvers like LKH, but rather to provide a practical, resource-
efficient alternative under constrained computational condi-
tions—suitable for real-time applications, standard hardware
deployment, or batch processing of thousands of instances.

Other Q-learning approaches for TSP focus on tour con-
struction by learning city selection policies, while our method
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addresses a fundamentally different problem: improving exist-
ing tours rather than generating tours from scratch. Classical
Q-learning tour construction methods typically achieve gaps of
5-15%, while our improvement-focused approach delivers sub-
1% gaps on small instances (< 100 cities). Direct experimental
comparison is not included because these approaches operate
in fundamentally different settings: construction methods learn
sequential decisions from an empty tour, while our improve-
ment approach starts from an existing solution and learns
neighborhood restriction. Comparing final tour quality would
conflate these distinct problem formulations (generation vs.
refinement) and initial conditions rather than isolating the
contribution of RL guidance itself.

‘We compare four local search improvement methods across
all instances: classical 2-opt, classical 3-opt, RL-guided 2-opt
(RL-20pt), and RL-guided 3-opt (RL-3opt). Classical 2-opt
achieves an average optimality gap of 8.95% across all problem
sizes, while classical 3-opt reduces this to 5.31% on in-
stances where it is computationally feasible. RL-guided meth-
ods demonstrate size-dependent performance: For instances
up to 1,000 cities, RL-3opt achieves exceptional quality with
gaps of 0.9-2.2%, including near-optimal solutions on several
instances (rd100: 0.00%, kroAl100: 0.01%, berlin52:
0.03%), while RL-2opt maintains competitive gaps of 1.6—
2.6%. For instances between 1,000-5,000 cities, performance
degrades: RL-3opt achieves 6.3% gaps compared to 5.5% for
classical 3-opt, while RL-2opt reaches 9.1% gaps compara-
ble to classical 2-opt’s 9.0%. Despite this quality trade-off
in the 1,000-5,000 range, RL methods maintain substantial
computational advantages with speedups exceeding 100x to
30,000x. For very large instances exceeding 5,000 cities,
RL-3opt achieves 9.8% gaps while RL-2opt reaches 12.2%.
In this range, RL-3opt matches classical 2-opt quality (both
9.8%) while executing orders of magnitude faster, though RL-
2opt shows some quality degradation compared to classical
methods.

Table III reveals systematic performance differences across
improvement methods.For instances up to 1,000 cities, RL-
3opt achieves 2-4x better gaps than classical 3-opt. How-
ever, for instances between 1,000-5,000 cities, classical 3-opt
achieves slightly better quality (5.5% vs 6.3%) while RL-3opt
maintains substantial computational advantages.

Fig. 2 illustrates these quality differences on five repre-
sentative instances spanning different problem sizes. RL-3opt
(dark blue) achieves near-optimal solutions, including exact
optimality on rd100, while classical 2-opt (dark red) and
classical 3-opt (light red) consistently show higher approxima-
tion ratios. RL-2opt (light blue) provides intermediate quality
between classical and RL-3opt approaches.

Beyond quality, computational efficiency differs dramati-
cally across methods. Classical 3-opt exhibits cubic scaling,
becoming impractical beyond 1000 cities (requiring 16 min-
utes to over six hours for instances with 2,000-6,000 cities)
and entirely infeasible for problems exceeding 10,000 cities.
Classical 2-opt executes faster but still requires seconds for
large instances. In contrast, RL-guided methods maintain near-
linear scalability: instances up to 2,400 cities complete in under
0.25 seconds, up to 6,000 cities finish in under 1 second,
and 18,512-city problems solve in under 4 seconds—yielding
speedups over classical 3-opt ranging from 4,334x to 32,323x.
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TABLE II. COMPREHENSIVE COMPARISON ON 55 TSPLIB INSTANCES. FOR EACH METHOD: BEST TOUR LENGTH AND RUNTIME (SECONDS). FOR RL
METHODS: GAP% STABILITY METRIC OVER 20 RUNS. CLASSICAL 3-OPT BECOMES IMPRACTICAL (—) FOR THE LARGEST INSTANCES

Problem Optimal NN NN+2opt NN+3opt NN+RL2opt NN+RL3opt
Dist Time (s) Dist Time (s) Best GAP % Time (s) Best GAP% Time (s)

kroA100 21282 26856 23228 0.001 21864 0.033 21371 0.50 0.015 21285 0.26 0.021
kroB100 22141 29155 22907 0.002 22886 0.0130 22295 0.45 0.014 22243 0.22 0.022
kroC100 20749 26327 22943 0.001 22176 0.009 20947 0.42 0.016 20852 0.29 0.021
kroD100 21294 26950 23422 0.002 21826 0.015 21845 0.49 0.015 21485 0.33 0.021
kroE100 22068 27587 24475 0.001 23490 0.014 22403 0.40 0.014 22141 0.40 0.023
kroA200 29368 35798 31735 0.002 29823 0.260 29953 0.26 0.022 29963 0.27 0.025
kroB200 29437 36982 32539 0.003 31124 0.232 30205 0.51 0.021 30154 0.38 0.028
rd100 7910 9941 8731 < 0.001 8207 0.025 7975 0.34 0.016 7910 0.12 0.021
rd400 15281 19168 16847 0.004 15870 3212 15745 0.30 0.037 15676 0.19 0.045
ch130 6110 7575 6848 0.001 6459 0.054 6284 0.31 0.017 6239 0.23 0.023
ch150 6528 8195 6727 0.001 6812 0.060 6597 0.39 0.017 6580 0.11 0.024
berlin52 7542 8981 8287 < 0.001 7801 0.002 7544 0.11 0.012 7544 0.10 0.019
eil51 426 514 449 < 0.001 437 0.002 432 0.09 0.011 430 0.09 0.018
eil76 538 712 572 < 0.001 552 0.010 549 0.11 0.012 545 0.13 0.019
st70 675 806 727 < 0.001 689 0.009 696 0.18 0.012 687 0.07 0.022
eill01 629 825 707 0.001 669 0.025 657 0.19 0.017 656 0.15 0.020
pr76 108159 153462 119489 < 0.001 109170 0.015 109210 0.33 0.014 109120 0.25 0.020
pr107 44303 46678 46194 0.001 44728 0.021 44768 0.41 0.017 44724 0.28 0.020
pri24 59030 69299 64335 0.002 60484 0.032 59685 0.39 0.016 59551 0.31 0.022
pr152 73682 85703 77351 0.002 77536 0.035 74004 0.20 0.018 73877 0.17 0.027
pr226 80369 94685 85113 0.002 81594 0.217 80914 0.27 0.023 80769 0.24 0.029
pr264 49135 58023 55188 0.003 50279 0.643 50803 0.57 0.024 50679 0.43 0.033
pr299 48191 59899 51414 0.003 49467 0.74 49955 0.60 0.029 49653 0.52 0.036
pr439 107217 131282 117331 0.003 113722 2.409 110231 0.87 0.039 109928 0.61 0.043
pr1002 259045 315597 284317 0.028 272929 36.104 275363 0.64 0.081 272280 0.34 0.090
pr2392 378032 461207 417036 0.456 401880 957.91 417473 0.37 0.206 406317 0.42 0.221
rat99 1211 1565 1331 < 0.001 1306 0.024 1272 0.17 0.015 1260 0.10 0.025
rat195 2323 2762 2511 0.001 2419 0.296 2387 0.28 0.020 2386 0.18 0.027
rat575 6773 8449 7342 0.011 7231 11.596 7085 0.57 0.045 7042 0.47 0.052
rat783 8806 11255 9816 0.014 9308 16.505 9296 0.27 0.067 9219 0.31 0.087
uls59 42080 54669 47578 0.001 44916 0.076 43583 0.41 0.018 42900 0.39 0.024
ul060 224094 281636 247562 0.062 237724 63.38 241904 0.89 0.085 233538 0.80 0.111
ul432 152970 188815 168415 0.099 163043 120.598 167796 0.52 0.110 164102 0.36 0.132
ul817 57201 71103 62867 0.147 61265 437.57 63969 0.44 0.145 61995 0.34 0.178
u2152 64253 80180 70741 0.287 68741 681.072 71870 0.33 0.168 70187 0.27 0.191
u2319 234256 278783 246510 0.257 243418 702.340 254347 0.34 0.178 243379 0.24 0.203
1lin105 14379 20363 16400 0.001 15394 0.040 14630 0.47 0.016 14529 0.20 0.019
11304 252948 339797 284062 0.140 273043 179.664 274694 0.85 0.136 269556 0.89 0.138
11323 270199 332095 298286 0.075 286679 182.035 284152 0.54 0.101 280689 0.48 0.122
11889 316536 400685 343363 0.144 332865 507.93 344585 0.42 0.151 334100 0.50 0.175
15915 565530 707499 622550 2.501 588813  22625.876 619163 0.25 0.669 606306 0.23 0.700
15934 556045 683806 614093 3.122 597867 18309.009 623758 0.22 0.667 606867 0.35 0.705
111849 923288 1139496 1014854 21.466 — — 1025936 0.30 1.888 1006586 0.17 2.00
bier127 118282 135752 123768 0.001 120764 0.099 120462 0.56 0.016 119852 091 0.023
vm1084 239297 301469 258092 0.074 250083 129.744 258659 0.79 0.085 254407 0.55 0.109
vm1748 336556 408089 365952 0.273 353458 473.991 363160 0.86 0.133 355258 0.46 0.163
pcb3038 137694 175573 152112 0.544 147145 2107.079 151471 0.27 0.263 147235 0.26 0.280
13795 28772 34226 30401 1.399 29713 3784.776 32669 0.46 0.371 31037 0.92 0.397
fnl4461 182566 227157 200121 1.522 192642 8661.879 201355 0.20 0.451 195775 0.22 0.475
usal3509 19982859 25047673 21984724 28.548 — — 22777155 0.15 2.31 22181451 0.14 2.73
brd14051 469385 577037 514523 22.656 — — 535127 0.18 2.50 522622 0.11 2.90
d493 35002 43646 37848 0.0160 36373 6.386 36337 0.43 0.044 36112 0.28 0.052
d2103 80450 87469 83437 0.208 81771 371.815 85468 1.01 0.187 84925 0.61 0.207
d15112 1573084 1948433 1719624 26.630 — — 1760464 1.39 3.66 1731045 0.65 3.84
d18512 645238 797562 703839 45.482 — — 730690 0.24 3.82 716002 0.13 3.94

TABLE III. AVERAGE OPTIMALITY GAPS (%) BY INSTANCE SIZE,
COMPUTED AS GAP(%) = (SOLUTION - OPTIMAL) / OPTIMAL x 100

Size (cities) N 2-opt  3-opt RL-20pt RL-3opt
< 100 (12) 8.7 3.8 1.6 0.9
100-1,000 (20) 9.0 43 2.6 2.2
1,000-5,000  (16) 9.0 5.5 9.1 6.3
> 5,000 (7) 9.8 — 12.2 9.8

The combined quality-time advantage varies by problem size:
small instances (<100 cities) see RL-3opt achieving 4x better
quality than 3-opt with comparable execution times, medium
instances (100-1,000 cities) combine millisecond execution

with 3x better quality than 3-opt, and large instances (1,000—
5,000 cities) demonstrate RL-3opt transforming hours-long
searches into sub-second optimizations with 2x quality im-
provement over 3-opt and 4x over 2-opt. Very large instances
(>5,000 cities) remain infeasible for classical 3-opt while
RL methods scale gracefully: RL-3opt matches classical 2-opt
quality but executes orders of magnitude faster.

Fig. 3 visualizes these advantages. Panel (a) demonstrates
RL methods scaling to 18,000+ cities in under 4 seconds, while
classical 3-opt exhibits cubic growth. Panel (b) confirms Pareto
dominance: classical 2-opt offers speed without quality (ratios
1.08-1.11), classical 3-opt offers better quality at prohibitive
cost, while RL methods provide the fastest solution for any
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Performance Comparison on Selected TSPLIB Instances
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Fig. 2. Performance comparison on five representative instances. RL-3opt (dark blue) achieves near-optimal solutions including exact optimality on rd100.
RL-2opt (light blue) provides intermediate quality. Classical methods (red) show significantly higher approximation ratios.
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Fig. 3. Computational performance on 55 TSPLIB instances. (a) RL methods maintain near-linear scaling while classical 3-opt exhibits cubic explosion. (b)
RL methods dominate the Pareto frontier with approximation ratios of 1.01-1.12 and execution times under 5 seconds.

desired quality level.

To assess robustness, we measured variability across 20
independent runs using the GAP% stability metric (Equa-
tion 13). Both RL methods demonstrate excellent stability
with GAP% values of 0.1-1.0%. Best cases include ei151
(0.09%), usal3509 (0.14-0.15%), and brd14051 (0.11-
0.18%), confirming reliable Q-learning convergence suitable
for production deployment.

C. Discussion

Our results demonstrate that a simple one-dimensional Q-
table can effectively guide local search for TSP, but with
clear limitations tied to problem size. The approach works
well because it learns which cities are poorly positioned
during optimization and focuses computational effort there.
On instances up to 1,000 cities, this adaptive strategy produces
solutions 2—4x better than classical 3-opt while running much
faster. The Q-values act as a priority signal, directing the
algorithm toward tour segments most likely to benefit from
modification.

Performance declines on larger instances because the learn-
ing signal becomes weaker. With 10,000 fixed episodes, each
city receives less attention as m grows, making it harder to
identify and fix problematic regions. This reveals the core
trade-off of our design: we sacrificed representational power
(one-dimensional Q-table instead of multi-dimensional) to gain
computational efficiency and simplicity. Methods like Rein-
forced LKH [35] maintain quality on large problems through
richer state representations, while neural approaches [31], [10]
learn powerful policies but require extensive training on GPUs.
Our framework sits between these extremes—it learns during
optimization rather than through offline training, making it
accessible but limiting its ability to handle very large instances.

The dramatic speedups (401-32,323x) come from a fun-
damental algorithmic change: sampling a constant number of
moves instead of exhaustively examining all O(n?) possibili-
ties. This matters practically. A logistics company optimizing
500 delivery routes can complete the task in seconds rather
than minutes, enabling real-time adjustments as conditions
change. For applications where speed and accessibility matter
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more than guaranteed optimality, this framework offers a com-
pelling option. However, the 6.3% gap on medium instances
(1,000-5,000 cities) versus 5.5% for classical 3-opt shows
there are situations where the extra computation time is worth
1t.

The broader contribution is accessibility. Running on stan-
dard CPUs without hyperparameter tuning makes high-quality
TSP optimization available to organizations without special-
ized computing infrastructure. This democratization matters
for small businesses, educational institutions, and resource-
constrained environments.

V. CONCLUSION

This paper introduced a Q-learning-guided local search
framework that addresses neighborhood explosion in classical
TSP methods by learning city-specific Q-values to guide
exploration toward promising moves. The approach transforms
O(n?) 3-opt complexity into practical sub-second optimiza-
tion.

Experimental evaluation on 55 TSPLIB instances demon-
strates size-dependent performance characteristics. For in-
stances up to 1,000 cities, RL-3opt achieves 0.9-2.2% opti-
mality gaps compared to 3.8-4.3% for classical 3-opt, with
speedups exceeding 1,000x. For instances between 1,000-
5,000 cities, classical 3-opt achieves better quality (5.5%
vs 6.3%), but RL-3opt maintains practical efficiency with
speedups reaching 32,323x and sub-second execution. For
instances exceeding 5,000 cities, RL-3opt achieves 9.8% gaps
matching classical 2-opt quality while executing orders of
magnitude faster. Classical 3-opt becomes computationally
infeasible beyond 1,000 cities.

By delivering near-optimal solutions on small instances and
competitive solutions on large instances using standard CPU
hardware without GPU acceleration, this framework democra-
tizes access to effective TSP optimization. The combination of
sub-second to few-second execution across all problem sizes,
minimal configuration requirements, and favorable quality-
time trade-offs makes RL-guided local search a practical
alternative for real-world logistics, manufacturing, and routing
applications where both solution quality and computational
efficiency matter.

Future work will focus on implementing dynamic episode
scaling and adaptive learning rates to improve performance
on large instances, and extending the framework to related
combinatorial problems including Vehicle Routing and Job
Shop Scheduling.
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